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Estimation of Linear Space-Invariant Dynamics

Helmuth Naumer

Abstract—We propose a computationally efficient estimator for
multi-dimensional linear space-invariant system dynamics with
periodic boundary conditions that attains low mean squared error
from very few temporal steps. By exploiting the inherent redun-
dancy found in many real-world spatiotemporal systems, the esti-
mator performance improves with the dimensionality of the system.
This paper provides a detailed analysis of maximum likelihood
estimation of the state transition operator in linear space-invariant
systems driven by Gaussian noise. The key result of this work is
that, by incorporating the space-invariance prior, the mean squared
error of a estimator normalized to the number of parameters
is upper bounded by N=*M~1 + O(N-*M~2), where N is
the number of spatial points, and M is the number of observed
timesteps after the initial value.

Index Terms—Space-invariant,
spatiotemporal, dynamical systems.

system identification,

I. INTRODUCTION

NOWLEDGE of the dynamics generating a signal enables
K numerous state-space based algorithms to provide both
better estimates of the signal of interest in fields such as dynamic
tomography [1], as well as predictions of the future which have
critical implications such as weather patterns [2], [3]. Addition-
ally, estimating physical dynamics is one of the core goals of
basic scientific research, where such dynamics may represent
fundamental governing equations in numerous fields. The in-
herent high-dimensionality of spatiotemporal systems normally
requires both significant amounts of data and computation to
create accurate estimates. Despite the high-dimensionality of
the system, the dynamics themselves are often very structured.
Numerous approaches to estimating low-dimensional ap-
proximations of spatiotemporal dynamics exist. One successful
method is Dynamic Mode Decomposition (DMD), which is
inspired by the observation that a Linear Dynamical System
(LDS) inherently constructs a Krylov Subspace, a space fre-
quently exploited in efficient numerical algorithms for linear
algebra [4]-[6]. While very useful, DMD inherently searches
for low-dimensional approximations of the collective system
dynamics, rather than the fundamental governing equations.
Given two vibrating membranes, a square and a circle, DMD
may find sinusoids in the square membrane and Bessel functions
for the circular membrane, rather than identifying the wave
equation and associated parameter.
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While understanding global behavior is very important for
engineering design and interpreting the impact of boundary
conditions, the universe is inherently governed by local in-
teractions which together form these sophisticated behaviors.
For this reason, it is sometimes preferable in basic scientific
research to identify the fundamental governing equations and
associated parameters. Recently proposed alternative formula-
tions use approximations of derivatives to fit nonlinear functions
to identify a governing partial differential equation (PDE) [7],
[8], use neural networks to identify parameters [9], [10], or
build particle simulation models using so-called “interaction
networks” [11], [12], oftentimes using hundreds of timesteps.
While these methods work incredibly well in practice, they often
lack rigorous performance bounds due to the inclusion of neces-
sary, but statistically opaque, steps, such as the sophisticated
numerical differentiation procedure found in [13]. Thus, the
goal of this work is to begin to understand the source of the
remarkable performance of the numerous modern methods for
estimating PDE-defined dynamics from data through the careful
analysis of the most basic class of systems in the model family.

In this work, we derive an approximate mean squared error
(MSE) upper bound for an estimator of linear system dynamics
under a space-invariance prior, an assumption that inherently
enforces the notion that collective behavior is determined by a set
of identical interactions, without the requirement to first convert
to continuous time. The paper begins by describing the basic
system model and providing an approximate Cramer-Rao lower
bound on the variance of unbiased estimators, before deriving
the maximum likelihood (ML) estimator for a system that begins
at rest. We then derive the bias and MSE of the estimator when
applied to a system in steady state, and conclude with simulation
results of a diffusion system.

II. SYSTEM MODEL

The system follows a discrete-time linear state-space model
Xi+1 = Fx; +uy, (1)

where x; € RV represents the state of the system at a given
time 4, and u; € RY represents i.i.d. centered Gaussian noise
driving the system. Each element of the vectors correspond to a
physical pointin a space, discretized into N points. [V is typically
quite large, as even constructing a coarse 1000 x 1000 x 1000
grid corresponds to the dimensionality of N = 10°. Each vec-
tor is spatially wide sense stationary (WSS), and we assume
knowledge of x; in our estimator. The Linear Space-Invariant
(LST) model with periodic boundary conditions enforces that the
state transition matrix F € RV*" is a convolution with a fixed
convolutional kernel f € R, represented by

F=[f Sf Sf sV )

where S represents a circular shift operator.
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III. CRAMER-RAO BOUND

Before introducing a specific estimator, we derive an asymp-
totic Cramer-Rao bound [14] for the space-invariance prior.
This bound shows the potential reduction in estimator variance
enabled by the model assumption.

