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ABSTRACT
Aggregating multiple rankings in a database is an important
task well studied by the database community. High-stakes
application domains include hiring, lending, and education
where multiple decision makers rank candidates and their
input is then combined into an overall consensus ranking.
While state-of-art aggregation methods succeed in giving
equal say to each decision maker, to date no methods ensure
fair representation for groups of candidates being ranked,
who risk being impacted by discriminatory bias. We present
the first solution to this open problem of guaranteeing fair-
ness for disadvantaged groups of candidates, while still pro-
ducing a good consensus of the base rankings. We design a
family of exact fair algorithms achieving optimality for fair
rank aggregation. We also develop approximate methods
achieving fairness with guaranteed minimal approximation
error scaling to millions of candidates in the rankings. A
comparative study evaluates our proposed methods, reveal-
ing trade-offs between aggregation accuracy and different
degrees of unfair bias in a rich variety of rank aggregation
scenarios. Our real-world case study demonstrates that our
solutions mitigate unfair bias using real-world data.
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1. INTRODUCTION
Ranking is commonly used to prioritize among candidates

in a database for desirable outcomes like jobs, loans, or
educational opportunities. For such high-impact applica-
tions, proportional representation requirements often exist
for groups of people that have been historically disadvan-
taged. This may be enforced by legal standards (e.g., the
80% rule in discrimination law [28]) or by internal policies
of an organization aiming to ensure diversity.

Unfortunately, people performing ranking analysis may
suffer from implicit bias in their decision making [30], which
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has had a demonstrated negative impact for critical tasks
such as hiring [11, 12, 48]. Complicating matters further, in-
creasingly the judgments of human analysts are augmented
by decision support tools or even fully automated screen-
ing procedures which rank candidates [10, 19, 29, 49]. Such
systems may encode unfair bias [7], perhaps present in the
training data [46], reflected by the design of scoring func-
tions [5], or due to differences in the way of members of dif-
ferent groups represent themselves [3]. This new interplay
of human bias and machine learning may further impede
equitable decision making in unforeseen ways.

To address this important societal problem, recent re-
search focuses on the design of metrics for measuring un-
fair bias in individual rankings and strategies for mitigating
its effect [5, 17, 29, 38, 51, 53]. For instance, LinkedIn re-
cently incorporated a fairness framework into their Talent
Search feature that helps recruiters find job candidates [29].
To date, however, these efforts are limited in that they only
consider fairness of a single ranking in isolation. The crit-
ical yet so far overlooked problem of ranking by consensus
arises when numerous decision makers produce rankings over
candidate items, and then those rankings are aggregated to
create a final consensus ranking [14, 35]. While many (non-
fairness aware) procedures for aggregating a set of rankings
have been put forth by the database community [2, 13, 27,
34], the problem of fair rank aggregation remains open. It
is largely unexplored whether aggregation might introduce
or exacerbate bias disadvantaging particular groups. In this
work we thus set out to investigate these open problems.

Hiring Example. Consider the university hiring sce-
nario in Figure 1. After reviewing a pool of faculty appli-
cants (assisted by an automated screening tool [49]), each
committee member ranks the candidates based on their indi-
vidual impressions. Now the committee must come to some
overall consensus ranking to recommend to their depart-
ment. As seen in Figure 1, this poses several challenges.
First, the procedure to combine the rankings is not obvi-
ous. For instance, candidate A is most frequently ranked in
the top spot, but also seems to be divisive, since two com-
mittee members ranked A last. Candidate B on the other
hand is consistently ranked near the top, but never in the
number one spot. Another consideration is the committee’s
desire to have a diverse faculty body. They would like a
gender balance among the candidates in the final ranking
to compensate for any unintended bias in the input rank-
ings where female candidates seem to be ranked lower than
males. Clearly, a principled strategy is required to fairly
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account for this imbalance while still appropriately repre-
senting all committee members’ preferences.

1.1 State-of-the-Art
Contemporary (group) fairness research [28] is con-

cerned with predictive outcomes for minority or otherwise
disadvantaged groups defined by sensitive legally protected
data attributes such as race, gender, or age. Unfair prac-
tices include explicit use of protected attributes to create
biased rankings, as well as discrimination that indirectly or
unintentionally exploits group status (“disparate treatment”
verses “disparate impact” [28]). The bulk of recent research
for ranking targets a statistical parity notion of fairness [5,
17, 29, 38, 51, 53]. That is, they aim to ensure that each
group receives a proportionate number of preferred rank po-
sitions. Alternative definitions of fairness have also been
explored [46, 38, 29]. However, all these methods consider
fairness only in the context of one single ranking. To the
best of our knowledge, group fairness has not yet been ex-
plored when aggregating multiple rankings.

Traditional rank aggregation produces an aggregate
ranking (a consensus) by finding the ranking closest to the
base set of input rankings [35]. This task has seen much
interest in the database [14], machine learning [40], and in-
formation retrieval [26] fields. Many algorithms have been
proposed for finding optimal or approximate consensus [8,
22, 23, 26, 35, 44, 52, 47]. With each ranking represent-
ing the preferences of a voter for a given candidate set, So-
cial Choice Theory ensures each voter has an equal say [4].
While properties of aggregation algorithms with regard to
the voters are well understood [14], fair and equitable treat-
ment of the candidates being ranked in the context of rank
aggregation remains unaddressed.

1.2 Challenges
Aggregation problem complexity. Classical rank ag-

gregation – even without considering fairness – is a hard
problem. Depending on the criteria used to determine the
consensus ranking, finding the exact solution may be NP-
hard [8, 26]. For a given set of base rankings over n candi-
dates, there are n! possible consensus rankings to chose from,
making an exhaustive search over all options intractable.
The complexity of the aggregation problem is not only im-
pacted by the number of candidates being ranked, but also
by the number of voters (base rankings), and the extent to
which the base rankings agree (or disagree) on the placement
of individual candidates [2]. This becomes further compli-
cated for fair aggregation, since bias in the individual base
rankings could also impact the complexity of the task.

Notions of fair aggregation. Rankings may be pro-
duced according to heterogeneous schemes, including hu-
man decision makers’ preferences or proprietary ranking al-
gorithms. Therefore, fair aggregation must be performed
without access to the underlying data and ranking models –
rendering causal notions of fairness [50, 46] impossible, as we
cannot investigate the relationship between data attributes
and outcomes. Associational bias mitigation methods exist
for single rankings [5, 17, 29, 51, 53], which typically trade
accuracy of the rank order for fairness. However it is unclear
how the similarities and differences among a set of rankings
relate to these ways of imposing fairness. Therefore how
best to incorporate such measures into the rank aggregation
problem is an open question.

Figure 1: Hiring committee rankings to be aggregated.
Four committee members each rank the set of candidates
{A,B,C,D} from two groups based on gender.

Competing optimization objectives for fair aggre-
gation. If unfair bias against some group is present in base
rankings, it is not known how aggregating them into a sin-
gle ranking will impact this bias. Perhaps aggregation may
exaggerate a slight advantage for one group creating a more
pronounced bias in the final consensus. This could demand
a high toll in aggregation accuracy to ensure fairness. Con-
versely, a diversity of perspectives among the base rankings
might inherently mitigate unfairness present in only a few
of the rankings, in which case correction is not necessary.
A deep study of these subtle inter-dependencies is needed.
Beyond that, a sophisticated strategy is required capable of
balancing the competing goals of fairness for the groups of
candidates being ranked while concurrently retaining a good
representation of the base rankings.

1.3 Proposed Approach
To address these challenges, we formalize fair rank ag-

gregation as a constrained optimization problem balancing
the competing objectives above. The solution is defined as
the closest consensus ranking to the base set of rankings that
satisfies a targeted fairness criterion. We then propose a fair
rank aggregation framework which uses pairwise discordance
to both compute closeness among consensus and base rank-
ings and measure the advantage given to each group of can-
didates. This allows group fairness criteria to be seamlessly
integrated into Kemeny optimal rank aggregation [35]. We
demonstrate the power of our framework to support a pair-
wise rank parity fairness definition [38], proving an equiv-
alence between our approach and popular top-k statistical
parity [51] metrics for fair ranking.

