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The detection of abnormal moving objects over high-volume trajectory streams is critical for real-time appli-
cations ranging from military surveillance to transportation management. Yet this outlier detection problem,
especially along both the spatial and temporal dimensions, remains largely unexplored. In this work, we
propose a rich taxonomy of novel classes of neighbor-based trajectory outlier definitions that model the
anomalous behavior of moving objects for a large range of real-time applications. Our theoretical analysis
and empirical study on two real-world datasets—the Beijing Taxi trajectory data and the Ground Moving
Target Indicator data stream—and one generated Moving Objects dataset demonstrate the effectiveness of
our taxonomy in effectively capturing different types of abnormal moving objects. Furthermore, we propose
a general strategy for efficiently detecting these new outlier classes called the minimal examination (MEX)
framework. The MEX framework features three core optimization principles, which leverage spatiotemporal
as well as the predictability properties of the neighbor evidence to minimize the detection costs. Based on this
foundation, we design algorithms that detect the outliers based on these classes of new outlier semantics that
successfully leverage our optimization principles. Our comprehensive experimental study demonstrates that
our proposed MEX strategy drives the detection costs 100-fold down into the practical realm for applications
that analyze high-volume trajectory streams in near real time.
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1. INTRODUCTION

Motivation. In recent years, location-acquisition devices such as GPS, smartphones,
and RFID have become prevalent. These devices, which monitor the motion of vehicles,
people, goods, services, and animals, are producing massive-volume high-speed trajec-
tory streams. Many applications—from traffic management [Ge et al. 2011], security
surveillance [Bu et al. 2009], scientific studies [Li et al. 2010], to mobile social networks
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[Zheng et al. 2010]—rely on continuously discovering abnormal objects in such trajec-
tory streams to deliver critical decisions within an actionable time.

In security surveillance systems, visitors at a military base will be considered as
outliers and thus a potential safety threat if they do not obey the strict order to stay
together with their designated group members. In traffic management systems, a taxi
driver will be classified as an outlier in terms of erratic behavior if the driver keeps
changing lanes and by this continuously encounters new neighboring travel compan-
ions. Potentially this may help flag speeding, drunk driving, or other erratic behaviors
of concern.

Similarly, if considering the price, volume, or gain of stocks at a particular time point
as coordinates in a multidimensional space, then real-time stock quotes can be modeled
as a trajectory stream. Analysts then may discover stocks with promising character-
istics by detecting those outlier stocks whose performance trajectories dramatically
deviate from those of other stocks in the same industry.

Challenges. In the applications just described, outliers can be characterized as mov-
ing objects that behave differently from the majority of the trajectories in the stream.
Despite the importance of continuously detecting such types of outliers, to the best of
our knowledge, this problem has been considered rarely in the previous literature.

In the streaming context, Bu et al. [2009] have defined criteria by which to label a
trajectory segment of a single moving object as an outlier. Our work instead focuses on
a more complicated problem: locating outlier objects in the trajectory stream populated
with massive-scale moving objects. In Bu et al. [2009], a given trajectory is divided into
equal-sized segments. A segment is said to be abnormal if it is not similar to the group of
segments adjacent to it in time. This definition relies on local continuity. It assumes that
each moving object tends to behave (relatively) consistent (stable) over time. However,
in our context, whether one moving object is an outlier or not instead depends on its
relationship with other objects. The moving patterns of a large set of objects are more
complex and dynamic than one single object’s path. Thus, they cannot be modeled by the
local continuity property. Therefore, this approach cannot be applied to our problem.

In static spatiotemporal databases, commonly called time series data, a trajectory is
said to be an outlier if it does not show the same global characteristics that the majority
of the trajectories in the database feature [Knorr and Ng 1998; Lee et al. 2008]. Since all
trajectories are known a priori, these techniques can rely on expensive offline prepro-
cessing. Typically, they first mine all frequent patterns to build a model that captures
the global characteristics of the dataset. In the second phase, this model is then used
to classify each trajectory as being either an outlier or inlier. However, in our context—
infinite continuous trajectory streams in which concept drift frequently arises—using
one single (precomputed) model to continuously detect outliers would inevitably lead
to inaccurate results. On the other hand, or worse yet, to continuously rebuilt such
a global model can be prohibitively expensive for real-time stream trajectory outlier
detection due to the modeling costs.

Therefore, to effectively identify abnormal objects in massive-scale trajectory
streams, new semantics have to be defined to satisfy the requirements of streaming
trajectory outlier detection. First, lightweight metrics are needed that are suitable for
identifying outliers even in massive-scale trajectory streams, instead of complicated
statistical models. These metrics must capture the key characteristics of moving
objects. Second, given the dynamic nature of stream trajectories, these semantics
should be robust to concept drift and amenable to swiftly evicting obsolete models of
outlierness.

Furthermore, if such a lightweight yet effective outlier definition could be introduced,
we still would require effective algorithms that, based on these detection semantics, can
efficiently extract real-time insights from high -volume trajectory stream data, such
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as streams of surveillance, stocks, or traffic data. Thus, strategies must be designed
to efficiently discover these assets in the form of stream trajectory outliers online as
stream data passes by.

Proposed Solution. In this article, we propose new trajectory outlier definitions
by introducing the notion of “trajectory neighbor” to measure the similarity among
different trajectories. Unlike the traditional neighbor definition [Knorr and Ng 1998],
which simply considers the physical distance between two objects at a given point in
time, the trajectory neighbor concept captures the key properties of stream trajectories.
It not only considers the spatial proximity of trajectory objects but also takes the duration
of the spatial similarity across time into account.

Furthermore, our analysis of real-time trajectory applications reveals that applica-
tions vary in their particular synchronization requirements with respect to the neigh-
bor relationships among multiple trajectories. We thus propose several variants of the
trajectory neighbor concept with different synchronization regulations that empower
users to customize the desired outlier semantics by controlling certain parameters.
Different settings of these controlled parameters lead to three different classes of tra-
jectory outlier semantics—in particular, point neighbor-based outliers (PN-Outliers),
trajectory neighbor-based outliers (TN-Outliers), and synchronized neighbor-based out-
liers (SN-Outliers).

By measuring the Precision and Recall of proposed algorithms on several datasets
from GMTI [Entzminger et al. 1999], Taxi [Yuan et al. 2013, 2010], to MOD [Brinkhoff
2002] data, our empirical study confirms that these newly introduced classes of se-
mantics successfully model the deviating behavior that characterizes outliers in a rich
variety of trajectory stream applications.

Moreover, we design a comprehensive strategy to efficiently detect these new outlier
types over high-volume trajectory streams, called the minimal examination (MEX)
framework. The MEX framework integrates three fundamental optimization principles
that apply to all three neighbor-based outlier definitions. First, given a trajectory 7r;,
the minimal support examination principle guides MEX to always acquire only the
minimal, yet sufficient, set of neighbor evidence to confirm or reject the outlier status.
Second, MEX leverages the temporal relationships among trajectory points to prioritize
the processing order among points during the neighbor search process. This principle,
called ¢time-aware examination, guarantees that we find the relationships most useful
for outlier detection as soon as possible. Third, MEX establishes the lifetime concept
signaling the farthest window up to which we can predict the status of a trajectory
Tr; based on the current trajectory neighbor evidence. This enables MEX to transform
the periodical per window—based outlier detection process into a lifetime-triggered
detection process, meaning that the detection process is run more rarely, only when
absolutely necessary.

Our experimental study on the largest Taxi dataset shows that MEX can successfully
handle up to one million moving objects per second on a standard desktop, rendering
trajectory outlier detection practical even when applied to such massive-scale moving
object streams.

Contributions. The main contributions of this work include the following: (1) We
propose a taxonomy of neighbor-based trajectory outlier definitions that cover a wide
spectrum of outlier semantics in the stream context. We then show that these seman-
tics successfully model the abnormal behavior of moving objects in a rich diversity of
stream trajectory applications. (2) Our empirical study using GMTI, Taxi, and MOD
datasets demonstrates the robust Precision and Recall of our new proposed semantics.
(3) We design a set of incremental algorithms to process all classes of outlier seman-
tics in this proposed taxonomy. These algorithms effectively leverage the overlap of
sliding windows. (4) We further enhance the incremental approach by proposing the
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MEX framework equipped with three core optimization principles: minimal support
examination, time-aware examination, and lifetime-triggered detection. (5) We design
efficient algorithms for all three trajectory outlier definitions based on MEX, success-
fully driving the detection costs down by 100-fold.

Extension from the Conference Version. While this work is based on a conference
article [Yu et al. 2014], the scope of the proposed work has been significantly extended.

—In the earlier conference article [Yu et al. 2014], two classes of trajectory outliers
were proposed; in this article, we now propose a third class of distinct neighbor-
based trajectory outlier semantics. The new class of semantics models a range of
real-life trajectory stream applications that require stricter criteria in recognizing
neighbors compared to the previous two classes (Section 3.2.3).

—We not only formally analyze the unique properties of the newly proposed trajectory
definition but also reveal the intrinsic relationships among the different definitions.
This analysis helps us to better understand the essence of the neighbor-based tra-
jectory outlier taxonomy (Section 3.3).

—We extend our general trajectory outlier detection framework MEX to also cover
this third definition of the neighbor-based trajectory outlier taxonomy in a unified
manner. This further validates the generality of the MEX framework as a processing
paradigm for trajectory outlier detection.

—We now give a formal complexity analysis of our proposed three optimization algo-
rithms using the MEX framework (Section 6.4). In addition, we elaborate on complex-
ity analysis of the INC algorithm. This is also validated by results of our extensive
efficiency evaluation.

—We significantly extend the experimental evaluation, focusing on the effectiveness
of all outlier definitions in our proposed taxonomy. First, in this article, we now
evaluate the effectiveness of the newly proposed SN-Outlier definition on the two
real datasets that had already been introduced in Yu et al. [2014]. On top of that,
we adopt one additional large-scale dataset (the MOD dataset), with which all three
definitions are also evaluated (Section 7.2).

—We conduct an additional experimental study to demonstrate the efficiency of the
newly proposed SN-Outlier detection algorithm under the unified MEX framework
(Section 7.3). Furthermore, we give a formal analysis of the performance of SIN-
Outlier detection.

—We conduct additional experiments to compare both the effectiveness of our three
outlier definitions and the efficiency of our proposed detection algorithms against
the state-of-the-art TRAOD [Lee et al. 2008]. TRAOD was proposed to detect outliers
in static trajectory databases. In this revision, we extend it to support streaming
trajectory data.

2. RELATED WORK

Trajectory Outlier Detection in Static Datasets. Knorr et al. [2000] applied the
distance-based outlier notion defined in Knorr and Ng [1998] to spatiotemporal data.
They first extract features from the trajectories that were already located in the
database and then map these trajectories into a feature space. Then, they rely on
the distance in this feature space to determine the relationships among the trajecto-
ries. The status of each trajectory is evaluated and reported only once. This approach
does not fit our target of streaming data for several reasons. First, in the streaming
context, the features of stream trajectories would continue to evolve. Therefore, no
stable feature space exists. Furthermore, the effect of the previously observed events
would fade over time. Therefore, outliers should be continuously reported in real time
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based on the latest observed events rather than reporting them only once based on the
final complete trajectory database.

Li et al. [2007] proposed a classification-based trajectory outlier detection algorithm.
In their algorithm, trajectories are represented using discrete pattern fragments called
motifs. The set of motifs forms a feature space in which the trajectories are placed.
Then, a rule-based classifier is trained to classify the trajectories into either “normal”
or “abnormal.” This algorithm requires an offline training stage as well as a labeled
training dataset to train the classifier. Thus, it does not fit the dynamic streaming
context that we target.

