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ABSTRACT

Ranking evaluation metrics play an important role in information
retrieval, providing optimization objectives during development
and means of assessment of deployed performance. Recently, fair-
ness of rankings has been recognized as crucial, especially as au-
tomated systems are increasingly used for high impact decisions.
While numerous fairness metrics have been proposed, a compara-
tive analysis to understand their interrelationships is lacking. Even
for fundamental statistical parity metrics which measure group
advantage, it remains unclear whether metrics measure the same
phenomena, or when one metric may produce different results than
another. To address these open questions, we formulate a concep-
tual framework for analytical comparison of metrics. We prove that
under reasonable assumptions, popular metrics in the literature
exhibit the same behavior and that optimizing for one optimizes
for all. However, our analysis also shows that the metrics vary in
the degree of unfairness measured, in particular when one group
has a strong majority. Based on this analysis, we design a practical
statistical test to identify whether observed data is likely to exhibit
predictable group bias. We provide a set of recommendations for
practitioners to guide the choice of an appropriate fairness metric.

CCS CONCEPTS

« Human-centered computing;

KEYWORDS

Fairness metrics, fair ranking, group advantage, statistical parity.

ACM Reference Format:

Caitlin Kuhlman, Walter Gerych, and Elke Rundensteiner. 2021. Measuring
Group Advantage: A Comparative Study of Fair Ranking Metrics. In Pro-
ceedings of the 2021 AAAI/ACM Conference on Al Ethics, and Society (AIES
'21), May 19-21, 2021, Virtual Event, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3461702.3462588

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AIES 21, May 19-21, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8473-5/21/05...$15.00
https://doi.org/10.1145/3461702.3462588

1 INTRODUCTION

Increasingly, rankings not only mediate people’s access to infor-
mation online, but also screen and filter candidates in high impact
domains such as hiring and university admissions [14, 29]. In these
high-stakes settings, many factors may impact fairness for the can-
didates being ranked, including historic bias or misrepresentation
of groups in training data [27], biased processing of images [6] and
text [5], and implicit bias inherent in users’ interaction behavior [8].
Therefore, evaluation metrics for measuring fairness of rankings
are critically important for evaluating information retrieval (IR)
procedures underlying such socio-technical systems.

IR systems typically optimize for multiple concurrent goals, mo-
tivating a rich body of work on meta-analysis of evaluation metrics
for ranking [1, 7, 26]. In this vein, initial studies have investigated
the relationship of fairness to factors such as diversity and novelty
[13] and tradeoffs between fairness and relevance [11]. However,
the relationships between different fairness metrics themselves have
yet to be fully understood. An in-depth understanding of existing
metrics is needed to facilitate oversight and guide practitioners
in choosing a metric for their application. for measuring unfair-
ness. Therefore, we conduct this comparative analysis of ways of
measuring fairness in rankings.

State-of-the-Art Fairness Metrics. Proposed definitions for
fair ranking target group fairness according to sensitive or legally
protected data attributes (e.g., race, gender or age) [9, 14, 19, 27, 31—
33]. One straightforward definition of group fairness is statistical
parity, which simply dictates that each group receive a fair pro-
portion of favorable outcomes. Other fairness definitions have also
been proposed for rankings including individual fairness [4], fair-
ness based on equal error-rates [19, 21, 27], and causal definitions
[20, 30]. However, the basic notion of how to measure the advantage
of one group over another still poses open questions for exploration.

Limitations of Metric Design. Evaluating group fairness hinges
on the notion that one group may receive favorable or unfavorable
outcomes in some systematically biased way. However for rank-
ings favorable outcomes are relative — depending on many factors
including the quality of the rest of the items being ranked and
the importance of specific positions in the ranking [16]. Proposed
fairness metrics account for this by measuring the relative favor-
ability of outcomes for one group over another, or what we refer
to as group advantage. A number of established strategies in IR
have been employed: top-k analysis [9, 31, 32], pairwise inversions
[3, 19, 21], and cumulative discounted metrics [14, 27]. Notions of
user attention [4] and exposure of items being ranked [27, 33] have
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also been explored. Unfortunately, a comprehensive comparative
analysis of these approaches is lacking. Guidance is unavailable for
deciding when, say, a pairwise metric is preferred to a top-k metric.
Without this foundation being well understood, the design of fair
ranking metrics is fraught with uncertainty.

