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ABSTRACT
Ranking evaluation metrics play an important role in information

retrieval, providing optimization objectives during development

and means of assessment of deployed performance. Recently, fair-
ness of rankings has been recognized as crucial, especially as au-

tomated systems are increasingly used for high impact decisions.

While numerous fairness metrics have been proposed, a compara-

tive analysis to understand their interrelationships is lacking. Even

for fundamental statistical parity metrics which measure group

advantage, it remains unclear whether metrics measure the same

phenomena, or when one metric may produce different results than

another. To address these open questions, we formulate a concep-

tual framework for analytical comparison of metrics. We prove that

under reasonable assumptions, popular metrics in the literature

exhibit the same behavior and that optimizing for one optimizes

for all. However, our analysis also shows that the metrics vary in

the degree of unfairness measured, in particular when one group

has a strong majority. Based on this analysis, we design a practical

statistical test to identify whether observed data is likely to exhibit

predictable group bias. We provide a set of recommendations for

practitioners to guide the choice of an appropriate fairness metric.
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1 INTRODUCTION
Increasingly, rankings not only mediate people’s access to infor-

mation online, but also screen and filter candidates in high impact

domains such as hiring and university admissions [14, 29]. In these

high-stakes settings, many factors may impact fairness for the can-
didates being ranked, including historic bias or misrepresentation

of groups in training data [27], biased processing of images [6] and

text [5], and implicit bias inherent in users’ interaction behavior [8].

Therefore, evaluation metrics for measuring fairness of rankings
are critically important for evaluating information retrieval (IR)

procedures underlying such socio-technical systems.

IR systems typically optimize for multiple concurrent goals, mo-

tivating a rich body of work on meta-analysis of evaluation metrics

for ranking [1, 7, 26]. In this vein, initial studies have investigated

the relationship of fairness to factors such as diversity and novelty

[13] and tradeoffs between fairness and relevance [11]. However,

the relationships between different fairnessmetrics themselves have

yet to be fully understood. An in-depth understanding of existing

metrics is needed to facilitate oversight and guide practitioners

in choosing a metric for their application. for measuring unfair-

ness. Therefore, we conduct this comparative analysis of ways of

measuring fairness in rankings.

State-of-the-Art Fairness Metrics. Proposed definitions for

fair ranking target group fairness according to sensitive or legally

protected data attributes (e.g., race, gender or age) [9, 14, 19, 27, 31–

33]. One straightforward definition of group fairness is statistical
parity, which simply dictates that each group receive a fair pro-

portion of favorable outcomes. Other fairness definitions have also

been proposed for rankings including individual fairness [4], fair-

ness based on equal error-rates [19, 21, 27], and causal definitions

[20, 30]. However, the basic notion of how tomeasure the advantage

of one group over another still poses open questions for exploration.

Limitations ofMetricDesign. Evaluating group fairness hinges
on the notion that one group may receive favorable or unfavorable

outcomes in some systematically biased way. However for rank-

ings favorable outcomes are relative – depending on many factors

including the quality of the rest of the items being ranked and

the importance of specific positions in the ranking [16]. Proposed

fairness metrics account for this by measuring the relative favor-

ability of outcomes for one group over another, or what we refer

to as group advantage. A number of established strategies in IR

have been employed: top-𝑘 analysis [9, 31, 32], pairwise inversions

[3, 19, 21], and cumulative discounted metrics [14, 27]. Notions of

user attention [4] and exposure of items being ranked [27, 33] have

https://doi.org/10.1145/3461702.3462588
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also been explored. Unfortunately, a comprehensive comparative

analysis of these approaches is lacking. Guidance is unavailable for

deciding when, say, a pairwise metric is preferred to a top-𝑘 metric.

Without this foundation being well understood, the design of fair

ranking metrics is fraught with uncertainty.

Proposed Approach. In this work we study statistical parity

metrics for a single protected group in-depth. This definition encap-

sulates a basic foundation for much fair ranking evaluation metric

design. We identify three main approaches to quantifying group
advantage in a ranking: top-𝑘 approaches, exposure metrics, and

pairwise metrics. We propose a conceptual framework for evalu-

ating the behavior of metrics in expectation over distributions of

rankings. We prove that under a set of reasonable assumptions

which characterize the generating function of group advantage,

different fairness metrics exhibit the same trends and minima with

respect to changing group advantage. Therefore, optimizing for one

effectively optimizes for all. However we find that the metrics vary

in degree of unfairness, with only one metric assigning a maximum

unfair score when a group has a total advantage. This case deserves

careful consideration, as it has implications for scenarios where a

minority group is strongly disadvantaged.

Applying these observations in practice depends on whether ob-

served data meets our theoretical assumptions. Therefore we design

a statistical test to determine the likelihood that observed group

advantage exhibits predictable bias. We demonstrate this using real-

world sports rankings. Finally we suggest practical strategies for

choosing fairness metrics. Our contributions include:

(1) We categorize ways of measuring group advantage in statis-

tical parity metrics for fair ranking.

(2) We present a conceptual framework to compare the behav-

ior of fairness metrics in expectation over distributions of

rankings characterized by functions of group advantage.

(3) Our analytical evaluation identifies a set of fairness metrics

that under reasonable assumptions share the same minima,

follow the same trends, and capture fairness well.

(4) We design a statistical test to understand group advantage

in rankings, and present recommendations to guide practi-

tioners in selecting the appropriate fairness metric for their

application.

