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Abstract—The proliferation of multi-core, accelerator-enabled
embedded systems has introduced new opportunities to consoli-
date real-time systems of increasing complexity. But the road to
build confidence on the temporal behavior of co-running applica-
tions has presented formidable challenges. Most prominently, the
main memory subsystem represents a performance bottleneck for
both CPUs and accelerators. And industry-viable frameworks for
full-system main memory management and performance analysis
are past due.

In this paper, we propose our Envelope-aWare Predictive model,
or E-WarP for short. E-WarP is a methodology and technological
framework to: (1) analyze the memory demand of applications
following a profile-driven approach; (2) make realistic predictions
on the temporal behavior of workload deployed on CPUs and
accelerators; and (3) perform saturation-aware system consolida-
tion. This work aims at providing the technological foundations as
well as the theoretical grassroots for truly workload-aware analy-
sis of real-time systems. We provide a full implementation of our
techniques on a commercial platform (NXP S32V234) and make
two key observations. First, we achieve, on average, a 6% over-
prediction on the runtime of bandwidth-regulated applications.
Second, we experimentally validate that the calculated bounds
hold if the main memory subsystem operates below saturation.

I. INTRODUCTION

The proliferation of inexpensive and high-performance

multi-core embedded platforms have been enthusiastically

embraced by the industry. These are seen as an opportunity to

migrate away from system designs with many interconnected

single-core chips; to consolidate all the application workload

onto a few systems-on-chip (SoC) with multiple CPUs and

accelerators. And while the transition has been smooth for

general purpose workload, the same cannot be stated for

safety-critical systems.

It is well known that contention over shared hardware

resources leads to substantial violation of temporal properties

when workload developed and tested in isolation is consol-

idated on the same multi-core platform. Effects like shared

cache contention [1], [2], DRAM bank conflicts [3], [4],

contention at the DDR controller [5] have significantly slowed

down the adoption of multi-core solutions in the safety-critical

domain. The presence of performance interference channels

has been acknowledged by certification authorities [6], that

have mandated methodologies to “account and bound” the

temporal effect of interference channels for the certification

of avionic systems.

The last decade has produced seminal results [7] on tech-

niques to manage contention at the different levels of the

memory hierarchy. But unfortunately, there is a substantial

lack of frameworks and methodologies that can be applied

system-wise to: (1) take into account realistic applications,

(2) consider that processing workload does not occur only on

CPUs; accelerators (e.g. DMAs, video-encoders, GPUs) are

also fundamental components in real systems, and (3) that

can be deployed on existing platforms while ensuring that the

models assumed to derive analytical guarantees are in match

with the true behavior of the hardware.

In concurrent activity of CPUs and accelerators, main

memory is the performance bottleneck. Thus we set our focus

on the problem of contention in the DRAM subsystem. DRAM

bandwidth management [8], [9] is a promising grassroots

technique to exert control over main memory contention. Many

works have studied the behavior of applications in multi-

core systems under main memory bandwidth regulation [4],

[10], [11]. But the overwhelming focus of these works has

been put on formulating an increasingly more refined model

of the DRAM subsystem [4], [11] to reduce the pessimism

in the timing analysis. On the other hand, the behavior of

applications is abstracted away with only a few parameters,

for instance, to summarize the worst-case end-to-end number

of cache misses [4], [5], [12].

In this paper, we propose a focus-shift. We introduce

a comprehensive framework of techniques called Envelope-

aWare Predictive model, or E-WarP for short. In E-WarP,

accurate predictions on the worst-case execution time (WCET)

of co-running applications are made following a profile-

driven approach. Profiling represents a substantial refinement

of measurement-driven approaches, where fine-grained knowl-

edge of the interaction between applications and the platform

is collected and leveraged. Conversely, we treat the DRAM

subsystem, as much as possible, as a black-box. By shifting

our emphasis on a more precise representation of memory

bandwidth requirements of applications and by ensuring that

the DRAM subsystem operates below its saturation threshold,

we demonstrate that highly accurate predictions on the behav-

ior of tasks operating on CPUs and accelerators can be made.

We stress upfront that we do not construct a formal model

of the DRAM subsystem, nor formulate provable guarantees.

