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e We evaluate historical and future burned area (BA) trends and
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e Recent BA has decreased in central South America and mesic
African savannas

e High-latitude warming, (sub)tropical drying, and human
ignitions will increase future BA

e Fire suppression near human settlements can offset large
potential BA increases
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In brief

Understanding the drivers of the spatial
distribution and temporal trends in
wildfire activity is necessary to enable
robust predictions of future fire activity in
the Earth system. Using a climate-fire-
carbon cycle-coupled model, Wu et al.
show that accelerated high-latitude
warming and tropical and subtropical
drying and human ignitions will increase
the future global burned area, while fire
suppression in the vicinity of human
settlements is important in offsetting the
potential for dramatic burned area
increases.
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SCIENCE FOR SOCIETY Wildfire is an important natural disturbance for many ecosystems, helping to
shape biome distributions and controlling the carbon balance. Major changes in fire activity could also
have a strong impact on human societies. Changes in fire activity are influenced both by climatic changes
and by changes in human demography via, e.g., population growth and urbanization. We show that in recent
decades, global burned area has actually decreased, especially in central South America and mesic African
savannas. However, our future simulations indicate that future climate and demographic change will
reverse this trend and that burned area is likely to increase due to accelerated high-latitude warming and
tropical and subtropical drying and human ignitions. These projections will inform more detailed, local
work to develop wildfire management strategies and to assess ecological responses to global change,
and will contribute to the discussion of what constitutes a safe upper limit to global warming.

SUMMARY

Wildfires influence terrestrial carbon cycling and represent a safety risk, and yet a process-based under-
standing of their frequency and spatial distributions remains elusive. We combine satellite-based observa-
tions with an enhanced dynamic global vegetation model to make regionally resolved global assessments
of burned area (BA) responses to changing climate, derived from 34 Earth system models and human demo-
graphics for 1860-2100. Limited by climate and socioeconomics, recent BA has decreased, especially in cen-
tral South America and mesic African savannas. However, future simulations predict increasing BA due to
changing climate, rapid population density growth, and urbanization. BA increases are especially notable
at high latitudes, due to accelerated warming, and over the tropics and subtropics, due to drying and human
ignitions. Conversely, rapid urbanization also limits BA via enhanced fire suppression in the immediate vicin-
ity of settlements, offsetting the potential for dramatic future increases, depending on warming extent. Our
analysis provides further insight into regional and global BA trends, highlighting the importance of including
human demographic change in models for wildfire under changing climate.

INTRODUCTION

Wildfire is a natural and inevitable feature of the environment in
many terrestrial ecosystems and has a strong influence on
biogeography, ecosystem functioning, and land-atmosphere
carbon and energy fluxes.'*> However, fire also potentially puts
humans at risk from atmospheric pollutants® and health and
infrastructure hazards.™** Overall, global burned area (BA) has
declined significantly (by 24.3% =+ 8.8%) over the past 18 years®
and represents the net of differential regional responses. Indeed,
despite overall decreases in fire activity, the incidence of major
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and catastrophic fire events has increased in many regions,
with widespread media attention to fires in the Amazon, western
North America, the Mediterranean, and Australia. Unfortunately,
future fire trends remain uncertain, both at the regional scale and
in terms of their spatial distribution;® indices of climatic fire risk
and fire activity are confidently predicted to exacerbate in a
warmer and often drier world,”® whereas human drivers of BA
are instead projected to suppress fires.>'° Better projections
of future regional BA, incorporating both climate and human ef-
fects on fire extent, are urgently required to enable any appro-
priate adaptation and mitigation planning.
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Climate, particularly temperature (T; °C) and precipitation (P;
mm), is the central determinant of fire activity through its controls
on vegetation productivity (i.e., providing fuel for fires) and fuel
moisture (i.e., influencing the probability of the fire occurrence).”
Vegetation productivity generally increases with rainfall and
thereby provides fuel for fires,'” although the magnitude of
this effect changes across gradients of plant productivity.'® Mean-
while, reduced fuel moisture, due to warming-induced increases in
evaporative demand and decreases in precipitation, accelerates
wildfire activities.'* Seasonality of temperature and precipitation,
related to latitude and to major atmospheric circulation features
such as monsoons and orographic features, also plays a key role
in wildfire dynamics via effects on fuel amount and seasonal fuel
moisture, as in the example of seasonal high temperature and
low precipitation in Australia.’®> Wind speed (W; m s) plays a
key role in fire spread, but on a global scale, its influence on BA
is limited'® (or at least wind-speed data are of insufficient quality
to evaluate its effects at the global scale). Although warmer climate
and drying fuel are projected to increase future BA across many
regions,® and notably in some boreal areas,'” empirical analysis
suggests that climatic conditions that should lead to frequent fires
do not always do so'* '8, suggesting a role for other, non-climatic
drivers as well.

Beyond climatic conditions, humans have shaped fire regimes
for thousands of years."®> The most obvious direct anthropo-
genic impact is by ignition, since humans currently light most
fires in tropical forests, savannas, and agricultural regions.'%'®
However, humans can also affect fire behavior via active fire sup-
pression and passive suppression via, e.g., fragmentation.'®
Overall, human activities influence fire dynamics in multiple
ways, but those effects can be distilled into three main factors.
These are (1) population density (POP; persons km~2), and
thus number of anthropogenic ignitions; (2) socioeconomic
development, e.g., urbanization, described as the ratio of rural
to total population (RUR) (higher rural population is a major
source of pyrogenic activity with longer contact with flammable
vegetation); and (3) combined fire suppression and manage-
ment, a proxy being the distance to human settlements (cities)
(DIS; km), which is also strongly dependent on urbanization.*”
Details of the three variables POP, RUR, and DIS are given in
experimental procedures, while how these human activities influ-
ence BA is described in Note S1. Continued global population
growth could thus potentially increase anthropogenic ignitions"
or alternatively decrease ignitions and suppress fires if people
concentrate in cities, converting wildlands to urban areas and
decreasing rural anthropogenic pyrogenic activity.??

