
1

Observing the Invisible: Live Cache Inspection
for High-Performance Embedded Systems

Dharmesh Tarapore∗, Shahin Roozkhosh∗, Steven Brzozowski∗ and Renato Mancuso∗

∗Boston University, USA {dharmesh, shahin, sbrz, rmancuso}@bu.edu

Abstract—The vast majority of high-performance embedded systems implement multi-level CPU cache hierarchies. But the exact

behavior of these CPU caches has historically been opaque to system designers. Absent expensive hardware debuggers, an

understanding of cache makeup remains tenuous at best. This enduring opacity further obscures the complex interplay among

applications and OS-level components, particularly as they compete for the allocation of cache resources. Notwithstanding the

relegation of cache comprehension to proxies such as static cache analysis, performance counter-based profiling, and cache hierarchy

simulations, the underpinnings of cache structure and evolution continue to elude software-centric solutions.

In this paper, we explore a novel method of studying cache contents and their evolution via snapshotting. Our method complements

extant approaches for cache profiling to better formulate, validate, and refine hypotheses on the behavior of modern caches. We

leverage cache introspection interfaces provided by vendors to perform live cache inspections without the need for external hardware.

We present CacheFlow, a proof-of-concept Linux kernel module which snapshots cache contents on an NVIDIA Tegra TX1 system on

chip and a Hardkernel Odroid XU4.

Index Terms—cache, cache snapshotting, ramindex, cacheflow, cache debugging

✦

1 INTRODUCTION

The burgeoning demand for high-performance embedded
systems among a diverse range of applications such as
telemetry, embedded machine vision, and vector process-
ing has outstripped the capabilities of traditional micro-
controllers. For manufacturers, this has engendered a dis-
cernible shift to system-on-chip modules (SoCs). Coupled
with their extensibility and improved mean time between
failures, SoCs offer improved reliability and functional-
ity. To bridge the gap between increasingly faster CPU
speeds and comparatively slower main memory technolo-
gies (e.g. DRAM) most SoCs feature cache-based archi-
tectures. Indeed, caches allow modern embedded CPUs
to meet the performance requirements of emerging data-
intensive workload. At the same time, the strong need
for predictability in embedded applications has rendered
analyses of caches and their contents vital for system design,
validation, and certification.

Unfortunately, this interest runs counter to the general
desire to abstract complexity. Cache mechanisms and poli-
cies are ensconced entirely in hardware, to eliminate soft-
ware interference and encourage portability. Consequently,
software-based techniques used to study caches suffer from
several shortcomings, which we detail in Section 5.3.

In contrast, we propose CacheFlow: a technique that
can be implemented in software and in existing high-
performance SoCs to extract and analyze the contents of
cache memories. CacheFlow can be deployed in a live
system without the need for an external hardware debugger.
By periodically sampling the cache state, we show that we
can reconstruct the behavior of multiple applications in the
system; observe the impact of scheduling policies; and study
how multi-core contention affects the composition of cached

content.
Importantly, our technique is not meant to replace other

cache analysis approaches. Rather, it seeks to supplement
them with insights on the exact behavior of applications
and system components that were not previously possi-
ble. While in this work we specifically focus on last-level
(shared) cache analysis, the same technique can be used to
profile private cache levels, TLBs, and the internal states of
coherence controllers. In summary, we make the following
contributions:

1) This is the first paper to describe in detail an inter-
face, namely RAMINDEX, available on modern embedded
CPUs that can be used to inspect the content of CPU
caches. Despite its usefulness, the interface has received
little to no attention in the research community thus far;

2) We present a technique called CacheFlow to perform
cache content analysis via event-driven snapshotting;

3) We demonstrate that the technique can be implemented
on modern hardware by leveraging the RAMINDEX inter-
face and propose a proof-of-concept open-source Linux
implementation1

4) We describe how to correlate information retrieved via
cache snapshotting to user-level and kernel software
components deployed on the system under analysis;

5) We evaluate some of the insights provided by the pro-
posed technique using real and synthetic benchmarks.