Lee et al. [2008] proposed a two-step trajectory outlier detection approach. In the
first step, a trajectory is partitioned into a sequence of t-partitions. Within this set of t-
partitions, t-partitions are determined to be outliers based on distance or density-based
metrics. This work targets a problem different from ours, namely, to discover unusual
subtrajectories within one single trajectory. Instead, we aim to locate abnormal moving
objects within one stream of companion moving objects.

Zhang et al. [2011] proposed an isolation-based anomalous trajectory detection
method to discover fraud driving patterns within a taxi’s GPS traces. The method first
groups all historical trajectories with a same source-destination cell-pair. They repre-
sent each trajectory as a sequence of cell symbols, then find the trajectories deviating
from the same source-destination cell-pair frequent paths. With a similar objective, Ge
et al. [2011] developed a taxi-driving fraud detection system based on historical trajec-
tories to identify suspicious taxi driving. However, the system only detects anomalous
trajectories after the trips are complete; thus, the data is effectively considered to be
static.

Outlier Detection over Trajectory Data Streams. Bu et al. [2009] detect abnor-
mal trajectory segments in a single trajectory produced by one particular continuously
moving object. It makes the strong assumption that a stream trajectory is locally con-
tinuous. That is, a trajectory behaves consistently within any short time interval. They
use a base window to partition a trajectory into trajectory segments. Then, whether a
given trajectory segment is said to be anomalous or not is based on the similarity to its
own historical trajectory in a larger window. Thus this method, focusing on identifying
an outlying trajectory segment of one single moving object, cannot address our problem:
identifying suspicious moving objects significantly deviating from other synchronously
moving objects within a similar space and at the same time.

Ge et al. [2010] propose a top-k evolving outlying trajectory detection method. They
compute the outlier score in an accumulating fashion, based on the evolving direction
and density of historical trajectories in which grid the trajectories passed.

Liu et al. [2011] studied causal interaction detection in traffic data streams. For
that, they divide the city areas into regions. A graph is built by mapping each region
to a vertex. The trajectories are then simplified by handling them at this coarse
granularity, namely, mapped into links connecting two corresponding regions. This
much smaller dataset, that is, a graph of regions, enables them to map their problem
into a frequent subgraph mining problem. That is, they determine the anomalous
links in each time frame by comparing the load features of links in the graph (e.g., the
number of traversals) with those of their temporal neighbors. This method focuses on
a problem totally different from ours, which is discovering anomalous historical links
rather than abnormal moving objects.

Trajectory Clustering and Pattern Mining. Other classes of mining tasks on
moving object streams have been studied, with clustering of trajectories being the
closest to outlier detection. Lee and Han [2007] presented a clustering algorithm that
discovers common subtrajectories in a static trajectory database. Trajectories are first
partitioned into a set of quasi-linear segments using the minimum description length

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 10, Publication date: April 2017.



10:6 Y. Yu et al.

principle. Then, the line segments are grouped by a density-based clustering algorithm.
Although this algorithm could potentially be applied in a reverse direction to detect
abnormal trajectory segments, it cannot solve our problem for several reasons. First,
the trajectory segments that fall into the same cluster are not necessarily observed at
the same time period, while in our trajectory stream context, we are interested in the
“concurrent” and relative behavior of objects. Second, our goal is to continuously detect
abnormal moving objects in near real-time rather than to locate the unusual segments
of the trajectories prestored in the database.

Moreover, in recent years, mining trajectory patterns—such as Jeung et al. [2008], Li
et al. [2010], Zheng et al. [2013, 2014], and Tang et al. [2012]—have been discussed to
find groups of moving objects with similar motion patterns or behaviors, as described
next.

A Convoy pattern in Jeung et al. [2008] is defined as a set of objects that move
together (always falling in the same density-based cluster) during at least & contiguous
time points. In Li et al. [2010], a swarm pattern is defined as a variation of the convoy
pattern with one relaxed requirement, that is, those objects could form a swarm group
even if they are not always moving together in a number of consecutive time points. In
other words, moving objects could leave the swarm temporarily, and then come back
into the swarm again.

Tang et al. [2012] also similarly propose the notion of traveling companion. They
focus on the discovery of traveling companions in the context of streaming trajectories.
Zheng et al. propose the Gathering pattern in Zheng et al. [2013, 2014] that captures
congregations of moving individuals, which form a durable and stable area with high
density. Similar to the swarm pattern, the members in the gathering pattern can enter
and leave the group at any time. In general, their objective is to discover the clusters
of the objects that move together in either static trajectory databases or dynamic tra-
jectory streams. However, the topic of detecting moving object outliers is not discussed
in any of these papers.

Although, theoretically, trajectories that do not belong to any cluster can be con-
sidered as outliers, utilizing such a clustering approach to detect outliers is nei-
ther effective nor efficient. First, outlier detection is not a counterpart of clustering
[Chandola et al. 2009]. Even if a trajectory is excluded from all clusters, it does not
necessarily indicate that it is an outlier. Furthermore, the problem of clustering has
been shown to be more expensive than outlier detection [Yang et al. 2009]. That is, due
to the interdependence among the data points, the cluster structure is more difficult
to detect and in particular to update than maintaining the individual outlier points.
Therefore, utilizing a clustering algorithm to detect outliers is not efficient in terms of
CPU consumption.

3. NEIGHBOR-BASED TRAJECTORY OUTLIER

In this section, we first define the general notion of trajectory outliers in moving object
streams. Three semantics for neighbor-based stream trajectory outlier detection are
then introduced to discover such outliers.

The basic notion of capturing abnormal phenomena in data can be traced back to
initial work by Hawkins [1980], which introduced the core principle still deployed for
characterizing outliers. That is, an outlier is an observation that deviates so much
from the other observations as to arouse suspicions that it was generated by a different
mechanism. Following this notion, in a trajectory stream S, we consider a trajectory Tr
as a stream trajectory outlier if it does not consistently have “enough” close neighbors
in S, that is, if it is significantly different from the large majority of trajectories in the
dataset S.

In the rest of this section, we present three trajectory outlier semantics: PN-Outlier,
TN-Outlier, and SN-Outlier. These semantics, all based on the concept of trajectory
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neighbor, that is, trajectories that are most similar to the trajectory in question, are
referred to as a neighbor-based trajectory outlier. In Section 3.1, we first define the
notion of a trajectory point, a stream trajectory, sliding window, and different variations
of the trajectory neighbor concept that our neighbor-based trajectory outlier semantics
are built on. Then, in Section 3.2, we introduce our taxonomy of outlier semantics in
detail.

3.1. Notions

We denote the set of n moving objects as MO = {o1, 09, ..., 0,}, where o; is the moving
object with id = i. The multidimensional data point p/ produced by the moving object
o; at time ¢; is called a trajectory point of the trajectory Tr;. We assume a minimal
time granularity at which trajectory points are emitted. We utilize the term “time-
bin” to refer to this smallest time granularity. The trajectory of a moving object o; is
thus an infinite sequence of trajectory points produced at timebins {t1,%,....¢;, ...},

denoted as Tr; = { pil, piz, .. pij ,...}. In this work, a moving object is not limited to an
object equipped with a location-acquisition device. Instead, as an abstraction, it could
correspond to any object that continuously produces distinct events along time. Corre-
spondingly, the trajectory point is not necessarily a spatial position; rather, it could be
any multidimensional coordinate for which each dimension corresponds to one of the
attributes in the event produced by one object.

We define a trajectory stream S produced by n moving objects as an infinite se-
quence of trajectory points ordered by timebins with S = {plpl...pl, p?pZ...p2,...,
pipy...ph, ...}L. All trajectory points p) p, ... pi with the same timestamp i are said to
fall into the same timebin ¢ in the stream S.

In this work, we use the periodic sliding window semantics as proposed by CQL
[Arasu et al. 2006] for defining the substream of interest from the otherwise infinite
trajectory data stream. In particular, an outlier detection request @ specifies a fixed
window size w and slide size s for time-based windows. Count-based windows can be
defined similarly. Each window W has a starting time W.Ty,; and an ending time
W.Tena = W.Ts0rt +w — 1. The population of the current window W, of S consists of all

points whose respective timebin falls into W,. It is the finite subsequence of the tra-

1 1 2 2
jectory stream S: {p§ "+ phT"" Twtl] plemwt2 plemwdZ [ plemwi2 L phpk .. pkl,

2
where #. is the current timebin. Perlodlcally, the current Wmdow W. slides, causmg
W . T and W.T,,4 to increase by s timebins. Henceforth, a trajectory Tr; refers to the
set of trajectory points produced by one moving object o; throughout a window W;.

‘We use the function dist(py,, pn) to denote the distance between two trajectory points

pn and p; at the same timebin ¢;. Without loss of generality, we utilize Euclidean
distance as the distance measure, though any other distance measure could equally be
plugged in.

Definition 3.1 (Point Neighbor). For two trajectory points p,’}b and 'p{; in the same
timebin ¢;, if dist(py,, ps) < d, we say that p;, is a point neighbor of p;, with d a given
distance threshold.

For point p,{, all point neighbors of p,{ at timebin ¢; with regard to the distance
threshold d comprise the Point Neighbor Set of pj;, denoted as PN(pj, d).

Definition 3.2 (Trajectory Neighbor). In window W,, trajectory Tr,, is called a tra-
jectory neighbor of Tr, with regard to the given timebin count threshold ¢Ar, if and

ITrajectory data of moving objects that is not regular can also be handled; see discussion in Section 7.1.
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only if there exist at least thr; timebins in W, such that p,, is a point neighbor of p, at
each of these thr; timebins (with point neighbor defined in Definition 3.1).

The set of trajectory neighbors of a trajectory Tr, in the window W, with regard to
distance threshold d and timebin count threshold ¢Ar; is denoted as TN(Tr,,, d, thr;).

Definition 3.3 (Synchronized Trajectory Neighbors). In window W,, a set of trajecto-
ries Try, Tre, ..., and Tr, are called synchronized trajectory neighbors of a given
trajectory Tr; with regard to the given timebin count threshold tAr;, if and only if at
least thr; timebins exist in W, such that trajectory points py, pj, ..., ps corresponding

to Try, Try, ..., Tr, are point neighbors of trajectory point p/ corresponding to 7r; in
each timebin ¢; of these thr; timebins (with point neighbor as defined in Definition 3.1).

Intuitively, given a trajectory Tr;, its synchronized trajectory neighbors (or in short
Sync neighbors) Tr,, and Tr, are also the trajectory neighbors of Tr; by Definition 3.2,
because Tr; has at least thr; point neighbors in both 7r,, and Tr,. However, as an
additional constraint, to be the Sync neighbors of Tr;, the thr; point neighbors in Tr,,
and Tr, must correspond to exactly the same ¢hr; timebins. In other words, the point
neighbors in T, and Tr, have to be synchronized in time. That is why Tr,, and Tr, are
called the synchronized trajectory neighbors of Tr;.

According to Definition 3.3, a trajectory 7r; could have distinct groups of synchronized
trajectory neighbors with regard to a different combination of ¢Ar; timebins in W,.. We
denote one particular synchronized trajectory neighbor set of Tr; as SN(Tr;, d, thr;) with
regard to distance threshold d and timebin count threshold ¢Ar;.

