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Private Weighted Random Walk Stochastic
Gradient Descent

Ghadir Ayache

Abstract—We consider a decentralized learning setting in
which data is distributed over nodes in a graph. The goal is
to learn a global model on the distributed data without involving
any central entity that needs to be trusted. While gossip-based
stochastic gradient descent (SGD) can be used to achieve this
learning objective, it incurs high communication and compu-
tation costs. To speed up the convergence, we propose instead
to study random walk based SGD in which a global model
is updated based on a random walk on the graph. We pro-
pose two algorithms based on two types of random walks that
achieve, in a decentralized way, uniform sampling and impor-
tance sampling of the data. We provide a non-asymptotic analysis
on the rate of convergence, taking into account the constants
related to the data and the graph. Our numerical results show
that the weighted random walk based algorithm has a better
performance for high-variance data. Moreover, we propose a
privacy-preserving random walk algorithm that achieves local
differential privacy based on a Gamma noise mechanism that we
propose. We also give numerical results on the convergence of this
algorithm and show that it outperforms additive Laplace-based
privacy mechanisms.

Index Terms—Decentralized learning, random walk, impor-
tance sampling, local differential privacy.

I. INTRODUCTION

E CONSIDER the problem of designing a decen-
Wtralized learning algorithm on data that is distributed
among the nodes of a graph. Each node in the graph has
some local data, and we want to learn a model by mini-
mizing an empirical loss function on the collective data. We
focus on applications such as decentralized federated learn-
ing or Internet-of-Things (IoT) networks, where the nodes,
being phones or IoT devices, have limited communication
and energy resources. A crucial constraint that we impose is
excluding the reliance on any central unit (parameter server,
aggregator, etc.) that can communicate with all the nodes and
orchestrate the learning algorithm. Therefore, we seek decen-
tralized algorithms that are based only on local communication
between neighboring nodes. Privacy is our main motivation for
such algorithms since nodes do not have to trust a central unit.
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Naturally, decentralized algorithms come with the added ben-
efits of avoiding single points of failure and easily adapting to
dynamic graphs.

Gossip-style gradient descent algorithms, e.g., [1], are a
major contender for solving our problem. In Gossip algo-
rithms, each node has a local model that is updated and
exchanged with the neighboring nodes in each iteration.
Gossip algorithms can be efficient time-wise since nodes can
update their model in parallel. However, it incur high commu-
nication and energy (battery) cost in order to wait for all the
local models to converge. This diminishes the appeal of Gossip
algorithms for the applications we have in mind. Instead, we
propose to study decentralized algorithms based on random
walks. A random walk passes around a global model, and
in each iteration, activates a node which updates the global
model based on its local data. The activated node then passes
the updated global model to a randomly chosen neighbor. The
random walk guarantees that every cost spent on the commu-
nication and computation resources goes to improve the global
model. Therefore, it outperforms Gossip algorithms in terms
of these costs. In this article, we will study how the design
of the random walk affects the convergence of the learning
algorithm. Namely, we propose two algorithms that we call
Uniform Random Walk SGD and Weighted Random Walk
SGD and study their convergence. Moreover, we consider the
setting in which nodes do not completely trust their neighbors
and devise locally differential variants of these algorithms.

A. Previous Work

The two works that are most related to our work
are [2] and [3]. The work in [2] studies the random walk
data sampling for stochastic gradient descent (SGD). The work
of [3] focuses on importance sampling to speed up the con-
vergence; however, it is implemented for a centralized setting.

A line of work on random walk based decentralized algo-
rithm has been studied in the literature under the name of
incremental methods. Early works on incremental methods
by [4]-[6] have established theoretical convergence guaran-
tees for different convex problem settings and using first-order
methods of stochastic gradient updates. In [7], more advanced
stochastic updates is been employed, namely CIAG [8],
to improve the convergence guarantees for strongly convex
objective by implementing unbiased total gradient tracking
technique that uses Hessian information to accelerate con-
vergence; they show that their algorithm converges linearly
with high probability. The work of [2] proposed to speed-
up the convergence by using non-reversible random walks.
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In [9], the authors studied the convergence analysis of random
walk learning algorithm for the alternating direction method
of multipliers (ADMM).

Gossip-based algorithms are also popular approach that has
been widely studied, with application to averaging [10] and
various stochastic gradient learning [6], [11]-[13].

In terms of privacy, many works study differential privacy
mechanisms for SGD algorithms. One approach for privacy
is local differential privacy (LDP) [14], [15], where privacy
is applied locally, which is well-suited for decentralized algo-
rithms. Privacy mechanisms for SGD suggest protecting the
output of every iteration by output perturbation [16] or by
gradient perturbation and quantization (e.g., [17]-[20]).

B. Contributions

In our work, we are interested in decentralized settings
where the nodes have limited computation and communica-
tion power. Moreover, we assume that the nodes do not fully
trust each others with their data and require privacy guar-
antees. For these reasons, we focus on first-order methods
where the information exchanged between neighboring nodes
is restricted to the model at a given iteration, serving both our
communication and privacy constraints. Moreover, the update
step involves only the gradient of the local loss function but
no higher order derivatives, limiting the computation cost at
the nodes. In this constrained setting, we study the design
the random walk to speed up the convergence by simulating
importance sampling.

It is known that the natural random walk on the vertices
of a graph that picks one of the neighbors uniformly at ran-
dom, will end up visiting nodes proportionally to their degree.
The consequence of this is that the underlying SGD learning
algorithm will be effectively sampling with higher probability
the data on highly connected nodes. This sampling, which is
biased by the graph topology, may or may not be a good choice
for speeding-up the convergence of the algorithm, depending
on which nodes have the important data.