The rest of this paper is organized as follows: in Sec-
tion II, we document related research that inspired and
informed this paper. In Sections III and IV, we provide a
bird’s-eye view of the concepts necessary to understand the
mechanics of CacheFlow. In Sections V and VI, we detail the

1. Our implementation can be found at: https://github.com/
weirdindiankid/cacheflow



2

fundamentals of CacheFlow and its implementation. Section
VII outlines the experiments we performed and documents
their results. We also examine the implications of those
results. Section VIII concludes the paper with an outlook
on future research.

2 RELATED WORK

Caches have a significant impact on the temporal behav-
ior of embedded applications. But their design—oriented
toward programming transparency and average-case opti-
mization—makes performance impact analysis difficult. A
plethora of techniques have approached cache analysis from
multiple angles. We hereby provide a brief overview of the
research in this space.

Static Cache Analysis derives bounds on the access
time of memory operations when caches are present [1]–
[3]. Works in this domain study the set of possible cache
states in the control-flow graph (CFG) of applications. Ab-
stract interpretation is widely employed for static cache
analysis, as first proposed in [4] and [5]. For static analysis
to be carried out, a precise model of the cache behavior
is required. Techniques that consider Least-Recently Used
(LRU), Pseudo-LRU, and FIFO replacement policies [3], [6]–
[9] have been studied.

Symbolic Execution is a software technique for feasible
path exploration and WCET analysis [10], [11] of a program
subject to variable input vectors. It proffers a middle ground
between simulation and static analysis. An interpreter fol-
lows the program; if the execution path depends on an
unknown, a new symbolic executor is forked. Each symbolic
executor stands for many actual program runs whose actual
values satisfy the path condition.

As systems grow more complex, Cache Simulation tools
are essential to study new designs and evaluate existing
ones. Simulation of the entire processor — including cores,
cache hierarchy, and on-chip interconnect — was proposed
in [12]–[15]. Simulators that only focus on the cache hierar-
chy were studied in [16]–[18]. Depending on the component
under analysis, simulations abound. In the (i) execution-
driven approach, the program to be traced runs locally on
the host platform; in the (ii) emulation-driven approach, the
target program runs on an emulated platform and environ-
ment created by the host; finally, in the (iii) trace-driven
approach, a trace file generated by the target application
is fed into to the simulator. An excellent survey reviewing
28 CPU cache simulators was published by Brais et. al [19].
The most popular is perhaps Cachegrind that belongs to the
Valgrind Suite [20].

Statistic Profiling is performed by leveraging perfor-
mance monitoring units (PMUs) integrated in modern pro-
cessors. PMUs can monitor a multitude of hardware events
that occur as applications execute on the platform. Unlike
the aforementioned strategies, sampling the PMU provides
information on the real behavior of the hardware platform.
As such, a number of works have used statistic profiling to
study memory-related performance issues [21]–[23]. High
level libraries such as PAPI [24], [25], Likwid [26] and
numap [27] provide a set of APIs to ease the use of PMUs.

Despite the seminal results achieved in the last decade
in the cache analysis and profiling techniques described

thus far, a few important limitations are worth noting.
Techniques that rely on cache models — i.e. static anal-
ysis, symbolic execution, simulation — work under the
assumption that the employed models accurately represent
the true behavior of the hardware. Unfortunately, complex
modern hardware often deviates from textbook models in
unpredictable ways. Access to event counters subsequently
only reveals partial information on the actual state of the
cache hierarchy.

Undocumented cache behaviors have thus engendered
measurement-based reverse engineering of cache policies,
in an attempt to empirically infer otherwise opaque be-
havior [28]. Abel and Reineke, for instance, present a set
of microbenchmarks tailored specifically to deduce the re-
placement policies on a multitude of Intel processors [29].
They further extend this work in [30] using chi, a frame-
work that uses parameter inference algorithms to perform a
predetermined set of measurements that expose the cache’s
replacement policy. Nonetheless, all approaches enumerated
so far suffer from a common limitation, best expressed
by Abel: ”since only a cache’s hit/miss behavior can be
observed [in software], it is impossible to infer anything
about how it is realized internally.” [30]

In contrast, the technique proposed in this paper is
meant to complement the analysis and profiling strategies
reviewed thus far by allowing system designers to snapshot
the actual contents of CPU caches. This in turn enables a
new set of strategies to extract/validate hardware mod-
els, or to conduct application and system-level analysis
on the utilization of cache resources. Unlike works that
proposed cache snapshotting by means of hardware modifi-
cations [31]–[33] our technique can be entirely implemented
in software and leverages hardware support that already
exists in a broad line of high-performance embedded CPUs.