The correctness of our approach is corroborated by a full-

system evaluation, which provides evidence that the work

presented is practical for industrial applications. Furthermore,

our profile-driven approach enables a better understanding of

the important aspects that have traditionally received little

attention. Precise regulation overheads, impact of burst size

on DRAM utilization, and the unexpected presence of mem-

ory instructions that bypass regulation are some examples.

The proposed E-WarP framework can be used to integrate

multi-core, accelerators-enabled real-time systems in all those

domains where a measurement-based approach was deemed

acceptable for single-core systems.

In summary, this paper makes the following contributions.

(1) It introduces the E-WarP model where the time-varying

demand for main memory resources is characterized via

envelopes. (2) It introduces key requirements and design

principles for profile-driven approaches. (3) It considers the

integration of broadly implementable techniques for DRAM



bandwidth regulation of CPUs and accelerators. (4) It de-

scribes how to leverage memory enveloping to perform ac-

curate WCET predictions under regulation for both CPU and

accelerator workload. (5) It provides a technique to reason on

the saturation level of the DRAM subsystem. (6) Lastly, it

proposes a full-system implementation and evaluation that in-

cludes a low-overhead profiler and an augmented partitioning

hypervisor.

II. RELATED WORK

There has been a plethora of research works [4], [5], [10],

[13] that aimed at providing hard real-time guarantees for tasks

running on multi-core systems. A common denominator in

these works is that they consider the worst-case number of

main memory transactions (LLC misses) for tasks in isola-

tion [5], [10]–[12]; then compute an upper-bound on memory

interference when multiple applications run in parallel. This

type of analysis has been proposed with various degrees of re-

finement on different DRAM/CPU models. For instance, in [4]

the authors assume that there is only one outstanding request

per CPU; while [5] focuses on the First-Ready First-Come

First-Served (FR-FCFS) DRAM scheduling policy. Compared

to this line of work, E-WarP is substantially different because

its premise is to rely on high-accuracy observations of the

memory demands of applications, while treating the DRAM

subsystem mostly as a black-box.

Other works such as [8], [9], [14] focus on implementable

mechanisms to regulate/throttle the bandwidth of other low

criticality tasks with the goal of reducing contention and

improving performance isolation. The first work in this sense

was [8], where budget-based bandwidth enforcement is pro-

posed. The work in [9] builds on this technique by allowing

high-priority tasks to acquire a “bandwidth lock” on the

memory controller. These techniques have also been shown to

be implementable at the hypervisor level [14], [15]. Recently,

there have been important efforts to control, account, and

ultimately integrate the behavior of accelerators into real-

time systems. The work in [16] lays the groundwork for

managing hardware accelerator defined in FPGA, while [17]

touches on the topic of non-CPU components regulated via

platform-specific throttling mechanisms. In many ways, E-

WarP builds on top of the seminal results achieved in this

context and complements the CPU-centric management by

integrating traditional accelerators (e.g., DMAs, GPUs) in the

picture.

Finally, the need for a DRAM controller capable of enforc-

ing bandwidth partitioning and traffic prioritization has been

expressed in multiple papers [18]–[21]. We acknowledge the

important design principles proposed in said works. However,

as we strive for immediate industrial applicability, we restrict

ourselves to commercial-off-the-shelf platforms.

In summary, our work sets itself apart because it proposes a

novel profile-driven methodology to characterize the behavior

of applications that execute on CPUs and accelerators. It then

combines (1) CPU-centric bandwidth regulation techniques

with (2) broadly available hardware support for regulation

of non-CPU masters. In doing so, key relationships between

extracted bandwidth and saturation of the DRAM subsystem

are derived. Finally, a full-system integration is proposed

where we demonstrate that E-WarP is practical in real systems.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider a heterogeneous multi-core system with accel-

erators and traditional CPUs. A hardware accelerator can be

any module capable of initiating transactions to the main mem-

ory. DMA engines, GPUs, video encoders/decoders, audio

sequencers, network interfaces, are some notable examples.

We use m to indicate the number of CPUs present in the

system and the index k ∈ {1, . . . ,m} to refer to a given

CPUk. The system also features a accelerators indexed using

l, with l ∈ {1, . . . , a}. The l-th accelerator is indicated with

ACCl. We use processing element (PE) whenever what stated

applies to both CPU and accelerator.