Next we leverage the pairwise framing of the problem to
tackle the complexity challenge of fair rank aggregation. As
a first solution, we propose an integer linear program with
parity constraint to produce a Kemeny-optimal fair con-
sensus. Our Fair-ILP approach can aggregate many rank-
ings generated by a large number of voters. However, the
large number of binary variables is prohibitive when there
are many candidates. Therefore we extend this by deriv-
ing a lower bound on the cost of pairwise fairness criteria.
This supports the design of a rank parity-preserving search
heuristic integrated into a branch-and-bound fair rank al-
gorithm, which we call Fair-BB. We demonstrate that Fair-
BB speeds up computation when ranking many candidates
when the fairness requirements are lenient. Finally, we pro-
vide a fast approximation post-processing algorithm Fair-
Post which guarantees fairness while introducing minimal
pairwise error, and scales to millions of candidates.

We thoroughly evaluate these alternate solution strategies
in a rich test bed of rank aggregation scenarios. The pre-
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viously unknown relationship between fairness and consen-
sus among multiple rankings is explored, using the Mallows’
model [41] to generate distributions of rankings and expose
the tradeoffs between our competing objectives. Finally, we
demonstrate the ability of our framework to produce fair
consensus on real-world using a case study of sports rank-
ings. Our methods consistently produce fair aggregations,
extending contemporary fairness to ranking by consensus.

Contributions of our work include:

1. We formulate the open problem of fair rank aggregation
as finding consensus among a set of input rankings while
ensuring the fair treatment of candidates being ranked.

2. We propose a novel pairwise fair rank aggregation frame-
work for parity-preserving Kemeny aggregation.

3. We design a series of algorithms which guarantee to find
optimal fair consensus, leveraging integer linear program-
ming and custom branch-and-bound strategies.

4. We also design a fast approximation algorithm which
finds a fair solution with minimal aggregation error.

5. We study the interplay between rank consensus and group
fairness, evaluating the relative performance of our solu-
tions for a wide spectrum of aggregation scenarios.

6. We investigate unfair group bias for rankings generated
by human decision makers using a real-world case study
of expert rankings of sports players.

2. PROBLEM FORMULATION
We are given a database X of a fixed set of n candidates

xi ∈ X. A ranking over X is a permutation ρ = [x1 ≺ x2 ≺
... ≺ xn] over all candidates. Here ≺ is a complete ordering
relation on X such that xi ≺ρ xj implies that xi appears
at a more preferred position than xj in the ranking ρ. The
position of a single candidate xi in the ranking ρ is denoted
ρ(xi), with low number positions favored over higher ones,
i.e. ρ(xi) = 1 is the best rank position.

Traditional Rank Aggregation. The set of all possible
rankings of X is Sn the symmetric group of permutations. In
the traditional rank aggregation problem [35] we are given a
subset of base rankings R ⊆ Sn created by some voters. To
be broadly applicable, we do not make assumptions about
how the base rankings were determined, but rather consider
R as a fixed input. We are tasked with finding a single con-
sensus ranking ρ∗ that best represents R as given in Defini-
tion 1. The consensus ranking ρ∗ is the median ranking in
Sn with the minimum average distance to the rankings in
R according to some distance function d. A median ranking
always exists, however it may not be unique.

Definition 1. Given a set of base rankings R ⊆ Sn and
distance function d the traditional rank aggregation prob-
lem is to find a closest ranking ρ∗ ∈ Sn to R such that:

ρ∗ = argminρ∈Sn

1

|R|
∑
σ∈R

d(ρ, σ)

Fair Ranking. In our problem setting, each candidate
being ranked also has an associated protected attribute (e.g.,
race, gender, or age). This attribute partitions the dataset
into two or more disjoint groups G = {G1, . . . , Gm | ∪mi=1

Gi ∈ G = X Our fairness analysis aims to mitigate unfair
bias against these candidate groups.

Unfair bias can be defined in different ways. Since we do
not necessarily have access to the underlying data attributes
or ranking procedures used by the voters, in this work we
aim to meet a group fairness criterion F determined only by
the rank order of the candidates and their group member-
ship. In particular, we first focus on achieving the fairness
notion statistical parity which has been targeted by the ma-
jority of recent proposed fair ranking methods [5, 17, 29, 51,
53]. First proposed for classification [25], statistical parity
requires that the same proportion of each group receives fa-
vorable outcomes. This type of diversity requirement is one
approach to achieving distributional justice for historically
disadvantaged groups. Definition 2 defines statistical parity
for a classification task [20].

Definition 2. Statistical Parity for classification:
Given a dataset X of candidates belonging to mutually exclu-
sive groups Gi ∈ G and a binary classifier f(x) = ŷ which
assigns each item x ∈ X to a class in 0, 1, where ŷ = 1
denotes the preferred outcome for item x, the predictor sat-
isfies statistical parity if the following condition is met for
all groups Gi, Gj ∈ G, i 6= j:

P (ŷ = 1 | x ∈ Gi) = P (ŷ = 1 | x ∈ Gj)

The preferred outcome in classification is often straight-
forward, for example getting approved for a loan or being
hired for a job. For ranking tasks the preferred outcome is
more subtle. Most fair ranking approaches define it as in-
clusion in a top-k prefix of the ranking [5, 17, 29, 51, 53].
Definition 3 gives a general formulation of this notion of
statistical parity for rankings.

Definition 3. Top-k Parity: Given a ranking
ρ = [x1 ≺ x2 ≺ ... ≺ xn] of candidates belonging to mutu-
ally exclusive groups Gi ∈ G, and 0 ≤ k ≤ n, the ranking
satisfies top-k parity if the following condition is met for all
groups Gi, Gj ∈ G, i 6= j:

P (ρ(x) ≤ k | x ∈ Gi) = P (ρ(x) ≤ k | x ∈ Gj)

Since this definition is highly dependent on the choice of
k, some methods consider outcomes averaged over fixed in-
tervals of top-k prefixes [5, 17, 51, 53] or combined using
a discounting cumulative function over all prefixes [29, 53]
to give more emphasis to ensuring fair outcomes toward the
top of the ranking. Bias-correction methods then impose
parity (group fairness) on an unfair ranking by rearrang-
ing the candidates to ensure sufficient representation of the
minority group in top-k prefixes of the ranking.

Fair Rank Aggregation Problem Formulation. We
now formalize our fair aggregation problem in Definition 4
as the goal of finding the closest consensus ranking to R
that satisfies a fairness criterion F . Henceforth in this work
we will focus on rank aggregation with statistical parity for
binary, disjoint groups of candidates. We discuss extensions
of our framework to more general scenarios, including multi-
ple and intersectional group identities, as well as alternative
fairness criteria in Section 6.

Definition 4. Given a set of base rankings R ⊆ Sn and
a fairness criterion F , the fair rank aggregation problem
is to find a closest ranking ρ∗ ∈ Sn to the base rankings that
satisfies F .
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3. PROPOSED FRAMEWORK FOR FAIR
RANK AGGREGATION

3.1 Solution Spectrum for Fair Aggregation
We now examine the spectrum of alternate approaches

to rank aggregation that concurrently guarantee fairness for
the candidates being ranked while assuring maximal rep-
resentation of the interests expressed in the base rankings.
For this, let us suppose we have a fairness correction method
f(ρ) = ρ′ that can rearrange the items in a single ranking to
satisfy a fairness criterion F (such as top-k parity) in a way
that minimizes the distance to the original ranking d(ρ, ρ′).
As we show, extreme solutions of applying this correction
as a pre- or post-processing step for traditional rank aggre-
gation are not adequate. This necessitates the development
of a novel integrated strategy which optimizes for these two
competing goals concurrently – the subject of our work.

The pre-processing strategy illustrated at the top of
Figure 2 first applies this correction method one by one to
each of the given rankings in the base set R, to make a new
set of fair rankings R′. Thereafter, R′ is aggregated using a
traditional rank aggregation method. This approach guar-
antees neither optimal distance to the original base set R,
nor fairness of the resulting ranking. One, f may minimize
the distance between the fair rankings in R′ and their orig-
inal counterparts in R, however this does not necessarily
imply that the median ranking for R′ is close to the original
R. Two, even if each ranking in R′ meets the fairness crite-
rion, the order of individual items may differ greatly across
those adjusted rankings in R′. Therefore we do not know
whether aggregating R′ would also be fair.