3 BACKGROUND

In this section, we introduce a few fundamental concepts
required to understand CacheFlow’s inner workings. First,
we review the structure and functioning of multi-level set-
associative caches. Next, we briefly explore the organization
of virtual memory in the target class of SoCs. Readers fa-
miliar with set-associative caches and memory management
fundamentals of Linux may skip this section, referring back
to it as needed.

3.1 Multi-Level Caches

Modern high-performance embedded processors imple-
ment multiple levels of caching. The first level (L1) is the
closest to the CPU and its contents are usually private to
the local processor. Cache misses in L1 trigger a look-up in
the next cache level (L2), which can be still private, shared
among a subset (cluster) of cores, or globally shared by all
the cores. Additional levels (L3, L4, etc.) may also be present.

The last act before a look-up in the main memory is to
query the Last-Level Cache (LLC). Without loss of generality,
and to be more in line with our implementation, we consider
the typical cache layout of ARM-based processors. That is,
we assume private L1 caches and a globally shared L2,
which is also the LLC.







5

snapshot is intentionally destructive to cache contents. In
this mode, after acquiring a snapshot, the cache contents
of the application(s) under analysis are flushed from the
cache, to highlight cache lines that are accessed between
snapshots (active cache sets). Conversely, when operating in
transparent mode, cache snapshotting is performed while
minimizing the impact on the contents of the cache. We
quantify the involuntary pollution overhead when operat-
ing in transparent mode in Section 7.3.

CacheFlow can also operate in synchronous or asyn-
chronous mode. Synchronous mode is best suited to analyz-
ing a specific subset of applications executing in parallel
on multiple cores. In this mode, the Trigger spawns the
applications under analysis and delivers POSIX signals to
pause them once a new snapshot acquisition is initiated,
and to resume them afterwards. Figure 2 (a) provides a
timeline of events as they occur in the synchronous mode.
When a new snapshot is to be acquired (dashed blue up-
arrow in the figure), all the tasks under analysis are paused
(dashed red down-arrows). Once the acquisition of the
current snapshot is complete, all the observed applications
are resumed (dashed blue down-arrows). This mode ensures
that all the observed applications — including the one
executing on the same CPU as the Trigger— are equally
affected by the activation of the trigger. The extra complexity
of pause/resume signals is unnecessary (1) when a single
application is being observed, pinned to the same core as
the Trigger; and (2) when one is not conducting an analysis
on a specific set of applications, but, for instance, on the the
background noise of system services.

To cover the latter two cases, CacheFlow can operate
in asynchronous mode. In this case, there is no explicit
pause/resume signal delivery to applications, as depicted in
Figure 2 (b). Upon activation (dashed up-arrow), the Trigger
preempts all the applications on the same core but does not
explicitly pause applications on other cores. It then invokes
the Shutter.

Regardless of the mode, note that the Shutter temporar-
ily preempts all normal execution and puts the other cores
into a busy waiting loop (solid down-arrow), once invoked,
to perform the low-level interaction with RAMINDEX reg-
isters. This is necessary to ensure the correctness of the
snapshot, as discussed in Section 6.3 and highlighted in
Figure 2.

5.2 Key Challenges

Three key challenges have been addressed in the proposed
design of CacheFlow, which are hereby summarized. More
details on how each challenge was solved are provided in
Section 6.

Avoiding Pollution: The first challenge we faced is quite
intuitive. Acquiring a snapshot of the cache involves the
execution of logic on the very same system we are trying
to observe. Worse yet, while the content of the cache is
progressively read, one must use a memory buffer to store
the resulting data. But writes into the buffer might trigger
cache allocations and hence pollute the state of the cache
that is being sampled. Because the size of the used buffer
needs to be in the same order of magnitude as the size of
the cache, this issue can significantly impact the validity of

the snapshot. We refer the reader to Section 6 for details on
how we overcome the problem.