We make a restriction, namely the single driver assumption,

on how accelerators are used in our system. We assume that

there exists a single CPU task that acts as the driver for a

given accelerator. I.e., it must hold that for ACCl there exists

at most one CPU task acting as the driver. The assumption

allows us to abstract away the differences in the preemption

model of accelerators. The single driver assumption is accurate

only in a subset of possible system designs, but it allows

us to keep our focus on how accelerators interact with the

main memory. For the same reason, we make the assumption

that caches [15], [22] and DRAM banks [3], [4] are statically

partitioned on a per-core basis to ensure that the load generated

by each application toward main memory does not change

when multiple applications execute in parallel.

We assume that only one main memory controller is used

by all the tasks under analysis. This is referred to as the

“DDR controller”, or the “DRAM controller”. If more than

one controller exists, the techniques presented in this work can

be extended by partitioning tasks to memory controllers, and

then considering each sub-system independently. We assume

that the traffic originated by CPU and accelerators towards

main memory can be regulated. We use budget-based periodic

regulation (MemGuard [8]) to manage traffic from the CPU;

we leverage standard ARM QoS support that is broadly

available in modern ARM-based SoCs to regulate traffic from

accelerators (see Section VI-B). Lastly, the bandwidth at the

interconnect should be greater than the bandwidth of both

memory controllers.

IV. E-WARP TASK MODEL

The E-WarP task model incorporates the relationship be-

tween a task’s progress and its demand for main memory.

This relationship, expressed via cumulative memory envelopes,

is captured for each task in isolation. It is leveraged to

derive precise predictions on the behavior of the task under

regulation. Section VIII is dedicated to constructing memory

envelopes following a profile-driven approach.

We consider a set of n sporadic, deadline-constrained real-

time tasks scheduled according to fixed-priority. The generic

task τi is statically assigned to execute on a given CPUk

— partitioned fixed-priority scheduling. A task τi is a tuple

of the following form: τi = {Ti, Di, Ci,Mi}. Ti represents

the minimum inter-arrival time between two jobs of the same

task, Di is the relative deadline of task τi, and Ci captures

the worst-case execution time (WCET) of τi in isolation and

without memory bandwidth regulation. The Mi parameter

is a super-set of memory envelopes, one per each PE that

the task uses. Each memory envelope Mj ∈ Mi is of the

form {Rj , σj(1), . . . , σj(Li)}. Here, Li is simply the number

of σj(h) elements that compose the envelope, while each







Utot =
∑

CPUk

(

Uα
mg ·

Qk · Ls

220 · P
+ Uβ

mg

)

+ (2)

∑

ACCl

(

Uα
qos,w ·Ql + Uβ

qos,w

)

In the equation, CPUs and accelerators are treated dif-

ferently because they are differently regulated. For CPUs,

we first convert the MemGuard budget to the corresponding

bandwidth in MB/s — where P is expressed in seconds and

Ls represents the size of a cache line in bytes. Then a linear

slope Uα
mg is applied and the initial offset Uβ

mg is added to

find the contribution of each CPUk to the total utilization.

For accelerators, instead, we convert directly from QoS level

to contribution in utilization with similar parameters Uα
qos,w

and Uβ
qos,w. These parameters depend on the transfer size in

bytes, w, that masters are capable of transferring with each

read/write request — recall that ARM QoS only enforces a

minimum inter-arrival time on memory requests, regardless of

their size.

VII. FROM PROFILES TO E-WARP TASKS

In order to instantiate the E-WarP model, the starting point

is the profiles acquired on the task under analysis in isolation.

Indeed, a large number of runs and corresponding profiles are

required to build confidence on the worst-case behavior, like in

traditional single-core measurement-based WCET estimation.

The profiles are then integrated to build the task envelopes

Mi for the task under analysis. If a task executes on multiple

processing elements, then multiple sets of profiles need to be

acquired, one per each processing element Rj used by the

task. We hereby focus on the definition of the generic Mj for

processing element Rj .

Let us first consider a single run and resulting acquired

raw profile. A profile is an ordered collection of samples

{sr(1), sr(2), . . .}. Each sample collected by the profiler cap-

tures the activity of the task under analysis during an interval

of length δ. The smaller the parameter, the more accurate the

E-WarP model will be. Moreover, for the model to produce

valid predictions on the task’s WCET under regulation, it must

hold that δ < P . We hereby consider that δ << P and

evaluate how to find a suitable lower limit for δ in Section X-B.