We propose two alternate Markov-Hasting sampling
schemes to address this bias, and study the convergence
of the resulting algorithms: (i) Uniform Random Walk SGD
Algorithm 1, in which all the nodes are visited equally likely
in the stationary regime irrespective of the node degrees. This
emulates uniform data sampling in the centralized case; (ii)
The Weighted Random Walk SGD Algorithm 2, in which the
nodes are sampled proportional to the gradient-Lipschitz con-
stant of their local loss function, rather than their degree. This
emulates importance sampling [3], [21] in the centralized case.

We study the rate of convergence of both algorithms. The
asymptotic rate of convergence of both algorithms is same
as that of the natural random walk, namely, O(kll—_q), where
k is the number of iterations and g € (%, 1). However, the
constants are different and depend on the gradient-Lipschitz
constants of the local loss functions and the graph spectral
properties. Our numerical simulations highlight how these con-
stants affect the non-asymptotic behavior of these algorithms.
we observe that in high variance data regime Algorithm 2
outperforms Algorithm 1, and the opposite happens in a low
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variance data regime. These observations are in conformity
with the behavior of importance sampling in [3] for the cen-
tralized case. This is expected since the random walks were
designed to achieve, in the stationary regime, the same sam-
pling strategy of the centralized case. The challenge, however,
is with the proof techniques, which build on the random walk
learning results in [2] and importance sampling in [3].

In addition, we propose a third algorithm, Private Weighted
Random Walk SGD (Algorithm 3), that ensures local differen-
tial privacy of the local data. We propose a privacy mechanism
that uses Gamma noise and characterize the tradeoff between
the noise level and the privacy level. We also give numerical
results on the convergence of Algorithm 3 and show that it
outperforms additive Laplace-based privacy mechanisms.

Parts of these results pertaining to Algorithms 1 and 2 have
already appeared in a conference paper [22].

C. Organization

The rest of this article is organized as follows. We formu-
late the problem in Section II. We present Algorithms 1 and 2
in Section III. We present the convergence result of both
algorithms in Section III-C. In Section IV, we define the
Gamma mechanism and propose a privacy-preserving version
of Algorithm 2. Finally, we present numerical results of our
algorithms in Section V. We conclude in Section IV. The
proofs of the technical results are deferred to the appendices.

II. PROBLEM DESCRIPTION
A. Problem Setting

Network Model: We consider a communication network rep-
resented by an undirected graph G(V, E) with V = [N] =
{1, ..., N} is the set of nodes and E C V x V is the set of
edges. Two nodes in G connected by an edge in E can commu-
nicate and exchange information. We refer to such two nodes
as neighbors. We denote the set of neighbors of a node i € V
by N (i), and its degree by deg(i) := [N (i)|. We assume that
the graph G is connected, i.e., there exits a path between any
two nodes in V. Moreover, we assume the presence of a self-
loop at every node, i.e., {(i,i) :i=1,2,...,N} C E. We
assume that the set A/ (i) does not contain i.

Data and Learning Objective: Each node i € [N] has a
feature vector x; € X C R4, where X is the feature space
and d is the number of features. Moreover, node i has a label
v;i € R corresponding to x;.

The objective is to learn a prediction function on the col-
lective data distributed over all the nodes by learning a global
model w € W, where W is a closed and bounded subset in
RY. Thus, an optimal model w* solves

N
o1
minimize le Fiw: xi, 1), (1)
where f;(.) is the local loss function at node i. We denote the
global loss function on all the data by

1 N
fon =+ i:ZIf,(w; Xi, Vi)
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We will assume convexity and gradient-Lipschitzness of the
local loss functions as described in Assumption 1.

Assumption 1: The local loss function f; for each node i €
V is a convex function on W € R? and has an L;-Lipschitz
continuous gradient; that is, for any w,w’ € W, there exists a
constant L; > 0 such that

[Vfiowy = VEW) [, < Li|w —w'],.

To solve the optimization problem in (1), we perform an
iterative stochastic gradient descent (SGD) method. At each
iteration k, one random node i in the network will perform a
gradient descent update and project the result back into the
feasible set VW as follows:

Wkl — Hw(w(k) _ y("Wf(w("))), )

where y® is the step size, w®) is the global model update at
iteration k, and @f (w®) is a gradient estimate of the global
loss function f(.) based on one node i local data. For con-
vergence guarantees [23], we use a decreasing step size that
satisfies

o0 oo
Y y® = to0, and Y Ik(y®)’ <400, (3)
k= k=1

In particular, we will take y® = kiq for 0.5 < g < 1 which
satisfy the conditions in (3).

Our goal is to implement a decentralized algorithm based
on a Markov random walk sampling decision on the graph G
to solve the learning problem in (1) with privacy guarantees,
as explained in the next two sections.

B. Random Walk Learning Algorithm

We seek a decentralized algorithm that will learn the model
w* without involving a central entity, and in which nodes
exchange information only with their neighbors. Towards that
goal, we design a random walk on G that activates the node
that it visits to update the global model based on the local
data of the activated node. The algorithm is initiated at one
node picked uniformly at random to be activated at the first
iteration to perform the update in (2). Afterwards, at every
iteration k = 1, 2, ..., the global model iterate w® ig passed
to a randomly chosen node /¥ € V to update it using its local
data. Given the connection constraint, at iteration k, the acti-
vated node i is a neighbor node of the previously activated
node i* D ie., i® e N(*=D). The process above defines
a random walk on G that we model by a Markov chain. The
sequence of active nodes i®) are the states of the Markov
chain with state-space V and transition matrix P that inher-
its the same connection structure of the underlying connected
graph G. For convergence guarantees, we will make the next
assumption:

Assumption 2: The Markov chain (i®);en defined on the
finite state space V with homogeneous transition matrix P
is irreducible and aperiodic and has a stationary distribu-
tion 7 on V.