3.2. Trajectory Outlier Semantics
3.2.1. Point Neighbor-Based Trajectory Outlier.

Definition 3.4. Given a distance threshold d, a neighbor count threshold %, and
timebin count threshold tAr;, the point neighbor-based trajectory outlier seman-
tics (PN-Outlier) considers a trajectory 7r; in the window W, as an outlier of type
PN-Outlier, if |T'| < thr;, where T = {¢;| |IPN(p!,d)| > k, t; € [W.Tstart, W.Tgnal}. Oth-

erwise, Tr; is said to be a PN-Inlier. Any timebin ¢; with |[PN(p/,d)| > & is called a
neighboring timebin of Tr;.

This PN-Outlier semantics is based on whether a trajectory has a sufficient number
of neighboring timebins throughout the window. Intuitively, a normal inlier trajectory
has at least a certain number of moving objects in its vicinity most of the time, that is,
for at least ¢thr; timebins. Such inliers are in a crowd in at least thr; timebins. On the
other hand, a trajectory is said to be an outlier if most of the time it differs from the
other objects significantly.

Example 3.5. In Figure 1, let us consider Definition 3.4 when we assume that & = 2,
thr; = 4. The trajectory Trs only has two neighboring timebins {#;, #}, for which Tr3
has more than % point neighbors. Thus, |T'| < 4. Therefore, Trs is a PN-Outlier. All
other trajectories have at least thr; neighboring timebins, thus are PN-Inliers.

Applications. The PN-Outlier semantics effectively model the notion of outliers
prevalent in many real-time applications. For example, in security surveillance, a for-
eign personnel may be considered as potentially unsafe if the person separates out
from others for too much of the time during a visit. In a marathon race, a runner who
runs alone without any other competitors around for long stretches of time warrants
being tracked more closely. Reasons could range from the runner suffering from some
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Fig. 1. Seven trajectories in a window W, with size w = 6. A small circle represents a trajectory point. A
large dashed oval indicates pairwise point neighbors. PN-Outlier: Trs. PN-Inliers: Try, Tro, Try, Trs,Trg,
and Try.

Fig. 2. Seven trajectories in a window with size w = 6, k = 2, thr; = 4. TN-Outlier: Try; TN-Inlier: Try, Tro,
Trs, Trs, Tre, Trr.

physical discomfort and possibly needing medical assistance to checking for possible
cheating by taking shortcuts.

3.2.2. Trajectory Neighbor—Based Trajectory Outlier.

Definition 3.6. Given a distance threshold d, a neighbor count threshold %, and time-
bin count threshold tAr;, trajectory neighbor-based trajectory outlier semantics
(TN-Outlier) considers a trajectory 7r; in the window W, as an outlier of type TN-
Outlier if it has fewer than k trajectory neighbors |TN(Tr;, d, thr;)| < kin W, (with the
trajectory neighbor concept as defined in Definition 3.2). Otherwise, the trajectory 7r;
is a TN-Inlier.

This TN-Outlier semantics classifies a trajectory Tr; as an outlier if it does not have
a sufficient number of trajectory neighbors throughout the window W,. Put differently,
there are not enough other objects in the dataset that consistently behave similarly to
Tr; within the observed time period W..

Example 3.7. Consider the trajectories in Figure 2. Suppose that & = 2, thr, = 4.
Then, Try is a TN-Outlier because it has no trajectory neighbors. Tr; and Trgs are
trajectory neighbors of each other by Definition 3.2, because they are point neighbors
at all 6 timebins. Try, Tre, and Tr; are pairwise trajectory neighbors, because all three
trajectories meet in at least 4 timebins. Since 7r, Tre, and Tr; each have & (2) trajectory
neighbors, they are TN-Inliers. Trs has two trajectory neighbors Tr5 and Trg. Thus, Tr3
is a TN-Inlier.

Unlike the PN-Outlier semantics (Definition 3.4), for the TN-Outlier, it is no longer
sufficient to be able to categorize a given trajectory as an outlier if it has a certain
number of neighboring timebins. The granularity of similarity is instead at the level
of complete trajectories and their relationship with 7r;. Thus, although 7Tr4 has four
neighboring timebins (>thr;), it is still a TN-Outlier, as we have shown earlier.
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Fig. 3. Seven trajectories in a window with size w = 6, k = 2, thr; = 4. SN-Outlier: Try; SN-Inlier: Trq,
Tro, Trs, Trs, Tre, Trq.

Applications. TN-Outlier fits many real-life applications. Consider traffic manage-
ment applications [Yuan et al. 2011] in which we expect most drivers to drive consis-
tently in lockstep with neighboring cars on a highway, for instance, in the same or in
adjacent lanes. Deviating from the majority of other cars may indicate that the drivers
change their neighbors frequently due to speeding (too fast) or drunk driving (too slow)
and thus never stay long enough at a similar speed with other cars. Similarly, in the
stock ticker stream, stocks in the same industry tend to exhibit similar trends. There-
fore, a stock whose performance consistently deviates from that of other stocks in the
same industry will be considered as a TN-Outlier, even if at many timebins some stocks
(each time different ones) happen to have a similar price.

3.2.3. Synchronized Neighbor-Based Trajectory.

Definition 3.8. Given a distance threshold d, a neighbor count threshold %, and
timebin count threshold ¢thr;, Synchronized Neighbor-Based Trajectory Outlier
semantics (SN-Outlier) considers a trajectory 7r; in a sliding window W, as an outlier
of type SN-Outlier, if there does not exist any synchronized trajectory neighbor set
SN(Tr;, d, thry) of p; such that |SN(Tr;, d, thry)| > kin W,. Otherwise, the trajectory Tr;
is said to be an SN-Inlier.

Intuitively, to be an SN-Inlier, a trajectory Tr; has to satisfy two conditions. First,
similar to TN-Inlier in Definition 3.6, it has to have a sufficient number (%) of ¢rajec-
tory neighbors within the window W,. In addition, it requires that at least & of these
neighboring trajectories correspond to synchronized trajectory neighbors of Tr;.

Example 3.9. Consider the trajectories in Figure 3. Suppose that & = 2, thr; = 4,
and Trq, Tre, and Tr; are pair-wise trajectory neighbors with each other by Definition
2. By Definitiion 3.3, Try, Trg, and Tr7 are also synchronized trajectory neighbors with
each other with regard to a sufficient number (>tAr;) of timebins, because in W, their
trajectory points at each timebin but #3 are also point neighbors of each other. Since
Tri, Tre, and Tr; have at least 2 (k) synchronized trajectory neighbors, they are all
SN-Inliers. The same situation also applies for Trs, Trs, and Trg.

Try has 2 (= k) trajectory neighbors {Trq, Trs}. Thus, it is a TN-Inlier. However, it
would still be classified as an SN-Outlier, because {Try, Tr3} are not Sync neighbors
of Try . As shown in Figure 3, Tr; and Tr3 both have point neighbors of Tr4 only at 2
(< thr;) timebins #3 and #4. This does not satisfy the sync neighbors definition as shown
in Definition 3.3.

Applications. This SN-Outlier semantics fits real-life applications with strict syn-
chronization requirements. For example, in military action, to understand the situation
in a military battle field, the commander needs to be continuously aware of the mov-
ing groups of soldiers, vehicles, aircrafts, and other assets based on the objects’ most
recent positions (trajectories). The members of a tight military unit will be classified
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as SN-Outliers if they do not continuously operate as a team. Similarly, biologists may
track the moving trajectories of various species, such as the migration of the birds or
whales, for their research purposes [Li et al. 2010; Tang et al. 2012]. The families of
birds tend to move together in species migration. That is, most of the time, they would
be expected to stay close enough to be neighbors. Otherwise, they will be considered as
outliers (SN-Outlier) that are more likely to fall victims to predators or exhaustion.

3.3. Analysis of Trajectory Outlier Taxonomy

In essence, all three outlier types are defined based on either point-level or trajectory-
level neighbor relationships. Thus, in general, they all fall into the class of neighbor-
based trajectory outliers. However, unlike the traditional neighbor-based outlier [Knorr
and Ng 1998], such neighbor-based trajectory outlier taxonomy not only relies on neigh-
bor relationships in the spatial (multidimensional space) domain, but also on the be-
havior of the trajectories in the time domain. The rationale is that, in a trajectory
stream, trajectory outliers usually do not only deviate from concurrent neighbors in
their coordinate values in the multidimensional space, but their deviation also lasts
for a certain time period.

Now, we analyze the relationships between the three types of trajectory outliers in
the aforementioned taxonomy.

PropeRTY 1. Given a trajectory outlier query @ applied to a window W, over stream S,
if a trajectory Tr; is a PN-Outlier by Definition 3.4, then it must also be an SN-Outlier
(Definition 3.8) with respect to the same parameter thresholds d, k, and thr;.

Proor. By contradiction. If Tr; is a PN-Outlier, then by Definition 3.4, Tr; has less
than ¢hry neighboring timebins. Naturally, no set of £ synchronized trajectory neighbors
can exist that together participate in the same ¢hr; timebins of Tr;. Otherwise, these
thr; timebins would also have been sufficient for 7r; to be classified as PN-Inlier. Thus,
Tr; must also be an SN-Outlier by Definition 3.8. O

PropERTY 2. Given a trajectory outlier query @ applied to a window W, over stream S,
if a trajectory Tr; is a TN-Outlier by Definition 3.6, then it must also be an SN-Outlier
by Definition 3.8 with respect to the same parameter thresholds d, k, and thr;.

Proor. By contradiction. Similarly, if 7r; is a TIN-Outlier, then by Definition 3.6, Tr;
has less than % trajectory neighbors. Therefore, its trajectory neighbors cannot form %
synchronized trajectory neighbors, because that would require at least & neighbors in
the same timebin for Tr;. Thus, by Definition 3.8, Tr; is also an SN-Outlier. O

Discussion. Two implications can be derived from these properties. First, the three
outlier types are interdependent. That is, although they have distinct neighbor seman-
tics, as required by different applications, all three rely on some inherent property
of neighbor relationships in order to be classified as trajectory outliers. Second, SN-
Outlier classifies more trajectories as outliers than either PN-Outlier or TN-Outlier, be-
cause SN-Outlier has stricter requirements for a trajectory to be considered a neighbor
(Sync Neighbor) of another. Therefore, the outliers detected with the PN-Outlier or TN-
Outlier definition are a subset of the SN-Outlier query result with regard to the same
parameter setting. This property points us at optimization opportunities for the design
of the SN-Outlier detector, as further discussed in Section 4. The relationships among
these three neighbor-based trajectory outlier definitions are depicted in Figure 4.

4. THE BASIC OUTLIER DETECTOR

Given a trajectory stream S and the semantics of PN-Outlier, TN-Outlier, or SN-
Outlier, we need to design algorithms to continuously detect and output the trajectory
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SN-Outlier

Fig. 4. Relationships of the three definitions.

(a) Window W1 (b) Window W2

Fig. 5. An example of two consecutive windows.

outliers in the latest window W, as the window slides. As a foundation, we first design
the INC algorithm that detects the three classes of outliers in a unified way. It first
utilizes range queries to search for all point neighbors of each trajectory Tr; at each
timebin. Then, the acquired point neighbors are used as evidence to validate the status
of Tr;. Furthermore, INC leverages the fact that, in sliding window streams, adjacent
windows overlap with each other. By cleverly maintaining the already known neighbor
relationships, the INC algorithm successfully avoids the repetition of redundant range
query searches at the previously examined timebins, resulting in savings in system
resources.