Proposed Approach. In this work we study statistical parity
metrics for a single protected group in-depth. This definition encap-
sulates a basic foundation for much fair ranking evaluation metric
design. We identify three main approaches to quantifying group
advantage in a ranking: top-k approaches, exposure metrics, and
pairwise metrics. We propose a conceptual framework for evalu-
ating the behavior of metrics in expectation over distributions of
rankings. We prove that under a set of reasonable assumptions
which characterize the generating function of group advantage,
different fairness metrics exhibit the same trends and minima with
respect to changing group advantage. Therefore, optimizing for one
effectively optimizes for all. However we find that the metrics vary
in degree of unfairness, with only one metric assigning a maximum
unfair score when a group has a total advantage. This case deserves
careful consideration, as it has implications for scenarios where a
minority group is strongly disadvantaged.

Applying these observations in practice depends on whether ob-
served data meets our theoretical assumptions. Therefore we design
a statistical test to determine the likelihood that observed group
advantage exhibits predictable bias. We demonstrate this using real-
world sports rankings. Finally we suggest practical strategies for
choosing fairness metrics. Our contributions include:

(1) We categorize ways of measuring group advantage in statis-
tical parity metrics for fair ranking.

(2) We present a conceptual framework to compare the behav-
ior of fairness metrics in expectation over distributions of
rankings characterized by functions of group advantage.

(3) Our analytical evaluation identifies a set of fairness metrics
that under reasonable assumptions share the same minima,
follow the same trends, and capture fairness well.

(4) We design a statistical test to understand group advantage
in rankings, and present recommendations to guide practi-
tioners in selecting the appropriate fairness metric for their
application.

2 REVIEW OF STATISTICAL PARITY
METRICS

Statistical parity is a simple group fairness definition which re-
quires that a protected group receives a fair proportion of favorable
outcomes. “Fair” could mean equal shares among groups (as we
use in our definitions for simplicity), or an alternative formulation
such as a minimum for each according to some apriori specified
target, or a proportion based on the size of the groups in the overall
population or dataset, depending on the use case.

Given a dataset of candidates x; € X, the protected group Gy, is
determined by a protected attribute associated with each candidate,
traditionally corresponding to legally protected data attributes such
as race, gender, or age. The problem setting may also be more ex-
pansive, where candidates are text or images representing people
[27], or include for instance attributes such as the political leaning
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of news sources [24]. Statistical parity was first proposed for classi-
fication setting where a binary classifier f(x) = 7 assigns each item
x € X to aclassin {0, 1}, and § = 1 denotes the preferred outcome.
Typical definitions of statistical parity [10, 12, 15] then require that
P(g=1|x€Gp) =P(J=1]|x¢Gp).

In rankings there is no binary class assignment with which to
evaluate the outcomes for the groups. A ranking is a permutation
p = [x1 < x2 < ... < xp] over all candidates x; € X. Here <
is a total ordering relation on X such that x; <, x; implies that
x; appears at a more preferred position than x; in the ranking p.
The position of a single candidate x; in the ranking p is denoted
p(xi). We adopt the convention that low number positions are
favored over higher ones, i.e. p(x;) = 1 is the best rank position.
Clearly, being ranked toward the top is a better outcome than
being ranked near the bottom, but this determination is inherently
relative. Therefore proposed metrics for statistical parity in rankings
draw on traditional rank evaluation methods for measuring the
relative advantage of each group being ranked. Next we review
and categorize proposed metrics according to different ways of
measuring group advantage.