2 REVIEW OF STATISTICAL PARITY
METRICS

Statistical parity is a simple group fairness definition which re-

quires that a protected group receives a fair proportion of favorable

outcomes. “Fair” could mean equal shares among groups (as we

use in our definitions for simplicity), or an alternative formulation

such as a minimum for each according to some apriori specified

target, or a proportion based on the size of the groups in the overall

population or dataset, depending on the use case.

Given a dataset of candidates 𝑥𝑖 ∈ 𝑋 , the protected group 𝐺𝑝 is

determined by a protected attribute associated with each candidate,

traditionally corresponding to legally protected data attributes such

as race, gender, or age. The problem setting may also be more ex-

pansive, where candidates are text or images representing people

[27], or include for instance attributes such as the political leaning

of news sources [24]. Statistical parity was first proposed for classi-

fication setting where a binary classifier 𝑓 (𝑥) = 𝑦 assigns each item

𝑥 ∈ 𝑋 to a class in {0, 1}, and 𝑦 = 1 denotes the preferred outcome.

Typical definitions of statistical parity [10, 12, 15] then require that

𝑃 (𝑦 = 1 | 𝑥 ∈ 𝐺𝑝 ) = 𝑃 (𝑦 = 1 | 𝑥 ∉ 𝐺𝑝 ).
In rankings there is no binary class assignment with which to

evaluate the outcomes for the groups. A ranking is a permutation

𝜌 = [𝑥1 ≺ 𝑥2 ≺ ... ≺ 𝑥𝑛] over all candidates 𝑥𝑖 ∈ 𝑋 . Here ≺
is a total ordering relation on 𝑋 such that 𝑥𝑖 ≺𝜌 𝑥 𝑗 implies that

𝑥𝑖 appears at a more preferred position than 𝑥 𝑗 in the ranking 𝜌 .

The position of a single candidate 𝑥𝑖 in the ranking 𝜌 is denoted

𝜌 (𝑥𝑖 ). We adopt the convention that low number positions are

favored over higher ones, i.e. 𝜌 (𝑥𝑖 ) = 1 is the best rank position.

Clearly, being ranked toward the top is a better outcome than

being ranked near the bottom, but this determination is inherently

relative. Therefore proposedmetrics for statistical parity in rankings

draw on traditional rank evaluation methods for measuring the

relative advantage of each group being ranked. Next we review

and categorize proposed metrics according to different ways of

measuring group advantage.

2.1 Top-𝑘 Metrics
A popular method for identifying a favorable outcome in a ranking

is by inclusion in a top-𝑘 prefix of the ranking [2, 9, 14, 31, 32]. This

approach is intuitive since for many tasks the top 𝑘 rank positions

directly correspond to a good outcome for the candidates being

ranked, e.g. the top 5 job applicants are invited to interview for a

position.We focus on those definitions of top-𝑘 statistical parity that

give a numerical measure of fairness [14, 31]. Since top-𝑘 metrics

are highly dependent on the choice of 𝑘 , a cumulative strategy is

typically used to give more emphasis to outcomes at the top of the

ranking. Metric scores are weighted by some discounting function

𝑣 (𝑘) and aggregated. Scores may also be normalized to lie between

[0, 1] by computing the ideal (maximum) value 𝑅. For simplicity

we use a logarithmic discounting function over fixed intervals of

top-𝑘 prefixes proposed by Yang and Stoyanovich (2017) for all

top-𝑘 metrics
1
, such that the final fairness score for a given metric

𝑀 is computed:

1

𝑅

𝑛∑
𝑘=10,20,30...

1

𝑙𝑜𝑔2 (𝑘)
𝑀 (1)

Proposed top-𝑘 metrics include:

Normalized discounted difference (rND) [31] measures fair-

ness as the difference between the representation of 𝐺𝑝 in the

top-𝑘 and in the entire ranking.

𝑟𝑁𝐷 (𝜌) = |𝑃 (𝑥 ∈ 𝐺𝑝 | 𝜌 (𝑥) ≤ 𝑘) − 𝑃 (𝑥 ∈ 𝐺𝑝 ) | (2)

Normalized Discounted Ratio (rRD) [31] compares ratios of

outcomes for the protected group𝐺𝑝 and non-protected candidates.

𝑟𝑅𝐷 (𝜌) =
�����𝑃 (𝑥 ∈ 𝐺𝑝 | 𝜌 (𝑥) ≤ 𝑘)
𝑃 (𝑥 ∉ 𝐺𝑝 | 𝜌 (𝑥) ≤ 𝑘) −

𝑃 (𝑥 ∈ 𝐺𝑝 )
𝑃 (𝑥 ∉ 𝐺𝑝 )

����� (3)

Skew@𝑘 [14] computes the logarithmic ratio of outcomes for 𝐺𝑝
in the top-𝑘 versus the entire list.

𝑠𝑘𝑒𝑤𝐺𝑝
@𝑘 (𝜌) = log

(𝑃 (𝑥 ∈ 𝐺𝑝 | 𝑥 ≤ 𝑘)
𝑃 (𝑥 ∈ 𝐺𝑝 )

)
(4)

1
In the paper by Geyik et al. (2019) skew is computed for a fixed top-𝑘 , and 𝑟𝐾𝐿

aggregated over all 𝑘 .
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Kullback-Leibler Divergence (𝑟𝐾𝐿) was first proposed for eval-

uating statistical parity by Yang and Stoyanovich for the case of a

single protected group and then extended to the more general case

of multiple groups by Geyik et al. In the general case, 𝑟𝐾𝐿 metric

is computed as:

𝑟𝐾𝐿 (𝜌) = 𝐾𝐿 (𝑃 | |𝑄) (5)

where 𝑃 = 𝑃 (𝜌 (𝑥) ≤ 𝑘 | 𝑥 ∈ 𝐺𝑖 ) ∀𝐺𝑖 , the proportion of each group

in the top-𝑘 items, and 𝑄 = 𝑃 (𝑥 ∈ 𝐺𝑖 ) ∀𝐺𝑖 , the proportion of each

group in the entire ranking.