An important manifestation of urbanization in the coupling of
wildfire and human activities is a rapid growth of the wildland-ur-
ban interface (WUI), leading to a shorter DIS. For instance, the
land area of the WUI increased in the United States by 33% be-
tween 1990 and 2010, making it the fastest growing land cover
type and resulting in a significant increase in wildfire risk.?®
Worldwide, the WUI is increasing people’s proximity to natural
vegetation, including many protected areas.’® Therefore, the
estimation of global fire risk must account for changes in the
WUI (here, via DIS; see experimental procedures), as this is
crucial for modeling the long-term coexistence of socioeco-
nomic systems and wildfires.* Urbanization can increase BA,
as increasing numbers of people in cities and accessibility of
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vegetation in the WUI results in an increase in potential human
ignitions. %2

However, urbanization is potentially a “double-edged sword”
in its effects on wildfire dynamics.?® Although urbanization in-
creases potential human ignitions, urbanization also brings set-
tlements into closer proximity to potential wildfires, leading to
more active wildfire suppression and management to avoid risks
to health, homes, and businesses,?” and thus decreases BA.?® In
developed countries, intensive interventions are implemented as
fires approach the WUI and cities, based on aerial observation of
ignitions, followed by deployment of fire retardants.**° As the
WUI grows, fire suppression expenditures are at an all-time
high (e.g., >$1 billion annually in the United States®°). Elsewhere,
preventive measures in the form of firebreaks or managed fires
are often preferred, especially where expensive interventions
may not be possible, such as for much of Africa.®" Such preven-
tive measures have a particularly long history, for example, they
are known to have been employed in the pre-Columbian
Amazon.*? In the future, Latin American and African countries
are planning to implement more extensive government-
controlled fire suppression, already underway in Brazil.>**

The net effects of these changes in human demographic pro-
cesses for fire distributions are not well understood. Recent
known trends in urbanization and suppression methods provide
an opportunity to test the capacity of fire models to respond to
human drivers. Models should replicate both combined fire sup-
pression and management activities that shorten potential fire
duration near settlements and effects of human populations on
ignitions. Human forcings do not operate in isolation and may
depend on complex interactions between human societies,
climate, and vegetation®>°, such that characterizing interactions
is critical for understanding how humans affect fire regimes.

Here we project global and regional trends in BA in response to
simultaneous climate change and changing human demography
using a modeling approach. To do this, we used the Lund-Pots-
dam-Jena dynamic global vegetation model (LPJ-DGVM)*° modi-
fiedtoinclude a process-based Socio-Economic and natural Vege-
tation ExpeRimental global fire model (SEVER-FIRE).?° LPJ-DGVM
uses monthly climate data and an annual atmospheric CO, con-
centration as input and simulates the growth of vegetation based
on an explicit description of a coupled photosynthesis-water bal-
ance scheme, with further allocation of carbohydrates to plant tis-
sues. The model determines the competition between individuals
of different vegetation types and includes accounting for plant mor-
tality and establishment. Necromass enters the litter pool and can
be either decomposed or consumed by wildfire depending on tis-
sue dryness and surface temperature. LPJ-DGVM is considered
to be one of the top state-of-the-art DGVMs and was successfully
applied at global and regional scales to simulate vegetation distri-
bution®® and related terrestrial carbon and water cycles.>’*°
SEVER-FIRE provides a quantitative and spatially resolved global
evaluation of recent historical and climate-change-driven BA
trends for terrestrial ecosystems globally. SEVER-FIRE is a global
fire model operating at a daily time step (here interpolated from
monthly climate input within LPJ), derived from the first process-
based large-scale Regional FIRe Model (Reg-FIRM).>° SEVER-
FIRE simulates all stages of wildfire development, namely: (1) fire
weather risk, which depends on input climate, fuel availability,
and its type (data obtained either from observations or as an output
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Table 1. Experimental scenarios

Socioeconomic scenario

Scenario CO, emission scenario POP RUR DIS

S1 RCP2.6 SSP2 (middle) SSP3 (slow) SSP3 (slow) x coef
S2 RCP4.5 SSP5 (slow) SSP2 (middle) SSP2 (middle) x coef
S3 RCP6.0 SSP2 (middle) SSP2 (middle) SSP2 (middle) x coef
S4 RCP8.5 SSP3 (rapid) SSP5 (rapid) SSP5 (rapid) x coef

Overview of the experimental CO, emission and socioeconomic scenarios used in this study.
coef, ratio of urban area growth rate to urban population growth rate. Slow, middle, and rapid under POP mean the general levels of population growth

rate, while under RUR and DIS, they mean urbanization rate.

of a DGVM), three characteristics that jointly determine fire season-
ality; (2a) lightning ignition, which is determined by atmospheric
convection extent and fuel type, and/or (2b) human ignition, which
depends on human POP, wealth status, rural/urban ratio, and fuel
type, provided as an input (see the detailed description of the influ-
ence of human factors on BA in Note S1); (3) fire spread, which is
determined by climate data and fuel amount and its moisture sta-
tus, as provided from observations or from a DGVM; (4) fire termi-
nation due to rainy conditions or to suppression because of prox-
imity to human settlement (see the detailed description of the
influence of human factors on BA in Note S1); and finally (5) fire
vegetation mortality and carbon emissions estimated by vegetation
type, again available either from observations or from a DGVM.
SEVER-FIRE simulates the number of fires, the BA, and fire-related
vegetation mortality and carbon emissions, which can be further
used by feeding back into a DGVM or an Earth system model
(ESM). The model was extensively validated at regional (e.g., Spain,
Canada, and Africa) and global scales using fire statistics and
remote-sensing data for both number of fires and BA.2°

We first ran LPJ-DGVM-SEVER-FIRE (LPJ-SEVER), forced
with observed climatology, over the 20th century to evaluate
model performance in reproducing present-day trends in BA.
We then coupled LPJ-SEVER to a computationally efficient
climate emulator called Integrated Model Of Global Effects of cli-
matic aNomalies IMOGEN).*° IMOGEN“’ is a computationally
efficient climate emulator based on a pattern-scaling approach.
Here a unique pattern (i.e., a gridded map of change in climate
variables per unit global temperature change) is derived for
each near-surface climate variable and ESM. Global temperature
change, in turn, is modeled as a function of changing historical
and future levels of atmospheric greenhouse gas (GHG) concen-
trations, and again calibrated against ESMs. IMOGEN can then
be used for any set of CO, concentration or emissions scenarios
(the latter including climate-carbon cycle feedbacks), to generate
climate forcing for the host vegetation model (e.g., LPJ-SEVER).
In this framework, wildfire-induced changes in terrestrial carbon
storage can feed back to climate itself via updated atmospheric
CO, concentration. The pattern scaling and the global warming
response to rising GHGs are calibrated against 34 different
ESMs (see experimental procedures) in the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) ensemble. IMOGEN also
maps from ESMs onto a common spatial grid of resolution
3.75° longitude x 2.5° latitude. Furthermore, IMOGEN predicts
changes in climate, i.e., anomalies, and these are added to the
University of East Anglia Climate Research Unit (CRU) clima-
tology,*" thus also bias-correcting ESM offsets. IMOGEN takes

