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Many-body chaos has emerged as a powerful framework for understanding thermalization in strongly
interacting quantum systems. While recent analytic advances have sharpened our intuition for many-body
chaos in certain large N theories, it has proven challenging to develop precise numerical tools capable of
exploring this phenomenon in generic Hamiltonians. To this end, we utilize massively parallel, matrix-free
Krylov subspace methods to calculate dynamical correlators in the Sachdev-Ye-Kitaev model for up to
N = 60 Majorana fermions. We begin by showing that numerical results for two-point correlation functions
agree at high temperatures with dynamical mean field solutions, while at low temperatures finite-size
corrections are quantitatively reproduced by the exactly solvable dynamics of near extremal black holes.
Motivated by these results, we develop a novel finite-size rescaling procedure for analyzing the growth of out-
of-time-order correlators. Our procedure accurately determines the Lyapunov exponent, 4, across a wide
range in temperatures, including in the regime where A approaches the universal bound, 1 = 2z /.
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Characterizing thermalization in strongly interacting quan-
tum systems is a goal that spans across multiple disciplines
ranging from condensed matter and quantum information to
quantum gravity. Recent developments toward this goal have
revealed striking insights into the relationship between
quantum chaos and the delocalization, or scrambling, of
quantum information. This unification is partly provided by
the notion of out-of-time-order correlators (OTOCs), which
take the general form (W(r)V(0)W(r)V(0)) for local
operators V and W [1-3]. From an information theoretic
perspective, these correlators determine the degree to which
local information becomes hidden in nonlocal degrees of
freedom, leading to the effective memory loss of initial
conditions [2,4]. From the perspective of chaos, OTOCs
measure the sensitivity of one operator toward a small
perturbation induced by another operator at an earlier time
[5,6]. In particular, for semiclassical chaotic systems, OTOCs
are expected to exhibit a period of exponential growth
analogous to the classical butterfly effect [7,8].

At the intersection between these two perspectives lies the
discovery of a new form of quantum chaos in strongly
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interacting systems, known as many-body chaos. This
phenomenon is characterized by OTOCs whose leading
order behavior is given by ¢* /N, where A is the Lyapunov
exponent and N is related to the number of degrees of
freedom per site [5,9]. While such behavior was first
anticipated in [9] and confirmed using holographic duality
in [2], the first concrete Hamiltonian model to exhibit
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FIG. 1. Regularized OTOCs in the SYK model,

F(t)=F(t)/F(0), as shown for fJ =10 and system sizes
N € [12,60]. The early time behavior is characterized by 1 —
F(t) ~ e* /N and different system sizes are approximately related
by a time translation symmetry, t — ¢+ 1/Alog N. (b) Applying
a finite-size rescaling procedure to the data, we determine A as a
function of temperature (points). Our results exhibit excellent
agreement with the theoretical predictions of the Schwinger-
Dyson (SD) equations (dashed line), including in the regime
where A approaches the bound on chaos 27/ (blue).
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many-body chaos was introduced by Kitaev following
previous work by Sachdev and Ye [10-13]. Remarkably,
atlow temperatures, the Lyapunov exponent of this so-called
Sachdev-Ye-Kitaev (SYK) model saturates a universal
bound, A < 22T, where T is the temperature of the system
[5]. The saturation of this bound is known to occur in
theories of quantum gravity and their holographic duals [6],
and indeed a direct correspondence has since been estab-
lished between the low temperature dynamics of the SYK
model and a universal theory of near extremal black holes
(i.e., Jackiw-Teitelboim gravity) [13—16]. More recently, a
number of other models that exhibit many-body chaos have
been studied; however, their rate of chaos is parametrically
slower than the thermodynamic bound [17,18]. In parallel,
there have also been numerous proposals to directly measure
OTOCs in coherently controlled quantum simulators
[8,19-27], as well as a number of experimental demon-
strations in small-scale systems [24,28-30].

A major hurdle in benchmarking these experiments/
proposals and in identifying novel models that exhibit
many-body chaos is the lack of a reliable numerical toolset.
Indeed, in order to observe a period of clear exponential
growth, the scrambling time must be well separated from
other effects related to local relaxation that occur at early
times [5,21,31].