2.2 Exposure Metrics
Singh and Joachims (2018) proposed a statistical parity metric in the

context of an IR-focused framework. In this setting, they consider

the favorable outcome to be "exposure", a measure of the attention

given to a candidate at a particular rank position. The attention

score can be given by a discounting function 𝑣 (𝑘) or some other

measure of the importance of each position, for instance learned

from implicit user feedback. Equation 6 gives a measure of group

advantage for 𝐺𝑝 based on the average importance of the rank

positions assigned to each candidate 𝑥 ∈ 𝐺𝑝 .

𝑒𝑥𝑝𝐺𝑝 (𝜌) =
𝑆

|𝐺𝑝 |
∑

𝑥∈𝐺𝑝

𝑣 (𝜌 (𝑥)) (6)

The 𝑆 in Equation 6 is a normalizing constant such that the sum of

the exposure of the protected group and the non-protected group is

1. The overall fairness of a ranking is then computed as the absolute

difference in exposure for protected and non protected candidates,

such that:

𝑒𝑥𝑝 (𝜌) = 𝑎𝑏𝑠
(
1 − 2𝑒𝑥𝑝𝐺𝑝 (𝜌)

)
(7)

In our evaluation we use a reciprocal rank function as our measure

of attention where 𝑣 (𝑘) = 1

𝑘
for each position 𝑘 in the ranking and

denote the metric 𝑒𝑥𝑝𝑅𝑅. However, our analysis is general and does

not hinge on any specific function.

2.3 Pairwise Metrics
Finally, several recent works use the pairwise advantage of each

group to evaluate parity [3, 19, 21]. Pairwise metrics compute the

advantage for one group based on the number of pairwise compar-

isons it wins against another group in the ranking. In Equation 8

we adopt the convention of normalizing by the number of pairs

in the ranking containing candidates from different groups. Here

𝐼 (·) is the indicator function which evaluates to 1 if · is true and 0

otherwise.

𝑝𝑎𝑖𝑟𝐺𝑝 (𝜌) =
1

|𝐺𝑝 | ( |𝑋 | − |𝐺𝑝 |)
∑

𝑥𝑖 ∈𝐺𝑝

∑
𝑥 𝑗 ∉𝐺𝑝

𝐼 (𝜌 (𝑥𝑖 ) ≺ 𝜌 (𝑥 𝑗 )) (8)

The overall fairness of a ranking is then determined as the absolute

difference in pairwise advantage for the protected group and the

non protected candidates, such that:

𝑝𝑎𝑖𝑟 (𝜌) = 𝑎𝑏𝑠
(
1 − 2𝑝𝑎𝑖𝑟𝐺𝑝 (𝜌)

)
(9)

3 PROPOSED COMPARISON FRAMEWORK
Rather than focus on any discrete single ranking, we describe the

behavior of the metrics in expectation over distributions of rankings.
Such stochastic frameworks are common in information retrieval,

for instance they are used to collect unbiased click feedback [17].

Analysis of distributions of rankings is also in line with recent

research on producing fair rankings [11, 27].

We propose the use of a matrix 𝑅 ∈ R𝑁𝑥𝑁 to represent the distri-

butions over rankings, where 𝑁 denotes the number of candidates

to be ranked. Each row of 𝑅 represents a position in the ranking,

and each column a candidate. Each entry 𝑅𝑖, 𝑗 gives the probabil-

ity that candidate 𝑥 𝑗 is assigned rank position 𝑖 as expressed in

Equation 10. As each element of 𝑅 represents the probability that a

given element is in a given position, the rows and columns must

each add up to 1 and thus we call 𝑅 doubly stochastic. For single

discrete ranking, 𝑅 is a binary matrix where 𝑅𝑖, 𝑗 = 1 iff 𝜌 (𝑥 𝑗 ) = 𝑖 ,
and 𝑅𝑖, 𝑗 = 0 otherwise.

𝑅𝑖,𝑗 = 𝑃
(
𝜌 (𝑥 𝑗 ) = 𝑖

)
(10)

Modelling Group Advantage. Fairness metrics are predicated on

the belief that one ranking can give a more preferred outcome to

one group than another. Therefore we propose to model this unfair

advantage as a random variable 𝛼 which can take on some range of

values. For convenience we can choose 𝛼 ∈ [0, 1] where a score of
0 means that a group is at a complete disadvantage, and 1 indicates

a total advantage over other groups. For simplicity in our analysis

we consider a single value for 𝛼 representing the advantage of the

protected group 𝐺𝑝 , understanding that this equivalently implies

an advantage or disadvantage for non-protected candidates. To

model this in our framework, we now impose additional structure

on 𝑅 to represent the probability of each candidate being assigned

each position as a function of group advantage 𝛼 . Let us assume

that each entry in 𝑅 is a function such that:

𝑅𝑖,𝑗 = 𝑓𝑖,𝑗 (𝛼), 𝑓 : [0, 1] → [0, 1] (11)

This framing reflects the fact that group advantage does not impact

an entire ranking uniformly – it varies if evaluated at each position

in the ranking. For instance, at position 𝑖 = 1, if 𝐺𝑝 has a large

advantage and many possible candidates to choose from, it is highly

likely that a protected candidate will be assigned to the top spot.