in monthly data and gives monthly data to LPJ-SEVER, which dis-
aggregates to daily steps (i.e., the coupled model was operated
34 times to emulate the same number of ESMs), but all on the
common IMOGEN spatial resolution of 3.75° longitude x 2.5°
latitude for the period 1860-2100. We performed 34 x 4 coupled
model runs in the future under four different CO,-socioeconomic
scenarios (i.e., 34 ESMs emulated x 4 scenario simulations; see
experimental procedures). The four scenarios were based on four
standard Intergovernmental Panel on Climate Change Fifth
Assessment Report (IPCC AR5) Representative Concentration
Pathways (RCPs)** of potential scenarios of atmospheric GHG
emissions in combination with three demographic Shared Socio-
economic Pathways (SSPs)*® (i.e., each RCP scenario is initially
aligned to a specific SSP combination; Table 1, and experimental
procedures). The observed CO, emission and human drivers
were used for the historical period (i.e., 1860-2005), before diver-
gence from present day to the end of the 21st century, due to
different ESM-based estimates of climate change and different
RCPs and SSPs. Validation of the model was conducted in two
steps (see experimental procedures). First, we evaluated the abil-
ity of the model to reproduce recent trends in both global and
regional BA against two satellite-based BA products. The first
product is the Global Fire Emissions Database version 4 product
including small fires (GFED4s), which is a hybrid approach
combining both satellite and modeling. GFED4s was primarily
produced from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) Collection 5.1 MCD64A1 BA product and active
fire data. A “small-fire boost” algorithm was used to estimate the
small-fire BA from MODIS active fire detections, but this method-
ology may cause significant errors.** These measures provide
global monthly BA, including the impact of small fires, at 0.25°
spatial resolution from year 1997 onward.® The second product
is the European Space Agency Climate Change Initiative BA
product version 5.1 (FireCCI51), which was generated from the
MODIS satellite imagery. FireCCI51 provides monthly global BA
at a degraded resolution of 0.25°, starting from year 2001.° Sec-
ond, we performed a comprehensive validation of the underlying
dynamic global vegetation model itself using the International
Land Model Benchmarking (ILAMB) system. ILAMB tested the
LPJ model for a wide range of land carbon and hydrology cycle
variables and climate forcings, all against in situ, remote-sensing,
and reanalysis datasets.*® In addition, we evaluated the simu-
lated vegetation distribution by LPJ model with the latest
remote-sensing-based land-cover map.*”

We explored the dominant limiting factors, including interactive
effects, on the present-day BA trend for the period 1987-2016
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Figure 1. Present-day global BA trends

(A-D) (A) Global BA and BA trends over the period 2000-2013. Model means the global BA simulated by SEVER-FIRE driven by CRU/NCEP-observed climatology
(see experimental procedures), GFED4s means GFED4s-observed BA product, and FireCCI51 means FireCCI51-observed BA product. The asterisks in this and
subsequent figures indicate whether the BA trend is statistically significant (Mann-Kendall test; ***p < 0.01, **p < 0.05). rgrepas/Fireccis1 @aNd Pgrepas/Fireccist iN this
and subsequent figures represent the Pearson correlation coefficient and the p value between the simulation and the GFED4s/FireCCI51 products, respectively.
The BA from FireCCI51 starts from year (yr) 2002. Spatial patterns of BA trends over the period 2002-2013 observed from (B) GFED4s and (C) FireCCI51 and
simulated by (D) SEVER-FIRE are shown. Regions labeled with black dots in this and subsequent figures indicate trends that are statistically significant (Mann-

Kendall test; p < 0.05).

using model factorial simulations. Factorial simulations can isolate
the impact of individual factors by fixing one variable at a time
(either a climatic variable, T, P, and W, or a socioeconomic vari-
able, POP, RUR, and DIS). These six factorial historical runs
enabled mapping of the limiting extent of each factor and calcu-
lating its importance as the sum of the number of grid cells with
the same dominant limiting factor divided by the total number of
global burned land grid cells. We also projected the future global
BA trends over the period 2014-2100 and analyzed simulated
spatial patterns and drivers using a partial derivatives approach
by varying one driver at a time, yielding six runs over the last 30
years of the 21st century (see experimental procedures). Finally,
to clarify the relative importance of future human impacts on BA
dynamics, a sensitivity analysis was performed exploring all com-
binations of population growth and urbanization rates, where the
latter determined the evolution of DIS and RUR.

RESULTS

Present-day global BA trend
Fire dynamics simulated in “offline mode” were validated against
satellite-based GFED4s and FireCCI51 observations, suggesting

520 One Earth 4, 517-530, April 23, 2021

a reasonable match between modeled and observed temporal
trends in recent global BA (Pearson correlation analysis, r =
0.88, p < 0.01 and r = 0.64, p < 0.05, respectively; Figure 1A).
Overall, when driven by observed climatology, SEVER-FIRE
yielded decreasing BA at a rate of —4.85 Mha year 2 over the
period 2000-2013 (Mann-Kendall test, p < 0.05), thus success-
fully reproducing recent negative global BA trends of —6.18
Mha year2 in GFED4s and —3.25 Mha year 2 in FireCCI51
(Mann-Kendall test, p < 0.01, p = 0.45, respectively; note that
FireCCI51 covers only 2002-2013). Regional evaluation in
observed against simulated recent BA trends, mean annual BA,
temporal correlation, and spatial correlation of grid-cell-based
BA dynamics showed that our model broadly captured the major
pattern of the observed BA (Note S2). Generally, the simulated
spatial pattern of the trends in BA compared well with the satel-
lite-based GFED4s and FireCCI51 products (Figures 1B-1D).
The model captured observed negative trends across central
South America, mesic African savannas, Southeast Asia, western
Europe, and the northern Australia and positive trends around
western Canada, California, parts of northern Eurasia, and South
Asia over the period 2002-2013. However, there are still large un-
certainties and biases in recent simulated-against-observed BA
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trends (Note S2), even between GFED4s and FireCCI51 (see,
e.g., diverging trends in eastern China and the Brazilian Cerrado
and Caatinga). Comprehensive validation of LPJ-SEVER using
the ILAMB system, including an assessment of the global vege-
tation distribution, is provided in Note S3.

Limiting factors of present-day BA trend

Recent BA changes were influenced by a range of factors.*®
Although these interacted, factorial simulations can nevertheless
help to attribute the dominant limiting factors to BA trends.*° At a
global scale, over the period 1987-2016, factorial simulations
suggest that present-day BA trend was predominantly limited
by DIS (km) on 40% of global burned land grid cells, followed
by climate factors, including P (mm) (35%), T (°C) (12%), and
W (ms~") (2%), with 11% attribution to other socioeconomic fac-
tors (POP [persons km~2] and RUR) (see Figure 2). Overall,
climate (as the sum of T, P, and W) and human activity (as the
sum of DIS, POP, and RUR) were equally limiting to present-
day fire activity (49% and 51% of the global burned land grid
cells, respectively; Table S5). The effects of DIS, representing
combined human fire suppression and management, were
most limiting of trends in areas with frequent fires in South Amer-
ica, central Africa, Alaska, Southeast Asia, and northeast China.
Climate, in particular T and P, was most limiting in Northern
Hemisphere high-latitude areas and in places that are already
heavily urbanized (where additional urbanization is unlikely to
affect trends), including Europe and the eastern United States.