In this Letter, we take steps to overcome these challenges
by employing massively parallelized Krylov subspace
methods and developing new extrapolation tools to charac-
terize many-body chaos. Specifically, we compute correla-
tion functions for the SYK model for systems of up
to N = 60 Majorana fermions and leverage the model’s
correspondence with quantum gravity to interpret finite-
size effects. We present two main results. First, we demon-
strate that our numerical results for two-point functions,
G(t) = (W(r)W(0)), agree quantitatively with analytic
predictions in two distinct regimes: (i) at high temperatures,
our results match the mean-field solution of the microscopic
model, and (ii) at low temperatures, our results are consistent
with the full quantum dynamics of near extremal black holes.
These latter results represent, to the best of our knowledge,
the first direct numerical verification of quantum gravity
correlators and highlight the close connection between finite-
size corrections and gravitational fluctuations.

Second, we introduce an extrapolation procedure for
determining the Lyapunov exponent that explicitly takes
into account higher-order terms in the OTOCs. We verify
that this procedure accurately determines A as a function
of temperature, including at low temperatures where
A= 2xT (Fig. 1).

The SYK model and its gravity dual.—Consider the SYK
Hamiltonian given by [11,12]
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FIG. 2. Regimes of analytic control for the SYK model as a
function of system size, N, and inverse temperature, fJ. In the
semiclassical limit (red and purple), the model is well described by
a dynamical mean-field solution (Schwinger-Dyson equations). At
low temperatures, finite-size corrections can be calculated using the
Schwarzian action (blue), which is dual to two-dimensional anti—
de Sitter gravity. However, at sufficiently small sizes (gray), the
dynamics are governed by the discreteness of the energy spectrum
and neither effective theory provides a valid description.

Here y;(i = 1,...,N) are Majorana fermions which obey
the anticommutation relation, {y;.y,;} = &;;, and J;; are
random (real) coefficients sampled from a Gaussian dis-
tribution characterized by a standard deviation ¢ = J.

In order to probe the system’s nonequilibrium dynamics,
we will compute two different types of correlators. In-time
correlators reveal how excitations in the system relax
toward equilibrium. In particular, we will consider the
average imaginary-time Green’s function, G(z), and its
real-time cousin, Gg(t), given by

G(7) = (i()xi(0)) . (2)

Gr(1) = 2Re[(xi(1)xi(0)) 4], (3)

where (f) > 0 is imaginary (real) time, (---); =
1/ZTrx[ - - ePH] is a thermal average at inverse temperature
p = 1/T, and the overline denotes the (quenched) average
over disorder realizations. On the other hand, to probe
chaos and the scrambling of quantum information, we will
consider out-of-time-order correlators. We will primarily
focus on the regularized OTOC,

FU (1) = <)(i(I)P‘l‘){j(O)P%)(i(f).”%)(j(o)ﬂ@ (4)
where i # j, and p = ePH the imaginary-time evolution
associated with the thermal ensemble, is distributed evenly
among the four operators. In the Supplemental Material, we
provide a detailed discussion regarding the key differences
between this correlator and the unregularized version [32,33].

In the large N, semiclassical limit, both in-time and out-
of-time correlators can be exactly computed via a diagram-
matic approach [11,12]. The average Green’s functions
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are determined by the self-consistent Schwinger-Dyson
equations. For the OTOCs, the leading order term in 1/N
is computed by summing a series of ladder diagrams.

Beyond the semiclassical limit, the dynamics at low
temperature (i.e., #J > 1) are captured by an effective theory
known as the “Schwarzian theory” (Fig. 2) [11,13,43,44].
The same theory also describes Jackiw-Teitelboim gravity, a
simple quantum gravity description of two-dimensional
anti—de Sitter space.

Crucially, correlators in the Schwarzian theory are exactly
computable [44,45], which will enable us to perform
quantitative, finite-size-scaling comparisons for two-point
functions G(7) and G(7) outside of the semiclassical limit.
However, for the four-point function, the expressions are
more complicated, and we will compare numerics to
the ansatz: F(t) = Cy+ Ci(e”/N)+ Cy(e!/N)* + -,
which is valid for large N and # < 1/AlogN [15,44,45].
An analogous series expansion is expected to characterize
OTOC:s for the SYK model at high temperatures (and any
other model described by ladder diagrams) [17,41,46].