However, for a lower rank position most protected candidates will

have been assigned to positions above, and a non-protected item

will now be more likely to be assigned. Therefore although the over-

all advantage does not change, 𝑓𝑖, 𝑗 (𝛼) at different rank positions 𝑖

gives different likelihoods of assignment for 𝑥 𝑗 .

3.1 Reformulating Fair Ranking Metrics
Nextwe represent the statistical paritymetrics using our framework.

Each type of metric can be represented in a commensurable way as

functions of the group advantage 𝛼 .

Top-𝑘 Metrics. Each top-𝑘 metric measures distance or diver-

gence between the proportion of the protected group 𝐺𝑝 in the

top-𝑘 , and the proportion of 𝐺𝑝 in the entire ranking. We compute

these values with the doubly stochastic matrix 𝑅 as:

𝑃 = 𝑃 (𝑥 ∈ 𝐺𝑝 | 𝜌 (𝑥) ≤ 𝑘) = 1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼) (12)

𝑄 = 𝑃 (𝑥 ∈ 𝐺𝑝 ) =
1

𝑁

𝑁∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼) (13)
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Given this, the top-𝑘 metrics can easily be expressed as follows:

𝑟𝑁𝐷 (𝜌) = |𝑃 −𝑄 | (14)

𝑟𝑅𝐷 (𝜌) =
��� 𝑃

1 − 𝑃 − 𝑄

1 −𝑄

��� (15)

𝑠𝑘𝑒𝑤𝐺𝑝@𝑘 (𝜌) = 𝑙𝑜𝑔 (
𝑃

𝑄
) (16)

𝑟𝐾𝐿 (𝜌) = 𝑃 ∗ 𝑙𝑛
( 𝑃
𝑄

)
− (1 − 𝑃 ) ∗ 𝑙𝑛

(
1 − 𝑃
1 −𝑄

) (17)

Exposure Metrics. The exposure metrics are calculated using

the rank position of individual candidates 𝜌 (𝑥). When considering

distributions over rankings, the candidates no longer have only

one rank - instead 𝑅 gives a probability of assignment in a position.

Therefore we replace 𝜌 (𝑥) with its expected value E(𝜌 (𝑥)) and
define the exposure metrics in terms of distributions of rankings.

𝑒𝑥𝑝𝐺 𝑗
(𝜌) = 1

|𝐺 𝑗 |
∑

𝑥 𝑗 ∈𝐺 𝑗

E(𝜌 (𝑥 𝑗 ))

=
1

|𝐺 𝑗 |
∑

𝑥 𝑗 ∈𝐺 𝑗

𝑣 (𝑖)
𝑁∑
𝑖=1

𝑖 · 𝑓𝑖,𝑗 (𝛼)

Pairwise Metrics. To represent the 𝑝𝑎𝑖𝑟 metric, we observe that

the likelihood that 𝑥𝑖 ≺ 𝑥 𝑗 in expectation is given by the difference

in the expected rank position for each candidate 𝑥𝑖 , 𝑥 𝑗 where:

E(𝜌 (𝑥 𝑗 )) =
𝑁∑
𝑖=1

𝑖 𝑓𝑖,𝑗 (𝛼) (18)

To compute the expected 𝑝𝑎𝑖𝑟 value we take the signed difference of

the expected positions of each pair of protected and non-protected

candidates:

𝑝𝑎𝑖𝑟 =
1

𝑁

����� ∑
𝑥𝑖 ∈𝐺𝑝

∑
𝑥 𝑗 ∉𝐺𝑝

𝑠𝑖𝑔𝑛 (E(𝜌 (𝑥𝑖 )) − E(𝜌 (𝑥 𝑗 )))
����� (19)

3.2 Modelling Group Advantage
With our comparison framework in place, we next define a family

of advantage functions 𝑓 according to reasonable assumptions for

group advantage. These assumptions describe an intuitive notion of

group advantage controlling the distribution of groups throughout

a ranking. Figure 1 illustrates this scenario for sets of randomly

generated rankings. The protected group is represented by black

squares, and we see that for different values of 𝛼 the protected

group is distributed in different ways.

Assumption 1.∑
𝑗 ∈𝐺𝑝

𝑓𝑖, 𝑗 (𝛼) ≥
∑
𝑗 ∈𝐺𝑝

𝑓𝑖+1, 𝑗 (𝛼) if 𝛼 ≥
|𝐺𝑝 |
𝑁

Assumption 1 states that if 𝛼 is greater than the overall proba-

bility of observing the protected group, then candidates in 𝐺𝑝 will

have a higher probability of being assigned favorable positions to-

ward the top of the ranking, with uniformly decreasing probability

for the lower positions (i.e.𝐺𝑝 has an advantage over other groups).

We can see this case when 𝛼 > 0.2 in Figure 1.

Figure 1: Sets of 10 random rankings that conform to As-
sumptions 1 and 2. 20% of candidates are in the protected
group and 𝛼 values are varied.

Assumption 2.∑
𝑗 ∈𝐺𝑝

𝑓𝑖, 𝑗 (𝛼) ≤
∑
𝑗 ∈𝐺𝑝

𝑓𝑖+1, 𝑗 (𝛼) if 𝛼 ≤
|𝐺𝑝 |
𝑁

Assumption 2 conversely states that if the advantage is less

than this value, then 𝐺𝑝 is uniformly more likely to be observed

as you move down the ranking (i.e. there is a protected group

disadvantage). Together these assumptions imply that if 𝛼 equals

the proportion of protected candidates in the entire ranking, then

all candidates are equally likely to be assigned to any position. We

thus would expect our fairness metrics to deem such rankings as

perfectly fair on average. Figure 1 illustrates this case when 𝛼 = 0.2.