On the other hand, the post-processing strategy shown
in the middle of Figure 2 first aggregates R without consid-
ering fairness, producing a consensus ranking ρ∗. Then ρ∗ is
corrected for fairness to produce a ranking f(ρ∗) = ρ′. This
time we can be sure ρ′ is fair. However, we have no guaran-
tee about the quality of the resulting aggregation. Even if
the corrected consensus ranking ρ′ is guaranteed to be close
to the original ρ∗, it may not be the closest fair solution to
the base rankings in R. Therefore neither extreme approach
can guarantee both fairness and aggregation accuracy.

3.2 Integrated Pairwise Solution
We propose a conceptual framework for an integrated fair

aggregation solution that elegantly balances aggregation ac-
curacy with fairness, achieving both goals concurrently as
shown in the bottom of Figure 2. Our key insight here is
that we must align the measure of distance between rank-
ings with the measure of candidate group advantage using
a pairwise rank representation. As we will demonstrate be-
low, this then allows for fairness criteria to be integrated
seamlessly into a fair aggregation framework.

Any ranking can be represented as a series of pairwise
comparisons between the candidates. Given a base set of
rankings R, they will agree on the order of some pairs, and
disagree on others. The number of pairs which appear in an
inverted order in one ranking compared to the other corre-
sponds to the distance measure known as the Kendall Tau
[36], defined in Equation 1 for two rankings ρ, σ ∈ Sn.

K(ρ, σ) =
∑

xi,xj∈X

I
(
ρ(xi) ≺ ρ(xj) and σ(xj) ≺ σ(xi)

)
(1)

Figure 2: Alternative fair rank aggregation strategies.

Here I is the indicator function, with I(x) = 1 when x is
true, and I(x) = 0 otherwise. The consensus ranking with
the minimum average Kendall tau distance to the rankings
in R, given in Equation 2, is known as the Kemeny opti-
mal rank aggregation [35].

ρ∗ = argminρ∈Sn

1

|R|
∑
σ∈R

K(ρ, σ) (2)

Although there are different strategies for measuring the
distance between rankings, Kemeny aggregation is seen as
the gold standard for rank aggregation, which concurrently
satisfies multiple axioms from Social Choice Theory [14].
For this reason, it has seen extensive database and machine
learning applications [2, 13, 27, 34]. Kemeny aggregation
provides our starting place from which to consider group
fairness in the ranking utilizing pairs of candidates.

Consider the case where our database X contains candi-
dates from two different groups, G1 and G2. The pairs in
the Cartesian product X2 can be divided into three sub-
sets: those pairs containing only candidates from group G1,
those containing only candidates from G2, and the set of
“mixed” pairs containing one item from each group. In re-
cent work, we proposed that the proportion of heterogeneous
pairs which favor one group over the other corresponds to
a fairness measure of the relative advantage that group en-
joys in the ranking [38]. The Rpar score in Equation 3
captures this pairwise advantage for G1, normalized by the
total number of mixed pairs in the ranking to account for
any imbalance in the size of the groups.

RparG1(ρ) =
∑
xi∈G1

∑
xj∈G2

I
(
xi ≺ρ xj

)
|G1||G2|

(3)

We now observe that RparG1 computes the probability
that an item from group G1 is ranked above an item from
group G2, such that:

RparG1(ρ) = P (xi ≺ρ xj | xi ∈ G1, xj ∈ G2) (4)

Following from this, we propose the following pairwise for-
mulation of statistical parity in Definition 5 for two groups.
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Definition 5. Pairwise Statistical Parity: Given a
ranking ρ = [x1 ≺ x2 ≺ ... ≺ xn] of candidates belonging to
mutually exclusive groups G1, G2, ρ satisfies pairwise statis-
tical parity if the following condition is met:

RparG1(ρ) = RparG2(ρ)

3.3 Equivalence between Top-k and Pairwise
Statistical Parity

Defining parity this way gives a compatible fairness cri-
terion for Kemeny aggregation, in that both optimization
goals now depend on the pairwise ordering of candidates in
the consensus ranking. However, it is not immediately ob-
vious how the pairwise Definition 5 relates to the notions of
statistical parity expressed in Definitions 2 and 3. We now
show that this proposed formulation indeed corresponds to
a variant of top-k parity semantics, namely, a summary for-
mulation that takes all possible prefixes of the list into ac-
count. For this, we observe that the probability on the left
hand side of the Top-k Parity in Definition 3 corresponds
to the cumulative distribution function for the rank ρ(x) of
any x ∈ G1. Let us denote this as Fρ(x)|G1

(k) such that:

Fρ(x)|G1
(k) = P (ρ(x) ≤ k | x ∈ Gi) (5)

To compute the value of Fρ(x)|G1
for a given k, we can

simply count the proportion of candidates from group G1 in
the top-k prefix of the ranking as per below.

Fρ(x)|G1
(k) =

∑
x∈G1

I(ρ(x) ≤ k)

|G1|
(6)

Since the rank of x is strictly positive, we can use
Fρ(x)|G1

(k) to compute the conditional expectation of the
rank of x given membership in G1, where

E(P (ρ(x) = k | x ∈ G1) =

∞∑
k=0

(
1−

∑
x∈G1

I(ρ(x) ≤ k)

|G1|

)
(7)

Each possible value of k corresponds to a rank position in
ρ assigned to some candidate x. Let K1 and K2 be the set
of all rank positions assigned to candidates in G1 and in G2,
respectively. We can then re-write Equation 7 as:

E(P (ρ(x) = k | x ∈ G1) =

n∑
k=0

1−
( ∑
x∈G1

∑
k2∈K2

I(ρ(x) ≤ k)

|G1|

+
∑
x∈G1

∑
k1∈K1

I(ρ(x) ≤ h)

|G1|

)
(8)

The first outer term in Equation 8 is simply n+1, since for
any k > n the probability that ρ(x) ≤ k is always 1. The in-
ner summations describe pairwise relationships between the
candidates in ρ. The first term is only over those candidates
x ∈ G1 ranked higher than candidates in G2 (each posi-
tion k2 ∈ K2 corresponding to a candidate in G2). These
are the same pairs used to compute RparG1 . The second
term is only over candidates in G1. For each consecutive
position k1, this term counts the candidates ranked at that
position or higher. This thus corresponds simply to the sum
of consecutive integers from 1 to |G1|, given by the constant
|G1|(|G1|+1)

2
. Therefore we have:

E(P (ρ(x) = k | x ∈ G1) = n+1−
(
|G2| RparG1 +

|G1|+ 1

2

)
(9)

(a) (b)

Figure 3: Aggregated hiring committee rankings with and
without fairness criteria, namely, Kemeny optimal ranking
(a) without considering fairness, and (b) with rank parity.

From Equation 9, we can observe two things. One, the
top-k probability taken over all k is a linear function of the
Rpar measure, where:

n∑
k=0

P (ρ(x) ≤ k | x ∈ G1) = |G2| RparG1 +
|G1|+ 1

2
(10)

Two, Rpar can be used to measure the difference in the ex-
pected rank position of different groups. This is not surpris-
ing, as we further observe that the Rpar score for a disadvan-
taged group is equivalent to the Mann–Whitney U -statistic
[43], where Rpar = U

|G2||G1|
. The Mann-Whitney U has

a well-known relationship to the area under the ROC curve
for a probabilistic classifier [32]. Similarly, we put forth here
that the Rpar score relates to the rates of positive outcomes
achieved by each group according to different values of k.

3.4 Rank Parity for Fair Hiring Example.
We return to our example from Section 1 to study how

pairwise statistical parity might impact rank aggregation.
Figure 3 illustrates the result of aggregation with and with-
out rank parity. Rank 3a is produced using unconstrained
Kemeny ranking. We see it reflects the tendency of female
candidates to be ranked lower than males, and it places the
controversial candidate A at the top. Five mixed pairs favor
males over females {(a ≺ c), (a ≺ e), (b ≺ c), (b ≺ e), (c ≺
d)} and only one pair favors females over males {(c ≺ d)}. In
contrast, ranking 3b overcomes this group disparity. In this
ranking, females enjoy equal pairwise advantage to males,
where three pairs favor males {(b ≺ c), (b ≺ e), (d ≺ e)} and
three favor females {(c ≺ d), (c ≺ a), (e ≺ a)}.