2.1 Top-k Metrics

A popular method for identifying a favorable outcome in a ranking
is by inclusion in a top-k prefix of the ranking [2, 9, 14, 31, 32]. This
approach is intuitive since for many tasks the top k rank positions
directly correspond to a good outcome for the candidates being
ranked, e.g. the top 5 job applicants are invited to interview for a
position. We focus on those definitions of top-k statistical parity that
give a numerical measure of fairness [14, 31]. Since top-k metrics
are highly dependent on the choice of k, a cumulative strategy is
typically used to give more emphasis to outcomes at the top of the
ranking. Metric scores are weighted by some discounting function
v(k) and aggregated. Scores may also be normalized to lie between
[0, 1] by computing the ideal (maximum) value R. For simplicity
we use a logarithmic discounting function over fixed intervals of
top-k prefixes proposed by Yang and Stoyanovich (2017) for all
top-k metrics!, such that the final fairness score for a given metric
M is computed:

1 < 1

logs () ™! @

R
k=10,2030...
Proposed top-k metrics include:

Normalized discounted difference (rND) [31] measures fair-
ness as the difference between the representation of G, in the
top-k and in the entire ranking.

rND(p) = |P(x € Gp | p(x) < k) —-P(x € Gp)| @
Normalized Discounted Ratio (rRD) [31] compares ratios of
outcomes for the protected group G, and non-protected candidates.
P(x €Gp | p(x) <k) P(x€Gyp)

P(x¢Gp [p(x) <k) P(x¢Gp) ®

rRD(p) =

Skew@k [14] computes the logarithmic ratio of outcomes for G,
in the top-k versus the entire list.

P(xeGy|x<k)
R il ) (4)

skewa, @k(p) = log (52 Gp)

!In the paper by Geyik et al. (2019) skew is computed for a fixed top-k, and rKL
aggregated over all k.
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Kullback-Leibler Divergence (rKL) was first proposed for eval-
uating statistical parity by Yang and Stoyanovich for the case of a
single protected group and then extended to the more general case
of multiple groups by Geyik et al. In the general case, rKL metric
is computed as:

rKL(p) = KL(P||Q) (©)

where P = P(p(x) < k | x € G;) VG;, the proportion of each group
in the top-k items, and Q = P(x € G;) VG;, the proportion of each
group in the entire ranking.

2.2 Exposure Metrics

Singh and Joachims (2018) proposed a statistical parity metric in the
context of an IR-focused framework. In this setting, they consider
the favorable outcome to be "exposure”, a measure of the attention
given to a candidate at a particular rank position. The attention
score can be given by a discounting function v(k) or some other
measure of the importance of each position, for instance learned
from implicit user feedback. Equation 6 gives a measure of group
advantage for Gy based on the average importance of the rank
positions assigned to each candidate x € G.

S
expa, (p) = 15 D, 2(p(x) ©)
| P | x€Gp
The S in Equation 6 is a normalizing constant such that the sum of
the exposure of the protected group and the non-protected group is
1. The overall fairness of a ranking is then computed as the absolute
difference in exposure for protected and non protected candidates,
such that:
exp(p) = abs(1 - 2expg,, (p)) 7)
In our evaluation we use a reciprocal rank function as our measure
of attention where v(k) = % for each position k in the ranking and
denote the metric expRR. However, our analysis is general and does
not hinge on any specific function.

2.3 Pairwise Metrics

Finally, several recent works use the pairwise advantage of each
group to evaluate parity [3, 19, 21]. Pairwise metrics compute the
advantage for one group based on the number of pairwise compar-
isons it wins against another group in the ranking. In Equation 8
we adopt the convention of normalizing by the number of pairs
in the ranking containing candidates from different groups. Here
I(+) is the indicator function which evaluates to 1 if - is true and 0
otherwise.