4 COMPARATIVE METRIC ANALYSIS
From these intuitive assumptions, we now characterize the behav-

ior of the fairness metrics with respect to group advantage in the

following theorems (see Appendix for full proofs).

Optimizing for One Metric Optimizes for All.

Theorem 1. Given a ranking 𝜌 with a protected group of candi-
dates 𝐺𝑝 and associated advantage 𝛼 , if Assumptions 1 and 2 hold,
then the 𝑟𝑁𝐷 , 𝑟𝑅𝐷 , 𝑟𝐾𝐿, 𝑒𝑥𝑝𝑅𝑅, and 𝑝𝑎𝑖𝑟 metrics share the same
minima.

Proof Intuition. We show that by definition, when 𝑃 = 𝑄 , all

metrics equal 0, otherwise the metric values are greater than 0. We

note that the one exception is 𝑠𝑘𝑒𝑤 . When 𝑃 < 𝑄 , 𝑠𝑘𝑒𝑤 is negative,

therefore it does not share the same minima as the other metrics.

Improving Fairness According to One Metric Improves the
Other Metrics As Well.

Theorem 2. Given a ranking 𝜌 with a protected group of candi-
dates 𝐺𝑝 and associated advantage 𝛼 , if Assumptions 1 and 2 hold,
then signs of the derivative with respect to 𝛼 of the 𝑟𝑁𝐷 , 𝑟𝐾𝐿, 𝑟𝑅𝐷 ,
and 𝑒𝑥𝑝𝑅𝑅 metrics are the same.

Proof Intuition. The slopes of each of metrics are the same every-

where other than the critical points when the metrics are expressed
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as functions of 𝛼 . In particular, for each metric𝑀 :

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑀) =𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

if 𝛼 > 𝑄

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑀) = − 1 · 𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

if 𝛼 < 𝑄

We do not include the 𝑝𝑎𝑖𝑟 metric in this analysis since 𝑝𝑎𝑖𝑟 is com-

puted using the discrete set of possible pairs in the ranking, and

therefore the function has a non-continuous range. In our empirical

evaluation in Section 6 we observe that the pairwise metric does

indeed exhibit similar behavior to the rest of the metrics.

PairwiseMetrics Yield aMaximumValueWhenEitherGroup
Has a Total Advantage.

Theorem 3. Given a ranking 𝜌 with a protected group of can-
didates 𝐺𝑝 , 𝑝𝑎𝑖𝑟 (𝜌) has its maximum value when 𝛼 = 0 or 𝛼 = 1,
meaning when one group has a total advantage.

Proof. If either group has total advantage, then

𝑠𝑖𝑔𝑛 (E(𝜌 (𝑥𝑖 )) − E(𝜌 (𝑥 𝑗 ))) =
𝑠𝑖𝑔𝑛 (E(𝜌 (𝑥𝑚)) − E(𝜌 (𝑥𝑛)))

∀𝑥𝑖 , 𝑥𝑚 ∈ 𝐺𝑝 and 𝑥 𝑗 , 𝑥𝑛 ∉ 𝐺𝑝 . Thus,

𝑝𝑎𝑖𝑟 =
1

𝑁

��� ∑
𝑥𝑖 ∈𝐺𝑝

∑
𝑥 𝑗∉𝐺𝑝

𝑠𝑖𝑔𝑛(E(𝜌 (𝑥𝑖 )) − E(𝜌 (𝑥 𝑗 )))
��� = 1

This is the maximum 𝑝𝑎𝑖𝑟 value, because

𝑠𝑖𝑔𝑛 (E(𝜌 (𝑥𝑖 )) − E(𝜌 (𝑥 𝑗 )))
≠ 𝑠𝑖𝑔𝑛 (E(𝜌 (𝑥𝑚)) − E(𝜌 (𝑥𝑛))) =⇒

1

𝑁

��� ∑
𝑥𝑖 ∈𝐺𝑝

∑
𝑥 𝑗 ∉𝐺𝑝

𝑠𝑖𝑔𝑛 (E(𝜌 (𝑥𝑖 )) − E(𝜌 (𝑥 𝑗 )))
��� < 1

□

5 MONOTONICITY TEST
In our analysis so far, we consider functions of advantage 𝑓 which

are applied monotonically throughout the ranking. However, in the

real world other factors may impact the probability of candidates

being assigned to positions. Observed sample data is likely to be

noisy and inconsistent. Or bias may be injected adversarially. In

practice it is unlikely that the generating function of bias is known,

necessitating a practical strategy to assess whether the results in

Section 4 are likely to hold. For this, we now design a statistical test

that can be applied to determine whether a given set of 𝑛 observed

rankings meets Assumptions 1 and 2.
2

We first calculate for each rank position the probability that

a member of the protected group is observed in that position by

counting the instances in the sample data. Let us refer to these

calculated probabilities as 𝑀̂ : 𝜎 ⇒ [0, 1], where 𝜎 denotes the set

2
We provide additional analysis of alternative advantage func-

tions that do not conform to our assumptions in a supplemental re-

port, along with all code and data to reproduce our experiments:

https://github.com/waltergerych/AIES_2021_Measuring_Group_Advantage

(a) 𝑟𝑁𝐷 (b) 𝑟𝐾𝐿 (c) 𝑝𝑎𝑖𝑟

(d) 𝑒𝑥𝑝𝑅𝑅 (e) 𝑟𝑅𝐷 (f) 𝑠𝑘𝑒𝑤

Figure 2: Fairness metrics applied to random rankings that
conform to Assumptions 1 and 2.

of rank positions. If 𝑀̂ is monotonically increasing or decreasing,

then our assumptions are met. However, empirical probabilities

may not be strictly monotonic due to noise. To overcome this, we

apply a goodness of fit test between the empirical distribution and

a monotonic target distribution in order to determine the likelihood

that the true generating distribution 𝑀 is monotonic.