The problem is to design the transition probabilities in P
to speed up the convergence of the decentralized algorithm by

only using the local information available to the nodes, namely
their degrees and Lipschitz constants.

C. Local Differential Privacy

In addition to designing a decentralized random walk learn-
ing algorithm that speeds up convergence, we aim for a
privacy-preserving algorithm to protect each node data from
being revealed by any other node including its neighbors.

We adopt local differential privacy (LDP) [14], [15] as a
privacy measure that is well-suited to our decentralized setting,
since we excluded the involvement of any central aggregator
that would coordinate the learning process. Accordingly, nodes
will share a noisy version of the messages that needs to be
exchanged with the neighbors in a way that ensures a desired
level of privacy for the nodes’ local data.

Consider a message M (x;) that is to be sent from node i to
one of its neighbors. M is a function of the node’s local data
M : X — M, where M is the image space. Let R : M —
ImgR be the privatization scheme that node i will perform
on the message to share. For any two possible data points
Xi, xé € X that could be owned by a node i, the (¢, §)-LDP
defined as follows:

Definition 1 (Local Differential Privacy) [14]: A random-
ization mechanism R is (¢, §)-LDP, if for any x;, xg e X and
for any r € ImgR, we have

P(R(M(x;)) =r) < e“P(R(M(x)) = r) + 6, 4)

where € > 0 quantifies the privacy level, and § € [0, 1]
quantifies the allowed probability of violating the privacy
bound [24], [25].

A drawback of LDP noising mechanisms is that it will affect
the utility of the exchanged messages and, as a result, slow the
convergence of decentralized learning algorithm. We propose
an LDP mechanism based on Gamma noise that achieves an
attractive tradeoff between privacy and convergence, and out-
performs generic additive-noise (Gaussian or Laplace) LDP
mechanisms.

For ease of reference, we summarize our notation in Table 1.

III. DECENTRALIZED WEIGHTED RANDOM WALK SGD

We focus in this section on the design of the random walk
learning algorithm without the privacy constraint. To decide
on the transition probabilities of the random walk, a natural
choice would be to pick the next node uniformly at random
from the neighbors of the current active node. This gives a
stationary distribution 7 proportional to the degree of each
node, i.e., w (i) ~ deg(i). Therefore, Assumption 2 implies the
fraction of time a node is activated is directly proportional to
its degree [26]. The effect of this random walk on the learning
algorithm is that, in the update step of (2) the data is sampled
proportional to the degree of the node that is carrying it. This
node degree biased sampling may not be a favorable choice
for speeding up the convergence of our decentralized learn-
ing algorithm. To counterbalance this bias, we propose two
alternate sampling schemes and study the convergence of the
resulting algorithms.
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TABLE I
NOTATION
g Graph representing the network
N Total number of nodes in G
14 Set of nodes in G
E Set of edges in G
deg (i) | Degree of node ¢
T Data feature vector of node %
Yi Data label of node ¢
fi Local loss function of node
L; Gradient-Lipschitz constant of f;
f Global loss function
w Data model
w* Data optimal model
w®) Model update at iteration k
sup L Maximum gradient-Lipschitz constant
inf L Minimum gradient-Lipschitz constant
L Average gradient-Lipschitz constant: L = w
i®) Node visited at time k
€ Privacy level
1-9 Privacy confidence level
T Stationary distribution for uniform random walk
Py, Transition matrix for uniform random walk
Tw Stationary distribution for weighted random walk
Py Transition matrix for weighted random walk
R (L;) | Noisy version of L;, output of the privacy mechanism
Tw, R Stationary distribution for noisy (private) weighted random walk

1) Uniform Random Walk SGD, in which all the nodes are
visited equally likely in the stationary regime irrespec-
tive of their degree. This guarantees that the data points
are eventually sampled uniformly at random irrespective
of the graph topology.

2) Weighted Random Walk SGD, in which the nodes are
sampled proportional to the gradient-Lipschitz constant
of their local loss function, rather than their degree. The
motivation is to achieve importance sampling [3], [21]
in a decentralized fashion.

A. Uniform Random Walk SGD

The Uniform Random Walk SGD algorithm aims at sam-
pling the data points held by the graph nodes uniformly at
random, similarly to what is done in standard centralized
SGD [27]-[29]. We achieve the uniform data sampling by
designing a random walk with a transition matrix P, using
only local node information, such that the chain converges to
the stationary distribution s, such that

] ! VieV
(i) = N’ ieV.
We implement the Metropolis Hasting (MH) decision rule to
design the transition probabilities, so the random walk con-
verges to the desired stationary s, [2], [26], [30]. The MH
rule can be described as follows:

1) At the Kt step of the random walk, the active node i®
selects uniformly at random one of its neighbors, say j,
as a candidate to be the next active node. This selection
gets accepted with probability

(k)
au<i(k),j> = min(l, %l@)).

Upon the acceptance, we have i*+1D = ;.
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Algorithm 1 Uniform Random Walk SGD

Initialization: Initial node i) chosen uniformly at random
from [N], Initial model w'" chosen uniformly at random
from W
for k=1to T do
@f(w(k)) = Vﬂ(w(k)).
Wkt — Hw(w(k) _ y(k)ﬁf(wdc)))
Choose node j uniformly at random from A/(i®).
Generate p ~ U(0, 1) where U is the uniform distribu-
tion.

deg(i®)
deg(j)

if p < min { 1,
l'(k-‘rl) (_J
else
D)
end if
end for
Return: w(™).

} then

2) Otherwise, if the candidate node gets rejected, the
random walk stays at the same node, i.e., kD — k)
Therefore, the transition matrix P, is given by

Py(i, j)

oy min [1, 4223 j#iand je NG,
= 1 : deg®) | . _ -

I_Zje/\/(i)mmm[l’ m} j=i, and

0 otherwise.