Lemma 3.1: Given M timesteps beyond the initial state of a
linear, space-invariant system partitioned into /N spatial points,
the Cramer-Rao bound for the steady-state system asymptoti-
cally becomes

E {fﬂ > %Cgl

forlarge M, where f is an unbiased estimate of the convolutional
kernel £, £7 is the transpose of the estimate, o2 is the variance
of the noise on a given timestep, and Cy = E[x;x/ | for all 4 is
the spatial covariance matrix.
Proof: We will use the second derivative form of Fisher
information,
0%0(f; %)
JE) =-E [ Of TOf
where ¢ is the log likelihood function of the parameters f given
observations x, and [E[-] denotes the expected value. By taking
note of the bipartite graph structure between timesteps, the log
likelihood function takes the form

M N
0(f; %) = logp(xolf) + > > logp(a\’jxi1,£), (@)

i=1 j=1

f] ) 3)

where ZI‘Y) represents the state associated with location j at

timestep %, and

1
202
where ¢ is a constant that does not depend on f. For suffi-
ciently many timesteps, we approximate the bound by removing

log p(x1]f), using ~ to denote the change to asymptotic equiv-
alence. Computing the appropriate derivatives:

logp(a\ x;1.f) = ——5 (&} — £78'x; 1)> + ¢, (5)

52¢ | M N o o
— o~ E g =28V x1x; ST (6)
T 2 i
ofTof 20 Pt

Finally, taking the expectation results in the Fisher information

M N

1 . .
J(f) ~ 252 ZZ2Sl’J]E [x; 1%, 4] 871 (7)
S
1
= 5 NMC,. (8)

Equation (8) comes from noting the circulant structure of the
covariance. We conclude by inverting the Fisher information.
Thus, if we assume some level of indistinguishability between
the points in space, the points are each reused to estimate
parameters, reducing the variance by a factor of N.

IV. LSI ML ESTIMATOR

In this section, we derive the maximum likelihood estimator
of system dynamics in an LSI system. The derivation follows
from expressing the state transition matrix F as being comprised

2155

of rows of the generating kernel f shifted by repeated application
of a circular shift operator S.

Theorem 4.1: The ML estimator of the state transition oper-
ator F of a discrete-time LSI system driven by centered i.i.d.
Gaussian noise and initialized as xy = ug is

M &
. i1 Si—1,:(92
F(Q): Z]V},_lA 1 ( ) ,
> iz Sic1,i-1(€)

where S'”(Q) = X/(2)X;(£2) represents the empirical cross
spectral density between timesteps ¢ and j, and F'(Q2) is an
estimate of the Fourier transform of the convolutional kernel
of the system dynamics at spatial frequency 2.

Proof: Starting from (4), the maximum likelihood estimator
is

M N
(@)

arg max /(f|x) = arg max logp(z;”|%i-1,f), (9)

feRN feRN ;7:21 ’

where the first term was removed due to the lack of depen-
dence on f. Under our model of i.i.d. additive Gaussian noise,
p(xy) |x;_1, ) becomes Gaussian with mean (S7~1f) x; ;. By
our model the noise is i.i.d., thus the scalars become irrelevant
and we reduce our problem to

M N
arg maxzzf(x(i) — '8 x; )? (10)
FERY o1 j=1
Differentiating with respect to f and setting equal to 0:
M N _
DD 2 — 78 x ) (x,8 ) =0 ap

i=1j=1

Multiplying out the expression and shifting to opposite sides
results in the maximum likelihood estimation of f to be the
solution of the following equation:

M N M N
E E Slfjxi,lx;r_lsjfl f= E E xéslﬂxi,l
i=1 j=1 i=1 j=1

12)

We can consider Zf\i 1 Xi—1X,_; to be a scaled empirical

spatial correlation matrix. Summing over our shift operators

represents summing over all of the circular diagonal in our

matrix, enforcing our prior of the circulant structure. Thus, if

we denote our correctly normalized empirical spatial covariance
matrix to be Co, our equation becomes

M N
NMCOf = Z Z xj-Sl*jxi,l.

i=1 j=1

13)

Next, the right hand side of the equation represents
a single spatial cross-covariance vector between two
adjacent timesteps. By introducing the notation ¢; =
M.’lN’1 M Zj\;l 248'77x;_ tobeacorrectly normalized
estimate, the expression becomes

Cof = ¢;. (14)

The expression reduces to exactly what we would expect for such
a task. We normalize the cross-correlation by the steady-state
spatial distribution. The enforced circulant structure allows the
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estimation to be computed in the frequency domain through a
spectral decomposition, and thus our estimate becomes

. EAL S’i‘l’i(ﬂ)
Q) =S57=
B ST

where Si’ ;(§2) is the Fourier transform of our empirical cross-
correlation between x; and x; at spatial frequency 2.

