
Free Gap Information from the Differentially Private Sparse
Vector and Noisy Max Mechanisms

Zeyu Ding, Yuxin Wang, Danfeng Zhang, Daniel Kifer

Pennsylvania State University, University Park, PA 16802

{zyding, yxwang}@psu.edu, {zhang, dkifer}@cse.psu.edu

ABSTRACT

Noisy Max and Sparse Vector are selection algorithms for
differential privacy and serve as building blocks for more
complex algorithms. In this paper we show that both algo-
rithms can release additional information for free (i.e., at no
additional privacy cost). Noisy Max is used to return the
approximate maximizer among a set of queries. We show
that it can also release for free the noisy gap between the
approximate maximizer and runner-up. This free informa-
tion can improve the accuracy of certain subsequent count-
ing queries by up to 50%. Sparse Vector is used to return
a set of queries that are approximately larger than a fixed
threshold. We show that it can adaptively control its pri-
vacy budget (use less budget for queries that are likely to
be much larger than the threshold) in order to increase the
amount of queries it can process. These results follow from
a careful privacy analysis.

PVLDB Reference Format:

Zeyu Ding, Yuxin Wang, Danfeng Zhang and Daniel Kifer. Free
Gap Information from the Differentially Private Sparse Vector
and Noisy Max Mechanisms. PVLDB, 13(3): 293-306, 2019.
DOI: https://doi.org/10.14778/3368289.3368295

1. INTRODUCTION
Industry and government agencies are increasingly adopt-

ing differential privacy [18] to protect the confidentiality of
users who provide data. Current and planned major ap-
plications include data gathering by Google [21, 7], Apple
[40], and Microsoft [13]; database querying by Uber [27];
and publication of population statistics at the U.S. Census
Bureau [33, 9, 25, 2].

The accuracy of differentially private data releases is very
important in these applications. One way to improve ac-
curacy is to increase the value of the privacy parameter ε,
known as the privacy loss budget, as it provides a tradeoff
between an algorithm’s utility and its privacy protections.
However, values of ε that are deemed too high can subject a
company to criticisms of not providing enough privacy [39].

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 3
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3368289.3368295

For this reason, researchers invest significant effort in tuning
algorithms [11, 44, 28, 1, 37, 22] and privacy analyses [8, 36,
37, 20] to provide better utility while using smaller privacy
budgets.

Differentially private algorithms are built out of smaller
components called mechanisms [35]. Popular mechanisms
include the Laplace Mechanism [18], Geometric Mechanism
[24], Noisy Max [19] and Sparse Vector [19, 32]. As we will
explain in this paper, the latter two mechanisms, Noisy Max
and Sparse Vector, inadvertently throw away information
that is useful for designing accurate algorithms. Our contri-
bution is to present novel variants of these mechanisms that
provide more functionality at the same privacy cost (under
pure differential privacy).

Given a set of queries, Noisy Max returns the identity
(not value) of the query that is likely to have the largest
value – it adds noise to each query answer and returns the
index of the query with the largest noisy value. Meanwhile,
Sparse Vector takes a stream of queries and a predefined
public threshold T . It tries to return the identities (not
values) of the first k queries that are likely larger than the
threshold. To do so, it adds noise to the threshold. Then, as
it sequentially processes each query, it outputs “>” or “⊥”,
depending on whether the noisy value of the current query is
larger or smaller than the noisy threshold. The mechanism
terminates after k “>” outputs.

In recent work [42], using program verification tools, Wang
et al. showed that Sparse Vector can provide additional in-
formation at no additional cost to privacy. That is, when
Sparse Vector returns “>” for a query, it can also return the
gap between its noisy value and the noisy threshold.1 We
refer to their algorithm as Sparse-Vector-with-Gap.

Inspired by this program verification work, we propose
novel variations of Sparse Vector and Noisy Max that add
new functionality. For Sparse Vector, we show that in ad-
dition to releasing this gap information, even stronger im-
provements are possible – we present an adaptive version
that can answer more queries than before by controlling how
much privacy budget it uses to answer each query. The intu-
ition is that we would like to spend less of our privacy budget
for queries that are probably much larger than the threshold
(compared to queries that are probably closer to the thresh-
old). A careful accounting of the privacy impact shows that
this is possible. Our experiments confirm that Adaptive-

1This was a surprising result given the number of incorrect
attempts at improving Sparse Vector based on flawed man-
ual proofs [32] and shows the power of automated program
verification techniques.

293

Sparse-Vector-with-Gap can answer many more queries than
the prior versions [32, 19, 42] at the same privacy cost.

For Noisy Max, we show that it too inadvertently throws
away information. Specifically, at no additional cost to pri-
vacy, it can release an estimate of the gap between the
largest and second largest queries (we call the resulting mech-
anism Noisy-Max-with-Gap). We generalize this result to
Noisy Top-K – showing that one can release an estimate
of the identities of the k largest queries and, at no extra
privacy cost, release noisy estimates of the pairwise gaps
(differences) among the top k + 1 queries.

The extra noisy gap information opens up new direc-
tions in the construction of differentially private algorithms
and can be used to improve accuracy of certain subsequent
queries. For instance, one common task is to select the ap-
proximate top k queries and then use additional privacy loss
budget to obtain noisy answers to these queries. We show
that a postprocessing step can combine these noisy answers
with gap information to improve accuracy by up to 50% for
counting queries. We provide similar applications for the
free gap information in Sparse Vector.

We prove our results using the alignment of random vari-
ables technique [32, 11, 42, 43], which is based on the fol-
lowing question: if we change the input to a program, how
must we change its random variables so that output remains
the same? This technique is used to prove the correctness
of almost all pure differential privacy mechanisms [19] but
needs to be used in sophisticated ways to prove the correct-
ness of the more advanced algorithms [32, 11, 19, 42, 43].
Nevertheless, alignment of random variables is often used
incorrectly (as discussed by Lyu et al. [32]). Thus a sec-
ondary contribution of our work is to lay out the precise
steps and conditions that must be checked and to provide
helpful lemmas that ensure these conditions are met.

To summarize, our contributions are as follows:

• We provide a simplified template for writing correctness
proofs for intricate differentially private algorithms.

• Using this technique, we propose and prove the correct-
ness of two new mechanisms: Noisy-Top-K-with-Gap
and Adaptive-Sparse-Vector-with-Gap. These mecha-
nisms improve on the original versions of Noisy Max and
Sparse Vector by taking advantage of free information
(i.e., information that can be released at no additional
privacy cost) that those algorithms inadvertently throw
away.

• We demonstrate some of the uses of the gap information
that is provided by these new mechanisms. When an
algorithm needs to use Noisy Max or Sparse Vector to
select some queries and then measure them (i.e., obtain
their noisy answers), we show how the gap information
from our new mechanisms can be used to improve the
accuracy of the noisy measurements. We also show how
the gap information in Sparse Vector can be used to
estimate the confidence that a query’s true answer really
is larger than the threshold.

• We empirically evaluate these new mechanisms on a va-
riety of datasets to demonstrate their improved utility.

In Section 2, we discuss related work. We present back-
ground and notation in Section 3. We present simplified
proof templates for randomness alignment in Section 4. We
present Noisy-Top-K-with-Gap in Section 5 and Adaptive-

Sparse-Vector-with-Gap in Section 6. We present experi-
ments in Section 7, proofs underlying the alignment of ran-
domness framework in Section 8 and conclusions in Section
9. The rest of our proofs can be found in the full version of
this paper [14].

2. RELATED WORK
Selection algorithms, such as Exponential Mechanism [34,

38], Sparse Vector [19, 32], and Noisy Max [19] are used
to select a set of items (typically queries) from a much
larger set. They have applications in hyperparameter tun-
ing [11, 31], iterative construction of microdata [26], feature
selection [41], frequent itemset mining [6], exploring a pri-
vacy/accuracy tradeoff [30], data pre-processing [12], etc.

Various generalizations have been proposed [30, 5, 41, 38,
10, 31]. Liu and Talwar [31] and Raskhodnikova and Smith
[38] extend the exponential mechanism for arbitrary sensi-
tivity queries. Beimel et al. [5] and Thakurta and Smith
[41] use the propose-test-release framework [17] to find a
gap between the best and second best queries and, if the
gap is large enough, release the identity of the best query.
These two algorithms rely on a relaxation of differential pri-
vacy called approximate (ε, δ)-differential privacy [16] and
can fail to return an answer (in which case they return
⊥). Our algorithms work with pure ε-differential privacy.
Chaudhuri et al. [10] also proposed a large margin mecha-
nism (with approximate differential privacy) which finds a
large gap separating top queries from the rest and returns
one of them.