Nonequilibrium dynamics in the SYK model.—Our
central numerical tool is a massively parallelized imple-
mentation of a class of iterative methods known as Krylov
subspace methods [33,47,48]. These methods approximate
the time evolution of an initial state, |y (t)) = e~ |y),
within a subspace formed by successive applications of the
Hamiltonian. Since this requires an initial pure state, we
approximate thermal averages by taking the expectation
value with respect to a Haar-random state |) [49-51],

A ~ g P~
TH{Oe ] » (i7]e™4 D). (5)

Owing to quantum typicality, the error in this approxima-
tion scales inversely with the number of states in the
thermal ensemble and, thus, decreases exponentially with
N for arbitrary systems and temperatures (above the
spectral gap) [50]. In practice, we further reduce the error
by averaging over initial states [33].

To begin probing the thermalizing dynamics of the SYK
model, we compute the average Green’s functions for both
real- and imaginary-time evolution in the temperature
range, 0 < BJ <100. At high temperatures, the imagi-
nary-time Green’s function, G(z), shows excellent agree-
ment with the semiclassical solution given by the
Schwinger-Dyson equations [Fig. 3(a)]. At lower tempera-
tures, the difference between our numerics and the semi-
classical solutions widens. To understand the origin of
these corrections, we plot the full solution predicted by the
Schwarzian action. This exhibits close quantitative agree-
ment with our data at temperatures corresponding to
pJ = 50. Crucially, this confirms that the Schwarzian
action, or its corresponding gravity dual, accurately cap-
tures finite-size corrections away from the semiclassical
regime.

A few remarks are in order. First, we note that the
agreement with the Schwarzian action is only valid for
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FIG. 3. Two-point correlation functions in real and imaginary

time. (a) Comparison of imaginary-time evolution between our
numerics with 40 Majoranas (solid), the large N solution (dotted),
and the Schwarzian action (dashed). At high temperatures, we
observe quantitative agreement between our numerical results and
the large N solution, while at low temperatures our numerics are
well described by the Schwarzian action. (b) Analogous com-
parison for real-time evolution with #J = 56. Our numerics show
excellent agreement with the Schwarzian action for tJ Z 10. The
disagreement at earlier times is attributed to the difference in high-
energy modes, which are cut off at the energy scale J in the SYK
model and are unbounded in the effective action. Inset: a salient
feature in our real-time numerics is a nonmonotonic trend with
respect to temperature, as shown for #J = 20. This behavior is
captured by the Schwarzian action (dashed) and can be understood
as a consequence of the square root edge of the energy spectrum.

system sizes larger than N = 30 [33]. For smaller sizes, we
observe additional finite-size corrections that are attributed
to the discreteness of the energy spectrum. Such non-
Schwarzian corrections are expected to dominate when
the temperature approaches the energy of the level spacings
(i.e., N ~log fJ in Fig. 2) [52,53]. Second, the agreement
between the Schwarzian and our numerics does not hold at
time scales shorter than the inverse of the microscopic
coupling strength (i.e., zJ < 1); specifically, the Schwarzian
dynamics diverge as zJ — 0 while our numerics approach a
finite value. This difference arises from the fact that the
Schwarzian action is the effective theory only at low
energies (compared to J); for higher energies, the SYK
dynamics are governed by the microscopic nature of
the model.

Much like the imaginary-time case, we find that the
retarded Green’s function, Gg(t), agrees with the semi-
classical solutions at high temperatures and with the full
dynamics of the Schwarzian action at low temperature
[Fig. 3(b)]. We note, however, that the early time discrep-
ancy with the Schwarzian action is extended to later times
(i.e., pJ ~10). This can be attributed to the longer time
scale required for the phase cancellation of the high-energy
modes in real time, as opposed to the direct suppression that
occurs in imaginary time.

Working with real-time dynamics also allows us to probe
a rather nontrivial prediction of the Schwarzian action.
In particular, one expects the late-time dynamics to be
governed by the functional form of the spectral density at
low energies, p(E) ~ E("/?) [43,54,55]. This square-root
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singularity leads to a power-law decay of the Green’s
function, with a power that depends on both the tempera-
ture and the time scale. Intriguingly, it predicts a non-
monotonic temperature dependence for the decay of the
Green’s function, in stark contrast to the monotonic
dependence predicted by the semiclassical solution. This
nontrivial temperature dependence, consistent with only the
full Schwarzian solution, is indeed borne out by the
numerics [inset, Fig. 3(b)].