1
pairg, (p) = ———m——r I(p(xi) < p(xj)) (8)
’ IGp 11X = 1Gp 1) xiGZGp x,-eéZGp
The overall fairness of a ranking is then determined as the absolute
difference in pairwise advantage for the protected group and the
non protected candidates, such that:

pair(p) = abs(1 - 2pairg, (p) 9)

3 PROPOSED COMPARISON FRAMEWORK

Rather than focus on any discrete single ranking, we describe the
behavior of the metrics in expectation over distributions of rankings.
Such stochastic frameworks are common in information retrieval,
for instance they are used to collect unbiased click feedback [17].
Analysis of distributions of rankings is also in line with recent
research on producing fair rankings [11, 27].
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We propose the use of a matrix R € RN*N to represent the distri-
butions over rankings, where N denotes the number of candidates
to be ranked. Each row of R represents a position in the ranking,
and each column a candidate. Each entry R; j gives the probabil-
ity that candidate x; is assigned rank position i as expressed in
Equation 10. As each element of R represents the probability that a
given element is in a given position, the rows and columns must
each add up to 1 and thus we call R doubly stochastic. For single
discrete ranking, R is a binary matrix where R; ; = 1iff p(x;) =,
and R; j = 0 otherwise.

Rij=P(p(x;) = i) (10)

Modelling Group Advantage. Fairness metrics are predicated on
the belief that one ranking can give a more preferred outcome to
one group than another. Therefore we propose to model this unfair
advantage as a random variable & which can take on some range of
values. For convenience we can choose a € [0, 1] where a score of
0 means that a group is at a complete disadvantage, and 1 indicates
a total advantage over other groups. For simplicity in our analysis
we consider a single value for a representing the advantage of the
protected group Gy, understanding that this equivalently implies
an advantage or disadvantage for non-protected candidates. To
model this in our framework, we now impose additional structure
on R to represent the probability of each candidate being assigned
each position as a function of group advantage a. Let us assume
that each entry in R is a function such that:

Rij=fij(a), f:[0,1] = [0,1] 11)

This framing reflects the fact that group advantage does not impact
an entire ranking uniformly - it varies if evaluated at each position
in the ranking. For instance, at position i = 1, if Gp has a large
advantage and many possible candidates to choose from, it is highly
likely that a protected candidate will be assigned to the top spot.
However, for a lower rank position most protected candidates will
have been assigned to positions above, and a non-protected item
will now be more likely to be assigned. Therefore although the over-
all advantage does not change, f; j(a) at different rank positions i
gives different likelihoods of assignment for x;.

3.1 Reformulating Fair Ranking Metrics

Next we represent the statistical parity metrics using our framework.
Each type of metric can be represented in a commensurable way as
functions of the group advantage .

Top-k Metrics. Each top-k metric measures distance or diver-
gence between the proportion of the protected group G, in the
top-k, and the proportion of G, in the entire ranking. We compute
these values with the doubly stochastic matrix R as:

P=P(x€Gp | p(x) sk):%z > fis@ (12)
i=1 jeGp
1 N
Q=P(xeGp) =2, > fjla) (13)
i=1 jeGp
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Given this, the top-k metrics can easily be expressed as follows:

rND(p) = |P - Q]| (14)
_|P 9
rRD(p) = -P 1-0 (15)
skew, @k(p) = log(g) (16)
rKL(p) :P*ln(g)
p (17)
—(l—P)*ln(l_Q)

Exposure Metrics. The exposure metrics are calculated using
the rank position of individual candidates p(x). When considering
distributions over rankings, the candidates no longer have only
one rank - instead R gives a probability of assignment in a position.
Therefore we replace p(x) with its expected value E(p(x)) and
define the exposure metrics in terms of distributions of rankings.

expa (p) = 5 D, Blpey)
x;j€Gj
1 R
=G x,;;,. o(i) Zl fis(@

Pairwise Metrics. To represent the pair metric, we observe that
the likelihood that x; < x; in expectation is given by the difference
in the expected rank position for each candidate x;, x; where:

N
E(p(x)) = )i fij(a) (18)
i=1

To compute the expected pair value we take the signed difference of
the expected positions of each pair of protected and non-protected
candidates:

pair=—o| 33 sign®(p(a) ~Ep(x))| (1)

x;€Gp xj¢Gp

3.2 Modelling Group Advantage

With our comparison framework in place, we next define a family
of advantage functions f according to reasonable assumptions for
group advantage. These assumptions describe an intuitive notion of
group advantage controlling the distribution of groups throughout
a ranking. Figure 1 illustrates this scenario for sets of randomly
generated rankings. The protected group is represented by black
squares, and we see that for different values of « the protected
group is distributed in different ways.