Future BA trend projection

We projected future global BA trends, represented as ensemble
means across 34 ESM-based IMOGEN-LPJ-SEVER simulations
(i.e., an integrated BA after 34 independent runs), under four
experimental scenarios, S1 to S4 (Table 1). These four ensemble
means corresponded to the period 2014-2100. The strong miti-
gation scenario S1 resulted in a slightly negative BA trend (—0.03
Mha year—?) via low emissions, intermediate population growth,
and slow urbanization; the typical mitigation scenario S2 in a
large negative BA trend (—1.69 Mha year2; Mann-Kendall test,
p < 0.01) via slow population growth; and the intermediate miti-
gation scenario S3 in a smaller negative trend (—0.58 Mha
year~2; Mann-Kendall test, p < 0.01) via intermediate population
growth. However, we found a significant increase in BA in
response to S4, currently the “business-as-usual” scenario
with high emissions, rapid population growth, and rapid urbani-
zation (0.88 Mha year—2; Mann-Kendall test, p < 0.01) (Figure 3A).

Dominant limiting factors

+P +T

achange in a limiting factor has a positive impact on
BA trend, whereas “—” means that a change in a
limiting factor has a negative impact on BA trend. T,
temperature; P, precipitation; W, wind speed; POP,
population density; RUR, ratio of rural to total pop-
ulation; and DIS, average distance from the near-
est city.

To understand climate and human factors limiting future BA
change, we conducted a set of factorial analyses using the S3
scenario for three ESMs covering a range of future global P
changes for the period 1860-2100 (see experimental procedures
and Note S4). Combined anthropogenic fire suppression and
management (via proximity to city settlements, DIS) was a major
factor limiting potential growth of global BA driven mainly by
exponential population growth (Note S4). To illustrate, under
the intermediate mitigation scenario, a constant DIS (set to the
size of the DIS in 1950) would result in a BA at the end of 21st
century almost three times larger than that projected with real-
istic change in the DIS; this demonstrates the strong suppressive
effect of urbanization on BA (Figure 3B). A sensitivity analysis us-
ing the RCP6.0 CO, emission scenario (Table 1) covering the
range of possibilities in population growth/urbanization rates
showed that, for a rapidly growing population, urbanization
tended to decrease global BA (Figure 3C).

The spatial patterns of ensemble mean BA trends across 34
ESM-based IMOGEN-LPJ-SEVER simulations for four sce-
narios, S1 to S4 (Table 1), over the period 2071-2100 are shown
in Figure 4. The results show large differences among the sce-
narios. Scenario S1 resulted in a significant negative trend glob-
ally (—1.78 Mha year—2; Mann-Kendall test, p < 0.01; inset of Fig-
ure 4A), with large declines in BA in the Amazon, mesic African
savannas, Siberia, and South Asia. Scenario S2 also showed a
significant negative trend globally (—2.39 Mha year~2; Mann-
Kendall test, p < 0.01; inset of Figure 4B), but with positive trends
in North America (excluding Alaska) and western Europe
compared with S1 (Figure 4B versus 4A). Scenario S3 showed
patterns similar to S1 and S2, except that BA was projected to
increase across the Amazon, and Siberia was relatively un-
changed (Figure 4C; overall global BA trend of —0.59 Mha
year 2; Mann-Kendall test, p < 0.05). Scenario S4 instead
showed a significant positive trend globally (2.18 Mha year™2;
Mann-Kendall test, p < 0.01; inset of Figure 4D), focused across
the Amazon, northwest Eurasia, and Southeast Asia (Figure 4D).

Drivers of future BA trend

We estimated the contributions of three climatic (T, P, and W)
and three socioeconomic factors (POP, RUR, and DIS) to BA
trends for 2071-2100 by fixing all but one factor at a time. The
dominant drivers of regional BA trends in the future were climate
change and changes in POP, with the magnitude of their contri-
butions varying with emission-socioeconomic scenario (Figure 5
and S10). For scenario S1 (lowest emissions, middle population
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Figure 3. Projected global BA trends

(A) Future BA trends over the period 2014-2100 using four experimental
scenarios (Table 1). The shaded areas represent the standard deviation for the
results of 34 runs. ***p < 0.01 (Mann-Kendall test).

(B) Factorial analysis on long-term global BA in the S3 scenario (Table 1) over
the period 1860-2100. The shaded areas represent the standard deviation for
the results of three ESMs (see experimental procedures). T, P, W, POP, RUR,
and DIS are the same as those in Figure 2.

(C) Sensitivity analysis under RCP6.0 CO, emission scenario by exploring all
combinations of population growth rate (pop) and urbanization rate (urb) from
SSPs. “mid” represents “middle” in Table 1 and “S3” represents the S3
scenario in Table 1.

growth, and slow urbanization), climate change was mild, and
POP was the dominant driver of changes in BA in most tropical
and subtropical regions, and BA changes in northwestern Russia
were dominantly driven by urbanization (Figures 5A and S10A).
For scenario S2 (second lowest emissions, slow population
growth, and medium urbanization), regional BA changes tracked
decreasing population trajectories in South America, tropical Af-
rica, Southeast Asia, and Russia, with increasing BA tracking
population increases in Europe and North America. Changes in
geographic BA trend distribution were explained mainly by the
SSP5 demographic scenario.’® Climate effects (mainly of tem-
perature) were concentrated in high latitudes and mountain
areas (Figures 5B and S10B). For scenario S3 (second highest
emissions, medium population growth, and medium urbaniza-
tion), climate change was more severe, and therefore the influ-
ence of climate drivers (sum of T, P, and W) on global BA trends
also increased (globally, 47% of global burned land grid cells
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were dominated by climate drivers in scenario S3 compared
with only 29% for scenario S2; Figures 5B and 5C). Climate ef-
fects due to temperature were no longer restricted to Russia,
Scandinavia, and North America (where population change
was minimal), but extended also into the Amazon and East Africa
due to changes in precipitation (Figure 5C). Finally, for the most
extreme scenario, S4 (highest emissions, rapid population
growth, and rapid urbanization), although human-induced fires
were important over the tropics and subtropics, climate deter-
mined 52% of the global BA trend, due to high latitude warming
(in, e.g., Russia and Canada) and to tropical and subtropical dry-
ing (Figures 5D and S10D). Regionally, changes in BA over the
Amazon rainforest were driven predominantly by population
growth and precipitation changes. Generally, decreasing precip-
itation across the Amazon over the last 30 years of this century
increased BA (Figure S11), although some years with increased
precipitation also contributed (Figure 5D). This demonstrates
how increased precipitation can operate in two competing
ways, by increasing BA due to increased vegetation growth
and thus more fuel or, alternatively, by decreasing BA through
increasing moisture levels in fuel. In addition, there existed
possible compensatory effects going from the local scale to
the global,®" i.e., although globally, changing population distri-
butions remain important (Figure 5 and Note S4), climate change
compensates locally (Figure S10).

