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Abstract—We consider the problem of secure distributed matrix
multiplication in which a user wishes to compute the product of
two matrices with the assistance of honest but curious servers.
In this paper, we answer the following question: Is it beneficial
to offload the computations if security is a concern? We answer
this question in the affirmative by showing that by adjusting the
parameters in a polynomial code we can obtain a trade-off between
the user’s and the servers’ computational time.

Indeed, we show that if the computational time complexity of
an operation in F, is at most Z; and the computational time
complexity of multiplying two n x n matrices is O(n“Z,) then,
by optimizing the trade-off, the user t0§ether with the servers can

compute the multiplication in O(n*~ =+1 Z,) time.

We also show that if the user is only concerned in optimizing
the download rate, a common assumption in the literature, then
the problem can be converted into a simple private information
retrieval problem by means of a scheme we call Private Oracle
Querying. However, this comes at large upload and computational
costs for both the user and the servers.

I. INTRODUCTION

There has been a growing interest in applying coding the-
oretic methods for Secure Distributed Matrix Multiplication
(SDMM) [1]-[7]. In SDMM, a user has two matrices, A € ]FZXS
and B € IF;;”, and is interested in obtaining AB € Fg” with
the help of NV servers without leaking any information about A
or B to any server. All servers are assumed to be honest and
responsive, but are curious, in that any 7" of them may collude
to try to deduce information about either A or B. The original
performance metric used in the literature is the download cost
[1], i.e. the total amount of data downloaded by the user from
the servers, with later work considering the total communication
cost [6], [8], [9].

In [10], the following existential issue is raised with the
SDMM setting: Is it beneficial to offload the computations
if security is a concern? Indeed computing the product AB
locally is both secure and has zero communication cost. The
authors in [10] circumvent this by changing the setting so that
the user does not possess the matrices A and B. This forces
communication to be the only way for the user to obtain the
product AB. This however, is solving a problem quite different
from the one initially posed in [1].
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In this paper we revisit the original setting of SDMM and
show that offloading the computations can be justified from
a computational perspective. More precisely, we show that by
adjusting the parameters in a polynomial code we can obtain
a trade-off between the user’s and the servers’ computational
time, as shown in Figure la. Indeed, if the computational
time complexity of an operation in F, is at most Z, and
the computational time complexity of multiplying two n X n
matrices is O(n*Z,) then, by optimizing the trade-off, the
user together with the servers can compute the multiplication
in O(n4_%+12q) time, as shown in Figure 1b.

A. Related Work

For distributed computations, Polynomial codes were origi-
nally introduced in [11] in a slightly different setting, namely
to mitigate stragglers in distributed matrix multiplication. This
work was followed by a series of works [12]-[15]. However,
the polynomial codes in these works are not designed to ensure
security, making them not applicable to settings where there are
privacy concerns related to the data being used.

B. Main Contributions
The main contributions of this work are as follows.

o In Section III, we show that if the performance metric for
SDMM is solely the download cost, then, by transforming
the problem into a private information retrieval problem,
we can obtain download costs much lower than those
obtained using polynomial codes. This, however, comes at
exponential upload and computational costs. The scheme,
however, can be readily implemented in settings where the
download cost is the performance metric of interest, like
in [8] or [10].

o In Section V, we show the existence of a regime under
which outsourcing computations with security constraints
is beneficial. We do this by analyzing the computational
time complexity of a family of polynomial codes known as
gap additive secure polynomial (GASP) codes [3], [4], and
show that by adjusting the code parameters we can obtain a
trade-off between the user’s and the servers’ computational
time. By optimizing this trade-off we can show that if the
time complexity of an operation in [F, is at most Z, and
a matrix multiplication algorithm for n X n matrices with
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(a) Trade-off between the user and servers’ computation exponents,
e.g. if the servers use the standard matrix multiplication algorithm,
w = 3, and the user sets its computational complexity exponent to 2.5
then the server will also have a computational complexity exponent
of 2.5.
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(b) Total time complexity for GASP codes when choosing best trade-
off between user and servers’ time complexity exponent as a function
of the exponent of the matrix multiplication algorithm, w. We show
that £ can be chosen so that the total time complexity has exponent
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Fig. 1: The figures pertain to the setting in Section V where we analyze the computational complexity of GASP codes. In this
setting, r = s =t = n, the security parameter 7" is a constant, the partitioning parameters KX = L = n®, and the servers use a
matrix multiplication algorithm with computational complexity O(n*).

time complexity O(n“ Z,) is used, then the total time taken
for the user to retgieve AB with the help of the servers is
given by O(n*~ 541 2,).