There have also been unsuccessful attempts to generalize
selection algorithms such as Sparse Vector (incorrect ver-
sions are catalogued by Lyu et al. [32]), which has sparked
innovations in program verification for differential privacy
(e.g., [4, 3, 43, 42]) with techniques such as probabilistic cou-
pling [4] and a simplification based on randomness alignment
[43]. These are similar to ideas behind handwritten proofs
[11, 19, 32] – they consider what changes need to be made
to random variables in order to make two executions of a
program, with different inputs, produce the same output.
It is a powerful technique that is behind almost all proofs
of differential privacy, but is very easy to apply incorrectly
[32]. In this paper, we state and prove a more general ver-
sion of this technique in order to prove correctness of our
algorithms and also provide additional results that simplify
the application of this technique.

3. NOTATION AND BACKGROUND
In this paper, we use the following notation. D and D′ re-

fer to databases. We use the notation D ∼ D′ to represent
adjacent databases.2 M denotes a randomized algorithm
whose input is a database. Ω denotes the range of M and
ω ∈ Ω denotes a specific output of M . We use E ⊆ Ω to
denote a set of possible outputs. Because M is random-
ized, it also relies on a random noise vector H ∈ R

∞ (which
usually consists of independent zero-mean Laplace random
variables). This noise sequence is infinite, but of course M
will only use a finite-length prefix of H. When we need to
draw attention to the noise, we use the notationM(D,H) to

2The notion of adjacency depends on the application. Some
papers define it as D can be obtained from D′ by modifying
one record [18] or by adding/deleting one record [15].

294

indicate the execution of M with database D and random-
ness coming from H. Otherwise we use the notation M(D).
Define SM,D:E = {H | M(D,H) ∈ E} to be the set of noise
vectors that allow M , on input D, to produce an output
in the set E ⊆ Ω. To avoid overburdening the notation,
we write SD:E for SM,D:E and SD′:E for SM,D′:E when M is
clear from the context. When E consists of a single point
ω, we write these sets as SD:ω and SD′:ω. This notation is
summarized in the table below.

Table 1: Notation

Symbol Meaning

M randomized algorithm
D,D′ database
D ∼ D′ D is adjacent to D′

H = (η1, η2, . . .) input noise vector
Ω the space of all output of M
ω a possible output; ω ∈ Ω
E a set of possible outputs; E ⊆ Ω

SD:E = SM,D:E {H |M(D,H) ∈ E}
SD:ω = SM,D:ω {H |M(D,H) = ω}

3.1 Formal Privacy
Differential privacy [18, 15, 19] is currently the gold stan-

dard for releasing privacy-preserving information about a
database. It has a parameter ε > 0 known as the privacy
loss budget. The smaller it is, the more privacy is provided.
Differential privacy bounds the effect of one record on the
output of the algorithm (for small ε, the probability of any
output is barely affected by any person’s record).

Definition 1 (Pure Differential Privacy [15]). Given an ε >
0, a randomized algorithm M with output space Ω satisfies
(pure) ε-differential privacy if for all E ⊆ Ω and all pairs of
adjacent databases D ∼ D′, the following holds:

P(M(D,H) ∈ E) ≤ eεP(M(D′, H) ∈ E) (1)

where the probability is only over the randomness of H.

With the notation in Table 1, the differential privacy con-
dition from Equation (1) is P(SD:E) ≤ eεP(SD′:E).

Differential privacy enjoys the following nice properties:

• Resilience to Post-Processing. If we apply an algorithm
A to the output of an ε-differentially private algorithm
M , then the composite algorithm A ◦ M still satisfies
ε-differential privacy. In other words, privacy is not re-
duced by post-processing.

• Composition. If M1,M2, . . . ,Mk satisfy differential pri-
vacy with privacy loss budgets ε1, . . . , εk, the algorithm
that runs all of them and releases their outputs satisfies
(
∑

i εi)-differential privacy.

Many differentially private algorithms take advantage of
the Laplace mechanism [34], which provides a noisy answer
to a vector-valued query q based on its L1 global sensitivity
∆q, defined as follows:

Definition 2 (L1 Global Sensitivity [19]). The global sen-
sitivity of a query q is ∆q = supD∼D′‖q(D)− q(D′)‖1.
Theorem 1 (Laplace Mechanism [18]). Given a privacy loss
budget ε, consider the mechanism that returns q(D) + H,

where H is a vector of independent random samples from the
Laplace(∆q/ε) distribution with mean 0 and scale parame-
ter ∆q/ε. This Laplace mechanism satisfies ε-differential
privacy.

Other kinds of additive noise distributions that can be
used in place of Laplace include Discrete Laplace [24] (when
all query answers are integers or multiples of a common base)
and Staircase [23].

4. RANDOMNESS ALIGNMENT
To establish that the algorithms we propose are differen-

tially private, we use an idea called randomness alignment
that previously had been used to prove the privacy of a vari-
ety of sophisticated algorithms [19, 32, 11] and incorporated
into verification/synthesis tools [43, 42, 3]. While powerful,
this technique is also easy to use incorrectly [32], as there
are many technical conditions that need to be checked. In
this section, we present results (namely Lemma 1) that sig-
nificantly simplify this process and make it easy to prove the
correctness of our proposed algorithms.

In general, to prove ε-differential privacy for an algorithm
M , one needs to show P (M(D) ∈ E) ≤ eεP (M(D′) ∈ E)
for all pairs of adjacent databases D ∼ D′ and sets of pos-
sible outputs E ⊆ Ω. In our notation, this inequality is
represented as P(SD:E) ≤ eεP(SD′:E). Establishing such in-
equalities is often done with the help of a function φD,D′ ,
called a randomness alignment (there is a function φD,D′ for
every pair D ∼ D′), that maps noise vectors H into noise
vectors H ′ so that M(D′, H ′) produces the same output as
M(D,H). Formally,

Definition 3 (Randomness Alignment). Let M be a ran-
domized algorithm. Let D ∼ D′ be two adjacent databases.
A randomness alignment is a function φD,D′ : R∞ → R

∞

such that for all H on which M(D,H) terminates, we have
M(D,H) =M(D′, φD,D′(H)).

Example 1. LetD be a database that records the salary of
every person, which is guaranteed to be between 0 and 100.
Let q(D) be the sum of the salaries in D. The sensitivity of q
is thus 100. Let H = (η1, η2, . . .) be a vector of independent
Laplace(100/ε) random variables. The Laplace mechanism
outputs q(D) + η1 (and ignores the remaining variables in
H). For every pair of adjacent databases D ∼ D′, one can
define the corresponding randomness alignment φD,D′(H) =
H ′ = (η′1, η

′
2, . . .), where η

′
1 = η1+ q(D)− q(D′) and η′i = ηi

for i > 1. Note that q(D) + η1 = q(D′) + η′1, so the output
of M remains the same.

In practice, φD,D′ is constructed locally (piece by piece)
as follows. For each possible output ω ∈ Ω, one defines a
function φD,D′,ω that maps noise vectorsH into noise vectors
H ′ with the following properties: if M(D,H) = ω then
M(D′, H ′) = ω (that is, φD,D′,ω only cares about what it
takes to produce the specific output ω). We obtain our
randomness alignment φD,D′ in the obvious way by piecing
together the φD,D′,ω as follows: φD,D′(H) = φD,D′,ω*(H),
where ω∗ is the output of M(D,H). Formally,

Definition 4 (Local Alignment). LetM be a randomized al-
gorithm. Let D ∼ D′ be a pair of adjacent databases and ω a
possible output of M . A local alignment for M is a function
φD,D′,ω : SD:ω → SD′:ω (see notation in Table 1) such that
for all H ∈ SD:ω, we have M(D,H) =M(D′, φD,D′,ω(H)).

295

Example 2. Continuing the setup from Example 1, con-
sider the mechanism M1 that, on input D, outputs > if
q(D) + η1 ≥ 10, 000 (i.e. if the noisy total salary is at
least 10, 000) and ⊥ if q(D) + η1 < 10, 000. Let D′ be a
database that differs from D in the presence/absence of one
record. Consider the local alignments φD,D′,> and φD,D′,⊥
defined as follows. φD,D′,>(H) = H ′ = (η′1, η

′
2, . . .) where

η′1 = η1 + 100 and η′i = ηi for i > 1; and φD,D′,⊥(H) =
H ′′ = (η′′1 , η

′′
2 , . . .) where η′′1 = η1 − 100 and η′′i = ηi for

i > 1. Clearly, if M1(D,H) = > then M1(D
′, H ′) = > and

if M1(D,H) =⊥ then M1(D
′, H ′′) =⊥. We piece these two

local alignments together to create a randomness alignment
φD,D′(H) = H∗ = (η∗1 , η

∗
2 , . . .) where:

η∗1 =





η1 + 100 if M(D,H) = >
(i.e. q(D) + η1 ≥ 10, 000)

η1 − 100 if M(D,H) =⊥
(i.e. q(D) + η1 < 10, 000)

η∗i = ηi for i > 1

Special properties of alignments. Not all alignments can
be used to prove differential privacy. In this section we dis-
cuss some additional properties that help prove differential
privacy. We first make two mild assumptions about the
mechanism M : (1) it terminates with probability3 one and
(2) based on the output of M , we can determine how many
random variables it used. The vast majority of differentially
private algorithms in the literature satisfy these properties.