For the target distribution, we find the closest-fitting monotonic

function𝑀 : 𝜎 ⇒ [0, 1], such that𝑀 is a function from ranking po-

sitions 𝜎 to probabilities.𝑀 is found using isotonic regression [25]

fit to the observed data. Then given this ideal generating function

and the previously described empirical distribution, we perform a

Chi-Square goodness of fit test [22] between 𝑀̂ and𝑀 . If the 𝑝-value

returned by the test is greater than some desired level of signifi-

cance (e.g., 0.05), then there is no statistical difference between the

observed ranking probabilities and a monotonic function and we

conclude that our assumptions will hold with high probability.

6 EMPIRICAL EVALUATION
Next we verify our theoretical observations on group advantage

in a controlled study, and then demonstrate the applicability of

our monotonicity test in a case study on sports ranking data.

Methodology.We produce random rankings with different sized

protected groups: minority (20% protected), balanced (50% in each

group), and majority (80% protected). Group advantage following

our Assumptions in Section 3.2 is generated following the method-

ology proposed in [31]. For each experiment results are averaged

over 10 runs. We evaluate metrics 𝑟𝑁𝐷 , 𝑟𝑅𝐷 , 𝑟𝐾𝐿, 𝑠𝑘𝑒𝑤 , 𝑝𝑎𝑖𝑟 and

𝑒𝑥𝑝𝑅𝑅. Metric values are evaluated for varying levels of advantage

𝛼 ∈ [0.0, 1.0]. To facilitate comparison, we normalize each metric

to lie in a range of zero to one (scaling based on the minimum and

maximum possible values given the size of the groups).

Observations. Figure 2 compares metric behavior across differ-

ent values of group advantage 𝛼 for rankings with different size

groups. There are clearly observable similar patterns for metrics

𝑟𝑁𝐷 , 𝑟𝐾𝐿, 𝑝𝑎𝑖𝑟 , and 𝑒𝑥𝑝𝑅𝑅 which share trends and minima. This

aligns with our analysis in Theorems 1 and 2. We can also see a

key difference among these metrics. Following Theorem 3 the 𝑝𝑎𝑖𝑟

metric always assigns a maximum unfair score in the extreme cases

where one group is completely advantaged over the other (when
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𝛼 = 1.0 or 𝛼 = 0), while the other metrics do not. We observe that

𝑟𝑁𝐷 , 𝑟𝐾𝐿, and 𝑒𝑥𝑝𝑅𝑅 only consider the case of total advantage to

be highly unfair when the size of the groups are balanced, or when

it benefits a majority protected group. If a small minority group is

totally disadvantaged these metrics give fairness scores around 0.5.

For the 𝑟𝑅𝐷 metric the minima are the same as the other metrics,

but when the protected group is totally favored, the 𝑟𝑅𝐷 metric

explodes. We have scaled the figure based on the max value for

𝛼 = 0.9 for readability. The 𝑠𝑘𝑒𝑤 metric can be observed to follow

a totally different pattern with respect to group advantage.

Case Study on Sports Ranking Data. To study the applicabil-

ity of our analytic results on real data, we consider a dataset of

rankings of National Football League (NFL) players [18]. In fantasy

sports games, players score points based on the performance of

real athletes. Rankings of the athletes are provided by experts to

give guidance to fantasy players. For the first 15 weeks of the 2019

football season, we analyzed rankings from roughly 90 different

experts who ranked the top 10 quarterbacks each week. We con-

sider these as samples from a distribution of rankings. Players were

assigned to groups based on team conferences: the American Foot-

ball Conference (AFC) which we consider the protected group and

the National Football Conference (NFC).

We apply the monotonicity test proposed in Section 5 to evaluate

whether the data are likely to conform to our standard assumptions

of bias. We use isotonic regression to determine the closest mono-

tonically increasing or decreasing function to the observed data.

Figure 3 shows the observed and ideal functions for each week.

Our test finds 10 out of the 15 sets of weekly rankings likely to

meet our assumptions of bias – meaning even on this small sample

size, most rankings are likely to reflect monotonic bias functions.

However, we also see from Figure 3 that it is possible for bias to

follow a variety of different patterns.

7 DISCUSSION AND RECOMMENDATIONS
Together our theoretical analysis and our empirical study provide

insights into the relationships among different fair ranking metrics.

We see that when advantage can be expected to conform to the

assumptions laid out, the top-𝑘 metrics (with the exception of 𝑠𝑘𝑒𝑤 )

share the same behavior as the pairwise and exposure based metrics.

Therefore, minimizing one will minimize all, and improving
any metric will improve the others.