II. NOTATION

Our analysis in sections IV and V will require asymptotic
notation for multivariate functions. As shown in [16], care
must be taken when generalizing the asymptotic notation from
univariate to multivariate functions.

Hence, we apply the following asymptotic notation. For a
function f mapping D C R" to R, such that D is in each
coordinate not upper bounded, O(f(x)) is the setof all g : D —
R such that there exist N, c € Ry with |g(z)| < ¢|f(x)]| for all
x with N < gz; for all ¢ € {1,...,n}. We define Q(f(x)) in
the same way with the inequality replaced by |g(z)| > ¢|f(z)].

We assume a base field FF,, over which all elementary
operations (addition, subtraction, multiplication, division) take
constant time. We also assume that transmitting symbols in I,
between the user and the servers takes constant time.

When constructing polynomial codes we will need to con-
sider a field extension I, of IF,. We assume that any elementary
operation or generation of a random element in F, takes
time at most Z,. The possible values for Z, depend on the
representation of the field elements, e.g. powers of a generator
of the group of units F)X or polynomials in IF,[X]/(f) (with

f € F,[X] irreducible and of degree d with p¢ = ¢), and of
the underlying machine, e.g. a Turing machine or a Boolean
circuit [17], and its implementation [18], [19].

We set Z, = O(log(q)”), i.e. Z, is polylogarithmic. If only
additions and multiplications are used, for example, we can set
v = 2 if we use standard polynomial multiplication. This can
be reduced by using better multiplication algorithms.

Next, we assume that the transmission of one g-ary symbol
has communication cost at most C,. If we use the usual
polynomial representation, then C, = O(log(q)).

We denote by M(r,s,t) the computation complexity of
multiplying an r X s matrix by an s X ¢ matrix. The study of
the computational complexity of matrix multiplication is one of
the main topics in algebraic complexity theory.

The most understood case is for square matrices, i.e. when
r = s =t = n. In [20], Strassen presented the first algorithm
outperforming the standard O(n?). Strassen’s algorithm has
computational complexity O(n'°82(7) ~ O(n?#'). This was
further improved to ~ O(n?37) by Coppersmith, Winograd,
and Le Gall [21], [22]. Since any entry of both n X n matrices
has to be used in general, the number of operations is at least
Q(n?). It is an open problem if there exists an algorithm which
uses O(n?) operations.
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III. PRIVATE ORACLE QUERYING

In this section we show that by transforming the SDMM
problem into a private information retrieval problem we can
obtain schemes with download costs much lower than polyno-
mial codes. These schemes, however, have exponential upload
and computational costs. They serve as an example of why we
cannot use the download cost as the sole performance metric
as was done originally in the literature.

The scheme, however, can be readily implemented in settings
where the download cost is the performance metric of interest,
like in [8] or [10].

We name this scheme a private oracle querying scheme
and begin by giving a simplified example of it. It consists
in transforming the secure distributed matrix multiplication
problem into a private information retrieval problem [23].

The reason for naming it Oracle Querying, is that the
technique applies to settings more general than matrix multipli-
cation. Indeed the same can be done even for non-computable
functions, say if the servers have access to some oracle.

A. An Example

Let A,B € Ty and the number of servers be N = 2
none of which collude, thus 7" = 1, r = s = ¢t = 1, and
q = 2. The user is interested in AB € F5. The Private Oracle
Querying scheme consists in transforming SDMM into a private
information retrieval problem.

The servers begin by precomputing all M = ¢*"tY) = 4
possible multiplications, shown in Table 1. Then, each server
stores all possible multiplications in its database, i.e. the third
column of Table I.