We next define two properties of a local alignment: whether
it is acyclic and what its cost is.

Definition 5 (Acyclic). Let M be a randomized algorithm.
Let φD,D′,ω be a local alignment for M . For any H =
(η1, η2, . . .), let H ′ = (η′1, η

′
2, . . .) denote φD,D′,ω(H). We

say that φD,D′,ω is acyclic if there exists a permutation π

and piecewise differentiable functions ψ
(j)

D,D′,ω
such that:

η′π(1) = ηπ(1) + number that only depends on D, D′, ω

η′π(j) = ηπ(j) + ψ
(j)

D,D′,ω
(ηπ(1), . . . , ηπ(j−1)) for j ≥ 2

Essentially, a local alignment φD,D′,ω is acyclic if there is
some ordering of the variables so that η′j is the sum of ηj and
a function of the variables that came earlier in the ordering.
The local alignments φD,D′,> and φD,D′,⊥ from Example 2
are both acyclic (in general, each local alignment function is
allowed to have its own specific ordering and differentiable

functions ψ
(j)

D,D′,ω
). The pieced-together randomness align-

ment φD,D′ itself need not be acyclic.

Definition 6 (Alignment Cost). Let M be a randomized al-
gorithm that uses H as its source of randomness. Let φD,D′,ω

be a local alignment for M . For any H = (η1, η2, . . .), let
H ′ = (η′1, η

′
2, . . .) denote φD,D′,ω(H). Suppose each ηi is

generated independently from a distribution fi with the prop-
erty that log(fi(x)/fi(y)) ≤ |x− y|/αi for all x, y in the do-
main of fi – this includes the Laplace(αi) distribution along

3That is, for each input D, there might be some random
vectors H for which M does not terminate, but the total
probability of these vectors is 0, so we can ignore them.

with Discrete Laplace [24] and Staircase [23]. Then the cost
of φD,D′,ω is defined as:

cost(φD,D′,ω) =
∑

i

|ηi − η′i|/αi

The following lemma uses those properties to establish
that M satisfies ε-differential privacy.

Lemma 1. Let M be a randomized algorithm with input ran-
domness H = (η1, η2, . . .). If the following conditions are
satisfied, then M satisfies ε-differential privacy.

1. M terminates with probability 1.

2. The number of random variables used by M can be de-
termined from its output.

3. Each ηi is generated independently from a distribution fi
with the property that log(fi(x)/fi(y)) ≤ |x − y|/αi for
all x, y in the domain of fi (such as Laplace(αi)).

4. For every D ∼ D′ and ω there exists a local alignment
φD,D′,ω that is acyclic with cost(φD,D′,ω) ≤ ε.

5. For each D ∼ D′ the number of distinct local alignments
is countable. That is, the set {φD,D′,ω | ω ∈ Ω} is count-
able (i.e., for many choices of ω we get the same exact
alignment function).

We defer the proof to Section 8.

Example 3. Consider the alignment φD,D′ from Exam-
ple 1. We can define all of the local alignments φD,D′,ω

to be the same function: φD,D′,ω(H) = φD,D′(H). Clearly
cost(φD,D′,ω) =

∑∞
i=0

ε
100
|η′i − ηi| = ε

100
|q(D′) − q(D)| ≤

ε. For Example 2, there are two acyclic local alignments
φD,D′> and φD,D′⊥, both have cost = 100 · ε

100
= ε. The

other conditions in Lemma 1 are trivial to check. Thus both
mechanisms satisfy ε-differential privacy by Lemma 1.

5. IMPROVING NOISY MAX
In this section, we present novel variations of the Noisy

Max mechanism [19]. Given a list of queries with sensitiv-
ity 1, the purpose of Noisy Max is to estimate the identity
(i.e., index) of the largest query. We show that, in addition
to releasing this index, it is possible to release a numerical
estimate of the gap between the values of the largest and
second largest queries. This extra information comes at no
additional cost to privacy, meaning that the original Noisy
Max mechanism threw away useful information. This result
can be generalized to the setting in which one wants to esti-
mate the identities of the top k queries - we can release (for
free) all of the gaps between each top k query and the next
best query (i.e., the gap between the best and second best
queries, the gap between the second and third best queries,
etc). When a user subsequently asks for a noisy answer to
each of the returned queries, we show how the gap informa-
tion can be used to reduce squared error by up to 50% (for
counting queries).

5.1 Noisy­Top­K­with­Gap
Our proposed Noisy-Top-K-with-Gap mechanism is shown

in Algorithm 1 (the function argmaxc returns the top c
items). We can obtain the classical Noisy Max algorithm
[19] from it by setting k = 1 and throwing away the gap
information (the boxed items on Lines 7 and 8). The Noisy-
Top-K-with-Gap algorithm takes as input a sequence of n

296

queries q1, . . . , qn, each having sensitivity 1. It adds Laplace
noise to each query. It returns the indexes j1, . . . , jk of the
k queries with the largest noisy values in descending order.
Furthermore, for each of these top k queries qji , it releases
the noisy gap between the value of qji and the value of the
next best query. Our key contribution in this section is the
observation that these gaps can be released for free. That
is, the classical Top-K algorithm, which does not release the
gaps, satisfies ε-differential privacy. But, our improved ver-
sion has exactly the same privacy cost yet is strictly better
because of the extra information it can release.

Algorithm 1: Noisy-Top-K-with-Gap

input: q: a list of n queries of global sensitivity 1
D: database, k: # of indexes, ε: privacy budget

1 function NoisyTopK (q, D, k, ε):
2 foreach i ∈ {1, · · · , n} do
3 ηi ← Lap(2k/ε)
4 q̃i ← qi(D) + ηi

5 (j1, . . . , jk+1)← argmaxk+1(q̃1, . . . , q̃n)
6 foreach i ∈ {1, · · · , k} do
7 gi ← q̃ji − q̃ji+1 // ith gap

8 return ((j1 , g1), . . . , (jk , gk)) // k queries

We emphasize that keeping the noisy gaps hidden does
not decrease the privacy cost. Furthermore, this algorithm
gives estimates of the pairwise gaps between any pair of the
k queries it selects. For example, suppose we are interested
in estimating the gap between the ath largest and bth largest
queries (where a < b ≤ k). This is equal to ∑b−1

i=a gi because:∑b−1
i=a gi =

∑b−1
i=a(q̃ji − q̃ji+1) = q̃ja − q̃jb and hence its vari-

ance is Var(q̃ja − q̃jb) = 16k2/ε2.
The original Noisy Top-K mechanism satisfies ε-differential

privacy. In the special case that all the qi are counting
queries4 then it satisfies ε/2-differential privacy [19]. We
will show the same properties for Noisy-Top-K-with-Gap.
We prove the privacy property in this section and then in
Section 5.2 we show how to use this gap information. How-
ever, first it is important to discuss the difference between
the theoretical analysis of Noisy Top-K [19] and its practical
implementation on finite-precision computers.

Implementation issues. The analysis of the original Noisy
Max mechanism assumed the use of true Laplace noise (a
continuous distribution) so that ties are impossible between
the largest and second largest noisy queries [19]. On finite
precision computers, ties are possible (breaking the privacy
proof [19]) with some probability δ. Thus, one would settle
for a slightly weaker guarantee called (ε, δ)-differential pri-
vacy [16]. It roughly states that the privacy conditions of
pure ε-differential privacy fail with probability at most δ. In
practice, one would discretize the Staircase [23] or Laplace
distribution so that it outputs a multiple of some base γ. In
the full version of this paper [14], we show that if there are n
queries with sensitivity 1 and discretized Lapalce(1/ε) noise
with base γ is added to each of them, the probability of a
tie is upper bounded by δ = εγn2 (similar calculations can

4i.e., when a person is added to a database, the value of
each query either stays the same or increases by 1.

be performed with the Staircase distribution). Thus this is
an upper bound on the probability that the differential pri-
vacy guarantees will fail. Typically, one would expect γ to
be close to machine epsilon (e.g., ≈ 2−52) so the probability
of a tie is negligible. In this section we will also analyze our
algorithms under the assumption of continuous noise. Thus
the privacy guarantees can fail with this negligible probabil-
ity δ (hence satisfying (ε, δ)-differential privacy [16]).