Any consensus ranking represents a compromise. In a
real hiring committee, members might debate or argue for
a ranking close to their own point of view. Our proposed
framework can be instrumental in resolving differences while
adding the benefit of fairness for candidates. In this exam-
ple, both rankings 3a and 3b are in fact both optimal, each
having a minimal average Kendall Tau distance of 3.5 to
the base rankings. In this case, prioritizing fairness can re-
solve a tie when more than one optimal consensus ranking
exists. Other times, the committee may have flexibility in
their choices and may tune the degree of fairness required to
achieve a solution that is more fair than the base rankings
while only introducing minimal additional pairwise error.

4. PROPOSED METHODS FOR KEMENY-
OPTIMAL FAIR AGGREGATION

Given our integrative pairwise framework, we now design
optimal strategies to solve the proposed constrained opti-
mization problem for fairness-preserving rank aggregation.
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To facilitate the design of our methods, we employ a com-
pact representation of the rankings in R in the form of the
precedence matrix C (Def. 6). Matrix C summarizes the
pairwise relationships between candidates in X.

Definition 6. Given a set of rankings to be aggregated
R over a dataset X = {x1, . . . , xn}, then the precedence
matrix C is defined as:

Cij =
1

|R|
∑
σ∈R

I(xi ≺σ xj)

Each entry in C indicates the proportion of rankings in R
which favor xi over xj , compared to the number of times xj
is preferred to xi. Summing a column j of C captures the
overall pairwise advantage given to the item xj in R.

Fairness Threshold. Recognizing that different parity
requirements may arise in various ranking scenarios, we now
relax our rank parity definition by introducing a fairness
threshold parameter δpar as the maximum allowable differ-
ence in the pairwise advantage in ρ∗ for each group. This
supports us in tuning the fairness criterion according to ap-
plication domain requirements, trading-off between the ac-
curacy of the consensus ranking and the strictness of parity
between groups. The threshold is expressed as a proportion
of mixed pairs in ρ∗, such that:

|RparG1(ρ∗)−RparG2(ρ∗)| ≤ δpar (11)

4.1 Fair-ILP
We now draw on key strategies for tackling the complexity

challenge of the aggregation problem, beginning with an In-
teger Linear Programming (ILP) approach. Exact Kemeny
aggregation has been shown to be NP-hard [8, 26], but can
be expressed as a variation of the minimum weighted feed-
back arc set problem [23, 47], and solved using an integer
linear program approach [23]. We propose a Fair-ILP by
modeling pairwise statistical parity as a constraint in Inte-
ger Program 1.

Matrix A specifies the order of all pairs in the desired
consensus ranking ρ∗. The first constraint (Equation 13)
enforces that A is a boolean matrix representing the final
ranking ρ∗, wherein each pair appears exactly once. The
second constraint (Equation 14) says that for all pairs, ei-
ther xi ≺ xj or xj ≺ xi, preventing loops in a strict or-
dering over all candidates. The third constraint (Equation
15) enforces transitivity. Conitzer et al. [23] show that to-
gether these three constraints are sufficient to produce the
Kemeny-optimal aggregation which minimizes the Kendall
Tau distance to R.

Equation 16 enforces pairwise statistical parity. This con-
straint sums the differences between entries in A correspond-
ing to mixed pairs in ρ∗, where Ai,j represents the pair
(xi ≺ xj) favoring group G1 over G2, and Aj,i represents
its inverse (xj ≺ xi) favoring group G2. Summing over
these differences computes exactly the difference between
the Rpar scores as in Equation 11.

4.1.1 Complexity Analysis for Fair-ILP
While Kemeny aggregation is NP-hard, it is fixed-

parameter tractable, depending only on the number of items
being ranked n. This intuitively can be understood by con-
sidering the size of the n-by-n precedence matrix C. The
number of rankings |R| contributes only to a one-time setup
cost of O(|R| ∗ n2) to construct C. The ILP solution for

Linear Program 1: Fair-ILP.

minimize
∑
i,j

CijAij (12)

s.t. Aij ∈ 1, 0 (13)

Aij +Aji = 1 strict ordering constraint (14)

Aij +Ajk +Aki ≥ 1 transitivity constraint (15)

|
∑
xi∈G1
xj∈G2

(Aij −Aji) | ≤ δp parity constraint (16)

unconstrained Kemeny aggregation requires n2 binary vari-
ables in the matrix A,

(
n
2

)
constraints to enforce strict or-

dering (Equation 14), and
(
n
3

)
constraints for transitivity

(Equation 15). Our fairness requirement in Equation 16
adds additional constraints for each mixed pair (|G1||G2|
constraints). This, as our experimental study in Section 5
confirms, increases the time to solve the program.

For rankings over many items, the large number of bi-
nary variables in the ILP solution poses practical compu-
tational challenges. In benchmarking studies [23, 13], ILP
algorithms for unconstrained Kemeny aggregation could not
handle more than n = 60 items. Similarly, in our empiri-
cal evaluation in Section 5 with state-of-the-art highly opti-
mized mathematical GUROBI solver [31] and 500G of dedi-
cated memory, we handle problems on the order of n = 100.
Further, with commercial solvers for IP being proprietary
and not freely available outside of academia, we explore ad-
ditional solutions next.1

4.2 Fair-BB
We now design a Branch-and-Bound based (B+B) ap-

proach aiming to handle a larger number of candidates n. In-
tuitively, any fairness constraints imposed on the rank aggre-
gation task shrink the space of possible outcomes. To cap-
italize on this problem characteristic, one simple approach
would be to incorporate an explicit check into the branching
rule for a B+B solution for traditional Kemeny aggregation.
This would prune search paths which violate the targeted
fairness criterion F . However, we observe that this may re-
quire the method to backtrack over many paths in the tree,
resulting in an expensive search. Alternatively, to empower
more efficient search, we now derive a lower bound on the
distance from the base rankings in R to any fair consensus
ranking. This can be thought of as the cost of each potential
solution in terms of pair inversions between rankings. We
use this lower bound to design admissible fairness-preserving
heuristics. which can guide the B+B tree search, and are
guaranteed to underestimate the true cost of the final rank-
ing. This ensures that whenever a leaf node is reached, an
optimal solution has been found [45].

4.2.1 Bounding the Cost of Fairness
The total cost of a potential consensus ranking ρ corre-

sponds to the sum of the costs for all ordered pairs of candi-
dates (xi ≺ xj) in the ranking as given by the Kendall Tau
distance (Equation 1). This cost for each pair is computed

1All code, experiments and supplemental material avail-
able: https://arcgit.wpi.edu/cakuhlman/VLDB2020
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by counting the proportion of rankings in R that disagree
with its ordering using the precedence matrix C, such that:

cost(xi ≺ xj) = Cj,i. (17)

Each pair can only be ordered one of two ways, either
(xi ≺ xj) or (xj ≺ xi). This order will agree with a certain
number of rankings in R. Thus, for all xi, xj ∈ X, we have:

Ci,j = 1− Cj,i. (18)

Summing the minimum costs associated with each pair
in the ranking (Ci,j or Cj,i) provides a lower bound lb(ρk)
on the true cost of the Kemeny optimal consensus ranking
[44], as given in Equation 19. We note here that this order
may contain cycles, and therefore may not correspond to the
actual cost of a feasible solution.

lb(ρk) =
∑

xi,xj∈X

min(Cj,i, Ci,j) (19)

Building on this, we now propose Lemma 1 following di-
rectly from Definition 4 of the fair rank aggregation problem.

Lemma 1. Let a Kemeny optimal consensus ranking over
X be any ranking ρk with minimum cost distance to R, and
a fair consensus ranking over X be any ranking ρ∗ with min-
imum cost out of all rankings that satisfy a given fairness
criterion F . Then cost(ρ∗) ≥ cost(ρk).

Proof. If a ranking ρk exists that satisfies F , then ρk = ρ∗.
Otherwise, ρ∗ must have higher cost by definition.

In a higher cost solution, some number k ≥ 0 pairs must
not conform to the minimum cost ordering in the final rank-
ing ρ∗. Assuming we knew this number k, we could then
compute a lower bound lb′(ρ∗) based on Equation 19 by
flipping the number of the k pairs that add the minimum
amount of cost overhead to lb(ρk). Lemma 2 identifies the
overhead cost of flipping a pair.

Lemma 2. Given a pair (xi ≺ xj) with a minimum cost
of Cj,i contributing to the sum in lb(ρ∗), if the pair is flipped,
the updated bound lb′(ρ∗) will incur an overhead cost of
1− (2 ∗ Cj,i).