Pausing Progress: Capturing a snapshot can take a non-
negligible amount of time. While a snapshot capture is in
progress, it is important to ensure that the applications
under analysis do not progress in their execution. In other
words, the Shutter should be able to temporarily freeze all
the running applications and resume their execution once
the capture operation is complete. Not doing so would
result in snapshots that do not reflect a real cache state.
This is because the state of the cache would be continuously
changing while the capture is still in progress.

On a single-core implementation, it is enough to run the
Shutter with interrupts and preemption disabled to ensure
that the application under analysis does not continue to
execute while a capture operation is in progress. But this
is not sufficient in a multi-core implementation. To solve the
problem, we first designate a master core responsible for
completing the capture operation. Next, we use kernel-level
inter-core locking primitives to temporarily stall all the other
cores. Once the snapshot has been acquired, all the other
cores are released and resume normal execution.

Inferring Content Ownership: Recall from Section III
that shared caches — like the L2 targeted in our implemen-
tation — are generally PIPT. As such, when a snapshot is
captured, we obtain a list of physical address tags. A first
important step consists in reconstructing the full physical
address given the obtained tag bits and the cache index
bits used to retrieve each tag. The end goal of our analysis,
however, is to attribute captured cache lines to running
applications or OS-level components. This step is strictly
dependent in the strategy used by the OS/platform under
analysis to map applications’ virtual addresses to physical
memory. We distinguish three cases.

The first and simplest case corresponds to realtime OSes
operating on small micro-controllers that do not have sup-
port for virtual memory, i.e. where no MMU is present.
These systems usually feature a Memory Protection Unit
(MPU) that allows defining permission regions for ranges
of physical addresses. Both applications and OS compo-
nents are then directly compiled against physical memory
addresses. In this case, ownership of cache blocks can be in-
ferred by simply comparing the obtained physical addresses
w.r.t. the global system memory map.

The second case corresponds to systems where, though
an MMU exists, it is configured to perform a flat linear
mapping between virtual addresses and physical addresses.
In this case there exists a (potentially null) constant offset
between virtual addresses and corresponding physical ad-
dresses.

The third scenario corresponds to OSes that use demand
paging. In this case, there is no fixed mapping between
virtual pages assigned to applications and physical mem-
ory. In this case, contiguous pages in virtual memory are
arbitrarily mapped to physical memory, following the OS’s
internal memory allocation scheme. With demand paging,
applications are initially given a virtual addressing space.
Only when the application “touches” a virtual page, is a
new physical page allocated from a pool of free pages. In
CacheFlow we consider this case because it represents the
most general and challenging scenario. Details on how we



6

overcome these challenges are outlined in Section 6.3 .

5.3 Comparison to Other Approaches

CacheFlow offers a novel method to study caches, where
traditionally hardware debuggers and simulation models
have been used. System designers have traditionally re-
sorted to hardware debuggers to inspect the contents of
cache memories, using them as a proxy to study correct
system behavior and explain applications’ performance. The
main advantage of using an external hardware debugger
to inspect the state of caches is that the impact of the
debugger on the cache itself can be kept to a minimum.
But making sense out of a cache snapshot requires access
to OS-level data structures such as page tables and VMA
layouts, to name a few. Debuggers that provide some of
the cache analysis features provided by CacheFlow rely on
high-bandwidth trace ports — as opposed to traditional
JTAG ports — often unavailable in production systems.
The Lauterbach PowerTrace II and the ARM DS-5 with
the DSTREAM adapter are examples of solutions that can
provide snapshots of cache contents. Their price tag exceeds
USD 6,000 3. While in principle an inexpensive JTAG de-
bugger could be used to halt the CPUs, interact with the
RAMINDEX interface, perform physical→virtual translation
and application layout resolution, no such implementation
exists to the best of our knowledge.

In contrast, CacheFlow runs entirely in software, im-
poses minimal system overhead, does not requires the ex-
istence of a debug port nor extra hardware, and can run
on most machines with support for the RAMINDEX interface,
while managing to provide much of the same information as
hardware debuggers with minimal effort. CacheFlow’s most
obvious shortcoming is some inevitable overhead, in terms
of cache pollution, compared to hardware debuggers4.