We first introduce the data structures that enable the INC algorithm to extensively
reuse the already recognized neighbor-related information. We use DB7;, to denote the
set of all trajectories in the current window W.. To support PN-Outlier detection, each
trajectory Tr; maintains a list Tr; .#list, which stores the IDs of its neighboring timebins
in W... For TN-Outlier detection, we need to track the trajectory neighbors of 7r; to eval-
uate whether Tr; has a sufficient number of trajectory neighbors. Therefore, a neighbor
table, denoted as Tr;.NT', is maintained by each trajectory Tr;, which records informa-
tion about all trajectories having at least one point neighbor with 7r; in the current
window (see Figure 6). Each record in the neighbor table Tr; . NT is a <key, value List>
pair, where key denotes the identifier of Tr;’s neighboring trajectory Tr;, and valueList
corresponds to the list of timebins during which Tr; and Tr; are point neighbors.

Using an example-driven approach, we now describe how the INC algorithm detects
the three outlier classes with the assistance of the just introduced Tr; .¢list and Tr; NT
structures. Figure 5 shows 6 trajectories in two consecutive sliding windows with
window size w = 4 and slide size s = 1. Given a query @ with 2 = 2 and thr;, = 3,
Figure 6 illustrates how the INC algorithm incrementally processes Tr and Trs.

Data Structure Initialization. Given the trajectory dataset in the first window
Wi, INC first utilizes a range query operation to search for point neighbors of Tr; at
timebin #. The distance threshold d is used as the range. As shown in Figure 5(a), Try
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Fig. 6. Data structures of the INC algorithm.

does not have any point neighbor. Thus, both 7r;. NT and Tr;.tlist are null. Tr; instead
acquires one point neighbor p% at timebin 1. Consequently, the record <Trs, [t1]> is

created for pl and inserted into 7Tr5.NT, as shown in Figure 6(a). Since only one point
neighbor is acquired (<k), timebin #; is not a neighboring timebin of Trs. Trs.tlist thus
is null. Similarly, INC proceeds to detect point neighbors using a range query and
updates the data structures at each timebin. After timebin #; is processed, the final
neighboring information for W is established, as shown in Figure 6(c).

Trajectory Outlier Detection. Next, using Tr;.tlist and Tr;. NT, INC can quickly
detect all classes of trajectory outliers. As shown in Figure 5(a), Tr; and Trs can be
immediately identified as PN-Outliers because the cardinality of Trq.tlist and Trs.tlist
(number of neighboring timebins) is smaller than ¢Ar, (i.e., 3), respectively.

Similarly, the TN-Outliers can be detected based on the neighbor table Tr; NT'. Trq
is a TN-Outlier because it does not have any trajectory neighbor in 7r1.NT . For that,
we only need to examine Tr;.NT to find the trajectories having no less than thr; point
neighbors with Tr;. Trs, however, is not a TN-Outlier because it has two trajectory
neighbors {Trq, Trg} (k = 2) according to Tr5.NT'.

Last, let us consider SN-Outliers of W1. Since Try and Tr; are PN-Outliers, they are
immediately recognized as SN-Outliers (see Property 1 in Section 3.3).

Data Structure Update. After the new timebin #; arrives, the window slides from
W1 to W2 (Figure 5(b)). Since timebin # has expired, all information of # will be re-
moved from Tr;. NT and Tr;.tlist. The INC algorithm only needs to detect the point
neighbors for each trajectory 7Tr; at the new timebin #5. This, again, is computed us-
ing a range query search. The corresponding data structures are then updated (see
Figure 6(d)).

Outlier Reexamination. Next, the status of all the trajectories will be reexamined
by again checking the Tr;.tlist and Tr;. NT structures. In the new window Wy, Tr; is
still a PN-Outlier. However, Trs has evolved into a PN-Inlier because Trs acquires a
new neighboring timebin at 5. Thus, now, |Trs.tlist| = thr, (3).
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Tr is still reported as a TIN-Outlier in Wy because it still has no trajectory neighbor.
Trs remains a TN-Inlier since it has four trajectory neighbors, as shown in 7r5. NT' of
Figure 6(d).

Concerning the SN-Outlier query, Tr; remains an SN-Outlier in W2 because it is a
PN-Outlier. Since Trs now is both a PN-Inlier and TN-Inlier, it cannot automatically be
inferred to be an SN-Outlier. Instead, we now must employ one last check to verify the
strictest condition imposed by the SN-Outlier semantics. That is, we have to verify if it
has at least & synchronized trajectory neighbors with regard to thAr; timebins. Again, by
examining the Tr5.NT table, we find that its trajectory neighbors {Trq, Trs, Trs} indeed
are also synchronized neighbors at the timebins #, 3, and #; with Tr5;. Thus, Tr5 is an
SN-Inlier in Ws.

Algorithm 1 shows the INC algorithm for detecting the three classes of outliers.
Given a trajectory Tr;, Tr;. NT .update(Tr;, W..T,,q) updates the Tr;. NT table of Tr;
with regard to trajectory Tr; after receiving the new timebin W..T,,q of W.. If the
trajectory points of Tr; and Tr; in W..T,,q are point neighbors, the new timebin W,.T, 4
is inserted into the list of timebins corresponding to Tr; in Tr;.NT'. On the other hand,
Tri. NT .remove(Tr;, W..Tgqrs — 1) removes the information corresponding to the expired
timebin W,..Ty,+ — 1. Lines 8 to 11 show the update process Tr;.tlist that is specific
to the PN-Outlier. If Tr; has at least & point neighbors at timebin W..T¢,q, W.. T,y is
inserted into 77;.tlist as a new neighboring timebin (Lines 8-10). The expired timebin
W..Tg0rs — 1 will be removed from Tr;.tlist if it was a neighboring timebin of Tr;.

INC then determines whether Tr; is a PN-Outlier by examining the cardinality of
Tr; tlist, namely, the number of Tr;’s neighboring timebins (Lines 12-14). Lines 15 to
17 examine whether Tr; is a TIN-Outlier by looking at the trajectory neighbors stored
in Tr;. NT . In particular, getTN(Tr; NT, thr;) discovers the trajectory neighbors of Tr;
that satisfy the constraint of ¢hr, timebins. More specifically, a trajectory Tr; is the
trajectory neighbor of Tr; if the timebin list in 7r;.NT corresponding to 7r; has at
least thr; elements. Finally, if Tr; is neither PN-Outlier nor TN-Outlier, INC has to
continue to verify whether Tr; has k synchronized trajectory neighbors (denoted as
getSN(Tr;.NT, thry)). If not, then Tr; is an SN-Outlier. getSN(Tr; NT, thr,) first finds
all trajectory neighbors denoted as TR in 7r;.NT, each of which has at least thr,
elements (timebins) in its corresponding list. Then, for each trajectory subset with
k trajectories TR, C TR, getSN(Tr;. TN, thr,) examines whether the trajectories TR
have the same thr; timebins in their lists of Tr;. NT'. If so, trajectories in TR, are
synchronized trajectory neighbors of Tr;. Tr; is not an SN-Outlier. If no synchronized
trajectory neighbor is found after all TR;s are examined, Tr; is an SN-Outlier.

Complexity Analysis. The INC algorithm detects three types of outliers by first
running a range query search for each trajectory at each new timebin. The complexity
is O(n?). Then, INC detects a PN-Outlier by checking the cardinality of each Tr;.tlist.
The cost is O(n). Thus, the overall complexity of PN-Outlier detection is dominated by
the range query whose complexity is O(n?).

TN-Outlier detection is much more expensive than PN-Outlier due to the extra cost
of having to maintain and traverse the neighbor table Tr;. NT to discover trajectory
neighbors. Its worst-case complexity is O(2n?). Therefore, the overall complexity of
TN-Outlier detection is determined by both the range query search and the lookup of
the full neighbor relationship produced by the range query.

After acquiring all the trajectory neighbors and neighboring timebins, SN-Outlier
detection still needs to examine whether the trajectory neighbors also form synchro-
nized neighbors of Tr;. Suppose that there are, on average, n’ trajectory neighbors and
w’ neighboring timebins per trajectory. Thus, there are C¥ combinations of & trajectory
neighbors. w’CfL’, neighboring timebins may be examined in the worst case for verifying
if each of the possible combinations corresponds to synchronized trajectory neighbors
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ALGORITHM 1: INC algorithm(PN-Outlier, TN-Outlier, and SN-Outlier)

Require: Trajectory Set DBr,., the current window W,, parameters: d, k, and thr;.
Ensure: three types of outliers

1: for each Tr; € DByg,. do

2:  foreach Tr; € {DByp. — Tr;} do

if ((PN(p”" d)| > k) then
Tr; tlist.add(W,.T,nq);
10: end if
11:  Tr;.tlist.remove(W,. Tgors — 1);
12:  //For PN-Outlier detection
13:  if (Tr;.tlist.size() < thr,) then
14: Tr; is PN-Outlier;
15:  end if
16:  //For TN-Outlier detection
17:  if (getTN(Tr; . TN, thr,).size() < k) then
18: Tr; is TN-Outlier;
19: endif
20:  //For SN-Outlier detection
21:  if (Tr; is PN-Outlier or Tr; is TN-Outlier) then
22: Tr; is SN-Outlier;
23:  else if (get SN(Tr;. TN, thr,).size() < k) then
24: Tr; is SN-Outlier;
25:  end if
26: end for

3: if (dist(p]"= ", p}“T) < d) then
4: Tr; NT .update(Trj, We. Tenq);

5: Tr; NT .remove(Tr;, W, . Tsre — 1);
6: end if

7:  end for

8:

9:

per each trajectory. Therefore, its worst-case time complexity is O(u/Cf}n). The overall
complexity of SN-Outlier detection is O(n?) + O(w'C%n). Since w' and n’ usually are
much smaller than n, the cost of SN-Outlier detection is close to the cost of TIN-Outlier
detection, as confirmed in our experiments (Section 7.3). Therefore, like TN-Outlier,
the time complexity of SN-Outlier is determined by the range query search and the
lookup of its result.

5. OPTIMIZED DETECTION FRAMEWORK

Although the INC algorithm for the current window detection fully reuses the neigh-
bor relationships collected in the previous window, it still incurs high computational
costs when the number (n) of the trajectories is large. This performance bottleneck is,
to a large degree, due to the O(n?) complexity of the expensive neighbor range query
search and the corresponding neighbor lookup operation as shown in the complexity
analysis presented earlier. To further drive down CPU and memory costs, we now
present our minimal examination (MEX) optimized framework. By proposing three
innovative optimization principles—minimal support examination, time-aware exam-
ination, and lifetime-triggered detection—the MEX framework thoroughly eliminates
the performance bottleneck of the INC algorithm caused by its “range query search
first, outlier examination next” strategy.

5.1. Key Observations

Each trajectory in a window W is eventually classified as either outlier or inlier. A
trajectory will be labeled as inlier if sufficient neighbor evidence has been acquired for
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this object. This fact leads to an important observation. That is, to identify whether
a trajectory is a neighbor-based inlier, we may not need to find out all its neighbor
information. Instead, a potentially small subset of the full neighbor evidence often can
be sufficient to prove that it is an inlier. Similarly, a small subset of the nonneighbor
evidence might also be found to be sufficient in some cases to classify a trajectory as an
outlier. To characterize the least amount of information needed to prove Tr;’s status,
we define the concept of Minimal Support.

Definition 5.1 (Minimal Support). Given a stream trajectory outlier detection query
@ and a trajectory set DBy, in a window W, for a trajectory Tr; € DBy, if the evi-
dence pair (TR, T') composed of trajectory points and timebins with (TR = {Try, ... Tr,,
Trp |Tr, e DBr(1 <x <m)}, T = {t1, . St |t € (W, Tstare, We.Tgngl(1 < j <n)})
is sufficient to validate that Tr; is either inlier or outlier, and for any subset TR’ < TR
and T’ C T, the pair (TR, T') is not sufficient to prove T7r;’s status, then (TR, T')is a
minimal support of Tr; in W,.