ASSUMPTION 1.

G
Z fij(a) 2 Z finnjla@)  ifa> %

j€Gp j€Gyp

Assumption 1 states that if @ is greater than the overall proba-
bility of observing the protected group, then candidates in G, will
have a higher probability of being assigned favorable positions to-
ward the top of the ranking, with uniformly decreasing probability
for the lower positions (i.e. G, has an advantage over other groups).
We can see this case when a > 0.2 in Figure 1.
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Figure 1: Sets of 10 random rankings that conform to As-
sumptions 1 and 2. 20% of candidates are in the protected
group and « values are varied.

ASSUMPTION 2.

G
Z fij(e) < Z finjla)  ifas< |—j§|

J€Gp J€Gp

Assumption 2 conversely states that if the advantage is less
than this value, then G, is uniformly more likely to be observed
as you move down the ranking (i.e. there is a protected group
disadvantage). Together these assumptions imply that if « equals
the proportion of protected candidates in the entire ranking, then
all candidates are equally likely to be assigned to any position. We
thus would expect our fairness metrics to deem such rankings as
perfectly fair on average. Figure 1 illustrates this case when o = 0.2.

4 COMPARATIVE METRIC ANALYSIS

From these intuitive assumptions, we now characterize the behav-
ior of the fairness metrics with respect to group advantage in the
following theorems (see Appendix for full proofs).

Optimizing for One Metric Optimizes for All.

THEOREM 1. Given a ranking p with a protected group of candi-
dates Gp and associated advantage a, if Assumptions 1 and 2 hold,
then the rND, rRD, rKL, expRR, and pair metrics share the same
minima.

Proof Intuition. We show that by definition, when P = Q, all
metrics equal 0, otherwise the metric values are greater than 0. We
note that the one exception is skew. When P < Q, skew is negative,
therefore it does not share the same minima as the other metrics.

Improving Fairness According to One Metric Improves the
Other Metrics As Well.

THEOREM 2. Given a ranking p with a protected group of candi-
dates Gp and associated advantage a, if Assumptions 1 and 2 hold,
then signs of the derivative with respect to a of the rND, rKL, rRD,
and expRR metrics are the same.

Proof Intuition. The slopes of each of metrics are the same every-
where other than the critical points when the metrics are expressed
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as functions of «. In particular, for each metric M:

k
. d . d 1
sign(——M) =sign(——+ Z‘,ZG: fij ()
= P
ifa>Q

k
sign(--M) == 1 sign(4=2 3" 3" i (@)
i=1 jeGp
ifa<Q

We do not include the pair metric in this analysis since pair is com-
puted using the discrete set of possible pairs in the ranking, and
therefore the function has a non-continuous range. In our empirical
evaluation in Section 6 we observe that the pairwise metric does
indeed exhibit similar behavior to the rest of the metrics.

Pairwise Metrics Yield a Maximum Value When Either Group
Has a Total Advantage.

THEOREM 3. Given a ranking p with a protected group of can-
didates Gp, pair(p) has its maximum value when @ = 0 ora = 1,
meaning when one group has a total advantage.

Proor. If either group has total advantage, then

sign(E(p(x:)) - E(p(x;))) =
sign(E(p(xm)) —E(p(xn)))
Vxi, Xm € Gp and xj,xp € Gp. Thus,

pair = ~| 3N sign(E o)) - Bptx))| = 1

x;i€Gp x;¢Gp
This is the maximum pair value, because

sign(B(p(xi)) —E(p(x;)))
# sign(BE(p(xm)) —E(p(xn))) =

%‘ Z Z sign(B(p(x;)) - E(p(x;))| < 1

xiEGP xj‘sz

5 MONOTONICITY TEST

In our analysis so far, we consider functions of advantage f which
are applied monotonically throughout the ranking. However, in the
real world other factors may impact the probability of candidates
being assigned to positions. Observed sample data is likely to be
noisy and inconsistent. Or bias may be injected adversarially. In
practice it is unlikely that the generating function of bias is known,
necessitating a practical strategy to assess whether the results in
Section 4 are likely to hold. For this, we now design a statistical test
that can be applied to determine whether a given set of n observed
rankings meets Assumptions 1 and 2. ?