Another method often used to perform cache profiling is
simulation. Unfortunately, simulation models are often too
generic to capture implementation-specific design choices.
Gem5 [12], for example, only simulates a generic cache
model, which may not be in match with the behavior of the
actual hardware. It is also challenging to simulate entire sys-
tems with production-like setups in terms of active system
services, active I/O devices and concurrent applications.
Conversely, CacheFlow can be used to observe the behavior
of a system in the field, and/or to validate and refine
platform-specific cache simulation models.

Yet another class of cache analysis approaches are
based on performance-counter sampling. These only pro-
vide quantitative information on system-wide metrics that
are best interpreted with a good understanding of the micro-
architecture at hand. In comparison, CacheFlow, provides
behavioral information about the cache that is akin to what
a hardware debugger could provide.

An additional benefit CacheFlow offers compared to the
aforementioned approaches is its relative versatility apropos
deployability. Since it relies exclusively on RAMINDEX and

3. See http://www.wg.com.pl/pliki/cennik/2017%20Prices%
20DS-5.pdf

4. We chose to implement CacheFlow as a Linux kernel module for
flexibility. It is theoretically possible, however, to rewrite the module to
run at a lower level (i.e. at the hypervisor level).

Linux’s scaffolding for building and loading kernel mod-
ules, CacheFlow serves as an excellent candidate for remote
deployment. On virtual private servers (VPS), for instance,
CacheFlow can provide information that developers would
traditionally rely on debuggers for, without necessitating
physical access to the system. As such, CacheFlow’s value
lies primarily in its simplicity and its reliance on ubiqui-
tous support structures, both of which then engender an
acceptable compromise between the effort needed to setup
a hardware debugger and the loss of granularity incurred
when using simulators.

6 IMPLEMENTATION

Additional details about our CacheFlow implementa-
tion follow below. We begin by describing the rele-
vant features of our target SoCs and then illustrate
the workings of the Trigger and Shutter modules.
An open-source version of CacheFlow is available at:
https://github.com/weirdindiankid/cacheflow.

6.1 Target Platforms

We primarily conducted our experiments on an NVIDIA
Tegra X1 SoC [42]. A simple validation experiment was
also conducted on a Hardkernel Odroid XU4 [43], to ver-
ify CacheFlow’s generalizability. The TX1 chip features a
cluster of four 64-bit ARM Cortex-A57 [35] CPUs operating
at a frequency of 1.9 GHz, along with four unused ARM
Cortex-A53 cores. The XU4, in contrast, has eight cores
that implement the ARM big.LITTLE architecture. For these
analyses, we focus only on the four 32-bit Cortex-A15 CPUs.
On both SoCs, each CPU contains a private 32 KB L1 data
cache. Further, the L2—also the LLC—on both devices is
unified and shared among all the cores. It is implemented
as a PIPT cache and employs a random replacement policy.

In terms of geometry, the L2 cache is CS = 2 MB in size
on the XU4 and the TX1. The line size is LS = 64 bytes and
the associativity is W = 16. It follows, then, that the cache
is divided into 2048 cache sets—each containing 16 cache
lines, which in turn contain 64 bytes of data each. Bits [0, 5]
of a physical address mark the offset bits; bits [6, 16] are the
index bits; bits [17, 43]5 correspond to the tag bits.

The information acquired for each cache line in our im-
plementation is limited to 16 bytes. Of these, 8 bytes are for
the PID of the process that owns the line, and the remaining
8 bytes encode an address field. If address resolution is
turned on, the field holds the resolved virtual address. If
address resolution is turned off, the field is used to store the
raw physical address instead. For a 16-way set-associative
cache with a line size of 64 bytes and total size of 2 MB,
like the one considered for our evaluation, a single snapshot
is 512 KB in size. In our setup, we have dedicated 1 GB
and 128MB of memory for CacheFlow on the TX1 and XU4,
respectively.

6.2 Trigger Implementation

Starting from the top-level module of CacheFlow, i.e. the
Trigger, we hereby review the proposed implementation
following the logic flow of operations provided in Figure 3.

5. The platform supports a 44-bit physical address space.





8

address resolution step depicted in Figure 3 7 refers to such
a reverse translation performed on each of the retrieved L2
entries.