However, the metrics do vary in the degree of unfairness mea-

sured. We prove in Theorem 3 that the 𝑝𝑎𝑖𝑟 metric has a maximum

value when either group has a total advantage over the other. This

matches the intuitive notion that a total advantage is the most ex-

treme violation of statistical parity possible. On the other hand, as

we observe empirically in Section 6, most metrics will not flag
rankings as unfair which strongly disadvantage a minority
group. One reason for this could be that if ranked at random, a

group with many more candidates is more likely to have an ad-

vantage by chance. However, when the protected group is a small

minority this case may crucially be when fairness evaluation is

needed most. Therefore, these competing notions of what consti-

tutes unfairness deserve careful consideration when selecting a

fairness metric in any applied setting.

Figure 3: Monotonic functions fit to observed advantage
functions for weekly sports rankings.

Recommendations. Following from these key observations,

and bearing in mind that not all unfair bias in rankings will match

our assumptions, we put forth the following recommendations for

the practical application of fair ranking metrics.

If the monotonicity test indicates that observed data is not likely
to conform to standard bias, metrics can have unexpected behavior.

In that case we suggest evaluating the output of all metrics on the

observed data, especially considering unusual or edge cases. It is

imperative to formulate a well-defined notion of fairness for your

application in order to choose the metric which aligns best.

If the observed data passes the monotonicity test, and the appli-

cation will aim to minimize any bias detected, then we recommend

using any of the 𝑟𝐾𝐿, 𝑟𝑁𝐷 , 𝑝𝑎𝑖𝑟 , or 𝑒𝑥𝑝 metrics. Based on Theorem

1, they are equivalent. 𝑟𝑅𝐷 and 𝑠𝑘𝑒𝑤 metrics are not recommended,

as they can exhibit unbounded values. Also, 𝑠𝑘𝑒𝑤 does not align

with the other definitions. Choice among the recommended metrics

depends on the application - for instance, if the attention func-

tion is known then an exposure based metric may be preferred.

A smooth function will be easiest to mathematically optimize, so

therefore 𝑟𝐾𝐿may be preferred out of the top-𝑘 metrics as observed

in [31]. Finally, if bias is not guaranteed to be minimized, but rather

measured for evaluation, we recommend using the 𝑝𝑎𝑖𝑟 metric –

especially if the protected group is a minority. Other measures

may not capture the bias well when the majority group has an

advantage.

8 RELATEDWORK
Recent research evaluates the applicability of fairness metrics specif-

ically for information retrieval [11, 13, 23, 28]. Pitoura et al. con-
sider general categories of user and content bias and frame fairness
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metrics as similarity measures. Verma et al. provide a comprehen-

sive survey of metrics proposed to-date. Gao and Shah empirically

compare fairness metrics with diversity and novelty metrics. They

consider exposure-based statistical parity along with a number

of diversity metrics. Diaz et al. propose stochastic distributions

of rankings be used as an evaluation framework for evaluating

exposure-based fairness metrics. This work follows an individual

fairness paradigm and considers expected exposure in relation to

the relevance of documents. These works are complementary to

ours, particularly [11, 13] which relate exposure-based strategies

for measuring group advantage to other (non-fairness) metrics for

ranking.

Our analysis builds on work [31] which proposes multiple top-𝑘

fair ranking metrics and compares them with respect to group size

and advantage. We broaden the scope of this initial within-class

comparison to now include pairwise and exposure based metrics,

evaluated for distributions of rankings.

9 CONCLUSION
In this work, we offer a comparative analysis of key statistical

parity evaluation metrics for rankings. Our analysis reveals fun-

damental similarities among metrics from the literature that on

the surface appear diverse, under common assumptions about the

relative advantage of the groups. This is important to the field, in

that work optimizing for one of these metrics now can be shown

to equally optimize for all. However, a key distinction is noted in

the magnitude of fairness scores when a minority group is at a

total disadvantage.In addition, we propose a statistical test to eval-

uate group advantage and include a case study and strategies for

choosing a fair ranking metric in practice.
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10 APPENDIX
10.1 Proof of Theorem 1

Proof. By the definition of 𝑟𝐾𝐿, 𝑟𝑅𝐷 , 𝑟𝑁𝐷 , 𝑒𝑥𝑝𝑅𝑅, 𝑒𝑥𝑝𝐷𝐶𝐺 ,

and 𝑝𝑎𝑖𝑟 , each metric equals 0 when 𝑃 = 𝑄 . Let 𝑎 be a value be-

tween 0 and 1 such that when 𝛼 = 𝑎, 𝑃 = 𝑃𝑟 (𝑥 ∈ 𝐺𝑝 | 𝜌 (𝑥) ≤
𝑘) = 1

𝑘

∑𝑘
𝑖=1

∑
𝑗 ∈𝐺𝑝

𝑓𝑖, 𝑗 (𝑎) = 𝑄 . Thus each of the aforementioned

metrics equals 0 when 𝛼 = 𝑎.