Proof. By Equation 18, flipping a pair is equivalent to sub-
tracting the minimum cost Cj,i for the pair and adding its
inverse (1 − Cj,i). Therefore, when we flip a pair from the
order (xi ≺ xj) to order (xj ≺ xi), we get:

lb′(ρk) = lb(ρk)− Cj,i + (1− Cj,i)

= lb(ρk) + 1− 2 ∗ Cj,i

Corollary 1. lb′(ρ∗) can be determined from the order-
ing of pairs used to compute lb(ρk) by flipping the k pairs
that carry the minimum overhead costs, and that will satisfy
the criterion F .

Proof. Corollary 1 follows directly from Lemmas 1 and 2,
given that Ci,j ≥ Ck,l =⇒ 1− 2 ∗ Ci,j ≤ 1− 2 ∗ Ck,l

4.2.2 Guiding Search for Fair Consensus Ranking
Building on the observations above, we now incrementally

construct a search tree such that each node v represents a
candidate x being placed in a particular rank position in ρ∗.
Each node is expanded by adding children nodes for all items

Algorithm 1: getParityOverhead

input : node v
output: overhead cost for v

1 if |v.p1 + v.p2g1| > |v.p0 + v.p2g0| then

2 k =
⌈
|v.p1+v.p2g1|−δ

2

⌉
;

3 pairsList←− v.p2g1;

4 else if |v.p1 + v.p2g1| < |v.p0 + v.p2g0| then

5 k =
⌈ |v.p0+v.p2g0|−δ

2

⌉
;

6 pairsList←− v.p2g0;

7 else
8 k = 0

9 if k == 0 then
10 return 0
11 else if k ≤ length(pairsList) then
12 sort(pairsList) ; // sort in ascending order

// of overhead cost

13 overhead ←− 0;
14 for i to k do
15 overhead += 1− 2 ∗ cost(pairsList[i ]);

16 else
17 overhead ←−∞ ; // constraint cannot be

met

18 return overhead

not yet included in the path to v. The full search tree has
depth n, with every path through the tree representing one
possible ranking, and n! leaf nodes. To bound the search and
avoid traversing the entire tree, as each node is expanded,
we compute a two-part cost function f(v) = g(v) + h(v).

We can think of g(v) as the cost of the pairs-so-far set by
the order of the candidates in the prefix path from the root
to the current node v. Heuristic h(v) models an estimate of
the cost for the pairs-to-go which are yet to be determined.
Given a node v, the pairs-so-far set by the path to v can be
divided into three subsets: pairs of candidates belonging to
the same group, pairs favoring group G1 over G2 (denoted
v.p1), and pairs favoring group G2 over G1 (denoted v.p2).
These pairs all contribute to the cost of the pairs-so-far g(v).

Rank Parity Heuristic. To determine h(v) for rank
parity, we initially assign all pairs-to-go their minimum cost
ordering as required to compute lb(ρk) (Equation 19). Once
all the pairs are ordered, they can similarly be divided into
subsets. We denote pairs-to-go favoringG1 overG2 as v.p2g1
and pairs favoring G2 over G1 as v.p2g2. We can now ex-
press the rank parity criterion in Equation 11 for a node v
as the following requirement:

abs( |v.p1 ∪ v.p2g1| − |v.p2 ∪ v.p2g2| ) ≤ δpar (20)

where | · | denotes the number of pairs in each set. If this
condition is not met, we must update our initial ordering
of pairs-to-go to be sure it only allows for rankings which
satisfy rank parity. This is accomplished by flipping the or-
der of some of the pairs-to-go, transferring them from the
set favoring one group to the set favoring the other and bal-
ancing the pairwise advantage of the groups. We determine
the required number of pairs to flip to satisfy rank parity k,
according to Lemma 3.
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Lemma 3. Given a node v, let Pmax = max(|v.p1∪v.p2g1|,
|v.p2 ∪ v.p2g2|) and Pmin = min(|v.p1 ∪ v.p2g1|,|v.p2 ∪
v.p2g2|). The number of pairs to flip to satisfy Equa-
tion 20 is:

k =
⌈Pmax − Pmin − δpar

2

⌉
Proof. When we flip a pair, we subtract 1 from Pmax and
add it to Pmin. Therefore we simply can derive the number
of pairs to flip as:

(Pmax − k)− (Pmin + k) = δpar

Pmax − Pmin − 2k = δpar⌈Pmax − Pmin − δpar
2

⌉
= k

Given the required number of pairs to flip k, we can then
check whether there are a sufficient number of pairs-to-go
that could be flipped. If not, this path cannot yield a feasible
solution and can thus be pruned. If there are more than
enough pairs-to-go, then following Corollary 1, flipping only
those k pairs that add the minimum overhead will give us
our adjusted lower bound on the cost of pairs-to-go lb′(ρ∗).
Algorithm 1 gives the procedure for computing the total
minimum overhead cost for k flipped pairs-to-go.

4.2.3 Complexity Analysis for B&B Solution
Complexity of Search Tree Exploration. In the worst

case, every path in the tree will have to be explored yield-
ing an O(n!) search cost. Even for modest values of n, such
a search will likely be intractable. However, in [44], Meila
et al. observe that performance is greatly impacted by the
amount of agreement among the base rankings in R. If there
is little agreement, all rankings in Sn will be far from the
set R and many paths in the tree will have to be compared.
In contrast, if there is strong agreement in R, then only a
small number of rankings in Sn will be likely candidates for
ρ∗. Given a good search heuristic, only the small number of
likely rankings will need to be explored.

The cost of the B+B algorithm also depends on the search
strategy used. We implement A* search, using a priority
queue which has constant time cost for adding and removing
nodes if a Fibonacci heap isused. Overall performance of the
search depends heavily on the heuristic used. In Section 5 we
empirically evaluate our rank parity heuristic given varying
degrees of agreement among the rankings.

Complexity to Compute Parity Heuristic. As is typ-
ical in B+B design, there is a complexity tradeoff between
computing a tighter lower bound heuristic and its impact on
the resulting search [21]. Each time a node v is expanded,
we must compute the cost of the pairs-so-far g(v) and cost
of the pairs-to-go h(v) for every child node. Following the
strategy in [44], we use the siblings of each node to com-
pute g(v), and to determine the sets of pairs-to-go. This
requires constant time complexity and O(n) space complex-
ity to store the child nodes. To compute the parity heuristic
h(v), Algorithm 1 sorts the pairs-to-go in Pmax. Sorting
all n(n− 1)/2 candidate pairs has complexity O(n2(log(n)).
Therefore, traversing a single path from the root to a leaf,
we visit n nodes and expand O(n) child nodes. This results
in O(n4log(n)) time complexity.

4.3 Fair-Post
To handle the case when the B+B method exceeds al-

lowable resources, one could revert to an approximate tree

Algorithm 2: correctParity

input : ρ = [x1 ≺ x2 ≺ · · · ≺ xn], maxPairs
output: ρ′ corrected ranking, q = K(ρ, ρ′)

1 l1, l2 ←− empty queues;
2 for i← 1 to n do
3 if xi ∈ G1 then
4 insert xi into l1;
5 else
6 insert xi into l2;

7 ρ′ ←− [ ] ;
8 p1, p2, q ←− 0;
9 for i← 1 to n do

10 if ρ(l1.peek()) > ρ(l2.peek()) then

11 if p1 + l2.length() ≤ maxPairs then

12 ρ′[i] = l1.dequeue();
13 p1 = p1 + l2.length();

14 else
15 flip =ρ(l2.peek())−i);
16 ρ′[i] = l2.dequeue();
17 p2 = p2 + l1.length()− flip;
18 q = q + flip;

19 else
20 ρ′[i] = l2.dequeue();
21 p2 = p2 + l1.length();

22 return ρ′, q

search using standard techniques such as best first search
or beam search. Unfortunately, this simple approach guar-
antees neither optimal distance to the base rankings nor
fairness. As an alternative, we now return to the post-
processing strategy discussed in Section 3 to design a ap-
proximation strategy which not only guarantees pairwise
statistical parity, but also assures that a minimum num-
ber of pair inversions are introduced. Given this, existing
fast approximation methods for Kemeny aggregation can be
plugged in to first aggregate R and generate an initial con-
sensus ranking, and then correct for fairness while bounding
the additional approximation error added.