A B AB
0 0 0
0 1 0
1 0 0
1 1 1

TABLE I: Each server stores the third column in the table.

The user can obtain the multiplication privately via a private
information retrieval scheme where the user wants one file out
of the database, D, of M = ¢*("*+*) = 4 files each one of length
rt = 1. This can be done, for example, by using a simple secret
sharing scheme achieving a download rate of D = % = %,
as shown in Table II.

B. The Scheme

We now present the scheme, which we refer to as private
oracle querying.

Theorem 1. Let N be the number of servers, T' the security pa-
rameter, A € IE‘ZXS and B € ]FZ”. Then, the secure distributed
matrix multiplication problem for computing AB € IFZ” can
be solved by solving a private information retrieval problem
where each server has M = ¢°"t?) files, each one of length
rt.

Server 1 Server 2
Query: q q+e;
Response: (D, q) (D,q+ e;)

TABLE 1II: To privately retrieve the ¢-th entry in the database
from the servers the user generates a vector ¢ € F)/"* uniformly
at random. He then sends q to Server 1 and q + e; to Server
2 where e; is the i-th vector in the standard basis of F}"t,
The Servers perform an inner product of the received query
with their database and sends it back to the user. The user
then retrieves the i-th entry in the database by subtracting the
responses.

Proof. As a preprocessing step of the scheme, each server
computes all M = ¢*("t?) possible matrix multiplications and
stores them in its database. Considering each result of each
multiplication as a file, each server then has M files, each of size
rt. Thus, the secure distributed matrix multiplication problem
can be reinterpreted as a private information retrieval problem
where each server has M files, each of size rt. O

If the field q is large enough, the user can use a simple secret
sharing scheme.

Corollary 1. Under the same hypothesis of Theorem 1, for
large enough field size q, there exists a secure distributed matrix
multiplication scheme with download rate D = %

Proof. This rate can be achieved by using the construction in
Section III B of [24]. The large field size is needed to guarantee
the existence of an MDS code. O

The download capacity for private information retrieval is
known [25]. However, as the number of files grows, this
capacity converges to the rate in Corollary 1.

If one uses the download rate as the sole performance metric
for the setting in [1], these private information retrieval codes
can outperform the polynomial codes in [1]-[7]. They, however,
have two shortcomings.

First, the upload cost is exponential, since even a single query
will have the size of the whole database, ¢%("t?).

Second, the time to generate a single query, Q(g*("+"), is
much longer than the time for the user to calculate the matrix
multiplication locally using the standard matrix multiplication
algorithm, O(rstZ,).

In other settings, where the user does not have access to both
matrices and computational costs are not considered, like in [8]
or [10], private oracle querying can be readily applied.

IV. POLYNOMIAL CODES

Polynomial codes for secure distributed matrix multiplication
were first introduced in [1] and later improved on in [1]-[7].
Our goal is to highlight the existence of a regime where securely
offloading the computation to the workers is beneficial. Towards
that goal we analyze the communication and computation
complexity of a family of polynomial codes called GASP
codes [3], [4]. Since we are using upper bounds to show that
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SDMM is beneficial, constructions which outperform GASP
codes will also be upper bounded by the expressions shown.
The analysis shown here can be straightforwardly extended to
other polynomial codes in the literature.

A. Constructing GASP Codes
Let A€ F;** and B € F;Xt be partitioned as follows:

Ay
A = E s B = I:Bl BL] )
Ax
AlBl AlBL
so that AB = : :
AKBl AKBL
The user chooses T matrices R; over [F, of the

same size as the Ay independently and uniformly at
random, and 7T matrices S; of the same size as the
B, independently and uniformly at random. A polyno-
mial code is a choice of o = (ay,...,axir) € NEFT and
B=(B1,--.,Br+r) € NE+T defining the polynomials

K T
f(z) = Z Apx™t + Z Ryp®x+t,
k=1 t=1

L T
g(x) =Y B+ Sl
=1 t=1

and their product h(z) = f(x)g(x).