To perform this resolution, we leverage Linux’s specific
representation of memory pages. Linux defines a descriptor
of type struct page for each of the physical memory
pages available in the system. The conversion fom phys-
ical address to page descriptor is possible through the
phys_to_page kernel macro. We first derive the page
descriptor of the physical address to be resolved. Next,
we effectively re-purpose the reverse-map interface6 (rmap)
used by Linux to efficiently free physical memory when
swapping is initiated. The entry point of the interface is
the rmap_walk kernel API. Given a target struct page

descriptor, the procedure allows one to specify a callback
function to be invoked when a possible candidate for the
reverse translation is found7. A successful rmap_walk op-
eration returns (i) a reference to the VMA that maps the
page; and (ii) the virtual address of the page inside the
VMA. Importantly, the reference to the VMA allows one to
derive the original memory space (struct mm_struct);
and from there, the descriptor of the process (struct
task_struct) associated to the memory space and its
PID. After the translation step, the entries in the buffer are
converted to contain two pieces of information: (i) the PID
of the process to which the cache block belongs, and (ii)
the virtual address of the block within the process’ virtual
memory space.

The virtual→physical translation can be optionally dis-
abled. This is useful, for instance, when profiling the cache
behavior of an application pinned to a specific subset of
physical pages, of a different virtual machine, or of the
kernel itself.

From Kernel to User: Lastly, the contents of the kernel-
side buffer are copied into a user-space buffer defined in
the Trigger. On this very last step, a distinction needs to
be made because the behavior of CacheFlow significantly
differs when it operates in flush mode, compared to trans-
parent mode operation.

In flush mode, the goal is to analyze what cache blocks
are actively loaded by an application in between snapshots.
For this reason, every snapshot acquisition is immediately
followed by a copy of the snapshot to the Trigger in user-
space8. The Trigger also converts the binary format of the
snapshot to human-readable format and writes it to disk.
This step corresponds to Figure 3 8 . The copy to user-space,
as well as any post-processing performed by the Trigger,
is conducted in cacheable memory. Because the amount of
data moved after each snapshot is comparable in size to the
L2, the post-processing acts as a tacit flush operation. How-
ever, to cope with random cache replacement policies, the
Trigger performs additional cache trashing before resuming
the applications to ensure that the content of the cache is
indeed flushed. The presence of this flush operation is vital
to the correct interpretability of the results. By doing so,

6. See https://lwn.net/Articles/75198/ for more details.
7. Because multiple processes might be mapping the same physical

memory, the reverse translation is not always unique.
8. Note that it is still important to prevent cache pollution while the

current snapshot is being acquired. Thus, pollution-free retrieval is still
crucial.

each snapshot contains only cache blocks allocated during
the last sampling period. Therefore, the extracted content is
representative of the recent activity of the applications and
enables active cache working-set analysis.

In transparent mode, the goal is to analyze the evolution
of cache content over time while minimizing the impact
of CacheFlow on the cache state. In this mode, no post-
snapshot flush is performed. Thus, subsequent snapshots
are accumulated in non-cacheable memory. They are then
moved to user-space and post-processed only at the very
end of the experiment. We evaluate in Section 7.3 how much
pollution is introduced in the various modes of operation.

Because the size of a snapshot to be transferred to user-
space is on the order of hundreds of pages, we use the
sequential file (seq_file) kernel interface9. This interface
safely handles proc filesystem outputs spanning multiple
memory pages.

7 EVALUATION

This section aims to demonstrate the capabilities of the
proposed and implemented CacheFlow technique. This is
not meant to be an exhaustive evaluation of all the scenarios
in which CacheFlow might be employed, but rather to
demonstrate that CacheFlow is capable of producing useful
insights on the cache usage of real applications in a real
system.

7.1 Setup and Goals

All the experiments described in this section have been
carried out on an NVIDIA Jetson TX1 development system
running Linux v4.14. The Jetson TX1 features an NVIDIA
Tegra X1 SoC, in line with what is described in Section 6.
We also validated the CacheFlow pipeline on a Hardkernel
Odroid XU4.