; s)

V. PROPERTIES

In this section, we derive the MSE of the estimator for a
system in steady-state. It is important to note that this differs
from the derivation of the estimator, and for steady-state, the
estimator more closely resembles an ordinary least squares
(OLS) estimator, rather than the actual ML estimator.

We begin by developing lemmas on the OLS estimator for
complex circular autoregressive processes. The derivations use
the Taylor Series approach from the classical work on real-
valued AR(1) processes [15], [16]. Ultimately, the complex
process reduces the bias slightly, and has little impact on the
MSE. Rather than work with covariances, as was standard in the
classical work, we work directly with moments due to ease of
converting the relevant terms into each other.

We define a stable process that evolves according to x; 1 =
fz; + u;, where x; € C takes complex scalar values and wu;
are i.i.d. circular complex Gaussian random variables with
E[|u;|?] = 02, and |f| < 1, which we will refer to as a stable,
circular CAR(1) process [17], [18]. We additionally define two
random variables of interest relating to the OLS estimator,
X = % Ziwol ripz; and Y = 57 Zﬁgl x;x}, where x} is
the complex conjugate of x;.

Lemma 5.1: Using the above definitions of X and Y,
E[X]/E[Y] = f and E[Y] = %7

The proof of lemma 5.1 is omitted as it follows directly
from linearity of expectation and a geometric sum. We now

define Exy and E'x x which represent additive terms required
to convert E[X Y] or E[X X*] to E[Y?].

Lemma 5.2: Let Exy = E[XY] — fE[Y?], then
Feu fo' fat( = [f*)
T MO M- [fPR

Proof By expanding X, we note E[XY]= fE[Y?]+
i ZM ' E[usaY]. Expanding Y creates the expression

M—-1M-1

EXY_WZ ZIEJ Uil T j

=0 4=0

(16)

Now, note that u; must be “matched” with a ] term. Other-
wise, independence between timesteps and E[u;] = E[u?] =0
cause the full term to be zero. The only source of a u; is z; for
j > 1, so we reduce our expression to

M-1 M-1

Bxy = g 3 O FUE ).

=0 j=i+1

a7

Now, for the same reason, the remaining u; terms inside of the
x; and x; must match, resulting in the following:

M-1 M-1

Exy = M2 ST IR [P (18)

=0 j=i+1
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M-1 M-1

- e X X VP el

=0 j=i+1

19)

By construction u; is independent of x;, and so, by noting
2

Efju;|?] = 0% and E{|z;[?] = 157,

M-1 M-1

7=l
P = [ X 2 P

=0 j=i+1

(20)

By viewing the double summation as summing upper diagonals
of a Toeplitz matrix populated with power of | f|?, we note that
the above can be simplified to our original claim.

Lemma 5.3: Let Exx = E[|X|?] — | f|*)E[Y?], then

0.4

M1 —f]?)
Proof: By expanding X and noting that Y is a real, non-
negative random variable,

M-1 U‘l‘* M-1 u%x‘
(e ) (2|
(21)

Then, by multiplying, recognizing the form of Exy-, and noting
that complex conjugation commutes with expectation:

Exx = f"Exy + fExy
M-1

+—IE (Zu ) jgou;xj

Finally, note that all terms in the final expectation other than
when ¢ = j are zero, and we reduce to

Exx = f"Exy + fExy +

E[XX*]=E

(22)

1
Exx = [*Exy + fE%y + M]E IAREEE (23)
from which we conclude the desired result. | |

Now, noting that the OLS estimator of an AR(1) correlation
parameter takes the form f = X/Y, we analyze the bias and
MSE of our estimator.