Our Fair-Post is given in Algorithm 2. The input is an
unfair ranking ρ = [x1 ≺ · · · ≺ xn] which does not satisfy
pairwise statistical parity. Let us say without loss of gener-
ality that more pairs favoring group G1 is greater than the
number of pairs G2. A fair version of this ranking should
only allow a certain number of pairs to favor G1 – denoted
maxPairs. To correct the ranking, the algorithm proceeds
by forming two queues of candidates l1, l2 for each group,
respectively, keeping the candidates in their original rank
order. Then, iterating through rank position i = 1 to n, at
each step the candidate ranked highest in ρ in either queue
is placed at the current position i in ρ′, provided that the
fairness constraint will not be violated. To check this, we
keep a tally of the pairs-so-far favoring each group denoted
p1 and p2, respectively. If the selection of a candidate from
G1 would cause the number of pairs favoring G1 to exceed
maxPairs then parity would be violated (line 11). In this
case the highest ranked item from queue l2 is chosen instead.

We observe that Algorithm 2 preserves within-group order
of candidates, and also guarantees a fair solution with the
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minimal number of pair inversions compared to the initial
input ranking. Due to space reasons, we sketch the intuition
behind our proof below (see technical report for details 2).

Sketch of proof. Let us consider the simple case where
strict parity is required (δpar = 0) and the total number
of mixed pairs m is even. To be fair, each group must be
favored in exactly half of the mixed pairs, i.e. maxPairs =
m/2. In the process of correction, some number q pairs will
be flipped from their original order. We denote the pairs
favoring group G1, G2 in original ranking as pρ1, p

ρ
2. Let h

be the minimum number of pairs that must be flipped from
favoring group G1 in ρ to favoring G2 in ρ′ in order for ρ′

to satisfy rank parity, such that pρ1 − h = m
2

= pρ2 + h.

If qi ≤ h for all rank positions i, then the Kendall Tau
distance K(ρ, ρ′) is optimal. In our full proof we show that
qi ≤ h⇐⇒ pi2 + qi ≤ m

2
, and prove by induction that for all

rank positions i: pi1 ≤ m
2

and pi2 + qi ≤ m
2

.

4.3.1 Complexity Analysis for Fair-Post
Algorithm 2 has O(n) time complexity, requiring two pass-

es over the input ranking first to populate the queues and
then to assign the candidates to their corrected rank posi-
tions. It has O(n) space complexity to hold the candidates
in the queues. Given we first need to aggregate the rankings
which may contain a large number of items, we propose to
plug in an existing approximate aggregation method as an
initial step. This way we address the complexity concern
of the exact aggregation solutions for NP-hard Kemeny ag-
gregation, i.e. (non-fair) ILP [23] and B+B [44] solutions -
which have similar limitations on the number of candidates
to be ranked as our proposed integrated methods.

5. EVALUATION

5.1 Experimental Methodology
Overall Strategy. We conduct a systematic study an-

alyzing the interplay between critical factors including the
number of candidates ranked, number of rankings in R, con-
sensus among rankings in R, and group fairness threshold
on the fair rank aggregation algorithms. This is followed by
a case study using real-world sports ranking data.

Metrics. To measure the accuracy of the aggregation, we
use the average Kendall Tau distance to the rankings in R
(Equation 2), denoted Kmean(ρ∗). To evaluate the fairness
(pairwise statistical parity) achieved by the consensus rank-
ing ρ∗, we measure the absolute difference in the RparGi

scores (Definition 5) for each group, denoted as Rpar(ρ∗)
in Equation 21. Since the RparGi scores for each group are
normalized by the total number of mixed pairs, the Rpar
score is equal to 1 when the ranking is totally biased favor-
ing one group, and 0 when each group is favored in half of
the pairs for perfect parity.

Rpar(ρ∗) = abs(RparG1(ρ∗)−ReqG2(ρ∗)) (21)

Methods. As a baseline, we compare against two exist-
ing strategies for (nonfair) exact Kemeny aggregation: an
integer linear program (ILP) by Conitzer et al. [23], and
a B+B algorithm by Mandhani and Meila [42] which uses
the lower bound in Equation 19. We compare these to our
Fair-ILP method with the rank parity constraint (Section

2https://arcgit.wpi.edu/cakuhlman/VLDB2020

4.1) and Fair-BB method with the parity-preserving heuris-
tic (Section 4.2). For approximate aggregation, we employ
the classic Borda [24] scoring method as a first step, and cor-
rect for fairness using our Fair-Post algorithm (Section 4.3).
In a comparative study of algorithms for Kemeny aggre-
gation [2], Borda was suggested as the best approximation
approach when optimizing for speed, and to give low ap-
proximation error. Borda sorts the candidates by the over-
all pairwise advantage in R, which can be done efficiently
by summing the columns of the precedence matrix.

Experimental Setup. All experiments were performed
on a Linux server running Ubuntu 14 with 500G of RAM.
Integer programming solutions were implemented using the
commercial highly optimized and parallelized mathematical
solver GUROBI [31]. Borda and Fair-Post methods we im-
plemented in Python. B+B algorithms were implemented in
Java, adapted from implementation by authors of [42]. For
Java methods, we fix the heap size of JVM at 50G. Direct
comparisons of run-times should consider these differences.

5.2 Controlled Study of Fair Kemeny
Aggregation using Mallows’ Model

Dataset Generation. We adopt the Mallows’ Model
probability distribution over rankings [41] which provides a
natural means to evaluate Kemeny rank aggregation meth-
ods extensively in previous studies [2, 13]. The Kemeny op-
timal consensus ranking has been shown to be a maximum
likelihood estimator for this model [52]. For all rankings
π ∈ Sn, the Mallows model is the probability distribution:

Pπ0,θ
exp(−θK(π, π0))

Z

Z =

n−1∏
i=1

1− exp((−n− i+ 1) θi)

1− exp(−θi)

(22)

The distribution is parameterized by θ which controls the
degree of consensus among the rankings in R. If θ = 0,
Equation 22 yields a uniform distribution, i.e., there is no
consensus among the rankings. As θ increases, the distribu-
tion becomes steeper around a single mode ranking σ0.

To understand the fairness of ρ∗ compared the fairness of
the base set of rankings in R, we introduce a second parame-
ter p. We control parity in the base rankings by assigning the
candidates in the central ranking σ0 to two groups G1 and
G2, starting from the highest ranked item and progressing
sequentially to the lowest ranked. For each candidate, the
group is chosen with probability p. For p = 0.5, the groups
are assigned in a uniform random manner. Given enough
items, this central ranking will be fair, i.e., Rpar(σ0) will
be close to 0. As p increases, candidates from G1 appear in
more favorable positions in the ranking. When p = 1, all
candidates in G1 are ranked above those in G0, resulting in
a completely biased ranking with Rpar(σ0) = 1.

5.2.1 Descriptive Study of Consensus and Fairness
in Mallow’s Data.

Figure 4 shows twelve different sets of base rankings gen-
erated using the Mallows model with n = 50 candidates and
|R| = 20 rankings. We create different aggregation scenar-
ios by varying the parameters θ and p. A central ranking
σ0 shown at the top of each column is used to generate four
versions of R. When θ is close to 0 at the top of the figure,
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Figure 4: Impact of parameters θ controlling consensus,
and p controlling fairness on sets of Mallows generated base
rankings with n = 50 items and |R|=20.

there is little consensus among the rankings. As θ increases,
the rankings in R tend to agree more and more with σ0.

In each column of Figure 4 the candidates are assigned to
groups with different degrees of unfairness p. On the left,
items are assigned with probability p = 0.5, and both groups
are randomly distributed throughout all sets of rankings,
even when there is strong consensus. Moving right, group
G1 is favored over group G0 and as θ increases a distinct
advantage is introduced for group G1 in R corresponding to
the unfairness controlled by p (Figure 4, bottom right).

This demonstrates that consensus among rankings in R
has a large impact on the overall fairness. When there is lit-
tle consensus (top row of Figure 4), any bias in an individual
ranking is “cancelled out” by the diversity in base rankings.
In this case, we expect to see little penalty in aggregation
accuracy when enforcing fairness in ρ∗. Any ranking chosen
will have a large distance to R given rankings are so dissim-
ilar from each other. Conversely, when θ is large (bottom
row Figure 4), the distance to the consensus ranking will be
small, and accuracy tradeoff for fairness will be higher.