Local alignment. To prove the privacy of Algorithm 1, we
need to create a local alignment function for each possible
pair D ∼ D′ and output ω. Note that our mechanism uses
precisely n random variables. Let H = (η1, η2, . . .) where
ηi is the noise that should be added to the ith query. We
view the output ω = ((j1, g1), . . . , (jk, gk)) as k pairs where
in the ith pair (ji, gi), the first component ji is the index of
ith largest noisy query and the second component gi is the
gap in noisy value between the ith and (i+1)th largest noisy
queries. As discussed in the implementation issues, we will
base our analysis on continuous noise so that the probability
of ties among the top k + 1 noisy queries is 0. Thus each
gap is positive: gi > 0.

Let Iω = {j1, . . . , jk} and Icω = {1, . . . , n} \ Iω. I.e., Iω is
the index set of the k largest noisy queries selected by the
algorithm and Icω is the index set of all unselected queries.
For H ∈ SD:ω define φD,D′,ω(H) = H ′ = (η′1, η

′
2, . . .) as

η′i =




ηi i ∈ Icω
ηi + qi − q′i +max

l∈Ic
ω

(q′l + ηl)−max
l∈Ic

ω

(ql + ηl) i ∈ Iω
(2)

The idea behind this local alignment is simple: we want
to keep the noise of the losing queries the same (when the
input isD or its neighborD′). But, for each of the k selected
queries, we want to align its noise to make sure it wins by
the same amount when the input is D or its neighbor D′.

Lemma 2. Let M be the Noisy-Top-K-with-Gap algorithm.
For all D ∼ D′ and ω, the functions φD,D′,ω defined above
are acyclic local alignments for M . Furthermore, for every
pair D ∼ D′, there are countably many distinct φD,D′,ω.

Proof. Given D ∼ D′ and ω = ((j1, g1), . . . , (jk, gk)), for
any H = (η1, η2, . . .) such that M(D,H) = ω, let H ′ =
(η′1, η

′
2, . . .) = φD,D′,ω(H). We show that M(D′, H ′) = ω.

Since φD,D′,ω is identity on components i ∈ Icω, we have

max
l∈Ic

ω

(q′l + η′l) = max
l∈Ic

ω

(q′l + ηl). So, for the k
th selected query:

(q′jk + η′jk)−max
l∈Ic

ω

(q′l + η′l) = (q′jk + η′jk)−max
l∈Ic

ω

(q′l + ηl)

= (qjk + ηjk)−max
l∈Ic

ω

(ql + ηl) = gk > 0

where the last line follows from Equation 2. This means on
D′ the noisy query with index jk is larger than the best of
the unselected noisy queries by the same margin as it is on
D. Furthermore, for all 1 ≤ i < k, we have

(q′ji + η′ji)− (q′ji+1
+ η′ji+1

)

=(qji + ηji +max
l∈Ic

ω

(q′l + ηl)−max
l∈Ic

ω

(ql + ηl))

− (qji+1 + ηji+1 +max
l∈Ic

ω

(q′l + ηl)−max
l∈Ic

ω

(ql + ηl))

=(qji + ηji)− (qji+1 + ηji+1) = gi > 0.

297

In other words, the query with index ji is still the i
th largest

query on D′ by the same margin. Thus M(D′, H ′) = ω.
The local alignments are clearly acyclic (any permutation

that puts Icω before Iω does the trick). Also, note that
φD,D′,ω only depends on ω through Iω (the indexes of the
k largest queries). There are n queries and therefore

(
n

k

)
=

n!
(n−k)!k!

distinct φD,D′,ω.

Alignment cost and privacy. To establish the alignment
cost, we need the following lemma and definition.

Lemma 3. Let (x1, . . . , xm), (x′1, . . . , x
′
m) ∈ R

m be such that
∀i, |xi − x′i| ≤ 1. Then |maxi{xi} −maxi{x′i}| ≤ 1.

Proof. Let s be an index that maximizes xi and let t be
an index that maximizes x′i. Without loss of generality,
assume xs ≥ x′t. Then xs ≥ x′t ≥ x′s ≥ xs − 1. Hence
|xs − x′t| = xs − x′t ≤ xs − (xs − 1) = 1.

Definition 7 (Monotonicity). A list of numerical queries
q = (q1, q2, . . .) is monotonic if for all pair of adjacent
databases D ∼ D′ we have either ∀i : qi(D) ≤ qi(D

′), or
∀i : qi(D) ≥ qi(D′).

Counting queries are clearly monotonic. Now we can es-
tablish the privacy property of our algorithm.

Theorem 2. The Noisy-Top-K-with-Gap mechanism satis-
fies ε-differential privacy. If all of the queries are counting
queries, then it satisfies ε/2-differential privacy.

Proof. First we bound the cost of the alignment function de-
fined in (2). Recall that the ηi’s are independent Lap(2k/ε)
random variables. By Definition 6

cost(φD,D′,ω) =

∞∑

i=1

|η′i − ηi|
ε

2k

=
ε

2k

∑

i∈Iω

|qi − q′i +max
l∈Ic

ω

(q′l + ηl)−max
l∈Ic

ω

(ql + ηl)|.

By the global sensitivity assumption we have |qi − q′i| ≤ 1.
Apply Lemma 3 to the vectors (ql+ηl)l∈Ic

ω
and (q′l+ηl)l∈Ic

ω
,

we have |max
l∈Ic

ω

(q′l + ηl)−max
l∈Ic

ω

(ql + ηl)| ≤ 1. Therefore,

|qi − q′i +max
l∈Ic

ω

(q′l + ηl)−max
l∈Ic

ω

(ql + ηl)|

≤|qi − q′i|+ |max
l∈Ic

ω

(q′l + ηl)−max
l∈Ic

ω

(ql + ηl)| ≤ 1 + 1 = 2.

Furthermore, if q is monotonic, then

• either ∀i : qi ≤ q′i in which case qi − q′i ∈ [−1, 0] and
max
l∈Ic

ω

(q′l + ηl)−max
l∈Ic

ω

(ql + ηl) ∈ [0, 1],

• or ∀i : qi ≥ q′i in which case qi − q′i ∈ [0, 1] and max
l∈Ic

ω

(q′l +

ηl)−max
l∈Ic

ω

(ql + ηl) ∈ [−1, 0].

In both cases we have qi− q′i+max
l∈Ic

ω

(q′l +ηl)−max
l∈Ic

ω

(ql+ηl) ∈
[−1, 1] so |qi−q′i+max

l∈Ic
ω

(q′l+ηl)−max
l∈Ic

ω

(ql+ηl)| ≤ 1. Therefore,

cost(φD,D′,ω) =
ε

2k

∑

i∈Iω

|qi−q′i +max
l∈Ic

ω

(q′l+ηl)−max
l∈Ic

ω

(ql+ηl)|

≤ ε

2k

∑

i∈Iω

2 (or
ε

2k

∑

i∈Iω

1 if q is monotonic)

=
ε

2k
· 2|Iω| (or

ε

2k
· |Iω| if q is monotonic)

=ε (or ε/2 if q is monotonic).

Conditions 1 through 3 of Lemma 1 are trivial to check, 4
and 5 follow from Lemma 2 and the above bound on cost.
Therefore, Theorem 2 follows from Lemma 1.

5.2 Utilizing Gap Information
Let us consider one scenario that takes advantage of the

gap information. Suppose a data analyst is interested in the
identities and values of the top k queries. A typical approach
would be to split the privacy budget ε in half – use ε/2 of the
budget to identify the top k queries using Noisy-Top-K-with-
Gap. The remaining ε/2 budget is evenly divided between
the selected queries and is used to obtain noisy measure-
ments (i.e. add Laplace(2k/ε) noise to each query answer).
These measurements will have variance σ2 = 8k2/ε2. In
this section we show how to use the gap information from
Noisy-Top-K-with-Gap and postprocessing to improve the
accuracy of these measurements.

Problem statement. Let q1, . . . , qk be the true answers of
the top k queries that are selected by Algorithm 1. Let
α1, . . . , αk be their noisy measurements. Let g1, . . . , gk−1

be the noisy gaps between q1, . . . , qk that are obtained from
Algorithm 1 for free. Then αi = qi + ξi where each ξi is
a Laplace(2k/ε) random variable and gi = qi + ηi − qi+1 −
ηi+1 where each ηi is a Laplace(4k/ε) random variable, or a
Laplace(2k/ε) random variable if the query list is monotonic
(recall the mechanism was run with a privacy budget of ε/2).
Our goal is then to find the best linear unbiased estimate
(BLUE) [29] βi of qi in terms of the measurements αi and
gap information gi.