Given N servers, the user chooses evaluation points
ai,...,an € Fg for some finite extension Fyr of Fy. They
then send f(a,) and g(a,) to server n = 1,..., N, who

computes the product f(an)g(a,) = h(a,) and transmits it
back to the user. The user then interpolates the polynomial h(x)
given all of the evaluations h(a,), and attempts to recover all
products Ay By from the coefficients of h(x).

GASP codes [3], [4] are a family of polynomial codes
constructed via a combinatorial table called the degree table.

In Table IIT we show the upload and download time com-
plexity for GASP codes. These values follow directly from the
analysis done in Appendix B of [9].

Operation ~ Time Complexity
Upload O(Ns(+ + %)Cq)
Download ~ O(N 3Cq)

TABLE III: Communication time for GASP codes.

B. The Computational Complexity of GASP codes

In this section we perform an analysis on the computational
time complexity of GASP codes. The computations can be
separated into three parts.

1) User Encoding: the computation time it takes the user
to generate the evaluations that will be uploaded to the
servers.

2) Server Computation: the computation time it will take
each server to multiply the two evaluations it receives from
the user.

3) User Decoding: the computation time it will take the user
to decode the matrix multiplication from what it received
from the servers.

Operation Time Complexity

O(Ns(r+t+T(% + £))Zq)
OM (£,s, L) 29)
O(NrtZq)

User Encoding
Server Computation
User Decoding

TABLE IV: Computation time for GASP codes.

Theorem 2. The computational time complexity for GASP
codes is given in Table IV.

Proof.

1) User Encoding: The number of additions and multiplica-
tions in F, needed to compute an evaluation of f and g
are (K +T)%2 and (L + T')3t. The result follows from
performing this IV times, once for each server.

2) Server Computation: Each server must compute the prod-
uct of two matrices of dimensions % X s and s X %

3) User Decoding: We assume that the inverted generalized
Vandermonde matrix is precomputed. Then, the interpo-
lation of A;B; is a linear combination of the servers’
answers. The number of additions in F is KL(N —1)%+
and the number of multiplications is K LN %%

O

If using the standard matrix multiplication algorithm then we
can substitute M (%, s, %) =0 (%)

V. CHOOSING THE RIGHT PARAMETERS

In this section we show that, by choosing the right parameters
for GASP codes, secure distributed matrix multiplication can
speed up the computation time when compared to the user
performing the computation locally.

We will analyze the following setting. We consider square
matrices, i.e. 1 = s = t = n, assume that the security
parameter, 7', is a constant, and that the partitioning parameter
K = L = nf for some 0 < ¢ < 1. We also assume that the
servers multiply two n X n matrices using an algorithm with
computational complexity O(n*). Our goal is to study the time
complexity of GASP codes as n grows.

In [4], it was shown that for GASP codes we have the bounds
KL< N<(K+T)(L+T).Thus, N=0O(K?).

We calculate the time complexity for each of the servers.

Proposition 1. Let r = s =t =n, T be a constant, K = L,
and O(n¥) be the computational complexity of the algorithm
which the servers use to multiply an n xn matrix. Then, the time

Authorized licensed use limited to: Rutgers University. Downloaded on June 21,2021 at 12:28:38 UTC from IEEE Xplore. Restrictions apply.



IEEE WPS 2020 - International Workshop on Privacy and Security for Information Systems

complexity for each server to compute the matrix multiplication

w

sent to it in the GASP scheme is O( o= 2q).

Proof. The rectangular matrices each server has to multiply, say
F and G, have dimensions % x n and n X %, so that they can
be split into

G1
G=1|:1,

Gk

F=[R Fr],

so that F; and G; are square matrices with shape & x = and

K
F-G=) F-G;.

i=1

The right hand side can be evaluated by K matrix multipli-
cations requiring O((4)“) (with 2 < w) field operations and
(K — 1)(%)?* additions of field elements. So the total time
complexity is
O(((K = 1)()* + (%)) 2q) = O Z,)-
O

Proposition 2. Assume the setting of Proposition 1 and that
K = L = n®. Then, the time complexity for each operation in
GASP is given in Table V.