5.2.2 Experimental Study using Mallows’ Data
Next we demonstrate that our fair aggregation methods

learn accurate consensus rankings, while enforcing fairness
- even when base rankings are unfairly biased.
Accuracy versus Fairness Tradeoff. First, we verify
observations in our descriptive study using unconstrained
ILP and parity-preserving Fair-ILP in the same setting. To
reveal the impact of strict fairness criteria on aggregation
accuracy, we set a tight fairness threshold δpar allowing an
advantage of at most 0.02% of the mixed pairs for either
group. On the left, Figure 5 shows the impact of enforcing
parity in ρ∗ on the average Kendall Tau distance to R for
base rankings with different degrees of agreement and differ-
ent amount of bias. When θ is close to zero, R is very noisy,
and therefore the overall distance to (ρ∗) is high for both
unconstrained and fair aggregation. As θ increases, there
is more agreement among rankings in R, and the distance
to ρk found by ILP gets smaller. Fair-ILP carries a higher
distance penalty for requiring parity in ρ∗, which becomes
more pronounced with stronger unfair bias in R (p = 0.9).

Relationship between Rank Parity and Consensus.
On the right, Figure 5 shows Rpar(ρ∗) scores (Equation
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Figure 5: Impact of agreement in R on distance to ρ∗

(left) and on the rank parity of ρ∗ (right) on sets of Mallows
generated base rankings with n = 50 candidates and |R|=20
for unconstrained and fairness-preserving ILP methods.

21) on the y-axis. The pairwise statistical parity of the ρk

ILP solution reflects the unfair advantage in base rankings
introduced by parameter p. Conversely, Fair-ILP succeeds
in enforcing the parity threshold, yielding a flat score across
all values of θ and p.

5.2.3 Performance Evaluation
Next we compare the performance of our proposed exact

methods Fair-ILP and Fair-BB for fair rank aggregation. For
this, we generate datasets using the Mallows model varying
the number of candidates from n = 40 to 100. We did not
observe significant impact on run-times due to the number
of rankings being aggregated. Therefore, we fix |R| = 1000.

Impact of number of candidates on performance.
From our cost analysis in Section 4.1.1, we know that the
number of candidates is the most important determinant of
time complexity of the Fair-ILP methods. Indeed, the Fair-
ILP method proves to be robust across parameter settings
for θ and different fairness thresholds, achieving consistent
run-times across all settings. The parity constraint intro-
duced in Section 4.1 adds some overhead impacted by the
amount of bias in the base rankings. However, as Figure
6 shows, the ILP run-times increase exponentially in the
number of candidates n. This confirms similar analysis in
previous studies (see 2015 VLDB survey [13] for n > 60).

The B+B approaches tell a different story. In Figure 6,
we fixed θ = 0.3 and generated biased data with p = 0.7. A
loose fairness threshold allowed for an advantage of 25% of
the mixed pairs. In this case, Fair-BB gives a > 15x speedup
over Fair-ILP when n = 100, scaling linearly in the number
of candidates. However, Fair-ILP is much more sensitive to
the amount of bias in R and agreement among the rank-
ings. This is expected, since the worst case complexity of
the method is O(n!) as discussed in Section 4.2.3.

Impact of Unfair Bias on Fair-BB. For their uncon-
strained B+B method for Kemeny aggregation, [44] claims
that the worst case is avoided when the base rankings strong-
ly agree. We observe that for fair aggregation, too much
agreement can hinder performance. When strict fairness is

2715



40 50 60 70 80 90 100
n

0

10

20

30

40

tim
e 

in
 se

co
nd

s

method
ILP
Fair_ILP
BB
Fair_BB

Figure 6: Comparison runtimes for unconstrained and
fairness-preserving B+B and ILP methods on sets of |R| =
1000 Mallows generated base rankings with theta = 0.3,
p = 0.7 and fairness threshold of 25% mixed pairs.

required and biased base rankings agree strongly, Fair-BB
performance suffers greatly. In our experiments, a number of
parameter settings (provided in our supplemental report) re-
quired more memory than available with heap size of 50GB.
For large θ, the base rankings may be tightly clustered far
from all potential fair solutions, and thus none can be pruned
even using the parity heuristic.

5.2.4 Approximation methods
For databases of many candidates, if we accept an approx-

imate solution, our Fair-Post method scales to handle thou-
sands to millions of candidates. Table 1 gives the runtimes
when aggregating rankings of n = 100 to n = 1, 000, 000 can-
didates. We fix |R| = 1000, p = 0.7, and fairness threshold
of 1% of the mixed pairs as these settings were not observed
to impact runtime in our experimental analysis. We see that
the Fair-Post used with the efficient Borda approximation
method scales linearly to easily handle large datasets. For
rankings with n > 100, 000 candidates we report only Fair-
Post times for the central rankings σ0 due to the overhead
of generating Mallows data at that scale.

5.3 Fantasy Sports Ranking Case Study
Like all human decision making, evaluations of sports

players are susceptible to implicit bias by the experts who
may unconsciously favor particular groups. For instance,
Olympic figure skating judges have been shown to exhibit a
bias in favor of their home country [4]. To understand how
unfair bias may manifest in the real world, we study fantasy
football rankings. Fantasy sports is a billion dollar indus-
try with around 45.9 Million players in the U.S in 20193.
Fantasy players choose real athletes for their fantasy teams
each week and score points based on the athlete’s real per-
formance. Rankings of the athletes are provided by experts

Time in Seconds
#Candidates Borda-Agg. Fair-Post
100 0.11 0.30
1,000 0.89 2.41
10,000 8.83 23.48
100,000 104.85 235.07
1,000,000 *** 2798.57

Table 1: Impact of number of candidates on run time for
post-processing approximate aggregation of |R| = 1000.

3https://thefsga.org/industry-demographics/

to give guidance to players. These public rankings provide
an ideal test-bed reflecting a real-world phenomena where
human voters judge and rank candidates.

We collected rankings of National Football League (NFL)
players for 16 weeks of the 2019 football season from the
top 25 experts on the popular website FantasyPros.4 To
examine potential bias, we assigned players to groups based
on conferences: American Football Conference (AFC) and
National Football Conference (NFC) - each with 16 teams.
We hypothesized that experts may favor one conference over
the other, perhaps based on favorite teams or reputation.

Using weekly rankings of wide receivers as an example,
we observe that week to week, the experts tend to agree
strongly in their assessments of the players. On average they
disagree on the pairwise order of less than 10% of players.
The experts also exhibited a slight bias toward the NFC
group, favoring it in on average 18% more pairs than the
AFC group. Examining closer, we find that certain experts
tend to consistently overestimate the NFC every week, while
other are more fair. Figure 7 shows the rank parity scores
for each expert’s ranking over the season (thin gray lines).
We compare this to ground truth rankings based on the ac-
tual points scored by the players each week, and consensus
rankings generated using the unconstrained ILP and Fair-
ILP methods (δp set to mean ground truth parity of 12% of
pairs). We see that the unconstrained consensus rankings
tend to exaggerate the NFC bias compared to the ground
truth, while our correction method is able to generate rank-
ings with similar parity. Interestingly, making the rankings
fair in this context did not affect the prediction accuracy too
much - indicating that the observed bias was not the main
reason for the experts’ incorrect predictions.

2 4 6 8 10 12 14 16
Week

0.0

0.2

0.4

Rp
ar

Ground Truth
ILP
Fair_ILP

Figure 7: Rank parity scores for weekly rankings of NFL
wide receivers for 2019 season.

6. DISCUSSION
Our work on this new fair rank aggregation problem opens

many interesting avenues for novel future research, such as
further implications for Social Choice Theory. Especially
important are questions around supporting different fairness
definitions and group identities. Toward this, we now sketch
out future extensions of our pairwise framework.

Generalizing Beyond Binary Groups. While it is
common to assume binary groups when designing bias miti-
gation methods, group identity in practice is more complex,
and candidates often belong to multiple, possibly overlap-
ping, groups. Much more study is required to fully un-
derstand fairness for multiple intersectional groups in the
context of fair rank aggregation. However, a first step of
supporting categorical sensitive attributes is straightforward
to incorporate into our pairwise framework. For multiple

4https://www.fantasypros.com/nfl/rankings
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Figure 8: Comparison of rank parity (left) and rank equal-
ity (right) error introduced by fair-ILP on base rankings
with n = 50 candidates,|R| = 20 and p = 0.7.

groups Gi, Rpar scores can be computed by counting the
pairs that favor a candidate in Gi over any candidate not
in Gi, for all Gj 6= Gi. This way, the pairwise preference
given to each group is captured. Then, to enforce par-
ity in fair-ILP we can define separate fairness thresholds
δGi for each group, and simply replace Equation 16 in Lin-
ear Program 1 with constraints for each group of the form
|
∑
xi∈Gi

∑
xj /∈Gi

(Aij −Aji) | ≤ δGi .