Theorem 3. With notations as above let q = [q1, . . . , qk]
T ,

α = [α1, . . . , αk]
T and g = [g1, . . . , gk−1]

T . Suppose the
ratio Var(ξi) : Var(ηi) is equal to 1 : λ. Then the BLUE of
q is β = 1

(1+λ)k
(Xα+ Y g) where

X =




1 + λk 1 · · · 1
1 1 + λk · · · 1
...

...
. . .

...
1 1 · · · 1 + λk




k×k

Y =







k − 1 k − 2 · · · 1
k − 1 k − 2 · · · 1
k − 1 k − 2 · · · 1

...
...

. . .
...

k − 1 k − 2 · · · 1



−




0 0 · · · 0
k 0 · · · 0
k k · · · 0
...

...
. . . 0

k k · · · k







k×(k−1)

For proof, see the full version of this paper [14]. Even
though this is a matrix multiplication, it is easy to see that
it translates into the following algorithm that is linear in k:

1. Compute α =
∑k

i=1 αi and p =
∑k−1

i=1 (k − i)gi.
2. Set p0 = 0. For i = 1, . . . , k − 1 compute the prefix sum
pi =

∑i

j=1 gj = pi−1 + gi.

3. For i = 1, . . . , k, set βi = (α+λkαi+p−kpi−1)/(1+λ)k.

298

Now, each βi is an estimate of the value of qi. How does it
compare to the direct measurement αi (which has variance
σ2 = 8k2/ε2)? The following result compares the expected
error of βi (which used the direct measurements and the gap
information) with the expected error of using only the direct
measurements (i.e., αi only).

Corollary 1. For all i = 1, . . . , k, we have

E(|βi − qi|2)
E(|αi − qi|2)

=
1 + λk

k + λk
=

Var(ξi) + kVar(ηi)

k(Var(ξi) + Var(ηi))
.

For proof, see the full version of this paper [14]. In the case
of counting queries, we have Var(ξi) = Var(ηi) = 8k2/ε2 and
thus λ = 1. The error reduction rate is k−1

2k
which is close to

50% when k is large. Our experiments in Section 7 confirm
this theoretical result.

6. IMPROVING SPARSE VECTOR
In this section we propose a novel variant that can answer

more queries than both the original Sparse Vector [19, 32]
and the Sparse-Vector-with-Gap of Wang et al. [42]. We
also discuss how the free gap information can be used.

6.1 Adaptive­Sparse­Vector­with­Gap
The Sparse Vector techniques are designed to solve the fol-

lowing problem in a privacy-preserving way: given a stream
of queries (with sensitivity 1), find the first k queries whose
answers are larger than a public threshold T . This is done
by adding noise to the queries and threshold and finding the
first k queries whose noisy answers exceed the noisy thresh-
old. Sometimes this procedure creates a feeling of regret –
if these k queries are much larger than the threshold, we
could have used more noise (hence consumed less privacy
budget) to achieve the same result. In this section, we show
that Sparse Vector can be made adaptive – so that it will
probably use more noise (less privacy budget) for the larger
queries. This means if the first k queries are very large,
it will still have privacy budget left over to find additional
queries that are likely to be over the threshold. Our Adap-
tive Sparse Vector is shown in Algorithm 2.

The main idea behind this algorithm is that, given a target
privacy budget ε and an integer k, the algorithm will create
three budget parameters: ε0 (budget for the threshold), ε1
(baseline budget for each query) and ε2 (smaller alternative
budget for each query, ε2 < ε1). The privacy budget alloca-
tion between threshold and queries is controlled by a hyper-
parameter θ ∈ (0, 1) on Line 2. These budget parameters
are used as follows. First, the algorithm adds Laplace(1/ε0)
noise to the threshold and consumes ε0 of the privacy bud-
get. Then, when a query comes in, the algorithm first adds a
lot of noise (i.e., Laplace(2/ε2)) to the query. The first “if”
branch checks if this value is much larger than the noisy
threshold (i.e. checks if the gap is ≥ σ for some5 σ). If
so, then it outputs the following three items: (1) >, (2) the
noisy gap, and (3) the amount of privacy budget used for
this query (which is ε2). The use of alignments will show
that failing this “if” branch consumes no privacy budget.
If the first “if” branch fails, then the algorithm adds more
moderate noise to the query answer (i.e., Laplace(2/ε1)). If
this noisy value is larger than the noisy threshold, the al-
gorithm outputs: (1′) >, (2′) the noisy gap, and (3′) the

5In our algorithm, we set σ to be 2 standard deviations of
the Laplace(2/ε2) distribution.

Algorithm 2: Adaptive-Sparse-Vector-with-Gap. The
hyperparameter θ ∈ (0, 1) controls the budget alloca-
tion between threshold and queries.

input : q: a list of queries of global sensitivity 1
D: database, ε: privacy budget, T : threshold
k: minimum number of above-threshold

queries algorithm is able to output
1 function AdaptiveSparseVector (q, D, T , k, ε):

2 ε0 ← θε; ε1 ← (1− θ)ε/k; ε2 ← ε1/2; σ ← 4
√
2/ε2

3 η ← Lap(1/ε0)

4 T̃ ← T + η
5 cost← ε0
6 foreach i ∈ {1, · · · , len(q)} do
7 ξi ← Lap(2/ε2); ηi ← Lap(2/ε1)

8 if qi(D) + ξi − T̃ ≥ σ then

9 output: (>, qi(D)+ξi−T̃ , bud used = ε2)
10 cost← cost+ ε2

11 else if qi(D) + ηi − T̃ ≥ 0 then

12 output: (>, qi(D)+ηi−T̃ , bud used = ε1)
13 cost← cost+ ε1
14 else

15 output: (⊥, bud used = 0)

16 if cost > ε− ε1 then break

amount of privacy budget consumed (i.e., ε1). If this “if”
condition also fails, then the algorithm outputs: (1′′) ⊥ and
(2′′) the privacy budget consumed (0 in this case).

To summarize, for each query, if the top branch succeeds
then the privacy budget consumed is ε2, if the middle branch
succeeds, the privacy cost is ε1, and if the bottom branch
succeeds, there is no additional privacy cost. These prop-
erties can be easily seen by focusing on the local alignment
– if M(D,H) produces a certain output, how much does H
need to change to get a noise vector H ′ so that M(D′, H ′)
returns the same exact output.

Local alignment. To create a local alignment for each pair
D ∼ D′, let H = (η, ξ1, η1, ξ2, η2, . . .) where η is the noise
added to the threshold T , and ξi (resp. ηi) is the noise
that should be added to the ith query qi in Line 8 (resp.
Line 11), if execution ever reaches that point. We view
the output ω = (w1, . . . , ws) as a variable-length sequence
where each wi is either ⊥ or a nonnegative gap (we omit
the > as it is redundant), together with a tag ∈ {0, ε1, ε2}
indicating which branch wi is from (and the privacy budget
consumed to output wi). Let Iω = {i | tag(wi) = ε2} and
Jω = {i | tag(wi) = ε1}. That is, Iω is the set of indexes
where the output is a gap from the top branch, and Jω

is the set of indexes where the output is a gap from the
middle branch. For H ∈ SD:ω define φD,D′,ω(H) = H ′ =
(η′, ξ′1, η

′
1, ξ

′
2, η

′
2, . . .) where

η′ = η + 1,

(ξ′i, η′i) =





(ξi + 1 + qi − q′i, ηi), i ∈ Iω
(ξi, ηi + 1 + qi − q′i), i ∈ Jω

(ξi, ηi), otherwise

(3)

In other words, we add 1 to the noise that was added to the
threshold (thus if the noisy q(D) failed a specific branch, the

299

noisy q(D′) will continue to fail it because of the higher noisy
threshold). If a noisy q(D) succeeded in a specific branch,
we adjust the query’s noise so that the noisy version of q(D′)
will succeed in that same branch.

Lemma 4. Let M be the Adaptive-Sparse-Vector-with-Gap
algorithm. For all D ∼ D′ and ω, the functions φD,D′,ω de-
fined above are acyclic local alignments forM . Furthermore,
for every pair D ∼ D′, there are countably many distinct
φD,D′,ω.

Proof. Pick an adjacent pairD∼D′ and an ω = (w1, . . . , ws).
For a given H = (η, ξ1, η1, . . .) such that M(D,H) = ω, let
H ′ = (η′, ξ′1, η

′
1, . . .) = φD,D′,ω(H). Suppose M(D′, H ′) =

ω′ = (w′
1, . . . , w

′
t). Our goal is to show ω′ = ω. Choose an

i ≤ min(s, t).

• If i ∈ Iω, then by (3) we have

q′i + ξ′i − (T + η′) = q′i + ξi + 1 + qi − q′i − (T + η + 1)

= qi + ξi − (T + η) ≥ σ.
This means the first “if” branch succeeds in both execu-
tions and the gaps are the same . Therefore, w′

i = wi.