This random walk does conform with Assumption 2 and
it uses local information only. By the Ergodic theorem [26]
the above random walk that converges to a uniform stationary
distribution, samples all the states (nodes) uniformly at random
on the long-term run.

The Uniform Random Walk SGD implements the uniform
random walk through the MH rule above. And, once a node
is activated it updates the global model based on (2).

In Section III-C, we give the convergence analysis for this
algorithm.

B. Weighted Random Walk SGD

To speed up the convergence, we propose a decentralized
sampling that mimics centralized importance sampling, which
consists of selecting more often the more informative data
points [3], [21], [31]-[34]. In our analysis, we will take the
data importance to be reflected through the gradient-Lipschitz
constant of the node’s local loss function [3]. Again, we utilize
the MH decision rule for the random walk to achieve a sta-
tionary distribution proportional to the node gradient-Lipschitz
constant as follows

0 L; VieV
Tyw(l) = =N 1 .
Zj:l L
The random walk proceeds as previously explained, except for
the probability of accepting the candidate node, which is now

L; deg(i®
aw(i(k),j) =min<1, L deg(®) ) (5)

L deg())
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Algorithm 2 Weighted Random Walk SGD

Initialization: Initial node i) chosen uniformly at random
from [N], Initial model w» chosen uniformly at random
from W
Every node i shares L; and deg(i) it with its neighbors.
forAk =1toTdo

T 0) = 2V (+©)

Wkt — Hw(w(k) _ ,,(k)@f(w(k)))

Choose node j uniformly at random from N (i®).
Generate p ~ U(0, 1) where U is the uniform distribu-

tion.
. . L; deg( )
if p < min {1, L dez®) } then

D
else
jk+D 0
end if
end for
Return: w@™.

Consequently, the new transition matrix P,, generating the
weighted random walk is given by

Py (i, J)
Lj deg(i .. . .
ouy min { 1. r" = J#iandj € N(i),
= Lj deg(i)
- Z]e/\/(l) deg(l) min il i deg(;) } j=1i, and
0 otherwise.

C. Convergence Analysis

We summarize here our main results on the convergence
of Algorithms 1 and 2. Our aim is to characterize how the
design of the random walk affects the non-asymptotic rate
of convergence of the algorithms. To give a bit of context,
for convex and gradient-Lispchitz objective functions, central-
ized SGD has an asymptotic convergence rate in the order of
O(Lk) (after k iterations) for diminishing step-size and for
independent data sampling [35], [36]. For our decentralized
setting, in which data sampling is not independent and is con-
strained by the graph topology, random walk SGD algorithms
can approach the same rate of convergence for convex global
loss function [11, [2], [4], [5], [37]. Namely, for a step-size
y® = L with 1, < ¢ < 1, the work in [2] proves a rate of
convergence (’)( T ,q).

It was shown in [37] that Q(Lk), k being the num-
ber of SGD updates, is a fundamental lower bound on the
convergence rate for convex optimization within the stochas-
tic first-order oracle model with no access to independent
sampling.

Our proposed algorithms will also have this rate of conver-
gence. However, the choice of the random walk will affect the
constants in the rate of convergence and can lead to a speed-up
in the non-asymptotic regime. Theorems 1 and 2 characterize
these constants of our proposed algorithms.

We denote the eigenvalues of any the transition matrix P

of the random walk by A1 = 1 > A > --- > Ay, and define
max{[Az],| An]}+1

Ap =
Theorem 1 (Convergence of Algorithm 1): Under
Assumptions 1 and 2, the Uniform Random Walk SGD

(Algorithm 1) converges in the mean sense, i.e.,
lim E(f(w(k)) - f(w*)) —0. ©6)
k— o0

Moreover, its rate of convergence, for a step size y® = k]—q,

05<g<1,is

max{az, (supL)?, +]

=Y _ £ | — In(1/p,)

E[f(w ) Flw )] -0 e :
(7N

where, w® = — L Zf‘n=1 y™w sup L = maxjeyL;

Yt 7@
and the residual 05 = maxW*E[HVfi(w*)Ilg].

Note the technicality that the convergence is in terms of
w® instead of w®, which is weighted average of the w®s,
This is due to the proof technique. Next, we give the bound
on the convergence rate for the Weighted Random Walk SGD.

Theorem 2 (Convergence Rate of Algorithm 2): Under
assumptions 1 and 2, the Weighted Random Walk SGD
(Algorithm 2) converges in the mean sense, i.e.,

lem@E(f(M”) _ f(w*)) —0. )

Moreover, its rate of convergence, for a step size y® = qu

when 0.5 < g < 1, is

L 2 (7)\2 1
max{ma (L), 1n(1/xpw)}

kl-a

#f(5) -] =0
9)

where inf L = minjey L; and L = %

The results on the rate of convergence stated in the above
theorems show the tradeoff that the two random walks offer.
The weighted sampling for random walk SGD improves the
bound on convergence from being a function of supL to be
a function of the average L. However, it amplifies the effect
of the residual represented by o>. The numerical results will
show later that in high variance data regime resulting in a wide
range for the values of the Lipschitz constants, the improve-
ment brought by L dominates over the residual amplification,
so Algorithm 2 outperforms Algorithm 1. However, the oppo-
site happens for a low variance data regime where the data
variance is low, and therefore the gap between supL and L
is not significant. Therefore, these observations are in con-
formity with the behavior of importance sampling in [3] for
the centralized case. The proof of Theorem 1 follows the same
steps as in [2] with incorporation of the Lipschitzness assump-
tion and we provide it for completeness and for comparison
with Theorem 2. The detailed proofs for both theorems can
be found in Appendices A and B.
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D. Comparison to Gossip Algorithm

To better understand the performance of our two algo-
rithms, we compare them to Gossip algorithm. One of the
most common approaches of the Gossip algorithms is the syn-
chronous version [6], [31], [38]-[40], in which at every round,
all nodes exchange and update their local models. For convex
problems, the convergence rate is O(1 /ﬁ) [41], where k is
the algorithm round in which |£| communication links are
activated and O(N) computations are performed. Therefore,
the convergence rate as function of communication cost is
o(€&]/ k), and as a function of computation cost is O(N/ V).
However, the convergence rate of Algorithms 1 and 2 as a
function of computation and communication cost approaches
a rate of O(1/ «/E). That is because at each round at most!
one communication link is activated and one SGD update is
performed.