This structure of minimal support characterizes the minimal amount of evidence for
identifying both inliers and outliers. This minimal support concept guides us to propose
the minimal support examination principle (Section 5.2.1) to optimize the trajectory
outlier detection process—in particular, to reduce the neighbor search and lookup costs
related to the range queries.

We also observe that the minimal support is not unique for a trajectory in each
window. That is, several distinct minimal support sets may exist because the definition
of the outlier only imposes a constraint on the neighbor evidence count, but not on
which particular neighbor evidence must be utilized.

Next, we introduce the second observation principle, Predicted Support in
Lemma 5.2. This principle guides our MEX framework to discover the best minimal
support (MS) for each trajectory.

LeEmMA 5.2 (PREDICTED SUPPORT). Given a stream trajectory outlier detection query
@, if the evidence pair (TR, T) is a minimal support of trajectory Tr; in W, as per
Definition 5.1, then (TR, T') is also a minimal support of Tr; in the subsequent windows
from W..1to W, where W, . Tgors = Min(T) and Min(T') corresponds to the minimal
timebin in T among all timebins of the minimal support set of Tr; in the current
window W..

Proor. By Definitions 3.4 and 3.6, the criteria we can use to determine the status
of a trajectory Tr; remains constant in each window. Therefore, as the stream slides
to a new window W, 1, if no element of a minimal support set (denoted as MS) of Tr;
expires, MS is still sufficient to determine the status of 7r; in W, ;. In Lemma 5.2,
Werw. Tstars = Min(T). Min(T) is the timebin arriving earliest in window W, among all
timebins in T'. Therefore, Min(T ) will be the first timebin in 7' that expires when the
stream moves from W, to any future window. Since the starting timebin W, . s+ of
W, is equal to Min(T), then W.,, will be the last window in which all elements of
MS are guaranteed to survive. However, (TR, T') continues to be minimal support for
Tr; in the windows from W, ; to W.,,. O

Lemma 5.2 reveals two promising opportunities for optimizing stream trajectory
outlier detection.

First, the status of Tr; can be predicted in certain future windows without first
having to observe all data points of these windows. This insight inspires us to intro-
duce the lifetime-triggered detection optimization principle in Section 5.2.3. Second,
the more windows a minimal support of 7r; covers, the less reevaluation effort will be
needed for Tr;. Therefore, acquiring the minimal support covering the longest window
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sequence with minimal CPU costs is critical for stream trajectory outlier detection. This
observation guides us to propose the time-aware examination optimization, as high-
lighted in Section 5.2.2.

5.2. Optimization Principles

Based on our minimal support and predicted support observations, we now are ready
to propose three fundamental principles for optimizing the stream trajectory outlier
detection process.

For each principle, we first illustrate its impact on PN-Outlier and TN-Outlier. Given
the relationships laid out in our taxonomy in Section 3.3, we then can leverage the
results from these first two types of trajectory outliers to also support the third type of
SN-Outlier detection. Thus, SN-Outlier equally benefits from these principles.

5.2.1. Minimal Support Examination Optimization. Leveraging the minimal support obser-
vation (Definition 5.1), the minimal support examination principle eliminates the com-
plete and thus expensive point neighbor search for each trajectory adopted by the INC
algorithm.

PrincipLE 1 (MINIMAL SupPPORT EXAMINATION OR MSE). Given a trajectory outlier de-
tection query @ and the trajectory set DBy, of window W,., when evaluating a trajectory
Tr; € DBy, the minimal support examination principle suggests that the status
determination process of Tr; can be terminated as soon as k neighbors have been found.

This principle aims to prove the status of a given trajectory Tr; by discovering only
a small subset of its neighbors instead of searching through its complete neighborhood
to classify all points with respect to their neighbor relationship with 7r;. As shown in
Corollaries 5.3 and 5.4, this principle is equally applicable to both PN-Outlier and TN-
Outlier detection, although they each apply different concepts of neighbor semantics,
respectively.

CoroLLARY 5.3. Given a PN-Outlier detection query Q in window W, a timebin t;
can be safely classified as a neighboring timebin of Tr; if k point neighbors have been
acquired for Tr; at t;.

CoROLLARY 5.4. Given a TN-Outlier detection query @ in window W, a trajectory Tr;
can be safely classified as a TN-Inlier if k trajectory neighbors have been identified for

1+

The proof of Corollaries 5.3 and 5.4 directly follows from the definition of neighboring
timebin (Definition 3.4) and TN-Inlier (Definition 3.6), respectively.

The MSE principle enables us to design a lightweight neighbor search operation
called Examining to replace the range query operation.

Definition 5.5 (Examining operation). Given a trajectory Tr; in the window W,,
examining is an operation that evaluates the distance between the trajectory points
of Tr; and the corresponding points of other trajectories until either 2 neighbors (ei-
ther point or trajectory neighbors) are acquired or 7r;’s entire neighborhood has been
evaluated.

Since the neighbor-count threshold % is much smaller than the average number of
the neighbors that we expect each trajectory may have, this examining operation is
fundamentally more efficient than the full range query search. Here, we intuitively
justify this observation.

In our neighbor-based outlier detection concept, a trajectory is an outlier if it has
fewer than % neighbors. If we set % to be close to the average number of the neighbors
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of all trajectories, then a large fraction of the trajectories will be identified as outliers.
However, outliers by nature constitute only a small portion of the general stream data
population. Otherwise, they would not be considered as outliers. Therefore, £ has to be
set much smaller than the average number of neighbors expected by each trajectory.
Otherwise, the false positive will be exceedingly high. Therefore, our examining oper-
ation that stops immediately once finding & neighbors is fundamentally more efficient
than a complete range query that aims to find al/l neighbors.

Furthermore, the MSE principle also guides us to optimize the acquisition process of
the minimal neighbor support by leveraging the moving property of trajectory objects.
For streaming trajectories, the objects continue to move and update their positions.
However, the movement of objects tends to be regular and gradual rather than er-
ratic and fast. Put differently, one object is likely to stay together with its neighbors
throughout several consecutive timebins. Therefore, in general, the neighbors in the
current window have a high probability to still be neighbors in the next window. The
MSE principle leverages this observation and guides us to always first search neigh-
bors for trajectory Tr; in the trajectories that had been the neighbors of Tr; instead of
randomly picking and testing a neighbor candidate when the status reevaluation of 7r;
is necessary in a new window.

5.2.2. Time-Aware Examination Optimization. Our second optimization principle, called the
time-aware examination, further optimizes the process of acquiring the timebin set T
of the minimal support pair (TR, T').

PrincIPLE 2 (TIME-AWARE EXAMINATION, OR TAE). Given the detection query @ and
a trajectory Tr; in the current window W,, the examining operation should identify
the neighbor evidence for trajectory Tr; from the most recent to the earlier unevaluated
timebins until either neighbor evidence is found at thr, timebins or nonneighbor evidence
is confirmed for (w — thry + 1) timebins.

The TAE principle has two implications. First, the examining operation should eval-
uate the unevaluated timebins in the latest time first order. Second, TAE provides
the criteria for the examining operation to terminate the neighboring timebin search
process. Similar to the MSE principle, TAE can equally be applied to PN-Outlier and
TN-Outlier.

For a PN-Outlier detection query with regard to parameters (d, &, thr;), the status of
a trajectory Tr; can be determined once either of the termination conditions shown in
the following lemmas is reached.

LeEmMA 5.6. Given a PN-Outlier detection query @, if a trajectory Tr; has already
acquired thry; neighboring timebins in the current window W,, then Tr; is a PN-Inlier in
W. as well as in the subsequent (t;-W,.Tstqr¢) windows, where t; is the oldest neighboring
timebin acquired by Tr;.

Proor. First, by Definition 3.4, Tr; is a PN-Inlier in W,. Second, V timebin ¢; € T,
t; > t;. Therefore, the minimal timebin in 7' (Min(T)) is equal to #. By Lemma 5.2,
Tr; thus is also a PN-Inlier in the subsequent windows from W.,; to W.,,, where
We v Tstars = t;. Therefore, Tr; is guaranteed to be a PN-Inlier in the next (&-W,.T'syqr¢)
windows. O

However, the status of Tr; after window W, (after ¢ expires) is uncertain because
the remaining evidence (¢hr;-1 neighboring timebins) is no longer sufficient to prove its
status. Therefore, #; is the furthest foreseeable timebin until which the status of Tr; is
guaranteed to be certain. We call ¢ the closed time of 7r; to be a PN-Inlier.
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Similarly, the TAE principle is also effective for the TN-Outlier semantics
(Lemma 5.7).

Lemma 5.7. Given a TN-Outlier detection query @, if Tr; has already acquired thr;
neighboring timebins with a given trajectory Try, in the current window W, then Tr; and
Tr., are guaranteed to be trajectory neighbors in W, and in the subsequent (t;-W..Tsiqrt)
windows, where t is their oldest neighboring timebin.

Proor. First, by Definition 3.2, Tr; and Tr,, are trajectory neighbors in W.. Second, all
the thr; neighboring timebins between 7r; and Tr,, will survive in the future windows
until timebin # expires. Therefore, Tr; and Tr,, also can be safely classified as trajec-
tory neighbors in the subsequent windows from W, to W, ., where W, . Tstrs = &.
Thus, Tr; and Tr,, are guaranteed to be trajectory neighbors in the next (&-W..T'so:)
windows. 0O

By Lemma 5.7, timebin # is subsequently called the closed time of 7r; to be a
trajectory neighbor of Tr,.

LemmaA 5.8. Given a TN-Outlier detection query @, if Tr; already has (w — thry + 1)
nonneighboring timebins with Tr,, in W, then Tr; and Tr,, are not trajectory neighbors
with each other in this window and the subsequent (t; — W..Tgqr:) windows, where t; is
their oldest nonneighboring timebin.

Proor. Since Tr; already has (w — thry + 1) nonneighbor timebins with 77, in the
window W,, then the number of remaining timebins is thr; — 1. Thus, even if they all
were neighboring timebins, 7r; and Tr,, would not be trajectory neighbors in W,. These
dominating nonneighbor timebins also will survive in next windows until # expires.
That is, Tr; and Tr,, are not trajectory neighbors in the subsequent windows until
expires. Thus, the number of next windows also is (-W,.Tq). O

For Lemma 5.8, Tr; and Tr,, would not be trajectory neighbors with each other until
timebin ¢ expires. Thus, we call  the open time of Tr; with regard to Tr,,.

By Lemmas 5.6 to 5.8, ; essentially determines the number of windows in which the
evidence collected in the current window will survive. Therefore, the timebin search
order of the TAE principle (from latest to earliest) effectively maximizes the reuse
probability of the previously searched evidence.

In summary, TAE aims to not only find the minimal timebin set sufficient to deter-
mine the trajectory’s status but also guarantees that the identified evidence is reused
for the longest subsequent number of windows. Together, the TAE and MSE principles
guide the examining operation to effectively gather the optimal minimal support for
each trajectory rather than conducting expensive and wasteful range query searches.

Finally, we describe the impact of the MSE and TAE principles on the SN-Outlier.
Similar to INC, to detect the SN-Outlier, we first search the neighbor evidence for both
the PN-Outlier and TN-Outlier types for each trajectory based on the MSE and TAE
principles. Then, if a trajectory Tr; is classified as both PN-Inlier and TN-Inlier, we
proceed to search for neighbor evidence to attempt to acquire £ synchronized trajectory
neighbors of Tr;.