We use the notation sr(h) to refer to the h-th sample in

the r-th run. Each sample collected by the profiler carries the

following information. (1) srr number of bytes read during δ;

(2) the swr number of bytes written during δ. The profile also

contains (3) the sur ∈ [0, 1] utilization of the DDR controller

during the δ time window. The latter information is not stored

in the task envelopes, but it is useful to study the saturation

point of the DDR controller, as studied in Section X-C.

Algorithm 1 constructs the envelope Mj and also returns

the observed task’s WCET in isolation from an arbitrary set

of runs R sorted by shortest-to-longest. The logic of the

algorithm is simple: (1) we expand the length of the envelope

Mj if longer runs are observed (Lines 11-17); and (2) we

keep track of the highest and lowest cumulative number of

transactions in each run (Lines 18-19). Note that Algorithm 1

only considers read traffic in the profiles, which is the correct

way of deriving envelopes when Rj is a CPU. To apply the

algorithm to accelerator tasks, it is enough to replace Line 10

with: xr ← max(srr(h), s
w
r (h)), to only keep track of the type

of traffic that constitutes the bottleneck.

Algorithm 1 Envelope Mj from profiler runs

1: function GETENVELOPE(τi, Rj ,R)
2: Li ← 0
3: Mj ← {Rj} ⊲ The first element is the proc. element
4: for r ← 1, |R| do ⊲ Consider each run
5: xr ← 0 ⊲ Cumulative num. of transfers in run r
6: h← 1 ⊲ Current sample index
7: Lr ← 0
8: for ∃sr(h), h← h + 1 do
9: Lr ← Lr + 1 ⊲ Track length of the run

10: xr ← xr + srr(h)
11: if Lr > Li then
12: Li ← Lr ⊲ Remember longest run

13: x
+

j
(h)← max(x+

j
(h− 1), xr)

14: x
−

j
(h)← xr

15: σj(h)← {x
+

j
(h), x−

j
(h)}

16: Mj ←Mj + {σj(h)}
17: else
18: if xr > x

+

j
(h) then x

+

j
(h)← xr

19: if xr < x
−

j
(h) then x

−

j
(h)← xr

20: return Mj , Li · δ ⊲ Return envelope and WCET

VIII. PREDICTING WCETS FROM REGULATION LEVELS

In this section, we describe how to predict the WCET of

tasks for which a memory envelope has been constructed

according to Section VII. The key idea is to mimic the

behavior of budget-based regulation (for CPU envelopes) or

QoS-based regulation (for accelerator envelopes) as we move

through the envelope.

Let us first consider CPU envelopes. Given a generic enve-

lope Mj where Rj = CPUk, we use Algorithm 2 to predict

the WCET of the task when CPUk is assigned MemGuard

budget Qk. To be correct in practice, an extra overhead

introduced by MemGuard needs to be taken into account.

There are two types of overhead involved. The first, namely

tovh is the upper-bound on the extra time overhead introduced

by each periodic budget replenishment. Each activation of

MemGuard might also pollute some of the cache partition of

the application under analysis, leading to extra memory trans-

actions xovh being budgeted to the task, compared to when it

operates without regulation. We incorporate this overhead as

a restriction on the budget given to the core under analysis.

Hence, Algorithm 2 considers Q′k = Qk − xovh.

Intuition: Algorithm 2 returns the predicted WCET by keep-

ing track of the additional time tadd due to regulation at quota

Q′k. During every regulation period of length P , the algorithm

performs multiple steps through the profile samples. At each

step, from a memory bandwidth perspective, the worst-case is

when (1) the behavior of the application has followed the lower

envelope, i.e. when at the generic sample h−1 its cumulative

number of memory transactions is exactly x−j (h−1) (Line 16);

and (2) at sample h the cumulative number of memory

transactions jumps to x+
j (h). If this difference is greater than

Q′k, (Line 12) then we increase the overall regulation stall.

But in doing that, we remember that at least Q′k transactions

were performed by increasing the value of xoff which is

always considered instead of x−j (·) (· refers to an arbitrary

sample) when xoff > x−j (·). This prevents the algorithm

from being overly pessimistic. Indeed, by tracking xoff , the

algorithm captures the worst-case progress of the application

as a trajectory somewhere between x+
j (h) and x−j (h).