• If i ∈ Jω, then by (3) we have

q′i + ξ′i − (T + η′) = q′i + ξi − (T + η + 1)

= q′i − 1 + ξi − (T + η) ≤ qi + ξi − (T + η) < σ,

q′i + η′i − (T + η′) = q′i + ηi + 1 + qi − q′i − (T + η + 1)

= qi + ηi − (T + η) ≥ 0.

The first inequality is due to the sensitivity restriction:
|qi − q′i| ≤ 1 =⇒ q′i − 1 ≤ qi. These two equations
mean that the first “if” branch fails and the second “if”
branch succeeds in both executions, and the gaps are the
same. Hence w′

i = wi.

• If i 6∈ Iω ∪ Jω, then by a similar argument we have

q′i + ξ′i − (T + η′) ≤ qi + ξi − (T + η) < σ,

q′i + η′i − (T + η′) ≤ qi + ηi − (T + η) < 0.

Hence both executions go to the last “else” branch and
w′

i = (⊥, 0) = wi.

Therefore for all 1 ≤ i ≤ min(s, t), we have w′
i = wi. That

is, either ω′ is a prefix of ω, or vice versa. Let q be the
vector of queries passed to the algorithm and let len(q) be
the number of queries it contains (which can be finite or
infinity). By the termination condition of Algorithm 2 we
have two possibilities.

• s = len(q): in this case there is still enough privacy
budget left after answering s−1 above-threshold queries,
and we must have t = len(q) too becauseM(D′, H ′) will
also run through all the queries (it cannot stop until it
has exhausted the privacy budget or hits the end of the
query sequence).

• s < len(q): in this case the privacy budget is exhausted
after outputting ws and we must also have t = s.

Thus t = s and hence ω′ = ω. The local alignments are
clearly acyclic (e.g., use the identity permutation). Note
that φD,D′,ω only depends on ω through Iω and Jω (the
sets of queries whose noisy values were larger than the noisy
threshold). There are only countably many possibilities for
Iω and Jω and thus countably many distinct φD,D′,ω.

Alignment cost and privacy. Now we establish the align-
ment cost and the privacy property of Algorithm 2.

Theorem 4. The Adaptive-Sparse-Vector-with-Gap satisfies
ε-differential privacy.

Proof. Again, the only thing nontrivial is to bound the align-
ment cost. We use the ε0, ε1, ε2 and ε defined in Algorithm
2. From (3) we have

cost(φD,D′,ω) = ε0|η′ − η|+
∞∑

i=1

(ε2
2
|ξ′i − ξi|+

ε1
2
|η′i − ηi|

)

= ε0 +
∑

i∈Iω

ε2
2
|1+qi−q′i|+

∑

i∈Jω

ε1
2
|1+qi−q′i|

≤ ε0 + ε2|Iω|+ ε1|Jω| ≤ ε.
The first inequality is from sensitivity assumption: |1+ qi−
q′i| ≤ 1 + |qi − q′i| ≤ 2. The second inequality is from loop
invariant on Line 16: ε0 + ε2|Iω|+ ε1|Jω| = cost ≤ ε− ε1 +
max(ε1, ε2) = ε.

We note that if we remove the first branch of Algorithm
2 (Line 8 through 10) or set σ =∞, we recover the Sparse-
Vector-with-Gap algorithm of Wang. et al. [42]. Also, Algo-
rithm 2 can be easily extended with multiple additional “if”
branches. For simplicity we do not include such variations.
In our setting, ε2 = ε1/2 so, theoretically, if queries are
very far from the threshold, our adaptive version of Sparse
Vector will be able to find twice as many of them as the
non-adaptive version. Lastly, if all queries are monotonic
queries, then Algorithm 2 can be further improved: we can
use Lap(1/ε2) and Lap(1/ε1) noises instead in Line 7.6

6.2 Utilizing Gap Information
When Sparse-Vector-with-Gap or Adaptive-Sparse-Vector-

with-Gap returns a gap γi for a query qi, we can add to it
the public threshold T . This means γi + T is an estimate
of the value of qi(D). We can ask two questions: how can
we improve the accuracy of this estimate and how can we
be confident that the true answer qi(D) is really larger than
the threshold T?

Lower confidence interval. Recall that the randomness
in the gap in Adaptive-Sparse-Vector-with-Gap (Algorithm
2) is of the form ηi− η where η and ηi are independent zero
mean Laplace variables with scale 1/ε0 and 1/ε∗, where ε∗
is either ε1 or ε2, depending on the branch. The random
variable ηi − η has the following lower tail bound:

Lemma 5. For any t ≥ 0 we have

P(ηi − η ≥ −t) =
{
1− ε20e

−ε∗t−ε2
∗
e−ε0t

2(ε2
0
−ε2

∗
)

ε0 6= ε∗

1− (2+ε0t

4
)e−ε0t ε0 = ε∗

For proof see the full version of this paper [14]. For any
confidence level, say 95%, we can use this result to find a

6In the case of monotonic queries, if ∀i : qi ≥ q′i, then the
alignment changes slightly: we set η′ = η (the random vari-
able added to the threshold) and set the adjustment to noise
in winning “if” branches to qi − q′i instead of 1 + qi − q′i
(hence cost terms become |qi− q′i| instead of |1+ qi− q′i|). If
∀i : qi ≤ q′i then we keep the original alignment but in the
cost calculation we note that |1 + qi − q′i| ≤ 1 (due to the
monotonicity and sensitivity).

300

number t.95 such that P((ηi − η) ≥ −t.95) = .95. This is a
lower confidence bound, so that the true value qi(D) is ≥
our estimated value γi+T minus t.95 with probability 0.95.

Improving accuracy. To improve accuracy, one can split
the privacy budget ε in half. The first half ε′ ≡ ε/2 can be
used to run Sparse-Vector-with-Gap (or Adaptive-Sparse-
Vector-with-Gap) and the second half ε′′ ≡ ε/2 can be used
to provide an independent noisy measurement of the selected
queries (i.e. if we selected k queries, we add Laplace(k/ε′′)
noise to each one). Denote the selected queries by q1, . . . , qk,
the noisy gaps by γ1, . . . , γk and the independent noisy mea-
surements by α1, . . . , αk. The noisy estimates can be com-
bined together with the gaps to get improved estimates βi of
qi(D) in the standard way (inverse-weighting by variance):

βi =

(
αi

Var(αi)
+

γi + T

Var(γi)

)/(
1

Var(αi)
+

1

Var(γi)

)
.

As shown in [32], the optimal budget allocation between
threshold noise and query noises within SVT (and therefore

also Sparse-Vector-with-Gap) is the ratio 1 : (2k)
2
3 . Under

this setting, we have Var(γi) = 8(1 + (2k)
2
3)3/ε2. Also, we

know Var(αi) = 8k2/ε2. Therefore,

E(|βi − qi|2)
E(|αi − qi|2)

=
Var(βi)

Var(αi)
=

(1 +
3
√
4k2)3

(1 +
3
√
4k2)3 + k2

< 1.

Since lim
k→∞

(1+
3√
4k2)3

(1+
3√
4k2)3+k2

= 4
5
, the improvement in accuracy

approaches 20% as k increases. For monotonic queries, the

optimal budget allocation within SVT is 1 : k
2
3 . Then we

have Var(γi) = 8(1+k
2
3)3/ε2 and the error reduction rate is

1− (1+
3√
k2)3

(1+
3√
k2)3+k2

which is close to 50% when k is large. Our

experiments in Section 7 confirm this improvement.

7. EXPERIMENTS
We now evaluate the algorithms proposed in this paper.

7.1 Datasets
For evaluation, we used the two real datasets from [32]:

BMP-POS, Kosarak and a synthetic dataset T40I10D100K
created by the generator from the IBM Almaden Quest re-
search group. These datasets are collections of transactions
(each transaction is a set of items). In our experiments,
the queries correspond to the counts of each item (i.e. how
many transactions contained item #23?) The statistics of
the datasets are listed below.

Table 2: Statistics of Datasets

Dataset # of Records # of Unique Items

BMS-POS 515,597 1,657
Kosarak 990,002 41,270

T40I10D100K 100,000 942

7.2 Gap Information + Postprocessing
The first set of experiments is to measure how gap in-

formation can help us improve estimates in selected queries.
We use the setup of Sections 5.2 and 6.2. That is, a data ana-
lyst splits the privacy budget ε in half. She uses the first half
to select k queries using Noisy-Top-K-with-Gap or Sparse-
Vector-with-Gap (or Adaptive-Sparse-Vector-with-Gap) and

then uses the second half of the privacy budget to obtain in-
dependent noisy measurements of each selected query.