For our workload, we use a combination of synthetic
and real benchmarks. Additional details about the synthetic
benchmarks we designed are provided contextually to the
experiment in which they are employed. For our real bench-
marks, we considered applications from the the San Diego
Vision Benchmarks (SD-VBS) [44], which come with multi-
ple input sizes. Our goal is to demonstrate the usefulness
of CacheFlow in analyzing an application’s cache behav-
ior. As such, we include only a selection of the obtained
results covering the most interesting cases. We selected
the DISPARITY, MSER, SIFT, and TRACK benchmarks with
intermediate input sizes, namely VGA (640x480) and CIF
(352x288) images.

The remainder of this section is organized to address the
following questions:

1) Is CacheFlow able to provide an output that is repre-
sentative of the actual cache behavior of an application?
This is covered in Section 7.2.

2) What is the overhead in terms of cache content pollu-
tion and time? We discuss this aspect in Section 7.3.

3) Is it possible to track the cache behavior of real ap-
plications in terms of working set size (WSS) and fre-
quently accessed memory locations using CacheFlow?
We tackle this question in Section 7.4

9. See https://lwn.net/Articles/22355/ for more details.













14

[16] Z. Wang and J. Henkel, “Fast and accurate cache modeling in
source-level simulation of embedded software,” in 2013 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2013, pp. 587–592.

[17] L. M. N. Coutinho, J. L. D. Mendes, and C. A. P. S. Martins,
“Mscsim -multilevel and split cache simulator,” in Proceedings.
Frontiers in Education. 36th Annual Conference, Oct 2006, pp. 7–12.

[18] S. E. Arda, A. NK, A. A. Goksoy, N. Kumbhare, J. Mack, A. L.
Sartor, . A. Akoglu, R. Marculescu, and U. Y. Ogras, “Ds3: A
system-level domain-specific system-on-chip simulation frame-
work,” 2020.

[19] H. Brais, R. Kalayappan, and P. R. Panda, “A survey of cache
simulators,” ACM Comput. Surv., vol. 53, no. 1, Feb. 2020.

[20] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 89–100.

[21] D. Levinthal, “Performance analysis guide for intel core i7 pro-
cessor and intel xeon 5500 processors,” Intel Performance Analysis
Guide, vol. 30, p. 18, 2009.

[22] J. Treibig, G. Hager, and G. Wellein, “Performance patterns and
hardware metrics on modern multicore processors: Best practices
for performance engineering,” in European Conference on Parallel
Processing. Springer, 2012, pp. 451–460.

[23] D. Molka, R. Schöne, D. Hackenberg, and W. E. Nagel, “Detecting
memory-boundedness with hardware performance counters,” in
Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, ser. ICPE ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 27–38.

[24] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in Proceedings of the
department of defense HPCMP users group conference, vol. 710, 1999.

[25] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A
portable programming interface for performance evaluation on
modern processors,” The international journal of high performance
computing applications, vol. 14, no. 3, pp. 189–204, 2000.

[26] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,”
in 2010 39th International Conference on Parallel Processing Work-
shops. IEEE, 2010, pp. 207–216.

[27] M. Selva, L. Morel, and K. Marquet, “numap: A portable library
for low-level memory profiling,” in 2016 International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS). IEEE, 2016, pp. 55–62.

[28] P. Li, C. Pronovost, W. Wilson, B. Tait, J. Zhou, C. Ding, and
J. Criswell, “Beating opt with statistical clairvoyance and variable
size caching,” ser. ASPLOS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 243–256. [Online]. Available:
https://doi.org/10.1145/3297858.3304067

[29] A. Abel and J. Reineke, “Reverse engineering of cache replacement
policies in intel microprocessors and their evaluation,” in 2014
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2014, pp. 141–142.

[30] ——, “Measurement-based modeling of the cache replacement
policy,” in 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013, pp. 65–74.

[31] A. Vishnoi, P. R. Panda, and M. Balakrishnan, “Online cache state
dumping for processor debug,” in Proceedings of the 46th Annual
Design Automation Conference, 2009, pp. 358–363.

[32] B. R. Buck and J. K. Hollingsworth, “A new hardware monitor
design to measure data structure-specific cache eviction infor-
mation,” The International Journal of High Performance Computing
Applications, vol. 20, no. 3, pp. 353–363, 2006.