Correctness: To understand why the algorithm is safe, lets

take a closer look. Consider the easy case where the upper-

envelope is equal to the lower envelope, i.e. ∀h, x+
j (h) =

x−j (h). In this case, it is enough to keep tracking the progres-

sion of transactions. If within a regulation period P we observe





busy_ddr_cyc; (3) the total number of bytes transferred in

read (rd_bytes) and (4) in write (wr_bytes) transactions.

The DDR profiling interface also allows defining a filter on

the source of traffic (e.g. CPU cluster 1, APEX1, etc.) that

is applied when counting read/write bytes. To differentiate

between the traffic coming from different masters, counters (3)

and (4) can be programmed to only filter the traffic coming

from a specific master(s) based on their AXI-ID.

The last component that requires some introduction is the

interconnect. The S32V234 system uses a standard ARM

NIC-301 [45] with ARM QoS-301 [38] extensions. The QoS

extension of the NIC is where traffic regulation is performed

on traffic that traverses the interconnect towards DDR. ARM

QoS extensions are surprisingly, broadly available in many

current-generation ARM-based platforms. When we started

this work, we were surprised to discover that little-to-no

software support or research literature was available on these

modules. So we had to implement our own to carry out

this research. The NIC+QoS-301 provides a memory-mapped

interface to control the regulation parameters on a per-master

basis. Regulation interfaces are depicted as colored squares

on top of the NIC in Figure 4. Because the traffic from all

the CPUs arrives through the same master interface, QoS

regulation cannot be used to regulate individual CPUs, but

only the total traffic from all the CPUs. Conversely, it allows

one to set individual regulation regimes for each of the APEX,

for the GPU (see Figure 4), for the DMAs, for the network

interface and the I/O sub-shell (not shown).

We use the Jailhouse partitioning hypervisor [46] to partition

resources in our system. Jailhouse is the ideal choice for

this type of implementations because it does not perform

scheduling of virtual CPUs (VCPUs), it is lightweight and easy

to port/modify, includes support for cache coloring and DRAM

bank partitioning [47], and is open-source. It also includes

libraries to define bare-metal guest-OS that can be launched

directly on a subset of the CPUs. Unfortunately, Jailhouse

was not ported to the NXP S32V234 platform at the time we

started this work. Our first implementation tasks concerned

writing a layer of SoC-dependent code to port Jailhouse onto

the target platform. Doing so required a few modifications to

the stock boot-loader(u-boot), and to the CPU hotplug support

in the Linux kernel1. It also involved writing a driver for the

LINFlexD device in the S32 that controls the console outputs.

Next, we integrated into our porting an implementation of

MemGuard originally proposed in the context of the HER-

CULES project [48]. We also implemented from scratch a

platform-independent support for ARM QoS features, along

with the platform-specific code to setup QoS regulation in

the S32V234 system. With the implemented support, system

designers can set multiple QoS parameters for multiple masters

in a single hypercall, making the interface suitable for efficient

online dynamic QoS management.

Finally, we implemented a profiler that is comprised of two

parts: a low-level profiler, profvm, and a user-space control

toolkit, profctl. First, profvm is a small-footprint bare-

metal guest-OS that can be loaded by Jailhouse. To meet

the stringent accuracy and transparency requirements of our

profiler, we proceeded as follows. When loaded, profvm

takes exclusive ownership of a single CPU (CPU4), and of

an entire DDR controller (DDR1). Our profvm uses the

1This was required to overcome the lack of a PSCI firmware provided by
the vendor to control CPU shutdown.

dedicated 1 GB of DRAM memory for two purposes. (1) It

exposes a shared command&control interface; and (2) when

active, stores a sequence of samples of DDR0 activity. The

other three CPUs are assigned to Linux in SMP mode and are

used to run the user-space applications that need to be profiled.

When active, profvm performs periodic sampling of DDR0

at a configurable sampling rate expressed in CPU clock cycles.

Each sample collected in DDR1 contains the values, and the

time of sampling, of: (1) CPU cycles counter, (2) value of

tot_ddr_cyc, (3) value of busy_ddr_cyc, (4) value of

rd_bytes and (5) wr_bytes. The ratio between (3) and (2)

provides the instantaneous utilization of the DDR subsystems.