If one were unaware that gap information came for free,
one would just use those noisy measurements as estimates
for the query answers. The error of this approach is the
gap-free baseline. However, since the gap information does
come for free, we can use the postprocessing described in
Sections 5.2 and 6.2 to improve accuracy (we call this latter
approach Sparse-Vector-with-Gap with Measures and Noisy-
Top-K-with-Gap with Measures).

We first evaluate the percent improvement in mean squared
error (MSE) of the postprocessing approach compared to the
gap-free baseline and compare this improvement to our the-
oretical analysis. As discussed in Section 6.2, we set the
budget allocation ratio within the Sparse-Vector-with-Gap
algorithm (i.e., the budget allocation between the threshold

and queries) to be 1 : k
2
3 for monotonic queries and 1 : (2k)

2
3

otherwise – such a ratio is recommended in [32] for the orig-
inal Sparse Vector. The threshold used for Sparse-Vector-
with-Gap is randomly picked from the top 2k to top 8k in
each dataset for each run.7 All numbers plotted are averaged
over 10, 000 runs. Due to space constraints, we only show
experiments for counting queries (which are monotonic).

Our theoretical analysis in Sections 5.2 and 6.2 suggested
that the improvements can reach up to 50% in case of mono-
tonic queries (and 20% for non-monotonic queries) as k in-
creases. This is confirmed in Figures 1a, for Sparse-Vector-
with-Gap and Figures 1b, for our Top-K algorithm using the
BMS-POS dataset (results for the other datasets are nearly
identical). These figures plot the theoretical and empirical
percent improvement in MSE as a function of k and show
the power of the free gap information.

We also generated corresponding plots where k is held
fixed and the total privacy budget ε is varied. We only
present the result for the kosarak dataset as results for the
other datasets are nearly identical. For Sparse-Vector-with-
Gap, Figures 2a confirms that this improvement is stable
for different ε values. For our Top-K algorithm, Figures 2b
confirms that this improvement is also stable for different
values of ε.

7.3 Benefits of Adaptivity
In this subsection we present an evaluation of the budget-

saving properties of our novel Adaptive-Sparse-Vector-with-
Gap algorithm to show that it can answer more above-
threshold queries than Sparse Vector and Sparse-Vector-
with-Gap at the same privacy cost (or, conversely, answer
the same number of queries but with leftover budget that can
be used for other purposes). First note that Sparse Vector
and Sparse-Vector-with-Gap both answer exactly the same
amount of queries, so we only need to compare Adaptive-
Sparse-Vector-with-Gap to the original Sparse Vector [19,
32]. In both algorithms, the budget allocation between the
threshold noise and query noise is set according to the ra-

tio 1 : k
2
3 (i.e., the hyperparameter θ in Adaptive-Sparse-

Vector-with-Gap is set to 1/(1+ k
2
3)), following recommen-

dations for SVT by Lyu et. al. [32]. The threshold is
randomly picked from the top 2k to top 8k in each dataset
and all reported numbers are averaged over 10, 000 runs.

7Selecting thresholds for SVT in experiments is difficult, but
we feel this may be fairer than averaging the answer to the
top kth and k + 1th queries as was done in prior work [32].

301

3. For each pair of adjacent databases D ∼ D′, bound
the alignment cost of φD,D′ (φD,D′ is either given or
constructed by piecing together the local alignments).
Bounding the alignment cost means the following: If f
is the density (or probability mass) function of H, find
a constant a such that f(H)/f(φD,D′(H)) ≤ a for all H
(except a set of measure 0). In the case of local align-
ments, one can instead show the following. For all ω,
and adjacent D ∼ D′ the ratio f(H)/f(φD,D′,ω(H)) ≤ a
for all H (except on a set of measure 0).

4. Bound the change-of-variables cost of φD,D′ (only neces-
sary when H is not discrete). One must show that the

Jacobian of φD,D′ , defined as JφD,D′
=

∂ φD,D′

∂H
, exists

(i.e. φD,D′ is differentiable) and is continuous except on
a set of measure 0. Furthermore, for all pairs D ∼ D′,
show the quantity |det JφD,D′

| is lower bounded by some
constant b > 0. If φD,D′ is constructed by piecing to-
gether local alignments φD,D′,ω then this is equivalent to
showing the following (i) |det JφD,D′,ω

| is lower bounded
by some constant b > 0 for every D ∼ D′ and ω; and
(ii) for each D ∼ D′, the set Ω can be partitioned into
countably many disjoint measurable sets Ω =

⋃
i Ωi such

that whenever ω and ω∗ are in the same partition, then
φD,D′,ω and φD,D′,ω* are the same function. Note that
this last condition (ii) is equivalent to requiring that the
local alignments must be defined without using the ax-
iom of choice (since non-measurable sets are not con-
structible otherwise) and for each D ∼ D′, the number
of distinct local alignments is countable. That is, the set
{φD,D′,ω | ω ∈ Ω} is countable (i.e., for many choices of
ω we get the same exact alignment function).

Theorem 5. Let M be a randomized algorithm that termi-
nates with probability 1 and suppose the number of random
variables used by M can be determined from its output. If,
for all pairs of adjacent databases D ∼ D′, there exist ran-
domness alignment functions φD,D′ (or local alignment func-
tions φD,D′,ω for all ω ∈ Ω and D ∼ D′) that satisfy condi-
tions 1 though 4 above, then M satisfies ln(a/b)-differential
privacy.

Proof. We need to show that for all D ∼ D′ and E ⊆ Ω,
P(SD:E) ≤ (a/b)P(SD′:E).

First we note that if we have a randomness alignment
φD,D′ , we can define corresponding local alignment functions
as follows φD,D′,ω(H) = φD,D′(H) (in other words, they are
all the same). The conditions on local alignments are a
superset of the conditions on randomness alignments, so for
the rest of the proof we work with the φD,D′,ω.

Let φ1, φ2, . . . be the distinct local alignment functions
(there are countably many of them by Condition 4). Let
Ei = {ω ∈ E | φD,D′,ω = φi}. By Conditions 1 and 2
we have that for each ω ∈ Ei, φi is one-to-one on SD:ω

and φi(SD:ω) ⊆ SD′:ω. Note that SD:Ei
= ∪ω∈Ei

SD:ω and
SD′:Ei

= ∪ω∈Ei
SD′:ω. Furthermore, the sets SD:ω are pair-

wise disjoint for different ω and the sets SD′:ω are pairwise
disjoint for different ω. It follows that φi is one-to-one on
SD:Ei

and φi(SD:Ei
) ⊆ SD′:Ei

. Thus for any H ′ ∈ φi(SD:Ei
)

there exists H ∈ SD:Ei
such that H = φ−1

i (H ′). By Con-

ditions 3 and 4, we have f(H)
f(φi(H))

=
f(φ−1

i
(H′))

f(H′)
≤ a for all

H ∈ SD:Ei
, and |det Jφi

| ≥ b (except on a set of measure 0).

Then the following is true:

P(SD:Ei
) =

∫

SD:Ei

f(H)dH

=

∫

φi(SD:Ei
)

f(φ−1
i (H ′))

1

|det Jφi
|dH

′

≤
∫

φi(SD:Ei
)

af(H ′)
1

b
dH ′ =

a

b

∫

φi(SD:Ei
)

f(H ′)dH ′

≤ a

b

∫

SD′:Ei

f(H ′)dH ′ =
a

b
P(SD′:Ei

).

The second equation is the change of variables formula in
calculus. The last inequality follows from the containment
φi(SD:Ei

) ⊆ SD′:Ei
and the fact that the density f is non-

negative. In the case that H is discrete, simply replace the
density f with a probability mass function, change the in-
tegral into a summation, ignore the Jacobian term and set
b = 1. Finally, since E = ∪iEi and Ei ∩ Ej = ∅ for i 6= j,
we conclude that

P(SD:E) =
∑

i

P(SD:Ei
) ≤ a

b

∑

i

P(SD′:Ei
) =

a

b
P(SD′:E).

We now present the proof of Lemma 1.

Proof. Let φD,D′,ω(H) = H ′ = (η′1, η
′
2, . . .). By acyclicity

there is some permutation π under which ηπ(1) = η′π(1) − c
where c is some constant depending on D ∼ D′ and ω.
Thus ηπ(1) is uniquely determined by H ′. Now (as an in-
duction hypothesis) assume ηπ(1), . . . , ηπ(j−1) are uniquely
determined by H ′ for some j > 1, then ηπ(j) = η′π(j) −
ψ

(j)

D,D′,ω
(ηπ(1), . . . , ηπ(j−1)), so ηπ(j) is also uniquely deter-

mined by H ′. Thus by strong induction H is uniquely deter-
mined by H ′, i.e., φD,D′,ω is one-to-one. It is easy to see that
with this ordering, JφD,D′,ω

is an upper triangular matrix
with 1’s on the diagonal. Since permuting variables doesn’t
change |det JφD,D′,ω

|, we have |det JφD,D′,ω
| = 1 since that is

the determinant of upper triangular matrices. Furthermore,
(recalling the definition of the cost of φD,D′,ω), clearly

ln
f(H)

f(φω(H))
=

∑

i

ln
fi(ηi)

fi(η′i)
≤

∑

i

|ηi − η′i|/αi ≤ ε

The first inequality follows from Condition 3 of Lemma 1
and the second from Condition 4.