Proof. The proof follows from substituting the values in the

hypothesis and Proposition 1 into Theorem 2. O
Operation Time Complexity
Query Encoding ~ O(n212¢2,)
User Decoding O(n?t2ez,)
Each Server O(n@—elw=—1 z.)
Upload O(n?tecy)
Download O(n?Cy)

TABLE V: Time complexity for the setting in Proposition 2.

We will now deal with the field size. Indeed, to use GASP
codes we need the field size to satisfy certain bounds. Thus, by
making n grow, it will also be necessary to make the field size
g to grow.

Proposition 3. Assume the setting in Proposition 2 and that
Z, = O(log(g)"). Then Z; = O(log(n)").

Proof. The proof for GASP codes in [9, Lemma 2], shows an
argument for the evaluation points of f and g to exist if ¢ >

(20 +1)-v.

Moreover, J = Z jeT 7 where J is the set of exponents in
h(z) =3 c 7 hja’ with #J = N. Since we use GASP codes,
all entries in the degree table are between zero and

W =2KL + (T — 1)(K + 1),

so that,

=0O(W?) = O(K*(L+T)?.

In particular, a field size larger than (2 (1}[) + 1) . w
is sufficient.
An  application of the  Stirling  approximation
n! ~\2mn(n/e)” yields
N < N! _ O(N)
T) - T(IN-T)) QTHQU(N —-T)))
O(V2rN(N/e)N)

Q(V2rT(T/e)T)Q(\/2n|N — T|(|N — T|/e)IN-TI)
NN+3
=0 . i e N-T—|IN-T|
VerTT+z|N — T|IN-Tl+3
NN+3
:O 1 1 I
VerTT+z|N — T|IN-Tl+3
as N—T —|N —T] <0, so that
N W(W +1) _ N 9
(o(7) +1) =5 =0 (7))
= <TT+§|N_T|N—T|+§>

NN+32 K2(L +T)?
is a lower bound on the sufficient field size.

Using the same exemplary parameters as in Section V, i.e.,
T = constant, K = L = nf, and N € O(K?), noting that
T < N, this simplifies to O(an(T”)). Using a field size in
O(n>*(T+2)) implies

Z, = O(log(n*T*+2)7) = O(log(n)").

O

We are now ready to calculate the total time complexity when
implementing GASP codes.

Theorem 3. Assume the setting in Proposition 2. Then, the total
time complexity of GASP is O(n™ax{etw=ew,24+2¢} 7

Proof. We begin by noting that since C; = O(log(g)), it follows
that C, = O(2Z,).

Since all servers perform their computations in parallel, the
total time complexity, 7, is the sum of the time complexities
in Table V,

T = O((K*n® + K*n? + 2°5) 2, + (Kn? +n?)C,)

_ O(nnlax{5+w—sw,2+25} Zq) )

O

The parameter € controls the trade-off between computational
costs at the client (O(n?*2¢Z,)) versus computational costs at
each of the servers (O(n°t« ¥ Z,)). This trade-off, shown in

Authorized licensed use limited to: Rutgers University. Downloaded on June 21,2021 at 12:28:38 UTC from IEEE Xplore. Restrictions apply.



IEEE WPS 2020 - International Workshop on Privacy and Security for Information Systems

Figure 1a, is linear in the exponents. By choosing ¢ carefully
we can bound the total time complexity, as shown in Figure 1b.

Corollary 2. Assume the setting in Proposition 2. The min-

imum total time complexity for GASP is (9(714_%12(1) for
w=2

g =92,
w+1

Thus, by using GASP codes, the user can perform the
matrix multiplication in time (’)(n4_%+12q) as opposed to the
O(n¥) time it would take to do locally. Note here that since
Z, = O(log(n)?), this is always an improvement. Also, if the
user uses I, as the base field, i.e. for very large fields, then Z,
can be taken to be constant.

Finally, we note that the analysis trivially holds for polyno-
mial codes that outperform GASP codes since all results were
proven via upper bounds. More so, since our analysis is done
using asymptotic notation, the improvements would have to be
by more than just constants to obtain better results.
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