Some porting was also required to ensure that the APEX driver

does not attempt to use any memory space in DDR1. This is

because the out-of-the-box drivers execute APEX code from

the memory space of DDR1 controller.

Second, to facilitate profile acquisition, the profctl

toolkit is provided. It takes care of all the low-level coordina-

tion with the profvm module; launches the benchmark(s) to

be profiled; and at the end of the experiment gathers samples

from DDR1 to save them to disk for later analysis2. Multiple

parameters can be configured directly from profctl, most

prominently sampling period, and filter on individual masters.

Even with all the changes mentioned above, two important

features are needed to port E-WarP to another hardware.

(1) Profiling: The requirements for such a profiling tool are

discussed in detail in Section V. (2) Bandwidth Control: Mem-

Guard is a widely-implementable technique and ARM QoS

extensions are drop-in modules (ARM QoS-310/QoS-400)

bound to increase in popularity. Another tool, ARM Memory

System Resource Partitioning and Monitoring (MPAM) [49]

combines shared cache, memory, and interconnect bandwidth

management.

X. VALIDATION AND EVALUATION

In this section, we first build a set of experiments to identify

key parameters in our system. Next, we discuss how we

instantiated the E-WarP model on real-world applications and

evaluate the WCET predictions under regulation. Then an

in depth analysis of QoS-based controls for accelerators is

provided. Finally, we present a full-system integration where

all the applications analyzed in isolation on the CPU and the

accelerators are deployed to run in parallel.

A. Experimental Setup

We used the NXP S32V234 [36] platform introduced in

Section IX. A combination of synthetic and real benchmarks

are used to gain insight into the platform. The synthetic

benchmarks used to stress/evaluate specific parameters of our

platform are described in the corresponding subsections. For

our real benchmarks, we use a subset of the benchmarks in the

San-Diego Vision Benchmarks (SD-VBS) suite [50]. Because

we are interested in applications that are DRAM-bound, the

selection was performed by taking all the benchmarks that

operate on images. These come with different input sizes,

but we have excluded the FULLHD inputs which lead to

impractically long runtimes. We instead focus on the next

two largest sizes, i.e. VGA and CIF. The full list of selected

benchmarks is reported in Table II.

In terms of accelerators, we focus on the APEX engine in-

cluded in the S32 platform. The S32 features two independent

2https://github.com/rntmancuso/jailhouse-rt



APEX accelerators. Each accelerator is fully programmable

and includes a high-performance parallel processing unit

(APU) for vector and scalar operations, a DMA, and internal

scratchpad memories to operate on data/image tiles. The ARM

QoS control interface instantiated on this platform allows

setting regulation parameters on the main bus independently

for the two APEX engines. The selection of benchmarks

available for this unit is limited to the examples released by the

manufacturer. We were able to fully integrate the APEX within

our profiling infrastructure. But the benchmarks we observed

insisted on the processing capabilities of the engine as opposed

to generating a lot of DDR traffic. We focus our evaluation

on the most DRAM-intensive one we found, i.e., the “Region

of Interest” (ROI) benchmark. The ROI benchmark processes

different parts of the image on APEX.

For consistency, we always activate the Jailhouse hyper-

visor. As most of our experiments involve the use of the

presented profiler, the profvm bare-metal VM is generally

loaded (unless specified otherwise) and pinned to core 4.

Linux v4.19 is deployed on the other 3 CPUs. Some minor

modifications to the kernel were performed to port Jailhouse

and to enable support for the APEX. The kernel is compiled

in full-tickless (NO_HZ_FULL) mode. All the benchmarks

are always deployed using the SCHED_FIFO scheduler and

with explicit pinning to CPUs. We use the profctl to

synchronously launch multiple benchmarks in parallel and to

coordinate profiling and collection of execution times. All the

min/max/avg statistics were calculated on 30 runs for each

configuration, to remain statistically significant.

B. Profiler Transparency and Accuracy

As a first experiment, we evaluate how well the proposed

profiler satisfies the transparency and accuracy requirements.

The accuracy was evaluated along two sub-dimensions.

First, we evaluated how closely the obtained profile matches

the expected number of read/write bytes in a synthetic bench-

mark of known characteristics. To limit the number of spurious

DDR transactions in the experiment, we (1) program the

platform DMA (eDMA) engine to transfer a known number

of bytes; (2) leverage the filtering capabilities of our profiler

to only capture eDMA transactions. The resulting profiles

cumulative number of read/write bytes were in perfect match

with the synthetic benchmark.