Furthermore, if𝛼 > 𝑎 then byAssumption 1,
1

𝑘

∑𝑘
𝑖=1

∑
𝑗 ∈𝐺𝑝

𝑓𝑖, 𝑗 (𝛼) ≥
𝑄 ∀ 𝑘 and is strictly greater than𝑄 for some 𝑘 . Conversely, if 𝛼 < 𝑄

then
1

𝑘

∑𝑘
𝑖=1

∑
𝑗 ∈𝐺𝑝

𝑓𝑖, 𝑗 (𝛼) ≤ 𝑄 ∀𝑘 (by Assumption 1) and is strictly

less than 𝑄 for some 𝑘 . As each of the metrics is > 0 when 𝑃 ≠ 𝑄 ,

then when considering a sum over all 𝑘 the minimum will occur

only at 𝛼 = 𝑎. □

10.2 Proof of Theorem 2
Proof. We show that the slopes of the 𝑟𝑁𝐷 , 𝑟𝐾𝐿, 𝑟𝑅𝐷 , and

𝑒𝑥𝑝𝑅𝑅 metrics are the same everywhere other than the critical

points (i.e. at the minimum value and at the limits of the domain of

𝛼 , where the derivative is undefined)when themetrics are expressed

as functions of 𝛼 . We begin by showing the slope for 𝑟𝐾𝐿:

𝑑

𝑑𝛼
𝑟𝐾𝐿 = (𝑙𝑛 ( 𝑃

𝑄
) + 1) · 𝑑

𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼)

+(−𝑙𝑛 ( 1 − 𝑃
1 −𝑄 ) − 1) · 𝑑

𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼)

=(𝑙𝑛 ( 𝑃
𝑄
) − 𝑙𝑛 ( 1 − 𝑃

1 −𝑄 )) · 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼)

If 𝛼 > 𝑄 then 𝑃 > 𝑄 and thus 𝑙𝑛( 𝑃
𝑄
) − 𝑙𝑛( 1−𝑃

1−𝑄 ) > 0. Conversely, if

𝛼 < 0 then 𝑙𝑛( 𝑃
𝑄
) − 𝑙𝑛( 1−𝑃

1−𝑄 ) < 0. Thus if 𝛼 > 𝑄 :

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑟𝐾𝐿) = 𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

and if 𝛼 < 𝑄 :

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑟𝐾𝐿) = −𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

Moving on to 𝑟𝑁𝐷 :

𝑑

𝑑𝛼
𝑟𝑁𝐷 =

𝑃 −𝑄
|𝑃 −𝑄 | ·

𝑑

𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗 ∈𝐺𝑝

𝑓𝑖, 𝑗 (𝛼)

As
𝑃−𝑄
|𝑃−𝑄 | > 1 when 𝛼 > 𝑄 and 𝑣

𝑃−𝑄
|𝑃−𝑄 | < 1 when 𝛼 < 𝑄 , then if

𝛼 > 𝑄 :

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑟𝑁𝐷) = 𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

and if 𝛼 < 𝑄 :

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑟𝑁𝐷) = −𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

Next, we show the slope of 𝑟𝑅𝐷 :

𝑑

𝑑𝛼
𝑟𝑅𝐷 =

(
𝑥

(1−𝑥 )2 + 1

1−𝑥

) (
𝑥

1−𝑥 − 𝑄

1−𝑄

)��� 𝑥
1−𝑥 − 𝑄

1−𝑄

���
· 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼)

When 𝛼 > 𝑄 then

(
𝑥

1−𝑥 − 𝑄
1−𝑄

)
> 0, which implies:(

𝑥

(1−𝑥 )2 + 1

1−𝑥

) (
𝑥

1−𝑥 − 𝑄

1−𝑄

)��� 𝑥
1−𝑥 − 𝑄

1−𝑄

��� > 0

Conversely, if 𝛼 < 𝑄 then:(
𝑥

(1−𝑥 )2 + 1

1−𝑥

) (
𝑥

1−𝑥 − 𝑄

1−𝑄

)��� 𝑥
1−𝑥 − 𝑄

1−𝑄

��� < 0
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𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑟𝑅𝐷) =𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

if 𝛼 > 𝑄

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑟𝑅𝐷) = − 𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

if 𝛼 < 𝑄

Moving on to the exposure rankings:

𝑑

𝑑𝛼
𝑒𝑥𝑝𝐺𝑝 (𝜌) =

𝑑

𝑑𝛼
| 1

|𝐺𝑝 |

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑣𝑖 · 𝑖 · 𝑓𝑖,𝑗 (𝛼)

− (1 − 1

|𝐺𝑝 |

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑣𝑖 · 𝑖 · 𝑓𝑖,𝑗 (𝛼)) |

=
𝑑

𝑑𝛼
| 2

𝐺𝑝

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑣𝑖 · 𝑖 · 𝑓𝑖,𝑗 (𝛼) − 1 |

=

2

𝐺𝑝

∑𝑘
𝑖=1

∑
𝑗∈𝐺𝑝

𝑣𝑖 · 𝑖 · 𝑓𝑖,𝑗 (𝛼) − 1

| 2

𝐺𝑝

∑𝑘
𝑖=1

∑
𝑗∈𝐺𝑝

𝑣𝑖 · 𝑖 · 𝑓𝑖,𝑗 (𝛼) − 1 |

· 𝑑
𝑑𝛼

2

𝐺𝑝

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑣𝑖 · 𝑖 · 𝑓𝑖,𝑗 (𝛼)

If 𝛼 < 𝑞, then the term that the above derivative is multiplied by is

less than 0, and if 𝛼 > 𝑄 then the term is positive. Additionally, for

𝑣𝑖 as defined for exposure the following holds:

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

2

𝐺𝑝

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑣𝑖 · 𝑖 · 𝑓𝑖,𝑗 (𝛼)) =

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

Thus, if 𝛼 > 𝑄 :

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑒𝑥𝑝𝐺𝑝 ) = 𝑠𝑖𝑔𝑛 (
𝑑

𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

and if 𝛼 < 𝑄 :

𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

𝑒𝑥𝑝𝐺𝑝 ) = −𝑠𝑖𝑔𝑛 ( 𝑑
𝑑𝛼

1

𝑘

𝑘∑
𝑖=1

∑
𝑗∈𝐺𝑝

𝑓𝑖,𝑗 (𝛼))

□
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