Lemma 5.9. Given an SN-Outlier detection query @, if in the current W,, Tr; has al-
ready acquired thr; synchronized neighboring timebins with any k trajectory neighbors,
then Tr; is an SN-Inlier in W, and in the next (t; — W..Tgqr:) windows, with & the oldest
neighboring timebin.

Lemma 5.9 follows directly from Definition 3.8 and Lemma 5.2. #; is called the closed
time for Tr; to be an SN-Inlier.
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LemMa 5.10. Given an SN-Outlier detection query @, if in the current W., Tr; has
already discovered w — thr; + 1 nonneighboring timebins, then Tr; is an SN-Outlier in
W, and in the next (tf — W,.Tsqr) windows, with t; the oldest timebin in these timebins.

For Lemma 5.10, since Tr; has already acquired w — thry + 1 timebins that are not
neighboring timebins of 7r;, £ synchronized trajectory neighbors do not exist in the
current window. Furthermore, 7r; will not have % synchronized trajectory neighbors
until at least timebin ¢ expires. Thus, we call ; the open time of Tr; to be an SN-Inlier.

5.2.3. Lifetime-Triggered Detection Optimization. These two principles focus on how to op-
timize each single examining operation. To further reduce the computational costs,
we now introduce another optimization principle regarding the minimization of the
examining frequency, termed lifetime-triggered detection optimization (LTD). For that,
we first define the lifetime concept of a trajectory.

Definition 5.11 (Lifetime). Given a trajectory Tr; in the current window W, if Tr; is
guaranteed to keep its status (being inlier or outlier) until timebin #; fetime (We.T'stare <
bifetime < We.TEnq) expires according to the identified evidence, then #; fetime is called the
lifetime of 7r; in the current window W..

In other words, the lifetime of 7r; indicates the duration of its current status (outlier
or inlier).

Next, we introduce a methodology for identifying the lifetime of a given trajectory
for each of the three neighbor-based trajectory outlier definitions, respectively.

LeEmMA 5.12. Given a trajectory Tr;, the lifetime of Tr; to be a PN-inlier is the closed
time of Tr; in W..

Proor. Lemma 5.12 can be easily proven by Lemma 5.6. If Tr; is a PN-inlier, Tr; will
remain to be inlier until its close time expires by Lemma 5.6. O

Lemma 5.13.  Given a trajectory Tr;, the lifetime of Tr; to be a TN-inlier is
min{Tr;.closedTime|Tr; € TN}, where TN is the trajectory neighbor set of Tr; in W..

Proor. If Tr; is a TN-inlier, then by the MNP principle, 7r; has acquired k trajectory
neighbors. By Lemma 5.7, Tr; will continue to be a neighbor with the trajectory Tr;
until its closed time Tr;.closeT ime expires. Tr; would not lose any neighbors until the
minimal closed time of its k neighbors expires. Therefore, this minimal closed time is
the lifetime of Tr;. O

LeEmMA 5.14. Given a trajectory Tr;, the lifetime of Tr; to be an SN-inlier is the closed
time of Tr; in W.

The proof naturally follows from the closed time concept of an SN-inlier.
Next, we define the LTD optimization principle based on this lifetime concept.

PrinciPLE 3 (LIFETIME-TRIGGERED DETECTION). Given a trajectory Tr;, the examin-
ing operation will be triggered on Tr; if and only if the lifetime of Tr; holds with:
T'T'i llfetlme < Wc-Tstart-

By the LTD principle, the status of a trajectory is reexamined only when its lifetime
expires. This effectively transforms the continuous query execution into lifetime-
triggered execution. Whenever a trajectory is being reexamined, the examining oper-
ation that incorporates both MSE and TAE optimizations can be exploited to reestablish
the minimal support in the new window. It does so by only acquiring enough new evi-
dence rather than building a new minimal support from scratch. We call this enhanced
examining operation lifetime-aware examining (LIFT).
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Fig. 7. Architecture of MEX framework.

5.3. Minimal Examination Framework

The high-level architecture of our MEX framework is depicted in Figure 7. Similar to
the INC algorithm, the MEX framework utilizes the Tr;.tlist and Tr;.NT structures to
store the metadata. Therefore, it also leverages the overlap of the adjacent windows in
the sliding window stream.

Then, the MEX framework continuously detects the trajectory outliers by conducting
the LIFT operation on each trajectory. Given a trajectory 7r;, the LIFT operation is not
triggered if W,..Tsiors < Tr;lifetime. Once triggered, LIFT employs both of the MSE
and TAE principles to establish the new minimal support. The status and lifetime of
Tr; are also updated based on the new minimal support. Finally, it outputs the outliers
of the current window. The detailed description of the algorithm specific to each of the
trajectory outlier definitions is described in the following section.

6. MEX-BASED TRAJECTORY OUTLIER DETECTION ALGORITHMS

Data Structure Design. We first introduce the compact Cyclic Bit Vector (CBit)
as core data structure for the implementation of the MEX-based trajectory outlier
detection. Given a sliding window query @ with window size w, the CBit for each
trajectory is a w-length bit vector. Each bit denotes the status of the trajectory at the
corresponding timebin. For example, the neighboring timebin list 7r5.tlist of trajectory
Trs in Figure 5 is encoded as a 4-length bit vector. The first bit indicates the status of Tr;
for the first timebin of W1, namely, W1.Ts;,,+. Correspondingly, the last bit indicates the
status of Tr; for the last timebin W1.Tg,,. After the stream slides to the next window
Ws, we simply shift the CBit with the new ending timebin, overwriting the old start
timebin bit. The rest of the bits remain physically unchanged, although semantically
they now represent different windows. The CBit structures of Trs.tlist for windows
W1 and W, are shown in Figure 8, with 1 indicating a neighboring timebin and 0 a
nonneighboring timebin.

6.1. The Optimized PN-Outlier Algorithm

Algorithm 2 shows the optimized PN-Outlier detection algorithm as an extension of
the MEX framework, named PN-Opt. For each trajectory Tr;, Tr;.untlist maintains the
unchecked timebins in the current window, while Tr;.ntlist and Tr;.tlist correspond
to the lists of nonneighboring and neighboring timebins of Tr;, respectively. The LTD
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ALGORITHM 2: PN-Opt Algorithm (PN-Outlier detection using MEX framework)

Require: Trajectory Set DBy, the current window W., parameters: d, k, and thr;.
Ensure: outliers
1: Get DBy < (W..Tstors — 1).triggered,
2: for each Tr; € DB, do
3:  for each t; € Tr;y.untlist from W,.Tg,, to head do
if (true == Tr; LIFT.MSEInHistory(¢;)) then
Tr; tlist.add(t;);
else if (true == Tr; LIFT.MSEInNewTrajectory(t;)) then
Tr; tlist.add(t;);
else
Tr;.ntlist.add(t;);
10: end if
11: Tr;. LIFT.T AE();
12: end for
13:  if (Tr;.tlist.size() < thr,) then

14: Tr; status=PN-Outlier;
15: else

16: Tr; status=PN-Inlier;
17:  end if

18:  Tr;.updateLifetime();
19:  Lifetime.triggered.add(Tr;);
20: end for

(lifetime-triggered detection) optimization is employed first (Line 1). That is, only the
trajectories whose lifetime has expired are reexamined in the current window. For
these triggered trajectories that must be examined, PN-Opt utilizes the MSE (mini-
mal support examination) optimization principle to acquire new neighboring timebins
(Lines 4-10). More specifically, PN-Opt first checks whether Tr; can acquire £ point
neighbors in the new timebin by searching through the trajectories that have been
neighbors with Tr; in at least one other timebin, shown as Tr; LIFT.MSEInHistory(t;)
(Line 4). The other remaining trajectory points will be tested only if Tr; still has not
acquired £ point neighbors (Tr; LIFT.MSEInNewTrajectory(¢;), Line 6). Then, the TAE
principle is be utilized to determine whether the neighboring timebin search process
should be terminated, namely, whether thr; neighboring timebins or w — thr; + 1 non-
neighbor timebins have been acquired in the new window, denoted by Tr; .LIFT.TAE()
(Lines 3 and 11). Finally, the lifetime of Tr;, utilized by the LTD principle to deter-
mine whether the status of 7r; should be reexamined, is updated (Lines 18 and 19).
Lifetime.triggered.add(Tr;) adds Tr; into the triggered list of the timebins of its life-
time.

6.2. The Optimized TN-Outlier Algorithm

Algorithm 3 utilizes the MEX framework to solve the TN-Outlier detection problem.
Here, Tr; NT denotes the neighbor table of Tr;. Each element of Tr; .NT contains three
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ALGORITHM 3: TN-Opt Algorithm (TN-Outlier detection using MEX framework)

Require: Trajectory Set DBr,., the current window W,, parameters: d, k, and thr;.
Ensure: Outliers

1: Get DBy < (W..Tstos — 1).triggered,

2: for each Tr; € DB}, do

3: foreach Tr,, € Tr.NT .keys do

4: Tr; LIFT.TAE(Tr,,);

5: Tr; LIFT.MSE();
6: end for
7.
8

if (false == Tr;.getkNeighbors()) then
: for each Tr,, € (DBp. — Tr.NT.keys) do
9: Tr; LIFT. TAE(Tr,,);

10: Tr; LIFT.MSE();

11: end for

12: if (false == Tr;.getkNeighbors()) then
13: Tr; .status=TN-Outlier;

14: else

15: Tr; .status=TN-Inlier;

16: end if

17  end if

18:  Tr;.updateLifetime();
19:  Lifetime.triggered.add(Tr;);
20: end for

parts: tlist, ntlist, and untlist. untlist maintains the unchecked timebins between Tr;
and some trajectory Tr;, while ntlist and tlist are the lists of nonneighboring and
neighboring timebins between 7Tr; and Tr;. Similar to Algorithm 2, the TN-Opt algo-
rithm also employs the LTD optimization first to check if the lifetime of 7r; has expired
(Line 1). If so, then T'N-Opt assesses the status of Tr; again.

TN-Opt first applies the TAE optimization principle (Lines 4, 9) to test whether a
given trajectory Tr; is a trajectory neighbor of Tr;. Starting from the latest timebin, TN-
Opt keeps testing the trajectory points at the unchecked timebins in untlist between
Tr; and Tr; until point neighbors at thr; timebins are found. By the MSE principle
(Lines 5, 10), the trajectory neighbor search process stops immediately after Tr; ac-
quires sufficient (k) trajectory neighbors or the trajectories have been tested. Finally,
the lifetime of Tr; is updated (Lines 18, 19).