Next, we want to find a suitable value for δ that directly

relates to the profiler’s accuracy. To do so, we varied the

configuration of profvm’s sampling period and selected the

smallest number of CPU clock cycles that leads to a mea-

surement error no larger than ±2 clock cycles3 with 99.99%

confidence over 100,000 consecutive measurements. Setting

1,500 clock cycles as the sampling period of profvm satisfies

this specification. This value was used in all the experiments.

With this setting, each acquired sample captures the behavior

of the DDR subsystem within a 1.5µs window. The profiler

operates 1, 500× faster than MemGuard, so it holds that

δ << P .

Lastly, we evaluated the impact of the profiler on all the

selected SD-VBS applications. We first capture the runtime

of a benchmark executing without the profvm loaded in

the system. The runtime is then compared to the case where

profvm is loaded and configured to collect the profile of

the application under analysis. On average across all cases,

3The DRAM operates at half the frequency of the CPUs.

we observed a runtime increase of 0.33%, with a maximum

of 1.67%. Since the profiler is designed to bypass the shared

cache and only interact with a private DDR controller, the

overhead necessarily arises at the shared interconnect. Because

the profiler is not required in production, this overhead will

not affect the final applications and all the WCET predictions

will still be safe.

C. DRAM Controller Saturation

In this section, we study the saturation of the DDR con-

troller under MemGuard and QoS regulation with the goal

of establishing appropriate values for the Uα
mg , Uβ

mg , Uα
qos,w,

Uβ
qos,w parameters discussed in the previous sections.

1) MemGuard Regulation: We first establish a relationship

between MemGuard budget assigned to a CPU, the resulting

bandwidth extracted from the DRAM, and the measured

DRAM utilization. Because we are interested in an upper-

bound on the utilization, it is important to design an experi-

ment where the DDR utilization is maximized at the selected

budget. It is already clear from Figure 2 that performing

stores achieves higher utilization at the same level of budget.

Furthermore, following the analysis in [51] we want to make

sure that each DRAM transaction performed by our benchmark

results in a DRAM row miss.

With this in mind, we consider the mapping of physical

addresses to DRAM coordinates (banks/rows/columns), and

design the USTRESS synthetic benchmark. USTRESS allo-

cates in user-space a 2 MB buffer that is contiguous in

physical memory leveraging standard support for huge-pages

(MAP_HUGETLB). It then performs the first store on column

0 and row 0. The next store is performed 215 bytes away —

because the first row bit is bit 15. This pattern keeps all the

accesses on bank 0. Once we reach the last accessible row, we

set the column offset to 64 bytes and restart from row 0 to fetch

the second cache line in the first row. We proceed by scanning

all the rows (inner loop) and then increasing the column offset

(outer loop) until reaching the last accessible column of the

last row. This pattern not only always accesses a closed row

in the same bank, but it also bypasses the cache and ensures

that no prefetching is performed because subsequent accesses

cross the 4 KB page boundary.

We then profile USTRESS subject to variable regulation

enforced with MemGuard. We compare the theoretical band-

width that should be extracted with what is observed in the

profiles. Simultaneously studying the trend of DDR utilization

as returned by the profiles. The results are shown in Fig-

ure 5. As predicted by our model in Equation 2 for cache

line size Ls = 64 bytes, the utilization grows linearly as

the extracted bandwidth increases. At bandwidth 950 MB/s

(budget = 15565) the controller is running at 97% utilization.

At the next budget value we considered (budget = 16384),

100% utilization is reached, and the observed bandwidth starts

to level-off and deviate from the linear trend. Hence we

consider 950 MB/s to be a safe bound on the cumulative

budget that can be extracted by the CPUs without saturating

the DDR controller. By finding the angular coefficient and

y−intercept of the utilization trend before saturation, we can

set Uα
mg = 6.23856× 10−3 and Uβ

mg = 6.68742× 10−2.

2) QoS-based Regulation: We conducted a similar analysis

to the previous case, but this time we use two accelerators, to

study the relationship between extracted bandwidth and DDR

utilization with 4-byte and 128-byte transfers, respectively.
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