DISCUSSION

Here, we present results of a global fire model that reproduced a
negative global BAtrend observed in GFED4s and FireCCI51 over
the recent historical period,” which suggests a reasonable repre-
sentation of fire responses to climate and human activity in
SEVER-FIRE.?® Effects of human activity are the major innovation
of the model, with mechanisms based primarily on fire termina-
tion (using DIS as a proxy for speed of suppression) and ignitions
(dependent on POP and ratio of rural population). Spatial patterns
of simulated trends in BA were generally consistent with studies
showing recent declines in BA in the tropical savannas of South
America® and Africa.>”"*® In our model, declines are driven by ru-
ral-urban transformation (included explicitly) and by agricultural
commercialization, diversification of economic activities, and in-
crease in property size (implied in model mechanisms). Although
economic transitions and associated land-use and land-cover
change are not formally modeled, key aspects are implied via
changes to wildfire activity in both urban and rural areas as wild-
land is urbanized.®* The model assumption that wealth is not
changing in abandoned rural areas leads to increases in the sizes
of individual land owners’ properties, similar to the conceptual
model of Andela et al.® This has the effect of causing decreases
in ignition activities related to a smaller number of ignition agents
and changes in the timing of pyrogenic activities, both of which
result in a decrease in BA. However, the model underestimates
BA in North America; total BA may be underestimated because
of either issues with estimating lightning ignitions® or some
aspect of fire duration and extinction'® (a known limitation of
fire models generally).

The models that reproduced historical BA trends also enabled
predictions of future BA trajectories. For milder atmospheric
GHG emissions scenarios (scenarios S1-S3 in Figure 3A), our
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model predicted declining global BA. By contrast, with the high-
est emissions and rapid population growth and urbanization
(scenario S4 in Figure 3A), global BA instead increased, driven
by population growth and by drying in tropical and subtropical
areas and warming and drying over high latitudes and moun-
tainous areas. The largest difference in BA trends among sce-
narios occurred during the period 2071-2100 across central
South America, including the Amazon, and in northern Eurasia,
including Siberia (Figures 4A-4D). Rapid population growth
and precipitation changes were projected to lead the Amazon
to change into a fire-prone ecosystem, whereas warming alone
led to increases in BA across northern Eurasia (Figure 5D). Under
scenario S4, warming, drying, and population growth combined
to dramatically increase BA globally (see also Knorr et al.’®). The
effects of climate were particularly obvious across high-latitude
regions, where temperature was a dominant driver across 36%
and 38% of global burned land grid cells under scenarios S3
and S4, respectively (Figure 5)."*°*°¢ Future research could
include millennium-scale analyses, capturing longer time scales
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Figure 4. Spatial patterns of future BA trends
Shown are the ensemble mean BA trends across 34
ESM-based IMOGEN-LPJ-SEVER simulations over
the period 2071-2100 for the four scenarios listed in
Table 1. (A) S1, (B) S2, (C) S3, and (D) S4. Line plots
(inset) indicate global BA trends for the same period,
and the shaded areas represent the standard devi-
ation for the results of 34 runs. ***p < 0.01, **p < 0.05

1000 (Mann-Kendall test).
800
_ of global temperature responses to emis-
600 sions. For instance, even if emissions
reduce to zero after year 2100, global tem-
1400 peratures will continue to be raised for
many centuries (e.g., Eby et al.°”). Long-
1200 5'3 term warmer, and possibly drier, condi-
] tions may lower fuel availability in tropics/
lo 3  subtropics due to the associated decrease
= in vegetation productivity and readjust-
g ment of spatial patterns of vegetation dis-
1=200 =, tribution. Therefore, while an increase in
= BA is seen under scenario S4 in the last
1-400 30 years of the century, global and regional
BAs may start to decrease in a long-term
~600 period after 2100. In addition, carbon cy-
cle/vegetation cover may also be slow,
with transient dynamics that dominate in
-800 the near term, approaching a new equilib-
rium after 2100.%7-°
-1000 Drivers of BA trends are likely to change

substantially in the future, but whether they

affect the BA response will also depend on

the other limiting factors operating at any

given time. The overall BA trends were

also strongly limited by proximity to human

settlements (DIS) across 47%-54% of

global burned land grid cells in all four sce-

narios (Table S5 and Figure S12), consistent

with the idea that the intensity of fire sup-

pression and management increases with proximity to settle-

ments."'® Our sensitivity analysis covered the range of possibilities

in population growth and urbanization and suggested that, where

population growth is rapid, faster urbanization will decrease BA

(Figure 3C). Urbanization thereby offsets potential dramatic in-

creases in global BA resulting from changing climate and popula-

tion growth (Figure 3B and Note S4). However, despite the appear-

ance of new frontiers of fire suppression near new and growing

cities, an enhanced wildfire-human settlement interface was insuf-

ficient to fully offset other climate and socioeconomic factors, as

evidenced by the fact that, despite urbanization, extreme CO,

emissions scenarios led to general increases in BA. Moreover,

rapidly developing countries (e.g., Brazil, Russia, India, and China)

were projected to be major contributors to future global BA for both

climatic and anthropogenic reasons (Figures 4 and 5); future

changes in fire suppression and management in these countries
could strongly influence global BA trends.**®’

Our results highlight the global importance of fire suppres-

sion for recent and future fire regimes and suggest how the
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A Contribution Figure 5. Attribution of dominant drivers of
60¢ spatial patterns of future BA trends over the
60°N 9 period 2071-2100
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human aspects of fire regimes (including fire management)
can sometimes change historical fire-weather relationships.
For instance, in southern France, starting in the 1990s, fire
suppression decreased the number of fires ignited by the
same weather conditions.®>®® However, the probability of
strong winds has concurrently increased, resulting in fire ac-
tivity that is dominated by hot, windy weather, instead of by
fuel moisture. Thus, despite fire suppression, BA is predicted
to increase by 30% by the end of the century (2071-2100) in
the Mediterranean under the RCP8.5 scenario,®* a prediction
that parallels scenario S4 in our study. This interaction of
fire suppression with weather is not included in our model,
however, and may potentially exacerbate predictions: de-
clines in BA for the low emissions scenarios (S1-S3) may be
stronger than projected, whereas increases in BA in the high
emissions scenario S4 may be even amplified, if the interac-
tion of weather and fire suppression leads to larger fires.®*
The next generation of global fire models incorporated into
DGVMs/ESMs should account for the impacts of fire suppres-
sion on the observed relationship between fire and weather.®?
New fire models should also capture the existence of ecolog-
ically or economically optimal fire suppression strategies
proven to be effective®°® and should also account for condi-
tions leading to extreme but rare “firestorms” that contribute
substantially to BA. All of these factors will enable more accu-
rate estimates of global and regional dynamics of BA.
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Dominant drivers