Alternative Fairness Definitions. Statistical parity
is only one of several possible definitions of fairness. For
instance, we show in [38] that a pairwise formulation also
naturally supports fairness definitions based on equal error
rates, such as the rank equality metric (Definition 7) which
counts only those pairs favoring each group which are in-
verted in one ranking compared to another. In the context
of fair aggregation, rank equality unfairness might occur if
the aggregation algorithm erroneously mis-ranks one group
more than another in ρ∗ compared to the base rankings.

Definition 7. Rank Equality Error: Given rankings
ρ and σ over items from two groups G1 and G2, the rank
equality error for group G1 is computed as

ReqG1(ρ, σ) =

∑
xi∈G1

∑
xj∈G2

I
(
xi ≺ρ xj and xj ≺σ xi

)
|G1||G2|

Figure 8 revisits the same experiment in Figure 5 for p = 0.7.
This time however we measure the rank equality error. We
observe that as the fair-ILP method enforces rank parity,
it also introduces rank equality error. To support applica-
tions where rank equality fairness is required, our pairwise
framework would need to be extended to explicitly target
the fairness criterion F where:

1

|R|
∑
σ∈R

|ReqG1(σ, ρ∗)−ReqG2(σ, ρ∗)| ≤ δeq. (23)

7. RELATED WORK
To our knowledge, contemporary fairness criteria have not

been applied in the context of rank aggregation. Recent
work on fair ranking has mainly focused on achieving sta-
tistical parity between groups in the top-k prefix of a single
ranking [51, 17, 53, 5]. Yang and Stoyanovich [51] defined
multiple variations of these fairness semantics. Zehlike et
al. [53] expand on their work, proposing a greedy post-
processing algorithm to correct for unfair bias while opti-
mizing for utility. Celis et al. [17] formulate fair ranking as
a constrained bipartite matching problem, optimizing for a
number of different rank accuracy metrics alongside fairness.
We first propose a pairwise version of statistical parity in
[38]. In recent work [5], Asudeh et al. design pre-processing
and database indexing strategies to facilitate fair ranking
for real-time applications based on linear scoring.

In addition to statistical parity, other fairness definitions
include error-based criteria such as Equalized Odds for fair
classification [33] and its analogue for ranking [38]. Recently
much attention has focused on causal fairness, including
counterfactual [39] and interventional [5] fairness definitions.
For instance, Salimi et al. [46] recently put forth a database
repair model in which fairness depends on a causal path from
the protected attribute to the outcome through any inadmis-
sible attributes. This exciting direction aims to understand
subtleties inherent in data attributes and causal mechanisms
behind unfair bias, and is therefore distinct from our work.

Kemeny rank aggregation [35] based on the Kendall Tau
distance [36] is one of the most popular and important ag-
gregation formulations [14], which we thus target here. Ke-
meny aggregation has enjoyed much interest by the machine
learning community [37], and has been applied for tasks from
spam reduction in search results [26, 1] and group recom-
mendation online [6, 9] to biomedical applications [40].

Computing the Kemeny optimal rank aggregation is NP-
hard [8, 26]. A full review of methods is beyond the scope
of this work (see benchmarking studies [2, 13]), however
we note the exact integer programming solution of Conitzer
et al. [23] and branch-and-bound method by Meila et al.
[44] as inspiring our proposed fairness preserving aggrega-
tion methods (Section 4). Ali and Meila [2] characterize the
difficulty of Kemeny aggregation based on agreement among
the base rankings in R, which informs our evaluation design.

Rank aggregation stems from the study of ranked voting
in Social Choice Theory [52, 35, 4]. This discipline provides
a rich context for asking questions related to contemporary
algorithmic fairness. For instance, Chakraborty et al. [18]
apply Social Choice axioms to mitigate the impact of bad ac-
tors such as bots on Twitter and ensure fairness for groups of
users with underrepresented preferences. Recent work [15,
16] has explored contemporary fairness for another classic
problem in social choice: multi-winner voting. This problem
differs from rank aggregation in that only a subset of can-
didates are selected. Methods proposed are being explored
for use in real world voting systems [16]. These examples
demonstrate the timely nature of these investigations.

8. CONCLUSION
This work offers the first formulation of the fair rank

aggregation problem. A rich family of exact and approx-
imate algorithms to solve this new optimization problem
are presented. For strict fairness requirements, our exact
fairness-aware ILP methods are robust to different amounts
of bias agreement among the base rankings for rankings with
n < 100 candidates. When fairness requirements are lenient,
our fairness-aware B+B solution speeds runtime consider-
ably while achieving optimal aggregation results. Lastly,
our approximate fairness solution, which guarantees fairness
while introducing the minimal amount of approximation er-
ror, is shown to scale to rankings of millions of candidates.
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[37] A. Korba, S. Clémençon, and E. Sibony. A learning
theory of ranking aggregation. In Artificial
Intelligence and Statistics, pages 1001–1010, 2017.

[38] C. Kuhlman, M. VanValkenburg, and
E. Rundensteiner. Fare: Diagnostics for fair ranking
using pairwise error metrics. In The World Wide Web
Conference, pages 2936–2942. ACM, 2019.

[39] M. J. Kusner, J. Loftus, C. Russell, and R. Silva.
Counterfactual fairness. In Advances in Neural
Information Processing Systems, pages 4066–4076,
2017.

[40] S. Lin. Rank aggregation methods. Wiley
Interdisciplinary Reviews: Computational Statistics,
2(5):555–570, 2010.

[41] C. L. Mallows. Non-null ranking models. i.
Biometrika, 44(1/2):114–130, 1957.

[42] B. Mandhani and M. Meila. Tractable search for
learning exponential models of rankings. In
Proceedings of the Twelth International Conference on
Artificial Intelligence and Statistics, pages 392–399.
PMLR, 2009.

[43] H. B. Mann and D. R. Whitney. On a test of whether
one of two random variables is stochastically larger
than the other. The annals of mathematical statistics,
pages 50–60, 1947.

[44] M. Meila, K. Phadnis, A. Patterson, and J. A. Bilmes.
Consensus ranking under the exponential model. In

Proceedings of the 23rd Annual Conference on
Uncertainty in Artificial Intelligence, pages 285–294,
2007.

[45] J. Pearl. Heuristics: intelligent search strategies for
computer problem solving. 1984.

[46] B. Salimi, L. Rodriguez, B. Howe, and D. Suciu.
Interventional fairness: Causal database repair for
algorithmic fairness. In Proceedings of the 2019
International Conference on Management of Data,
pages 793–810, 2019.

[47] F. Schalekamp and A. v. Zuylen. Rank aggregation:
Together we’re strong. In 2009 Proceedings of the
Eleventh Workshop on Algorithm Engineering and
Experiments, pages 38–51. SIAM, 2009.

[48] E. L. Uhlmann and G. L. Cohen. Constructed criteria:
Redefining merit to justify discrimination.
Psychological Science, 16(6):474–480, 2005.

[49] A. Waters and R. Miikkulainen. Grade: Machine
learning support for graduate admissions. AI
Magazine, 35(1):64–64, 2014.

[50] Y. Wu, L. Zhang, and X. Wu. On discrimination
discovery and removal in ranked data using causal
graph. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery
Data Mining, KDD ’18, page 2536–2544, New York,
NY, USA, 2018. Association for Computing
Machinery.

[51] K. Yang and J. Stoyanovich. Measuring fairness in
ranked outputs. In Proceedings of the 29th
International Conference on Scientific and Statistical
Database Management, pages 22:1–22:6. ACM, 2017.

[52] P. Young. Optimal voting rules. Journal of Economic
Perspectives, 9(1):51–64, 1995.

[53] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian,
M. Megahed, and R. Baeza-Yates. Fa* ir: A fair top-k
ranking algorithm. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge
Management, pages 1569–1578. ACM, 2017.

2719