6.3. The Optimized SN-Outlier Algorithm

The optimized SN-Outlier detection algorithm called SN-Opt is shown in Algorithm 4.
Similar to TN-Opt, SN-Opt also has four key data structures: Tr;.tlist, Tr;.ntlist,
Tr;.untlist, and Tr;. NT . However, each element of Tr;. NT maintains only ¢/ist and
ntlist. As analyzed in Section 3, the SN-Opt algorithm first detects whether Tr; is a
PN-Outlier or TN-Outlier (Lines 3-5). If Tr; is neither of them, then and only then
we need to check whether the condition of | () 7r;.NT}.value| > thr; holds. That is, Tr;
is classified as an SN-Inlier if k synchronized trajectory neighbors are discovered. If
Tr; cannot be classified as an SN-Inlier by utilizing the neighbor information collected
in the PN-Outlier and TN-Outlier detection procedure, we continue to apply the TAE
principle to locate new neighboring timebins for Tr; (Lines 7-9). If £ synchronized
trajectory neighbors are still not acquired after all timebins of the existing trajectory
neighbors are traversed, we continue to locate new trajectory neighbors for 7r; using
the MSE optimization in Lines 10 to 12. The final status of Tr; will be determined after
all the trajectories have been evaluated (Lines 13 to 16) and the lifetime of Tr; will be
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ALGORITHM 4: SN-Opt Algorithm (SN-Outlier detection using MEX framework)

Require: Trajectory Set DBy, the current window W., parameters: d, &, and ¢hr;.
Ensure: Outliers

1: Get DBy < (W..Tstors — 1).triggered,

2: for each Tr; € DB, do

3:  PNOutlierDetection(Tr;) and record Tr; NT

4:  if Tr; status # PN-Outlier then

5: TNOutlierDetection(Tr;) and record Tr;.tlist, Tr;.ntlist and Tr;.untlist;
6: if Tr; status # TN-Outlier then

7: while |&Tr; NTy.tlst| < thr; do

8: check unevaluated timebins by 7r;.LIFT. TAE();

9: end while

10: while |&Tr; NT}.tlist| < thr; do

11: check unevaluated trajectories by Tr; LIFT.MSE();
12: end while

13: if |&Tr; NT}.tlist| < thr, then

14: Tr; .status=SN-Outlier;

15: else

16: Tr; .status=SN-Inlier;

17: end if

18: end if

19: end if

20:  Tr;.updateLifetime();
21:  Lifetime.triggered.add(Tr;); break;
22: end for

updated (Lines 20 and 21). As shown in Lines 7, 10, and 13, the synchronized trajectory
neighbors can be efficiently located by using the &Tr;.NT}.tlist bit manipulation.

6.4. Complexity Analysis

PN-Opt detects outliers by conducting the LIFT operation at each new timebin per
trajectory. Suppose that there are, on average, n’ point neighbors out of n points at each
timebin per trajectory and the outlier rate is, on average, « in each window. To confirm
that a trajectory is a PN-Outlier, LIFT has to conduct a range query to prove that the
new timebin is a nonneighboring timebin. Thus, the cost is O(n). On the other hand,
to confirm that a trajectory is a PN-Inlier, the cost is, on average, O(’%) for acquiring
k point neighbors in a timebin. Therefore, the overall cost is O(an? + (1 — a)%nZ). In
general, the outlier rate « is very small and % is also set much smaller than the average
number of neighbors, as described in Section 5.2.1. Thus, PN-Opt is fundamentally
more efficient than INC, with complexity being O(n?).

TN-Opt detects the TN-Outlier by utilizing LIF'T to discover & trajectory neighbors.
Suppose that there are, on average, n’ trajectory neighbors out of n trajectories per
trajectory and outlier rate is, on average, « in each window. To confirm that a trajectory
is a TN-Outlier, LIFT has to examine all n trajectories. In the worst case, the complexity
is O(wn). On the other hand, to confirm that a trajectory is a TIN-Inlier, the complexity to
acquire k trajectory neighbors is, on average, O(w %’7). Therefore, the overall complexity
is O(awn? + (1 — a)wL£n?). Again, the outlier rate « is very small, and % is much smaller
than the average number of the trajectory neighbors n’ < n. Thus, TN-Opt is lightweight
compared to INC, with INC’s complexity O(2n?) for detecting TN-Outlier.

Similar to the INC algorithm, given a trajectory Tr;, SN-Opt has to examine whether
its trajectory neighbors also form synchronized neighbors. Suppose that there are,
on average, n’ trajectory neighbors and w’ neighboring timebins per trajectory. w/C,}j
neighboring timebins might need to be examined to verify whether a combination of &
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Table I. Description of Experimental Datasets

‘ Datasets ‘ # of objects ‘ # of data points ‘ # of dim | Duration of time Area ‘
Taxi 10357 15,000,000 2 7 days Beijing
GMTI 150 100,000 3 6 hours Military base
MOD 5000 2,400,000 2 500 timebins San Francisco

trajectory neighbors is also a synchronized trajectory neighbor set of 7Tr;. Therefore, its
worst-case time complexity is O(w’C,’jn). The overall complexity of SN-Opt detection is

Olewn? + (1 — a)wkn? + w'Chn).

7. EXPERIMENTAL EVALUATION
7.1. Experimental Setup

All algorithms are implemented in JAVA in the CHAOS stream engine [Gupta et al.
2009]. CHAOS supports multidimensional data and count-based/time-based sliding
window streaming. The arrival rate of the streaming data also can be dynamic tuned
in the CHAOS engine. In our experiments, the arrival rate is fixed as 500k tuples per
second. Our experiments are performed on a PC with a 3.4G Hz Intel i7 processor and
6GB memory, which runs the Windows 7 OS.

Datasets. The Taxi dataset is the real GPS trajectory data generated by 10,357
taxis in a period from February 2 to February 8, 2008 in Beijing [Yuan et al. 2013,
2010]. The total number of points in this dataset is about 15 million. The average time
interval between two points is around 177s. To model timebins, we interpolate the time
granularity to Ilminm per timebin.

The GMTI (Ground Moving Target Indicator) dataset [Entzminger et al. 1999]
records the real-time trajectories of 150 moving objects gathered by 24 different data
ground stations or aircraft in 6h. It has around 100,000 records regarding the in-
formation of vehicles and helicopters moving in a certain geographic region. In our
experiment, we used all 3 dimensions of GMTI while detecting outliers based on the
targets’ latitude, longitude, and altitude.

We use the Moving Objects Database (MOD) generated by Thomas Brinkhoff’s
network-based moving object generator [Brinkhoff 2002] using real road networks. This
dataset contains 5,000 trajectories of moving objects. Each trajectory has 500 timebins.
This dataset models the traffic condition in the San Francisco Bay Area.

Table I shows the attributes of our three datasets. For one trajectory, multiple values
are collected in one timebin. We currently adopt the latest value, though another
methodology could be chosen, such as the average among these points. This does not
affect our proposed methodology. On the other hand, if no value is observed in one
timebin ¢;, we utilize the values in the last two timebins #_s and #_1, and estimate
the value of timebin ¢ by assuming that the moving object follows a linear model. This
method effectively supports trajectory data with different sampling rates. Again, in the
future, other methods for dealing with missed values could easily be plugged in and
would be orthogonal to our methodology.

Metrics and Measurements. We evaluate both (1) the effectiveness of our outlier
definitions and (2) the efficiency of our MEX outlier detection algorithms.

For the effectiveness evaluation, we measure the quality of reported outliers by Pre-
cision, Recall, and F-Score as follows:

Precision = M Recall = M

| Do | | Rol
where R, denotes the set of annotated outliers in a dataset, that is, the real outliers that
correspond to our ground truth and D, denotes the outliers detected by our algorithms.

precision x recall

, F-Score = 2 % — )
precision + recall
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Fig. 9. Effectiveness with regard to timebin count threshold ¢Ar; (GMTI data).

For the efficiency evaluation, we measure two metrics common for stream systems:
CPU processing time averaged per window and peak memory consumption.

7.2. Effectiveness Evaluation

We evaluate the effectiveness of the new proposed outlier definitions compared with
the state-of-the-art TRAOD [Lee et al. 2008] by measuring the precision, recall, and
F-Score on the GMTI, Taxi, and MOD datasets.

For the GMTI dataset, we use the outlier set manually labeled by the experts as the
ground truth R,. In this GMTI dataset, the moving objects (vehicles, helicopters, or
soldiers) are divided into 3 units. The members of each unit are expected to operate
as a team. If they do not continuously stay close to other team members, they will be
labeled as outliers.

For the Taxi dataset, the ground truth outlier set R, is produced by a user study. In
this user study, 100 sets of trajectories were selected from the Taxi dataset. Each set
contains 10 trajectories within 30 consecutive 6min windows. We invited 50 users from
both Worcester Polytechnic Institute (WPI) and University of Science and Technology
Beijing (USTB) as participants. The users, including both undergraduate and graduate
students, were divided into 5 groups. Each group was assigned 10 sets of trajectories.
The participants were asked to mark trajectories in each set that they believe are most
likely outliers. Each trajectory marked by at least 5 users is labeled as a “real” outlier.

For the MOD dataset, we label outlier moving objects by considering their location
and velocity attributes. Thus, the labeled outliers (the outlier cars) include two cat-
egories: vehicles that always drive at the urban edges and vehicles that drive in the
downtown area but with extremely high or low speed compared to normal city traffic.

For all effectiveness experiments, we vary the thresholds 2 and ¢hr; to investigate
how Precision, Recall, and F-Score are impacted. The d threshold is fixed at 200 meters,
200 meters and 300 meters for MOD, GMTI, and Taxi data, respectively. The window
size is fixed to 15 for the experiments with all three datasets.

GMTI Data. The results for the GMTI data are shown in Figures 9 and 10. We fix & to
4 and thr; to 10 by default when varying each one of the two thresholds. In Figures 9(a)
and 10(a), the Precision of PN-Outlier, TN-Outlier, and SN-Outlier is nearly 100% once
the parameters k£ and thr; fall in a rather large range (¢hry < 9 and & < 5). All three are
superior to TRAOD with respect to Precision in all tested cases. On the other hand,
the Recall of both PN-Outlier and TRAOD (Figure 9(b) and Figure 10(b)) are much
worse than TN-Outlier and SN-Outlier. The reason is as follows. Since PN-Outlier
would not classify an object as outlier if there are a sufficient number of moving
objects in its vicinity, sometimes PN-Outlier might fail to locate the object separated
from its own unit. TRAOD only discovers the outlier t-partitions that are distant from
other line segments of all trajectories in the spatial domain. However, the distance
function for line segments proposed in TRAOD is not well suitable for the scenario in
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Fig. 11. Effectiveness with regard to timebin count threshold thr; (Taxi data).

which objects may move in any direction because it does not satisfy the rule of triangle
inequality. This is also reflected by the Precision of TRAOD in Figures 9(a) and 10(a).

As depicted in Figures 9(c) and 10(c), SN-Outlier again outperforms TN-Outlier, PN-
Outlier, and TRAOD in F-Score in most tested cases. Although the Recall of TN-Outlier
is also good and robust, as shown in Figure 9(b), the parameter range that leads to
good recall does not overlap with the parameter range that produces good precision
results (Figure 9(a)). This is because, to classify one trajectory as normal (inlier), TN-
Outlier does not require the neighbors of that trajectory to move in a synchronized way,
that is, at the same pace. Therefore, TN-Outlier might fail to recognize the moving
objects that occasionally travel together with the members of different teams instead
of strictly taking the expected route of their own team. For the SN-Outlier, a large
range of parameter settings produce both good precision and recall. The reason is that
SN-Outlier will classify all trajectories as outliers if they do not have neighbors that
consistently follow a similar route, even if they happen to stay close to others at times.
Therefore, SN-Outlier fits the scenario of the GMTI data among all contenders.

Taxi Data. We also investigate the effectiveness of PN-Outlier, TN-Outlier, SN-
Outlier, and TRAOD approaches for analyzing outliers in the Taxi data. We fix % to
5 and thr; to 11 when varying one of them. As shown in Figures 11(a), 11(b), 12(a),
and 12(b), PN-Outlier shows nearly 100% Precision and Recall for a large range of
parameters 2 and thr;. However, the Precision of both TN-Outlier and SN-Outlier is
significantly worse than that of PN-Outlier, although their Recall is as good as that of
PN-Outlier.