change and population growth scenarios,
BA s likely to increase, especially in places
subject to intense warming and drying.
However, we also projected negative
global BA trends in three of four future sce-
narios, limited primarily by changes in fire suppression and man-
agement associated with urbanization. This is consistent with a
smaller literature arguing that, globally, BA trends are likely to
be heterogeneous® and to depend on human demographic fac-
tors.'® SEVER-FIRE extends previous analyses'® by improving
descriptions of pyrogenic human behaviors, e.g., prescribing
different timing of ignitions for rural and urban populations.*®
We also take into account the feedbacks between vegetation,
humans, wildfires, and the climate system by using a coupled
online framework, extending past work with focused instead of
linear responses. '° This coupled framework allows for a dynamic
response of ecosystems to changing fires and for feedbacks be-
tween changing atmospheric conditions and fire behavior. These
innovations result in a wide divergence of non-linear responses
of global BA to POP and urbanization changes (Figure 3C).
Despite these improvements, however, here we consider the ef-
fects of only relatively coarse-grained demographic variables on
fire behavior and BA. In reality, the influences of human activities
on fire dynamics are likely to be more complicated than this. Their
representation in models may need to include agricultural produc-
tion, explicit consideration of fire management, land-use and land-
cover change,'®?' fragmentation,®® and even complex interac-
tions among social and ecological systems.®® Human activities
can also have complicated seasonality: here, we prescribe the
timing of rural ignitions to align with the timing of major agricultural
seasons (spring and fall), which allows us to simulate how
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agricultural fires escape to influence wildfires (e.g., Spain®°). How-
ever, explicitly representing agricultural management fires as
separate from wildfires may be another useful step for future
work. Deliberate agricultural fires account for ~10% of global
fires,”° but they have different seasonality, frequency, and intensity
in comparison with wildfires. Furthermore, Korontzi et al.” show
that fire regimes for agricultural fires are highly dependent on
regional agricultural practices, types of crops, and yield output.
Thus, the implementation of simulated agricultural fires into
ESMs requires well-developed descriptions of expected pyro-
genic activity of farmers around the globe. Population density
today at a global scale shows a strong negative relationship with
recent BA change largely due to landscape fragmentation and
fuel reduction,?’ which could be simulated in our coarse resolution
study only implicitly by implementing urbanization. Moreover,
recent BA trends in Africa may have been driven by cropland
expansion over the period 2001-2012;"" we can only peripherally
address this by providing an improved map of projected global BA
distribution after integrating cropland impact (Note S2), which con-
firms the potential influence of land-use change on BA. However, it
is also clear that human effects on fire regimes merit greater and
more diverse research emphasis, examining land use, especially
crop versus pasture expansion, and abandonment of culturally
traditional burning.72 Other variables, too, may merit examination;
for example, roads and power lines are not represented in most
global models but may play important roles as ignition sources
or firebreaks.?” Their role in global fire regimes now and in the
future can be assessed only by coupled models with sophisticated
socioeconomic descriptions. Moreover, the effects of other fac-
tors, like lightning,” CO fertilization'® (via resprouting of adaptive
trees in semi-arid regions),”® and fuel load and fuel availability,*®
on BA changes deserve further study.

In summary, we show that the historical global BA has
decreased, notably for central South America and mesic African
savannas, and formulate a new model that reproduces trends
well, capturing recent climate and human limits on changes in
BA. This model projects divergent trends in the future, depending
on climate and socioeconomic scenario. Under severe climate
change scenarios, fire activity increased, largely due to acceler-
ated high-latitude warming and tropical and subtropical drying.
However, human activities were important even in severe sce-
narios, and dominated the BA signal in milder scenarios. Urbaniza-
tion in particular strongly shaped patterns; active and passive fire
suppression in the vicinity of human settlements was important in
offsetting large potential BA increases. Overall, understanding
both the climatic and the human controls on long-term BA trends
is a first, yet critical, step toward better projections of the future of
wildfire in a changing climate.”

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Chao Wu (chaowu.thu@gmail.com).
Materials availability

This study did not generate new unique materials.

Data and code availability

All data used to evaluate the conclusions of the paper and generate the figures
and tables are available at https://doi.org/10.6084/m9.figshare.14256272. The

¢? CellPress

OPEN ACCESS

Python codes to interpret data and prepare the figures are available on request
from the lead contact. GFED4s is available at http://www.globalfiredata.org/
index.html. FireCCI51 is available at https://geogra.uah.es/fire_cci/firecci51.
php. ILAMB is available at https://www.ilamb.org/. National Centers for Envi-
ronmental Prediction (NCEP) Reanalysis data were provided by the NOAA/
OAR/ESRL PSD, Boulder, Colorado, USA, from their website at https://
www.esrl.noaa.gov/psd/. The IMOGEN model and the latest version are avail-
able from C.H. (contacted at chg@ceh.ac.uk).

Model
LPJ-DGVM-SEVER-FIRE (LPJ-SEVER)
A process-based global fire model (SEVER-FIRE),”® which was developed
from Reg-FIRM,?° used for reproducing and projecting future global BA and
its trends, was coupled to LPJ-DGVM.*® Reg-FIRM was used in previous
regional human-dominated ecosystems: Iberian Peninsula fire regime repro-
duction.?® However, the structure and the parameterization oriented to the
global scale of the fire model have been updated in SEVER-FIRE.?®

One of the major novelties of SEVER-FIRE is an implementation of the pyro-
genic behavior of humans (e.qg., differential timing of contact with vegetation
within a year), which provides additional spatial and temporal variation in BA
trends due to different fire weather conditions for urban and rural popula-
tion-induced ignitions.?® Overall, increasing numbers of people in cities and
accessibility of vegetation in the WUI may result in an increase in potential hu-
man ignitions,?*2° although under high population densities, fire activity may
decrease due to proximity to suppression resources.”® An additional novel
aspect of our approach is the implementation of a description, in simplified
form, of combined fire suppression and management activity that, together
with weather conditions,® determines potential fire duration. This is character-
ized and assumed through a proxy quantity, described by an average fire dura-
tion that increases exponentially with distance from the city borders. Based on
climate forcing, external anthropogenic drivers, and LPJ-DGVM-derived vege-
tation (e.g., fuel state set by vegetation dynamics), SEVER-FIRE provides at
the global scale a mechanistic description of major fire characteristics, namely
number of fires, area burned, and fire carbon emissions, which are separated
into human-induced and lightning-induced fires by their ignition sources. The
post-fire conditions then regulate vegetation and ecosystem regeneration,
which acts as a feedback to burning, driving conditions of new fuel load accu-
mulation and the difference in flammability among plant functional types in the
DGVM. BA has been widely used in assessing the effects of fire."'"""* More
details of the description of SEVER-FIRE can also be found in Venevsky et al.”®
The IMOGEN climate-carbon cycle system
LPJ-SEVER is forced by a common base climatology plus patterns of chang-
ing meteorological conditions fitted against the 34 CMIP5 ESMs (Note S3).
“Pattern scale,” which approximates linear relationships found between local
and seasonal meteorological variation and the amount of global warming over
land,”® is used to calculate climate change.”®’®"” An energy balance model
calculates global warming amounts from changes in atmospheric GHGs,
also fitted to the CMIP5 ensemble. This component is coupled to the LPJ-
SEVER with vegetation dynamics, which provides land-atmosphere feedback
via the net biome production flux. This flux is calculated as integrating grid-box
mean values of net primary production minus heterotrophic respiration and fire
carbon emissions. A simple global oceanic model gives ocean feedback to the
atmosphere by the oceanic drawdown of CO,.*® This combined impact sys-
tem, IMOGEN, is operated online with a closed carbon cycle and thus forced
with anthropogenic CO, emissions. Annual CO, concentrations are updated at
the end of each year based on annual CO, emissions and changes in global
land and ocean carbon fluxes from LPJ-SEVER and the global ocean model,
respectively.®” Non-CO, GHG emissions are not considered in this study.
The flowchart of the IMOGEN-LPJ-SEVER framework is shown in Figure S13.