We first calculate for each rank position the probability that
a member of the protected group is observed in that position by
counting the instances in the sample data. Let us refer to these
calculated probabilities as M : o = [0,1], where o denotes the set

We provide additional analysis of alternative advantage func-
tions that do not conform to our assumptions in a supplemental re-
port, along with all code and data to reproduce our experiments:
https://github.com/waltergerych/AIES_2021_Measuring_Group_Advantage
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Figure 2: Fairness metrics applied to random rankings that

conform to Assumptions 1 and 2.

of rank positions. If M is monotonically increasing or decreasing,
then our assumptions are met. However, empirical probabilities
may not be strictly monotonic due to noise. To overcome this, we
apply a goodness of fit test between the empirical distribution and
a monotonic target distribution in order to determine the likelihood
that the true generating distribution M is monotonic.

For the target distribution, we find the closest-fitting monotonic
function M : o = [0, 1], such that M is a function from ranking po-
sitions o to probabilities. M is found using isotonic regression [25]
fit to the observed data. Then given this ideal generating function
and the previously described empirical distribution, we perform a
Chi-Square goodness of fit test [22] between M and M. If the p-value
returned by the test is greater than some desired level of signifi-
cance (e.g., 0.05), then there is no statistical difference between the
observed ranking probabilities and a monotonic function and we
conclude that our assumptions will hold with high probability.

6 EMPIRICAL EVALUATION

Next we verify our theoretical observations on group advantage
in a controlled study, and then demonstrate the applicability of
our monotonicity test in a case study on sports ranking data.
Methodology. We produce random rankings with different sized
protected groups: minority (20% protected), balanced (50% in each
group), and majority (80% protected). Group advantage following
our Assumptions in Section 3.2 is generated following the method-
ology proposed in [31]. For each experiment results are averaged
over 10 runs. We evaluate metrics rND, rRD, rKL, skew, pair and
expRR. Metric values are evaluated for varying levels of advantage
a € [0.0,1.0]. To facilitate comparison, we normalize each metric
to lie in a range of zero to one (scaling based on the minimum and
maximum possible values given the size of the groups).
Observations. Figure 2 compares metric behavior across differ-
ent values of group advantage « for rankings with different size
groups. There are clearly observable similar patterns for metrics
rND, rKL, pair, and expRR which share trends and minima. This
aligns with our analysis in Theorems 1 and 2. We can also see a
key difference among these metrics. Following Theorem 3 the pair
metric always assigns a maximum unfair score in the extreme cases
where one group is completely advantaged over the other (when
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a = 1.0 or & = 0), while the other metrics do not. We observe that
rND, rKL, and expRR only consider the case of total advantage to
be highly unfair when the size of the groups are balanced, or when
it benefits a majority protected group. If a small minority group is
totally disadvantaged these metrics give fairness scores around 0.5.
For the rRD metric the minima are the same as the other metrics,
but when the protected group is totally favored, the rRD metric
explodes. We have scaled the figure based on the max value for
a = 0.9 for readability. The skew metric can be observed to follow
a totally different pattern with respect to group advantage.

Case Study on Sports Ranking Data. To study the applicabil-
ity of our analytic results on real data, we consider a dataset of
rankings of National Football League (NFL) players [18]. In fantasy
sports games, players score points based on the performance of
real athletes. Rankings of the athletes are provided by experts to
give guidance to fantasy players. For the first 15 weeks of the 2019
football season, we analyzed rankings from roughly 90 different
experts who ranked the top 10 quarterbacks each week. We con-
sider these as samples from a distribution of rankings. Players were
assigned to groups based on team conferences: the American Foot-
ball Conference (AFC) which we consider the protected group and
the National Football Conference (NFC).