IV. DIFFERENTIAL PRIVATE RANDOM WALK SGD

In this section, we propose an LDP mechanism to be applied
to the messages exchanged within Algorithm 2 to make it
privacy-preserving. Algorithm 2 requires sharing two pieces
of information between two neighbouring nodes:

1) The gradient-Lipschitz constants: Algorithm 2 requires

every node i € V to share the gradient-Lipschitz constant
L; with all its neighbors to be able to implement the MH
rule of (5). This can leak important information about the
local data at the nodes. For instance, for linear regression
loss function, we have L; = N||x,-||%.

2) The model updates: An activated node needs to receive
the latest updated version of the model w¥), which nat-
urally contains information about the data on the nodes
visited so far.

The literature on privacy-preserving SGD has extensively
studied the problem of designing LDP mechanisms for
the model update or the gradient through model perturba-
tion (e.g., [16]) or gradient perturbation and quantization
(e.g., [17]-[20]). Within that space of works, the new aspect of
our problem is the sharing of the gradient-Lipschitz constants.
For this reason, we focus in our analysis on characterizing how
sharing privatized (noisy) versions of these constants would
affect the random walk learning algorithm, and assume that
the models are shared in the clear.?

We propose Algorithm 3 which is a modification of
Algorithm 2 that makes it privacy-preserving by adding an
LDP mechanism on the gradient-Lipschitz constants. We
define this mechanism below and refer to it as the Gamma
mechanism.

Definition 2 (Gamma Mechanism): The Gamma mecha-
nism takes as input the gradient-Lipschitz constant L; of node i

! The upper bound on the number of activated links stems from the fact that
in Algorithms 1 and 2 a node will probabilistically choose to perform multiple
updates on its data in consecutive rounds without exchanging information with
its neighbours, making these rounds communication-free.

2Privacy mechanisms for hiding the model, through adding noise or quan-
tization, can be used in conjunction with the mechanism we propose here for
protecting the gradient-Lipschitz constants. However, this is not the focus of
this article and we defer the analysis of such schemes to a future work.
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Algorithm 3 Private Weighted Random Walk SGD

Initialization: Initial node i) chosen uniformly at random
from [N], Initial model w» chosen uniformly at random
from W.
Every node i computes R(L;) and shares it along with deg(i)
with its neighbors.
for k=1to T do

o Ky _ L k

97 (wh) = 2 fao (w0)

Wkt — Hw(w(k> _ y<k>Vf(w<k>)>

Choose node j uniformly at random from A (i(k)).
Generate p ~ U(0, 1) where U is the uniform distribu-
tion.

ifpfmin{l

RAL;) deg(i®)
> R(Lyky) deg(i)

} then
kD g
else
jk+D) k)
end if
end for
Return: w™.

and outputs
L
R(L;) ~ Gamma(;, 9),

where 6 > 0 is a noise parameter that controls the privacy
level.

As a reminder, the probability density function of a random
variable L distributed according to Gammal(k, ) with a shape
k > 0 and scale 6 > 0 is

lk_le_é, for [ >0,

pe.L() = ook
where I'(z) = fooo wle ™ du for z > 0.

If k is an integer, the Gamma distribution can be inter-
preted as the sum of k exponential random variable with
mean 6 [42]. Computing the mean and the variance of R(L;),
we get the mean ER[R(L;)] = %9 = L;, and the variance
vRIR(L;)] = L;® and thus 6 determines the noise level in the
Gamma mechanism.

Accordingly, we obtain Algorithm 3 that we call Private
Weighted Random Walk SGD:

In this algorithm, each node i applies the Gamma mech-
anism to its constant L; only once and shares R(L;) with
its neighbors before the start of the random walk. These
fixed values R(L;)’s are then used throughout the algorithm.3
The stationary distribution of the weighted random walk of
Algorithm 3 with the noisy values R(L;) is

) = — LD

Zj R(Lj)’
and it follows the Beta distribution [42], ie., m, R() ~
Dz L

Beta(%, Tj). Note that the probability density function of
3Note that the alternative option of generating and sharing a new value

R(L;) every time node i is activated is vulnerable to an averaging attack that
can be implemented by the neighbors of i.
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the Beta distribution of a random variable I, with parameters
o, B>0is

71"‘_1(1 — 71)‘3_1

pe,(w) = B@. B) , form €[00, 1],
where B(a, f) = Fr"(’gig).

Therefore, we get that the mean of m,, % over the priva-
tization randomness is the desired stationary distribution of
importance sampling, i.e.,

ER[”W R] =m,(i), VieV.

We can see that the Beta distribution is well fitted to model
the probability distribution of a probability [43] where the
expected values of the stationary probabilities sums 1, which
justifies our choice for the Gamma noise over other tradi-
tional additive privacy schemes (e.g., Gaussian, Laplace) since
it implies a Beta distribution on the ratio representing the
stationary distribution.

Moreover, this implies that the gradient estimate is unbiased
at the stationary, that is

EREJ,W_R[% IR(L). j=1,..., N] - vy,

the proof of which can be found in Appendix C.