The spatial outliers discovered by TRAOD are most likely a subset of those detected
by PN-Outlier in this traffic scenario. That is why the Precision of TRAOD is as good
as that of PN-Outlier, but the Recall of TRAOD is much worse than that of PN-Outlier,
meaning it cannot identify all outliers. In this user study, we observe that the partici-
pants tend to classify a taxi as an outlier if it always moves alone, because intuitively
taxis do not necessarily move together with others as a group. Therefore, the behavior
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of a taxi driver will be considered as abnormal by the participants if it tends to operate
in areas that other drivers rarely visit. Put differently, those taxis are isolated from
others most of the time. As shown in Figures 11(c) and 12(c), the F-Score of PN-Outlier
is much better than the other three definitions in a rather large parameter range. That
is, this scenario fits the PN-Outlier model better than TN-Outlier and SN-Outlier, since
the later TN-Outlier and SN-Outlier tend to misclassify the taxis as outliers if they
lack consistent companions.

MOD Data. We also evaluate the effectiveness of the three outlier definitions in
comparison to TRAOD using the MOD data. We fix k£ to 10 and tAr; to 9 for the ex-
periments unless either & or thr; is explicitly varied. As shown in Figures 13(a), 13(b),
14(a), and 14(b), TN-Outlier shows between 90% to 100% Recall, very good Precision,
and thus consistently a good F-Score in most tested cases. The reason is as follows. In
the MOD traffic scenario, the vehicles usually drive on the main streets with several
cars in front of or behind them. During a certain time interval, the cars with normal
velocity consistently travel with other cars that move at a similar speed. However,
these cars might not strictly move together as a motorcade. Although the cars with

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 10, Publication date: April 2017.



Outlier Detection over Massive-Scale Trajectory Streams 10:29

higher or lower speed on the main road also have neighboring cars, their neighboring
cars may change by overtaking or by being overtaken continuously. Thus, this scenario
fits TN-Outlier the best.

On the other hand, although the Precision of PN-Outlier is also fairly robust, as shown
in Figure 14(a), its Recall is barely satisfactory compared to TN-Outlier, as shown in
Figure 14(b). The reason is that PN-Outlier misses the “abnormal” cars that happen
to be moving on the main road together with other vehicles, yet they are speeding
or are driving at a low speed. TRAOD suffers from the same problem, discovering
only specific spatially outlier t-partition trajectories. This causes low Recall but high
Precision, meaning that these trajectories detected as outliers are true outliers. In
contrast, SN-Outlier instead exhibits good results for Recall (Figures 13(b) and 14(b))
similar to TN-Outlier. However, its Precision is poor (Figures 13(a) and 14(a)). SN-
Outlier classifies the vehicles as outliers if they do not drive together as a convoy.
However, unlike the military units in GMTI data, in fact, the cars on the road are not
expected to move strictly together. Therefore, SN-Outlier tends to classify too many
vehicles as outliers due to its overstrict neighbor criteria.

Summary. In summary, this empirical study confirms the effectiveness of our new
proposed PN-Outlier, TN-Outlier, and SN-Outlier definitions in capturing distinct cases
of moving object outliers. Furthermore, it shows that the three definitions tend to cover
distinct application categories based on their respective semantics of what it means to
be considered as neighbors.

7.3. Efficiency Evaluation

Next, we evaluate the efficiency of our proposed outlier detection algorithms using
the Taxi data — the largest among our datasets. The performance of the MEX algo-
rithms is compared with our base INC algorithms (Section 4) and the state-of-the-art
TRAOD [Lee et al. 2008]. The INC algorithms support all classes of our proposed
outlier semantics and effectively leverage the overlap of sliding windows. We denote
the INC solution for PN-Outlier, T N-Outlier, and SN-Outlier detection as PN-INC,
TN-INC, and SN-INC, and the MEX-based solution as PN-Opt, TN-Opt, and SN-Opt,
respectively. TRAOD was proposed to detect outliers in a static trajectory database. In
this revision, we extend it to also support streaming trajectory data. More specifically,
we implement TRAOD to function in sliding window environments. After each slide,
TRAOD considers all trajectories of moving objects in the current window as static tra-
jectories. When the window slides, after removing the expired data and including the
new arrivals, TRAOD is applied again to update the outlier status of each trajectory in
the new window. We vary the most important parameters—the timebin count threshold
thr;, neighbor count threshold %, and the number of trajectories n—to (1) assess their
impact on our MEX framework versus the INC baseline and TRAOD and (2) evaluate
the impact of the parameter variations on the performance of each method.

7.3.1. Varying Timebin Count Threshold thr;.

CPU Processing Time. First, we evaluate the effect of varying the timebin count
threshold tAr; from 1 to the full window size. This varies the definition from very
relaxed (i.e., one trajectory 7Tr; is inlier, e.g., if only in 1 of w timebins ¢r; has the
needed % neighbors) to very strict (7r; must have & neighbors in all w timebins to be
considered an inlier). We fix the window size to 30, % to 4, and d to 200m. As expected,
our MEX-based algorithms are superior to the corresponding INC-based solutions with
regard to the CPU time in all cases (Figure 15). Among all these algorithms, TRAOD
is the slowest one, almost 118 times slower than SN-Opt, on average. This is because
TRAOD has to compute distances between new t-partitions and all t-partitions of
other moving objects to detect outlier subtrajectories. PN-Opt is 117 times faster than
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Fig. 15. Varying ¢thr; on taxi data.

PN-INC (Figure 15(a)). When thr; is equal to the full window, the outlier rates of the
three definitions are at their highest: 5%, 20%, and 20%, respectively. However, even in
these cases, the optimized algorithms still outperform their corresponding counterparts
31-, 5- and 4-fold, respectively.

We also notice that the INC algorithms are not sensitive to thr; since INC always tests
all timebins of each trajectory, whereas by employing the TAE optimization principle
(Section 5.2.2), MEX significantly reduces the distance calculation by only acquiring
the minimal yet sufficient evidence to prove the outlier status of each trajectory.

Memory Consumption. We see similar positive trends also for the memory usage
(see Figure 15(b)). That is, TN-Opt and SN-Opt each use, on average, 21% and 25% of
the memory consumed by their counterpart INC algorithms, respectively. This can be
explained by the fact that the MEX framework only maintains % trajectory neighbors
for TN-Outlier and SN-Outlier, while the INC solution aggressively stores all neighbor
information. As expected, the memory consumption of TN-Opt and SN-Opt increases
as thry increases, because more neighboring timebins have to be maintained for each
trajectory neighbor as the required neighbor count ¢Ar; rises.

As shown in Figure 15(b), the memory usage of PN-Opt, PN-INC, and TRAOD is very
small. PN-Opt and TRAOD use a little more memory than PN-INC. This is because
TRAOD also stores all neighboring t-partitions for each t-partition, which are used
to detect if the t-partition is an outlier. For each trajectory Tr;, PN-Opt stores the
trajectories that have point neighbors with 77; in the history to reduce the trajectory
search scope for acquiring new neighboring timebins. However, this extra memory
leads to huge gains in CPU processing resources (around 30 times faster than PN-INC
in the worst case, as shown in Figure 15(a)).

7.3.2. Varying Neighbor Count Threshold k. Next, we evaluate the performance of the seven
algorithms by varying the neighbor count threshold % from 4 to 100. To be classified as
an inlier, the number of neighbors that a trajectory Tr; needs to discover increases from
very few to a large number. That is, the inlier criteria for any trajectory 7r; changes
from very relaxed to strict. We fix the window size to 30, thr; to 15, and d to 200.

CPU Processing Time. Figure 16(a) demonstrates that the three MEX-based al-
gorithms clearly outperform their INC counterparts and TRAOD. The three MEX-
based algorithms save, on average, 91%, 56%, and 57% of CPU time compared to their
corresponding INC solution. Again, all proposed algorithms consistently outperform
TRAOD around 2 orders of magnitude in CPU time. As % increases, the CPU time of
the MEX-based solutions increases linearly since more neighbors have to be acquired to
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Fig. 16. Varying % on taxi data.

determine the status of a given trajectory. For PN-INC and TN-INC instead we observe
no sensitivity when varying k. This is because these two INC solutions determine the
status of Tr; always by first acquiring all neighbors with a complete range query search
independent from how large or small % is, while SN-INC consumes a little more CPU
time as k increases since it needs more time to find the £ synchronized trajectory neigh-
bors, as described in the section on complexity analysis (Section 4). We note that the
MEX-based solutions still outperform INC-based algorithms even for the extreme case
of £ = 100. In this case, the outlier rate is extremely high, 90%, and thus unrealistic as
an indicator for anomaly in this dataset.

Memory Consumption. TN-Opt and SN-Opt only use, on average, 55% and 60%,
respectively, of the memory compared to the INC-based algorithms (Figure 16(b)). As %
increases, they need to store more trajectory neighbors. Thus, their memory consump-
tion increases. As k increases to 100, the maximum value that we work with, TN-Opt
and SN-Opt use more memory than the INC-based solution. Again, this corresponds to
an unrealistic setting in this dataset that we do not expect to see in practice, as surely
90% of all data would not be considered as an “exception” (outlier) but rather the norm.

Similar to the varying timebin count threshold experiments, TRAOD, PN-Opt, and
PN-INC use much less memory than TN-Outlier and SN-Outlier detection algorithms.
However, as & increases, TRAOD also has to store more neighboring trajectories for
each t-partition. Thus, its memory consumption increases somewhat. PN-Opt and PN-
INC are not sensitive to £ with regard to memory, since they do not keep point neighbors
for each trajectory.

7.3.3. Varying Number of Trajectories n. We evaluate the scalability of our algorithms
in terms of the number of trajectories that they can simultaneously handle. In this
experiment, we randomly select from 1k up to 10k trajectories from the Taxi dataset.
We fix the window size to 30, k& to 4, and thAr; to 15. To eliminate the effect of variations
in the outlier rates, we stabilize the outlier rate in all cases to around 4% by slightly
adjusting the distance threshold d from 200m to 300m.

CPU Processing Time. As shown in Figure 17(a), the MEX algorithms exhibit much
better scalability than their INC-based counterparts and TRAOD. As the number of tra-
jectories increases, as expected, all algorithms require more time to process this larger
number of trajectories. However, the MEX algorithms increasingly outperform the INC-
based solutions as the number of trajectories increases because, unlike the INC solu-
tion, MEX avoids expensive range queries for the needed neighbor searches. Similarly,
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Fig. 17. Varying number n of trajectories on Taxi data.

as the number of trajectories increases, TRAOD spends more time on computing dis-
tances between t-partitions to update neighboring trajectories for each t-partition.

Memory Consumption. As shown in Figure 17(b), the memory consumption of all
algorithms increases as the number of trajectories increases because more trajectory
information must be stored. However, TN-Opt and SN-Opt both save more memory
than TN-INC and SN-INC as n increases, while the memory usage of PN-Opt, PN-
INC, and TRAOD remains consistently small.

8. CONCLUSIONS

In this work, we focus on the detection of abnormal moving objects in massive-scale
trajectory streams. After analyzing the requirements of stream trajectory applications,
we propose a novel taxonomy of neighbor-based trajectory outlier definitions. Our em-
pirical study on the GMTI, Taxi, and MOD data confirms that our definitions effectively
capture moving-object outliers in different real-world scenarios. Furthermore, we de-
sign an optimized MEX strategy scalable to big-data trajectory streams to detect these
new classes of outliers, rendering moving-object outliers detection practical in real-time
applications.

In the future, we will investigate whether other distance measures, such as Dynamic
Time Warping, would fit some categories of stream applications better than Euclidean
distance in detecting moving-object outliers. We will also investigate the opportunities
to further scale the detection of trajectory outliers by leveraging the distributed com-
putation power of computer clusters. Moreover, we will also explore the new outlier
approach that is able to detect outliers that are less similar to the majority trajectories
to further enrich the literature of stream trajectory outlier detection.
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