Lemma 5.4: The bias of an OLS estimator using M timesteps
of a stable circular CAR(1) process is

; f —2
E[f-f]=-++0M7).
f-1]=-4+o0r)

Proof: Note that the OLS estimator takes the form f =X/Y.
By using a Taylor series expansion of X /Y around the point
X =E[X]and Y = E[Y], we find that

X E[X] 1
Y TE[Y] E[]

Y -E[Y))(X - E[X])

E [X]
@ —EDDY

where the linear terms have been removed in anticipation of
taking the expected value. By expanding the quadratic terms
and applying the lemma 5.1, we find

X] E [Y?] E[XY]
I%A”fG+EmJ_EwP

(24)
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Applying lemmas 5.1 and 5.2 results in

2M
E {X] f<11+(1 /| )>'

Y Mo M2 (1=[f]?)
The method of statistical differentials using the 2nd order expan-
sion in such averaging applications is known to be accurate to
O(M~?), and so we combine the final term with the inaccuracy
of the expansion [15], [19]. |
It is worth noting that, by multiplying by M /(M — 1), we
can reduce the bias to O(M ~2). We now compute the variance

of the OLS estimator through a similar method.

Lemma 5.5: The variance of the OLS estimator using M
samples of a stable circular CAR(1) process which evolves
according to the difference equation x;; = f x; -+ u;, where u;

is a centered circular complex Gaussian is ‘f oy O(M~2).
Proof: By using the first order Taylor senes approximation
of £, we note that the variance takes the form

Y’
ar X\ L E (/1Y —
var ( 37 | ~

By applying the definitions of Ex x and Exy:
(X) _Exx — f"Exy — fExy
var [ — | = 5
Y E[Y]

Then, by applying lemmas 5.1 and 5.3, and noting that the
first-order expansion was accurate to O(M ') we conclude that

(25)

FXY = [X'Y + XX
E [Y]? '

(26)

27

X 1—|fP i
— | =—+0(M 28
var ( v ) 7t ( ), (28)
which is identical to the real-valued case [15]. |

Next, we conclude the MSE of the OLS estimator.

Lemma 5.6: The MSE of the OLS estimator using M samples
of a stable circular CAR(1) process is upper bounded by M ~* +
O(M~2)

Proof: Note that the mean squared error can be decomposed
in the form

mse = |bias|? + variance. (29)

From this decomposition, lemma 5.5 and lemma 5.4, we imme-
diately conclude the result noting that | f|? < 1.

Finally, we apply the OLS CAR(1) results to the LSI model.

Theorem 5.1: Given a stable discrete-time LSI system with
centered i.i.d. Gaussian noise, the maximum likelihood esti-
mator of the state transition matrix has MSE upper bounded
by N"'M~1 4+ O(N-tM~2), normalized to the number of
parameters.

Proof: We define the normalized mean squared error as

N

1 .
E NZ(JCJ - fj)2 )

=1

(30)

where the f; are the spatial values of the convolutional kernel.
By the linearity of expectation and Parseval’s theorem

1 & 1 &
. , ) ,
E N;(fj—fj) =N2j§_le[<Fj—Fj>] 31
<N'M7'+O(NTM ), (32
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Fig. 1. Left Panel: MSE as a function of timesteps and spatial points. Right
Panel: MSE as a function of noise power.

where the final line comes from noting each F} element in
the frequency domain evolves according to a circular CAR(1)
process, and then applying lemma 5.5.

VI. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations of the
maximum likelihood estimator to validate the claims.

A 1D finite-difference approximation of a system governed
by diffusion was simulated (i.e. convolving the state vector with
[, 1 — 2av, o] at each timestep for some « € [0, 0.5]) with i.i.d.
Gaussian noise added at each timestep. Because the estimator for
higher spatial dimension (i.e 2D or 3D) systems follows directly
by flattening the discretized space and treating it as a large 1D
space, we expect the numerical results to be representative of
higher dimensional problems. We computed an empirical MSE
performance surface of the estimator as a function of the number
of timesteps and the number of spatial points. Both parameters
were varied from 10 to 1000, stepping by 10 from 10 to 100,
then by 100 from 100 to 1000. The results can be seen in the left
panel of Fig. 1. In the figure, both axis and the values are placed
on a log scale to emphasize the linear relationship with mean
squared error. The color represents the mean squared error on a
log scale.

Additionally, to demonstrate the lack of dependence on noise,
we included a plot of the mean squared error for a specific set
of parameters in the right panel of Fig. 1. We simulated 100
timesteps with 100 spatial points for a fixed diffusion process
and varied the amount of noise.

VII. CONCLUSION

The estimator presented in this paper is simple to implement
and has performance that improves with the dimensionality of
the system. A performance bound approximately independent
of any unknown parameters exists, and thus it may be relatively
easy to integrate the estimator into more sophisticated systems.
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