Lyapunov exponent of the SYK model.—To probe many-
body chaos in the SYK model, we now compute regular-
ized OTOCs [Eq. (4)] for temperatures in the range
0 < BJ <56 and for system sizes up to N = 60. In the
large N limit, one expects a well-defined period of
exponential growth, starting from the time scale at which
the two-point functions decay and persisting until the
scrambling time [5]. However, for conventional exact
diagonalization studies, there is little separation between
these time scales, owing to the limited system sizes that are
numerically accessible; indeed, prior studies actually
observed an increase in the extracted Lyapunov exponent
as a function of decreasing temperature—the opposite
behavior of what is expected [33,56]. By scaling to larger
system sizes using Krylov subspace methods, we observe a
direct turnover in this trend. Moreover, we introduce a
novel extrapolation method, which provides a robust way
of extracting the Lyapunov exponent.

The intuition behind our method is as follows: for a large
class of many-body chaotic systems, the full form of the
OTOC in the semiclassical limit is given by a series in
e” /N. Crucially, this series exhibits a rescaling symmetry,
wherein N — rN amounts to shifting the full curve by
t - t+ 1/21og r. This symmetry can be shown explicitly
for the Schwarzian action, which governs low-temperature
dynamics of the SYK model, and is also expected to hold at
high temperatures [17,41].

This suggests that we can determine 4 at a given tempera-
ture by attempting to collapse our data [Fig. 1(a)] through
finite-size rescaling of the form # — ¢+ 1/11log N. More
specifically, we first interpolate our data to find the time,
t., at which each curve crosses a fixed value, i.e.,
F(1,)/F(0)=1-F, [33]. Next, we estimate Ag(N) as
1/2z=dt./d(logN), where N corresponds to the system
size about which we take the numerical derivative.
Finally, we fit our results to a 1/N series, A5 (N) =
Ao+ A/N + A, /N? + - - -; the leading order term A, corre-
sponds to the extrapolated value for 4 as N — 0.

In Fig. 1(b), we present our results for 4 as a function of
temperature. We observe excellent agreement with analytic
predictions for all temperatures in the range 0 < fJ < 56.
Crucially, our protocol works at low temperatures where
the 27/ f scaling (saturating the bound on chaos) becomes
apparent.

An important question to ask is over what range of
temperatures we expect our procedure to remain valid.

There are three relevant considerations. First, the temper-
ature must be high compared to the energy associated with
the level spacing; we account for this requirement by
considering only system sizes where at least 20 eigenstates,
on average, lie within AE =1/ of the ground state.
Second, the system must be sufficiently close to the
semiclassical limit for the rescaling symmetry to hold. It
is known from the Schwarzian action that this condition
corresponds to fJ < N. Asymptotically, this is a much
stronger requirement than the first condition; however, for
the system sizes relevant for our study (N < 60), both
requirements imply a low temperature limit of fJ = 60.

Third, there must sufficient separation between the
scrambling time and the short-time dissipative dynamics.
In the case of the regularized correlator, this condition is
given by #J < N, leading to the same temperature range as
the semiclassical requirement. However, in the case of
unregularized correlators, the corresponding condition is
(BJ)? < N; this implies that the unregularized correlator is
subject to stronger finite-size effects, which we corroborate
through our numerics [33].

Discussion and outlook.—By employing massively
parallelized Krylov subspace methods and developing
novel extrapolation tools, we have demonstrated that one
can utilize numerics to accurately capture the thermalizing
and chaotic dynamics of the SYK model. Our results for
two-point Green’s functions represent a direct verification
of the dynamics of quantum black holes in a highly
fluctuating regime. Moreover, our finite-size rescaling
procedure for extracting Lyapunov exponents leads to
the first numerical evidence that the SYK model saturates
the theoretical bound on chaos, A ~ 2zT.

We anticipate that the numerical tools demonstrated here
will open the door to a number of intriguing future
directions. First, our numerical tools can be applied to
variations of the SYK model (i.e., large ¢ limit) for which
the effective action (i.e., Liouville action) is known for all
temperatures [55,57,58]. This will enable quantitative
studies of finite-size corrections in the high-temperature
regime, where the Schwarzian action is not valid. Second,
our procedure for characterizing Lyapunov exponents can
diagnose many-body chaos in other models beyond the
SYK model; this is of particular relevance for experimental
platforms which have constraints on the types of inter-
actions and disorder that can be realized [26,29,30,59,60].
Finally, we envision future numerical simulations to test
more complex gravitational phenomena, including travers-
able wormholes [61,62], and the possible emergence
of SYK dynamics in transport experiments of quantum
materials [63-65].
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