9. CONCLUSIONS AND FUTURE WORK
In this paper we introduced the Adaptive Sparse Vector

with Gap and Noisy Top-K with Gap mechanisms, which
were based on the observation that the classical Sparse Vec-
tor and Noisy Max mechanisms could release additional in-
formation at no cost to privacy. We also provided applica-
tions of this free gap information.

Future directions include using this technique to design
additional mechanisms as well as finding new applications
for these mechanisms in fine-tuning the accuracy of data
release algorithms that use differential privacy.

Acknowledgments

This work was supported by NSF Awards CNS-1702760 and
CNS-1931686.

304

10. REFERENCES
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,

I. Mironov, K. Talwar, and L. Zhang. Deep learning
with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318. ACM, 2016.

[2] J. M. Abowd. The us census bureau adopts differential
privacy. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 2867–2867. ACM, 2018.

[3] A. Albarghouthi and J. Hsu. Synthesizing coupling
proofs of differential privacy. Proceedings of the ACM
on Programming Languages, 2(POPL):58, 2017.

[4] G. Barthe, M. Gaboardi, B. Gregoire, J. Hsu, and
P.-Y. Strub. Proving differential privacy via
probabilistic couplings. In IEEE Symposium on Logic
in Computer Science (LICS), 2016.

[5] A. Beimel, K. Nissim, and U. Stemmer. Private
learning and sanitization: Pure vs. approximate
differential privacy. Theory of Computing, 12(1):1–61,
2016.

[6] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta.
Discovering frequent patterns in sensitive data. In
Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2010.

[7] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov,
A. Raghunathan, D. Lie, M. Rudominer, U. Kode,
J. Tinnes, and B. Seefeld. Prochlo: Strong privacy for
analytics in the crowd. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP
’17, 2017.

[8] M. Bun and T. Steinke. Concentrated differential
privacy: Simplifications, extensions, and lower bounds.
In Proceedings of the 14th International Conference on
Theory of Cryptography - Volume 9985, 2016.

[9] U. S. C. Bureau. On the map: Longitudinal
employer-household dynamics.
https://lehd.ces.census.gov/applications/help/

onthemap.html#!confidentiality_protection.

[10] K. Chaudhuri, D. Hsu, and S. Song. The large margin
mechanism for differentially private maximization. In
Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 1,
2014.

[11] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate.
Differentially private empirical risk minimization.
Journal of Machine Learning Research,
12(Mar):1069–1109, 2011.

[12] Y. Chen, A. Machanavajjhala, J. P. Reiter, and A. F.
Barrientos. Differentially private regression
diagnostics. In IEEE 16th International Conference on
Data Mining (ICDM), 2016.

[13] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting
telemetry data privately. In Advances in Neural
Information Processing Systems (NIPS), 2017.

[14] Z. Ding, Y. Wang, D. Zhang, and D. Kifer. Free gap
information from the differentially private sparse
vector and noisy max mechanisms. arXiv preprint
arXiv:1904.12773, 2019.

[15] C. Dwork. Differential privacy. In Proceedings of the
33rd International Conference on Automata,

Languages and Programming - Volume Part II,
ICALP’06, pages 1–12, Berlin, Heidelberg, 2006.
Springer-Verlag.

[16] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, pages 486–503. Springer,
2006.

[17] C. Dwork and J. Lei. Differential privacy and robust
statistics. In Proceedings of the forty-first annual ACM
symposium on Theory of computing, pages 371–380.
ACM, 2009.

[18] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pages
265–284. Springer, 2006.

[19] C. Dwork and A. Roth. The algorithmic foundations
of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(34):211–407, 2014.

[20] Ú. Erlingsson, V. Feldman, I. Mironov,
A. Raghunathan, K. Talwar, and A. Thakurta.
Amplification by shuffling: From local to central
differential privacy via anonymity. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, 2019.

[21] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor:
Randomized aggregatable privacy-preserving ordinal
response. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security,
pages 1054–1067. ACM, 2014.

[22] M. Fanaeepour and B. I. P. Rubinstein.
Histogramming privately ever after:
Differentially-private data-dependent error bound
optimisation. In Proceedings of the 34th International
Conference on Data Engineering, ICDE. IEEE, 2018.

[23] Q. Geng and P. Viswanath. The optimal mechanism
in differential privacy. In 2014 IEEE International
Symposium on Information Theory, 2014.

[24] A. Ghosh, T. Roughgarden, and M. Sundararajan.
Universally utility-maximizing privacy mechanisms. In
STOC, pages 351–360, 2009.

[25] S. Haney, A. Machanavajjhala, J. M. Abowd,
M. Graham, M. Kutzbach, and L. Vilhuber. Utility
cost of formal privacy for releasing national
employer-employee statistics. In Proceedings of the
2017 ACM International Conference on Management
of Data, SIGMOD ’17, 2017.

[26] M. Hardt, K. Ligett, and F. McSherry. A simple and
practical algorithm for differentially private data
release. In NIPS, 2012.

[27] N. Johnson, J. P. Near, and D. Song. Towards
practical differential privacy for sql queries. PVLDB,
11(5):526–539, 2018.

[28] I. Kotsogiannis, A. Machanavajjhala, M. Hay, and
G. Miklau. Pythia: Data dependent differentially
private algorithm selection. In Proceedings of the 2017
ACM International Conference on Management of
Data, SIGMOD ’17, 2017.

[29] E. Lehmann and G. Casella. Theory of Point
Estimation. Springer Verlag, 1998.

305

[30] K. Ligett, S. Neel, A. Roth, B. Waggoner, and S. Z.
Wu. Accuracy first: Selecting a differential privacy
level for accuracy constrained ERM. In NIPS, 2017.

[31] J. Liu and K. Talwar. Private selection from private
candidates. arXiv preprint arXiv:1811.07971, 2018.

[32] M. Lyu, D. Su, and N. Li. Understanding the sparse
vector technique for differential privacy. PVLDB,
10(6):637–648, 2017.

[33] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke,
and L. Vilhuber. Privacy: From theory to practice on
the map. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pages
277–286, 2008.

[34] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In Proceedings of the 48th Annual
IEEE Symposium on Foundations of Computer
Science, pages 94–103, 2007.

[35] F. D. McSherry. Privacy integrated queries: An
extensible platform for privacy-preserving data
analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data,
pages 19–30, 2009.

[36] I. Mironov. Rényi differential privacy. In 30th IEEE
Computer Security Foundations Symposium, CSF,
2017.

[37] N. Papernot, S. Song, I. Mironov, A. Raghunathan,
K. Talwar, and lfar Erlingsson. Scalable private
learning with pate. In International Conference on
Learning Representations (ICLR), 2018.

[38] S. Raskhodnikova and A. D. Smith. Lipschitz

extensions for node-private graph statistics and the
generalized exponential mechanism. In FOCS, pages
495–504. IEEE Computer Society, 2016.

[39] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang.
Privacy loss in apple’s implementation of differential
privacy. In 3rd Workshop on the Theory and Practice
of Differential Privacy at CCS, 2017.

[40] A. D. P. Team. Learning with privacy at scale. Apple
Machine Learning Journal, 1(8), 2017.

[41] A. G. Thakurta and A. Smith. Differentially private
feature selection via stability arguments, and the
robustness of the lasso. In Proceedings of the 26th
Annual Conference on Learning Theory, 2013.

[42] Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang.
Proving differential privacy with shadow execution. In
Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI 2019, pages 655–669, New
York, NY, USA, 2019. ACM.

[43] D. Zhang and D. Kifer. Lightdp: Towards automating
differential privacy proofs. In ACM Symposium on
Principles of Programming Languages (POPL), pages
888–901, 2017.

[44] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay,
A. Machanavajjhala, and G. Miklau. Ektelo: A
framework for defining differentially-private
computations. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD ’18, 2018.

306

	Introduction
	Related Work
	Notation and Background
	Formal Privacy

	Randomness Alignment
	Improving Noisy Max
	Noisy-Top-K-with-Gap
	Utilizing Gap Information

	Improving Sparse Vector
	Adaptive-Sparse-Vector-with-Gap
	Utilizing Gap Information

	Experiments
	Datasets
	Gap Information + Postprocessing
	Benefits of Adaptivity

	General Randomness Alignment and Proof of Lemma 1
	Conclusions and Future Work
	References