[33] P. R. Panda, A. Vishnoi, and M. Balakrishnan, “Enhancing post-
silicon processor debug with incremental cache state dumping,”
in 2010 18th IEEE/IFIP International Conference on VLSI and System-
on-Chip. IEEE, 2010, pp. 55–60.

[34] ARM Holdings, “Cortex-A53 MPCore technical reference manual
(r0p4),” 2018.

[35] ——, “Cortex-A57 MPCore technical reference manual (r1p3),”
2016.

[36] ——, “Cortex-A72 MPCore technical reference manual (r0p2),”
2016.

[37] ——, “Cortex-A15 technical reference manual (r2p0),” 2011.
[38] ——, “Cortex-A9 technical reference manual (r4p0),” 2009.

[39] J. Corbet, J. Edge, and R. Sobol, “Kernel Development,” Linux
Weekly News – https://lwn.net/Articles/74295/, 2004, [Online;
accessed 7-May-2019].

[40] ARM Holdings, “Cortex-A76 Core technical reference manual
(r3p0),” 2018.

[41] ——, “Cortex-A77 Core technical reference manual (r1p1),” 2019.
[42] Nvidia Corporation, “NVIDIA Tegra X1 Technical Refer-

ence Manual,” https://developer.nvidia.com/embedded/
tegra-2-reference.

[43] Hardkernel Co. Ltd., “ODROID-XU4 User Manual,”
https://magazine.odroid.com/wp-content/uploads/
odroid-xu4-user-manual.pdf.

[44] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The san diego vision
benchmark suite,” in 2009 IEEE International Symposium on Work-
load Characterization (IISWC), Oct 2009, pp. 55–64.

[45] A. Abel and J. Reineke, “nanobench: A low-overhead tool
for running microbenchmarks on x86 systems,” 2020 IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), Aug 2020. [Online]. Available: http:
//dx.doi.org/10.1109/ISPASS48437.2020.00014

Dharmesh Tarapore is a first-year Ph.D. student
at Boston University in the Cyber-Physical Sys-
tems Lab under the supervision of Prof. Renato
Mancuso. He is also the co-founder and CEO of
ACAS Technologies, Inc. His research interests
include real-time and embedded operating sys-
tems, as well as power-efficient deep reinforce-
ment learning.

Shahin Roozkhosh is a doctoral student in
computer science at BU’s Cyber-Physical Sys-
tems Lab under the supervision of Prof. Re-
nato Mancuso. His research interests include
OS-level techniques and FPGA-aided designs
for embedded systems to enhance predictabil-
ity, real-time-oriented development on high-
performance platforms. Shahin received a B.Sc.
in Computer Hardware Engineering from the
Sharif University of Technology in Tehran, Iran.
He is a junior member of the IEEE.

Steven Brzozowski is a software engineer at
Hubspot. He received a B.A. and M.Sc. in Com-
puter Science from Boston University in 2019.

Renato Mancuso is an assistant professor in
the department of Computer Science at Boston
University. He received his Ph.D. from the Uni-
versity of Illinois at Urbana-Champaign (UIUC)
in 2017. He is the director of the Cyber-Physical
Systems Lab at BU. His research combines
practical techniques for workload characteriza-
tion and shared hardware resource manage-
ment to achieve strong performance isolation
and high-confidence prediction of temporal be-
havior in real-time, embedded, and safety-critical

applications. He is a member of the IEEE.


	Introduction
	Related Work
	Background
	Multi-Level Caches
	Memory Management & Representation

	The RAMINDEX Interface
	Security Considerations

	CacheFlow Overview
	CacheFlow Modes
	Key Challenges
	Comparison to Other Approaches

	Implementation
	Target Platforms
	Trigger Implementation
	Shutter Implementation

	Evaluation
	Setup and Goals
	Is CacheFlow's Output Meaningful?
	What is the Overhead of Snapshotting?
	Can CacheFlow Analyze Real Applications?
	Can CacheFlow Discover System Properties?
	Can we Predict Clashes on Shared Caches?
	Can we Study the Cache Replacement Policy?

	Conclusion and Future Work
	References
	Biographies
	Dharmesh Tarapore
	Shahin Roozkhosh
	Steven Brzozowski
	Renato Mancuso