The next Lemma states the tradeoff between the pri-
vacy level, quantified through € and &8, and the noise level
represented by 6 for the Gamma mechanism.

Lemma 1: Given € > 0, the Gamma mechanism is (e, §)
local differential private with parameter 6 satisfying

[
sup L [(sup L/6) \ supL—infL
IG( o ’(e6 I"(infL/G)) )

6 >max{1— ,
I'(supL/0)
I'( L/G) Le' fL
inf L 1 sup sup L—1n
IG(%’ (?6 T (infL/0) ) )
I"(inf L/0)

where IG(s,t) = fé wle "du is the incomplete gamma
function.

The proof of Lemma 1 is in Appendix D. In Fig. 1 shows
plots of the tradeoff among the three parameters €, 6 and 6
descrbied in the above lemma.

Convergence Analysis: The proposed Gamma mechanism
applies the Gamma noise to the gradient-Lipschitz con-
stants L;’s only one time before the start of the algorithm.
Therefore, finding the expression of the rate of convergence
in Algorithm 3, given the generated noisy Lipschitz constants
R(L;), follows similar steps as the analysis of non-private
version of the algorithm and gives the following bound.

E[f(v‘v(")) —fW)IRW), i=1,... ,N]

RL) 2 (To7y)2 1
max{ o (RI) lnl/prvR}
ki=a

=0

(10)

To characterize the mean rate of convergence under the
Gamma mechanism we need to average the bound above
over the noise introduced by the mechanism. This involves
finding the mean of the different terms in the right-hand-
side of (10), which is not straightforward given that the
noise introduced by the Gamma mechanism is not additive.
Instead, we analysis a modification of the mechanism that
we call Truncated Gamma mechanism, which first imple-
ments the Gamma mechanism and then truncates the values
R(L;) to a minimum and maximum constants L, and Lj,,
(Lmin < Lpayx)- By [24, Proposition 2.1] on the post-processing
differential privacy immunity rule, we know that the Truncated
Gamma mechanism achieves the privacy guarantees (€, §) of
the non-truncated version and is more amenable to analysis as
done below (as the expense of the tightness of the bound):

]ERI:E[f(V_V(k)) —f(w*)]] — O<M). (11

k-4

We can see that the bound in (11) benefits from the same
asymptotic rate of convergence as the non-private version.

V. NUMERICAL RESULTS

In this section, we present our numerical results applying
Algorithms 1-3 to a decentralized logistic regression problem
and comparing it to asynchronous Gossip SGD algorithm [1].
We compare the Random Walk algorithms to the asynchronous
Gossip to show the convergence speed-up with respect to the
number of performed SGD iterations in the network. For fair
comparison in terms of computation and communication, we
assume an asynchronous Gossip algorithm where only one
communication link gets activated at every iteration and the
model on both side gets updated, exchanged and averaged.
Also, we run Algorithm 3 using the LDP privatization scheme
based on the Gamma mechanism, and we compare it to the
additive Laplace mechanism widely used in the literature [24].

We take the graph G to be an Erdds-Rényi graph on N = 100
nodes with probability of connectivity p = 0.3. We assume
that the labels y; € {—1, 4+1}. For the data with label y; = 1,
we sample x; from N (u, vIy) where d is the feature dimen-
sion, w is the mean, v is the variance and I; is the identity
matrix of dimension d. For label y; = —1, x; is sampled
from N (—u, vIy).

Loss Function: The averaged regularized cost function for
logistic regression on the distributed data can be expressed as
follow:

N T [
fw) = Zi:l log(1 + exp(—yix; w)) + §||w|| . (12
So, the local loss function at node i is

fiw) = Nlog(1 + exp(—yix! w)) + %]nwn? (13)

Then, for such local loss function the gradient Lipschitz
constant is L; = 1 + ;ltNllx,'H%.

Random Walk Algorithms vs the Gossip Algorithm: We con-
sider two data regimes for our simulations: High variance and
Low variance regimes. For both regimes, the random walk
based algorithms outperform the Gossip algorithm as shown
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(a) The achievable privacy parameter J as a function of the privacy

bound e.
Fig. 1.
1.0 4
0.8 1
LAl
*g 0.6 - —=— Uniform Random Walk SGD
. Weighted Random Walk SGD
E —#— Asynchronous Gossip SGD
= 04 -
0.2 1
0.0 0.2 0.4 0.6 0.8 1.0
SGD iterations k L]
(a) High variance data regime: v = 10.
2.00 —a— Uniform Random Walk GD
Weighted Ramdom Walk GD
1.75 —+— Asynchronous Gossip GD
1.50
i 1.251
. 1.00
=
= 0.75
0.50 1
0.25 1
0.00 1 . " . . .
0.0 0.2 0.4 0.6 0.8 1.0
SGD iterations k 1e5
(b) Low variance data regime: v = 1.
Fig. 2. Error on the model function of the SGD updates estimated by the

Uniform Random Walk SGD (Algorithm 1), Weighted Random Walk SGD
(Algorithm 2) and the asynchronous Gossip SGD on an ErdSs-Rényi graph
of 100 nodes and probability of connectivity p = 0.3.

in Figure 2. For the high variance data regime where v = 10,
the term L in the convergence rate dominates, and the weighted
sampling gives better convergence. While in the low variance
data regime where v = 1, the Uniform Random Walk SGD is
outperforming the Weighted Random Walk SGD.

Private Random Walk Algorithms: For high variance regime,
we simulate the convergence of Algorithm 3 that used the

459

1300 A

12001

11001

1000 A

900 -

800 1

The Gamma noise scale 6

7001

600

3.0 35 4.0 4.5 5.0 5.5 6.0
The privacy bound &

(b) The Gamma noise parameter 6 vs. the privacy bound € for § =
0.06, 0.08&0.1.