We apply the monotonicity test proposed in Section 5 to evaluate
whether the data are likely to conform to our standard assumptions
of bias. We use isotonic regression to determine the closest mono-
tonically increasing or decreasing function to the observed data.
Figure 3 shows the observed and ideal functions for each week.
Our test finds 10 out of the 15 sets of weekly rankings likely to
meet our assumptions of bias — meaning even on this small sample
size, most rankings are likely to reflect monotonic bias functions.
However, we also see from Figure 3 that it is possible for bias to
follow a variety of different patterns.

7 DISCUSSION AND RECOMMENDATIONS

Together our theoretical analysis and our empirical study provide
insights into the relationships among different fair ranking metrics.
We see that when advantage can be expected to conform to the
assumptions laid out, the top-k metrics (with the exception of skew)
share the same behavior as the pairwise and exposure based metrics.
Therefore, minimizing one will minimize all, and improving
any metric will improve the others.

However, the metrics do vary in the degree of unfairness mea-
sured. We prove in Theorem 3 that the pair metric has a maximum
value when either group has a total advantage over the other. This
matches the intuitive notion that a total advantage is the most ex-
treme violation of statistical parity possible. On the other hand, as
we observe empirically in Section 6, most metrics will not flag
rankings as unfair which strongly disadvantage a minority
group. One reason for this could be that if ranked at random, a
group with many more candidates is more likely to have an ad-
vantage by chance. However, when the protected group is a small
minority this case may crucially be when fairness evaluation is
needed most. Therefore, these competing notions of what consti-
tutes unfairness deserve careful consideration when selecting a
fairness metric in any applied setting.
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Figure 3: Monotonic functions fit to observed advantage
functions for weekly sports rankings.

Recommendations. Following from these key observations,
and bearing in mind that not all unfair bias in rankings will match
our assumptions, we put forth the following recommendations for
the practical application of fair ranking metrics.

If the monotonicity test indicates that observed data is not likely
to conform to standard bias, metrics can have unexpected behavior.
In that case we suggest evaluating the output of all metrics on the
observed data, especially considering unusual or edge cases. It is
imperative to formulate a well-defined notion of fairness for your
application in order to choose the metric which aligns best.

If the observed data passes the monotonicity test, and the appli-
cation will aim to minimize any bias detected, then we recommend
using any of the rKL, rND, pair, or exp metrics. Based on Theorem
1, they are equivalent. 7RD and skew metrics are not recommended,
as they can exhibit unbounded values. Also, skew does not align
with the other definitions. Choice among the recommended metrics
depends on the application - for instance, if the attention func-
tion is known then an exposure based metric may be preferred.
A smooth function will be easiest to mathematically optimize, so
therefore rKL may be preferred out of the top-k metrics as observed
in [31]. Finally, if bias is not guaranteed to be minimized, but rather
measured for evaluation, we recommend using the pair metric -
especially if the protected group is a minority. Other measures
may not capture the bias well when the majority group has an
advantage.

8 RELATED WORK

Recent research evaluates the applicability of fairness metrics specif-
ically for information retrieval [11, 13, 23, 28]. Pitoura et al. con-
sider general categories of user and content bias and frame fairness
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metrics as similarity measures. Verma et al. provide a comprehen-
sive survey of metrics proposed to-date. Gao and Shah empirically
compare fairness metrics with diversity and novelty metrics. They
consider exposure-based statistical parity along with a number
of diversity metrics. Diaz et al. propose stochastic distributions
of rankings be used as an evaluation framework for evaluating
exposure-based fairness metrics. This work follows an individual
fairness paradigm and considers expected exposure in relation to
the relevance of documents. These works are complementary to
ours, particularly [11, 13] which relate exposure-based strategies
for measuring group advantage to other (non-fairness) metrics for
ranking.

Our analysis builds on work [31] which proposes multiple top-k
fair ranking metrics and compares them with respect to group size
and advantage. We broaden the scope of this initial within-class
comparison to now include pairwise and exposure based metrics,
evaluated for distributions of rankings.