Forcing datasets

Atmospheric composition and climate datasets

For the offline historical simulations, we used observed fields of monthly clima-
tology for the period 1950-2016 from the University of East Anglia CRU grid-
ded dataset,”’ supplemented by variables from the NCEP/National Center
for Atmospheric Research (NCAR) Reanalysis dataset’® (e.g., P, convective
P, and W). These climate datasets were aggregated to a resolution of 3.75°
longitude x 2.5° latitude through the nearest-neighbor interpolation method,
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in keeping with the resolution of the climate patterns of ESMs used in IMOGEN.
Meanwhile, we used annual global atmospheric CO, concentrations for the
period 1950-2016 based on atmospheric observations during offline historical
simulation.®”

For the fully coupled online carbon-cycle simulation, IMOGEN required pre-
scribed fossil fuel CO, emissions, which were based on historical records over
the period 1860-2005.”° RCP2.6, RCP4.5, RCP6.0, and RCP8.5 emissions
scenarios were used for the period 2006-2100. The interannual varying climate
is necessary for LPJ-SEVER to simulate realistic fire dynamics,®” which is
simulated at daily steps. Therefore, 34 patterns from ESMs were added to a
random sequence of years between 1901 and 1930 from the CRU dataset.®°
Hourly surface climate was derived by temporal disaggregation of the monthly
means, including T at 1.5 m, diurnal T range, P, and W, and resulting monthly T,
maximum/minimum T, P, convective P, and W were used to force LPJ-
SEVER.”° The monthly climate data were interpolated to daily values within
LPJ-DGVM in order to force SEVER-FIRE. However, we assumed that cloud-
iness fluctuation would not change with time, and the constant long-term
means were used to force the model in this study.*® All the data used in the
simulation (including the socioeconomic variables in the next section) was pre-
pared as a spatial resolution of 3.75° longitude x 2.5° latitude, in keeping with
associated patterns of ESMs, and the nearest-neighbor interpolation method
was used if needed.

Socioeconomic scenarios

SEVER-FIRE is also forced by socioeconomic variables, mainly including POP,
RUR, and DIS. Human factors of BA variability (i.e., POP, RUR, and DIS) are
non-linear in time. The relationships between these factors are changing
through time according to socioeconomic scenario. The common global grid-
ded (urban) POP base maps over the period 1950-1959 were derived from the
United Nations Population Division (https://esa.un.org/unpd/wpp/Download/
Standard/Population/). The following years’ POP could be obtained by the
annual average population growth rate multiplied by the common base map.
The annual average (urban) population growth rate (%) was extracted from
the SSP database,** which described the world’s different levels of challenges
to climate mitigation and adaptation.'® SSP2 represents an intermediate sce-
nario of middle of the road, with middle population growth and middle urban-
ization; SSP3 reflects rapid population growth and slow urbanization, leading
to a high challenge of mitigation and adaptation; SSP5 describes a world with
conventional economic growth and mounting fossil fuel consumption leading
to rapid urbanization but with slower population growth.'® The World Bank
World Development Indicators’ historical population annual average growth
rate was used for the period 1960-2005. For the period 2006-2100, the
SSP2, SSP3, and SSP5 scenarios, which were provided by the NCAR, were
selected to project the potential growth rate of POP based on five different re-
gions with different development levels.*® Similarly, the projection of RUR for
the period 1950-2100 was prepared according to urban POP baseline and ur-
banization speed rate. But the historical records were from World Urbanization
Prospects (WUP2009).

Variable DIS, in our approach, operates as a proxy variable that combines fire
suppression and management and, as expected, is strongly related to levels of
urbanization. An auxiliary role of DIS is in constraining the number of human ig-
nitions due to conversion of wildland to urban territories as the probability of
ignition is set to zero, when DIS is zero in the model. Generally, global urban
areas are expanding on average twice as fast as their populations,®’ as was
suggested recently by power scaling relationships in cities that remain valid
over many centuries.®” However, a parameter, coef, defined as the ratio of ur-
ban area growth rate to urban population growth rate, varies geographically
and depending on how diverse development levels are for different regions.®*
We assume that the DIS changes at the same rate as the growth of urban areas.
The initial values of DIS for a grid cell (3.75° x 2.5°) for this study were recalcu-
lated from a dataset with 0.5° x 0.5° spatial resolution.® Values are derived as
the distance from the grid cell to the nearest grid cell with a POP exceeding 400
persons km~2, which was considered a threshold for an urban system®*%° (see
maps of recent and future DIS in different SSPs from Figure S14). Based on the
“low projection” scenario (i.e., assuming constant urban densities) of Tables
6.1 and 6.2 in Angel et al.,®® we calculated the ratios of urban area growth
rate to urban populations (i.e., coef) in five regions. These correspond to the re-
gions defined in the SSPs, and thus we obtained the growth rate of DIS and pro-
jected DIS for the historical and future period, years 1950-2100.
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Experimental design

Model initialization

The fully coupled IMOGEN-LPJ-SEVER simulation started from “bare ground”
(no plant biomass present) and “spun up” 1,000 years until approximate equi-
librium of carbon pools and vegetation cover was reached.*® A random
sequence of years between 1901 and 1930 from the CRU dataset, the socio-
economic forcing data in the year 1950, and a constant atmospheric CO, con-
centration at preindustrial were used to force the coupled model. Meanwhile,
CO, emissions were “switched off” and no feedbacks from land or ocean to
the atmosphere were used during the model initialization.

Offline historical LPJ-SEVER simulation

In the first set of experiments, LPJ-SEVER was run from its preindustrial equi-
librium over the historical period 1950-2016 using observed fields of monthly
climatology CRU datasets, NCEP/NCAR Reanalysis datasets, and historical
annual global atmospheric CO, concentration, at the ESM grid resolution of
3.75° longitude x 2.5° latitude. The input soil texture data were the same as
in Sitch et al.*® No land or ocean carbon-cycle feedbacks were included at
this stage.®’

Fully coupled IMOGEN-LPJ-SEVER simulation

LPJ-SEVER was run from its preindustrial equilibrium in 1860 over the historical
and future period 1860-2100 at the spatial resolution of the ESMs’ patterns.
Once the equilibrium state was reached, LPJ-SEVER was run in transient
mode forced by the IMOGEN framework using climate anomalies from 34
ESM patterns (i.e., the couped model was run 34 times depending on different
ESMs). Climate anomalies were added to a random sequence of 30 years of
baseline climatology. This was undertaken for four IPCC AR5 RCP fossil fuel
CO, emissions scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Meanwhile,
three external anthropogenic SSPs (SSP2, SSP3, and SSP5) were added to the
fully coupled simulation (with socioeconomic data of year 1950 also used for
the period 1860-1949 of the transient phase). The experiment scenarios are
shown in Table 1.