The tradeoffs stated in Lemma 1 between the privacy level, quantified through € and §, and the noise level represented by 6 for the Gamma mechanism.

10° 4 —=— Uniform Random Walk GD
Weighted Ramdom Walk GD

—— Gamma Weighted Ramdom Walk GD
—#— Laplacian Weighted Ramdom Walk GD

1072 s Ao D Qi

000 025 050 075 100 125 150 175 2.00
SGD Iterations led

Fig. 3. Error of the model estimated by the Uniform Random Walk SGD,
(3, 0.03)-LDP Gamma Weighted Random walk (Algorithm 3) and (3, 0)-
LDP Laplace Weighted Random walk on an Erd6s-Rényi graph of 20 nodes
and probability of connectivity p = 0.3.

Gamma mechanism. We compare its performance to a variant
that uses an additive Laplacian noise, [24] for ¢ = 3 and
§ < 0.03 with same noise variance as the Gamma. Our results
show that the Gamma mechanism outperforms the Laplacian
mechanism .

VI. CONCLUSION

In this article, we study a decentralized learning problem
where the data is distributed over the nodes of a graph. We pro-
pose decentralized learning algorithms based on random walk.
To speed up the convergence, we propose a weighted random
walk algorithm where the nodes get sampled depending on
the importance of their data measured through the gradient-
Lipschitz constant. A weighted random walk requires every
node to share its gradient-Lipschitz constant with the neigh-
bor nodes, which creates a privacy vulnarability. We propose
a local differential privacy mechanism that we call Gamma
mechanism to address the privacy concern, and give the trade-
off between the privacy parameters and the Gamma noise
parameter. We also presented numerical results on the conver-
gence of the proposed algorithms. As for future work, we think
it is interesting to investigate different importance sampling
measures for the weighted random walk.
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2
APPENDIX A © HW W

PROOF OF THEOREM 1: CONVERGENCE RATE OF 2
ALGORITHM | —~ 2y(k)<w(k) —w*, Vi (w(k))>

First, we present preliminary results that will be used in the (2 ®
main proof later. +20:7) vai(") (W ) Vi ( H
Lemma 2 (Lipschitzness): If f; is a convex function on an (k)\ 2 *

2 Vi . 14
open subset 2 C R, then for a closed bounded subset W C €2, 200 ” fiao (W )”2 a4
there exists a constant D; > 0, such that, for any wi, wy € W, (a) follows from W being a convex closed set, so one can

: . ' _ apply nonexpansivity theorem [45, Fact E.9.0.0.5], (b) follows
[iw1) = fiw2)| < Dillwi — wall,. from Jensen’s inequality applied to the squared norm.

We define D = supD;. Therefore, Using Lemma 2 and the convexity of the functions f;, we
ieV
get
[fiw1) — filw2)| < Dllwy — wall5. Wy P @ LI
. w —-w w —w
A proof for Lemma 2 can be found in [44]. H ‘ 2

Corollary 1 (Boundedness of the Gradient): If f; is a convex _ 2y(k)<w(k) — W, Y (W(k))>
function on R, then for a closed bounded subset W C R, '

2
IViw)l2 =D, VYweW. + z(yac))zLiZ(k) Wb
Proof: Taking v = w + Vfi(w), ) 2
)2
DIV, = Dllv — wl +2(r®)2fiw ()3
@ ® <12
> [fi(v) = fi(w)] < |w® -
)
= (Vfiw). Vfiw) — 2B — 7, Vo (w))
= [IViw) 3.
(k2 2|,
(a) follows Lemma 2 and (b) follows from f; being convex. W +2(y™) (supL) HW —w )
Next we give some results we need on the Markov chain. ©)>2 o2
We remind the reader that 7 is the stationary distribution, P + 2(7 ) vai (W )“2 (15)

is the transition matrix and P* is the k" power of matrix P.
We refer to i row of a matrix P by P(i, :).

Lemma 3 (Convergence of Markov Chain [26]): Under
Assumption 2, we have

(a) follows from the Lipschitzness Lemma, (b) follows by
bounding by the sup L.
For the next we use the convexity of f;,

2 2
k1) _ % (k) _
mlaan — PR = oo | Wl = [ - >
_ ® (£, &Y _ £ *
for k > Kp, where Kp is a constant that depends on Ap and 2y (f’(k) (W ) fiw (W ))
. . 2 2
A2(P) and C is a constant that depends on the Jordan canonical 4 2()/(@) (sup L)2 H wk
form of P. 2
Next, we start the proof for Theorem 1 following the ( (k))
2 \% 16
same reasoning in [2] but with the inclusion of the gradient- Ay ” fio (w )H2 (16)
Lipschitz assumption as in Assumption 1. By re-arranging (16), we come to
2
”W(k+1) —w. = Hw(w(k) —y®vfe (W(k))) y® (fm (w(k)> ~ faw (W*))
2
— My(w") Hw —w* = Hw<k+1) —w* ?
@ 2 ) - 2 2 2
2 o — oy ((k))_ * 2
< w9 —y 2Vf,m w W, +< <k)) (sup L)ZHWUc) —w|]
— (k) *
= |[|w — W 2
2 + () 190 ) 3 (a7
- Zy(k)<w(k) —w*, Viw (W(k))> . . .
) Now summing (17) over k and using Assumption 1 and the
+ (y(k))zu Vi (W(k)) H boundness of W,
2
o] 3 (5) )
_9 <k>< © _ ¥ VF ( (k))> 1 2
PO <l = e () |
+ (J/(k))ZH Vi (W(k)) — Vi (W)
2 + > <’<>) Vi (W) |2 < oo. (18)
V)| Xk: y ) 1950 (+) 3
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We can see that the previous result shows the dependency on

sup L.
_7h
y“‘)E[J;.(k) (w(k T )) —fw (W(m)]
2 pylut-r) 0]
» k=1
< DyWE Z Hw(n+1)_w(n)

n=k—T®

k—1
9 pyw > E(HM"“)—W(")

)

kT 0
k—1
@
I S
n=k—T®)
2 k—1
(QD_ ( <n)) ( <k>)2
=7
n=k— TU‘)
2 k—1
- D_T(k>( (k)) ( (n))z.
=7
n=k—T},

(a) follows from Lemma 2, (b) using triangle inequality, (c)
using linearity of expectation, (d) follows Corollary 1 and (e)
follows from the Cauchy—Schwarz inequality.