9 CONCLUSION

In this work, we offer a comparative analysis of key statistical
parity evaluation metrics for rankings. Our analysis reveals fun-
damental similarities among metrics from the literature that on
the surface appear diverse, under common assumptions about the
relative advantage of the groups. This is important to the field, in
that work optimizing for one of these metrics now can be shown
to equally optimize for all. However, a key distinction is noted in
the magnitude of fairness scores when a minority group is at a
total disadvantage.In addition, we propose a statistical test to eval-
uate group advantage and include a case study and strategies for
choosing a fair ranking metric in practice.
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10 APPENDIX

10.1 Proof of Theorem 1

Proor. By the definition of KL, rRD, rND, expRR, expDCG,
and pair, each metric equals 0 when P = Q. Let a be a value be-
tween 0 and 1 such that when @ = a, P = Pr(x € Gp | p(x) <
k) = % Zi?:l Zjer fi,j(a) = Q. Thus each of the aforementioned
metrics equals 0 when a = a.

Furthermore, if @ > a then by Assumption 1,
QV k and is strictly greater than Q for some k. Conversely, if « < Q
then % Z]iczl Zjer fi,j(@) < QVk (by Assumption 1) and is strictly
less than Q for some k. As each of the metrics is > 0 when P # Q,
then when considering a sum over all k the minimum will occur
onlyata = a. O

12, Yjec, fii(e) =
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10.2 Proof of Theorem 2

Proor. We show that the slopes of the rND, rKL, rRD, and
expRR metrics are the same everywhere other than the critical
points (i.e. at the minimum value and at the limits of the domain of
a, where the derivative is undefined) when the metrics are expressed
as functions of a. We begin by showing the slope for rKL:

ZZﬁ(a)

irKL = (In(—= ) +1) -

da i=1 jeGp
1-P d 1y
Heln(1=5) =1 d—EZ‘ ;pfi,j(“)
p 1-P d 1
=(in(5) - In(3—5)) TE;j;Pﬁ j(@)

If « > Q then P > Q and thus ln( )—ln(
a<0thenln( )—ln( )<0Thu31fa>Q

) > 0. Conversely, if

d
sign(%rKL) ZSign(oTEZ Z fij(a))
i=1 jeGp
andifa < Q:
d k
sign(%rKL) :—sign(d Z Z fij(@)
i=1 jeGp

Moving on to rND:

d o _P- d1<
da U TPC Q| d_E;Zf’ i(@)

J€Gyp
As |P Ql > 1 when a > Qandvlp o1 < 1 when a < Q, then if
a>Q:
szgn(—rND) szgn(d % Z Z fij(@)
i=1 jeGp
andifa < Q:
d k
sign(d—rND) —sign( d Z Z fij(@)
“ i=1 jeGp
Next, we show the slope of 7RD:
1 Q
d ((1_x)2 +ﬁ) (ﬁ_@)
—7rRD =
da ‘L -2
1-x 1-Q
k
d 1
dak Z _ fij(@)
i=1 jeGp

x 1) (x _ 9
((1—X)2 = (1*" 1*9) -0
‘L _Q
1-x 1-Q
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d k
szgn( rRD) sign(d—%z Z fij(@)
i=1 jeGp
ifa>Q
d
sign(@rRD) szgn(d % Z Z fij(a)
i=1 jeGp

ifa<Q

Moving on to the exposure rankings:

d .
aexPGp(p) = dzx |Gp| ZIJ; v; - ~ﬁ,](0()
' P
1 k
—lz D vicifij(@)]
i:ljer
= o i+ fij(@) -1
dzx Gp ;];‘D

B fijle) -1
|G%, i ey vi i fij(a@) =1

LSS wa

i=1 jeGp

2 vk .
Gy 2in1 Zjecp v -1

If @ < g, then the term that the above derivative is multiplied by is
less than 0, and if @ > Q then the term is positive. Additionally, for
v; as defined for exposure the following holds:

k

sign(%GiZ Z v

P i=1 jeGp

i fijla) =

sign(d kZ Z fij(a)

i=1 jeGp
Thus, if & > Q:

d k
sign(-stexpa,) = sign(oe2 3" S fi(@)

i=1 jeGp

andif a < Q:

sign(—— exPG,,)

—sign(-Z fij(@)
da k

i=1 jeGp
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