Model validation

We validated the model in two steps. Based on “offline” historical simulation,
we first evaluated the model’s ability to reproduce both global and regional BA
trends for the recent historical period (2000-2013) against two satellite-based
BA products. These products were the GFED4s® and the FireCCI51“° from the
European Space Agency Climate Change Initiative. We then performed a
comprehensive validation of our underpinning dynamic global vegetation
model LPJ. To achieve this, we used the ILAMB system for a wide range of
land carbon and hydrology cycle variables and climate forcings, all against
in situ, remote-sensing, and reanalysis datasets.*® Benchmarking tests were
conducted for all LPJ simulations driven by (1) “offline” observed climatology
and (2) climate forcing from 34 ESMs within the IMOGEN framework, and for
the historical period. The results showed that our model performed well in
simulating most land variables (more details can be accessed from Note
S3). In addition, noting that fire has an important effect on vegetation distribu-
tion®®®”, we evaluated our simulated “offline” present-day global vegetation
distribution (i.e., with fire included) by comparing it with the European Space
Agency’s Land Cover Climate Change Initiative dataset’” (Note S3).

Analysis

Present-day and future BA trends projection

Based on the offline historical simulation, the present-day (the period 2000-
2013) global BA and its trends were reproduced and evaluated by the satel-
lite-based long-term BA products (i.e., GFED4s and FireCCI51). The simulated
spatial pattern of present-day BA trends was compared with those from
GFED4s and FireCCI51. A nearest-neighbor interpolation was used to remap
the observed datasets from their original resolutions to 3.75° x 2.5°. Regional
evaluations of observed-against-simulated present-day BA trends, mean
annual BA, and temporal BA correlations were analyzed in 14 GFED basis re-
gions88 (Note S2). In addition, we used a present-day cropland map to correct
projected BA by masking out BA in cropland, making the assumption that no
fires occur in cropland, to better understand the role of cropland on the spatial
pattern of present-day BA (Note S2). The spatial pattern of the correlation of
grid-cell-based simulated-against-observed temporal BA dynamics was eval-
uated by a Pearson correlation analysis (Note S2). The future global BA trends
were projected in four different scenarios, S1-S4 (Table 1), over the period
2014-2100. We also projected the spatial patterns of BA trends for the last
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30 years of the 21st century in different scenarios to explore the spatial differ-
ence of BA trends under different emissions and demographic forcing.

A trend in BA was calculated based on a simple linear regression
(Equation 1):

Yy =v+0t+e, (Equation 1)

where y is the temporal BA, t is the year, and regression coefficients vy and g
are obtained through the least-squares fit. ¢ is the residual of the regression.
B is defined as the linear trend in BA. The Mann-Kendall test was used to es-
timate the statistical significance of the trend.
Limiting factors of present-day BA trend
Human and climatic effects are generally considered the main factors in influ-
encing BA trend.>' However, limiting factors and drivers are different. Drivers
can change substantially, but whether they affect the BA response will depend
on the other limiting factors operating at any given time (a schematic illustrating
how limiting factors and drivers were differently defined is Figure S15). Domi-
nant limiting factors were described as the factors that limited most to an in-
crease (or decrease) in BA trend in each grid cell, including interactive effects
among different factors (i.e., we considered the interactions between climatic
and human impacts). We performed six factorial experiments in the offline sce-
nario (Table S5) to evaluate the dominant limiting factors, namely, T, P, W,
POP, RUR, and DIS, on present-day BA trends: F1, fixed T using non-varying
T of the year 1950; F2, fixed P using non-varying P of the year 1950; F3, fixed W
using non-varying W of the year 1950; F4, fixed POP using non-varying POP
values of the year 1950; F5, fixed RUR using non-varying RUR values of the
year 1950; and F6, fixed DIS using non-varying DIS values of the year 1950.
FO was “all varying,” with all varying factors considered (i.e., the offline histor-
ical simulation). The six formulas (FO-F1, FO-F2, FO-F3, FO-F4, FO-F5, and FO—
F6) were used to evaluate the effects of T, P, W, POP, RUR, and DIS limiting
factors on the BA trend. The limiting factors for a change in present-day BA
trend were explored using offline simulations over the period 1987-2016.
Factorial analysis on the long-term BA-limiting factors
Similar to the factorial experiments F1-F6 in the last section, a second set of
factorial analyses was performed to explore the roles of different limiting fac-
tors in the long-term global BA dynamics over the period 1860-2100 using a
fully coupled framework in the S3 scenario (Table 1). Therefore, here, baseline
CRU climatology was used to replace “the climate of the year 1950” in F1-F3
runs to represent constant climate. This was forced by three ESMs, IPSL-
CM5A-MR, CSIRO-Mk3-6-0, and MIROC-ESM, which projected the
maximum, minimum, and mid-range P, respectively, in the year 2100
(Note S4).
Human impacts on BA dynamics
Population growth and urbanization are the important factors in determining
BA dynamics. However, our study was designed based on only the four exper-
iment scenarios, i.e., specific combinations of future demographic scenarios
with CO, emission scenarios were used (Table 1). To better understanding
and clarify the priority in sequence of the human impacts on global BA dy-
namics, a sensitivity analysis under the intermediate CO, emission scenario
(RCP6.0) was performed, exploring all combinations of population growth/ur-
banization rates within SSPs, i.e., nine combinations (3 population growth rate
X 3 urbanization rate) with different levels (slow, middle, and rapid in Table 1) of
population growth and urbanization rates. This coupled run was forced by one
ESM: MIROC-ESM.
Drivers of future BA trends
Different from the definition of dominant limiting factors, dominant drivers of
BA trends were defined as the independent driving factor that contributed
the most to the increase (or decrease) in BA trends in each grid cell without
any interactive effects among factors. We performed a third set of factorial
analysis (including seven runs): M1, varying T only; M2, varying P only; M3,
varying W only; M4, varying POP only; M5, varying RUR only; and M6, varying
DIS only. MO was the “control experiment” with socioeconomic factors con-
stant to the values at the year 1950 and climatic factors constant to the base-
line CRU climatology. The six formulas (M1-M0, M2-MO0, M3-M0, M4-MO,
M5-MO0, and M6-M0) were used to evaluate the drivers of T, P, W, POP,
RUR, and DIS to the BA trend. The fraction of global burned land grid cells
(%) where a change in BA trend was attributed to different dominant drivers
was obtained by summing the number of grid cells with the same dominant
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driver and dividing by the total number of global burned land grid cells. Burned
land grid cells were defined as the land grid cells with simulated mean annual
BA larger than zero. The future projected drivers of BA trend were based on
GISS-E2-R-CC ESM simulation over the last 30 years of the 21st century.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
oneear.2021.03.002.
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