Now taking the summation over k:

ZV( )E[ (k)( (k-T¢ ))) — fiw (w(k)>]
a2 oy

k I‘l=k7Tk
By simply using the assumption on the step size summability,
the result is as follows:

()

k—T®

2 s 2
T(k)(y(k)) <2 Zlnk.(y(k)> < 0.
In(1/3p) &

Ew |fiw (W(ka(k))) — fioo (W) X0, X1, ...,

(A( ) =)

’Xk—T(k)>
<fz< (k=T®) ) fi(W*))P(j(k) — ile_T(k>)
(fz (W(k—r<k>)> —fi(w*))Pt" [Xk—T(k) i® = i]

2 o) 1) -5

(a) using Markov property and (b) using [2, Lemma 1].

19)

k—1

WK

k

I
~

n

M2

=<

»
I
>

Xk,ﬂk)]

I
Mz

I
-

o

X (J(k) = i|Xo, X1, ...

(@

Mz

1

I
Mz

Il
MR

(20)
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Next, we get a bound on
(k) ®\ _ (& TV
SRl () (s )]
y<k)]E[f(W<k—Tk)) _ f(w(k))]

@ NDV(k)]EH k=0 _ 1, ® H

) k—1
< NDy®E[ Hw(n+1> @
n=k—Tj

k—1
© Npy® 3 E(Hw“”‘)—w(”)
n=k— Tk

)

D Np2y® Z Y@
n=k—T},
© ND? - m\ 4 (,®)
n
2 (6 6))
n=k7Tk
k—1

ND? 2
- ()

y 2 (” ) '

n=k—T},

(a) follows from Lemma 4, (b) using triangle inequality, (c)
using linearity of expectation, (d) follows Corollary 1 and
(e) follows from the Cauchy—Schwarz inequality. The upper
bound summability over k follows from previous discussion
in equation (20).

Combining with the results in (18) and (20) , we get

Sy PE[(wET) —f(w) | = €107 + Catsup L)
k

1
- C3<1n<1/xp>>'

max (0’2, (sup L)2

Finally,

1
. W)
k
)
max (oz, (sup L)?

k=4

B((5) -1tv1) =0

1
_0 : 1n<1/xp))

21

APPENDIX B
PROOF OF THEOREM 2

To prove Theorem 2, we scale the local losses f;(w) in order
to keep the same global loss under the new weighted sampling
average is

; L
fiww) = J% = 7fiw). (22)

~

For the next, we compute the gradient Llpschltz constant
for the weighted loss function which is L; ,, = 7= = L.

p.\~h| il
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Here, we get sup L, := maxL;,, = L. After we compute
l
the new residual quantity that also contributes to the rate of
convergence:
N N N
L (12 L (L #\ (12
> eIV 0) 3 = Y e (1) 1903

i=1 i=1

I
i\
2| =

i=1

APPENDIX C
PRIVATE RANDOM WALK SGD

Using the Gamma noise on the gradient-Lipschitz constants
in the weighted random walk ends up giving unbiased gradient
estimate at the stationary regime:

Proof:
ERE”W,RI:%J(;'R(L[)’ _] = 1, e ,N]
i .
i
Ry YL

= ER| ————— Vi
; " ZjR(Lf) NLi g
=E;[Vf] = V/.
| ]
APPENDIX D

PROOF OF LEMMA 1

We will use the following property for (e, §) differentially
mechanism.

Lemma 4 [25]: A mechanism is (e, §)-differentially private
if, for any L, L', and Z a random variable with the same
distribution as R(L), we have

P(—PR(L)(Z) > e) <.
PR ()

In our case, Z ~ Gamma(L, 0).

Now, for the proof of Lemma 1, taking L, L’ and a received
output z € R, we have

1 L_| z
—Z0 eo
Pra)@) (/007 _ r(L/6) ey
Pran(@ 1 H-1,5  T(L/0)
L/
N

Then, taking a random variable Z on z, where Z ~
Gamma(L, 9):
L-L

AN
(—) ~ Generalized Gamma

0
0 L
x |\p= ,d= , 1),
L—L L—L

when L > L.

As a reminder, the probability density function of the
Generalized Gamma function on a random variable Y is

_ p/a® 4 —(y/a)’
pGG,y(y) = Wy e y>0, a,d,p=>0.
When L > L', we have
TL/0) vu 2\ TWwe)
m vZ0 > | =P (5> >e F(L—’/G)

v
=1_pC§9 Sffﬁﬁﬂ
) T(L'/6)

2]
L r(L/0) \T-L
IG<§9 (eé F(L//9)> )

T(L/6)

=1—
58’

where /G is the lower incomplete gamma function.
When L < L, we have

L'—L

/ , , /
F(L/Q)QLO%LZL—GL ) —p z 7 F(L/Q)
I'(L/6) - 0 — I'(L/O)ec

6
L (T(L/0)\T-L
1G 6> <F(L/9)e‘)
- T(L/6)
< 4.
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