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Abstract—Spectral imaging is a fundamental diagnostic tech-
nique with widespread application. Conventional spectral imaging
approaches have intrinsic limitations on spatial and spectral reso-
lutions due to the physical components they rely on. To overcome
these physical limitations, in this paper, we develop a novel multi-
spectral imaging modality that enables higher spatial and spectral
resolutions. In the developed computational imaging modality, we
exploit a diffractive lens, such as a photon sieve, for both dis-
persing and focusing the optical field, and achieve measurement
diversity by changing the focusing behavior of this lens. Because
the focal length of a diffractive lens is wavelength-dependent, each
measurement is a superposition of differently blurred spectral
components. To reconstruct the individual spectral images from
these superimposed and blurred measurements, model-based fast
reconstruction algorithms are developed with deep and analytical
priors using alternating minimization and unrolling. Finally, the
effectiveness and performance of the developed technique is illus-
trated for an application in astrophysical imaging under various
observation scenarios in the extreme ultraviolet (EUV) regime.
The results demonstrate that the technique provides not only
diffraction-limited high spatial resolution, as enabled by diffractive
lenses, but also the capability of resolving close-by spectral sources
that would not otherwise be possible with the existing techniques.
This work enables high resolution multi-spectral imaging with low
cost designs for a variety of applications and spectral regimes.

Index Terms—Spectral imaging, diffractive lenses, photon sieves,
inverse problems, learned reconstruction.

I. INTRODUCTION

S PECTRAL imaging, also known as multispectral or hyper-
spectral imaging, is a fundamental diagnostic technique in

the physical sciences with widespread application in physics,
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Fig. 1. Schematic view of the proposed diffractive lens based spectral imaging
system.

biology, chemistry, medicine, astronomy, and remote sensing.
In spectral imaging, images of a scene are formed as a function
of wavelength. Capturing this three-dimensional (3D) spectral
data cube enables unique identification of the biological, chem-
ical, and physical properties of the scene. As a result, spectral
imaging is a useful diagnostic tool in diverse applications in-
cluding remote sensing of astrophysical plasmas, environmental
monitoring, surveillance, biomedical diagnostics, and industrial
inspection, among many others.

The inherent challenge in spectral imaging is to capture the 3D
spectral cube with the 2D detectors. Conventional approaches
perform scanning to form the spectral data cube from a series of
2D measurements. Generally this data cube is measured using
an imager with a series of wavelength filters scanning the scene
spectrally, or by using a spectrometer with a slit scanning the
scene spatially. Since these techniques purely rely on physical
components, an important drawback is the intrinsic physical
limitations on their spatial, spectral, and temporal resolutions,
as well as the inherent trade-off between spatial and spectral
resolutions [1]–[3]. For example, for spectral imagers employing
wavelength filters, the spectral resolution is strictly limited by
the bandwidth of the producible wavelength filters in the desired
spectral range, and the spatial resolution is limited by the quality
and cost of the used reflective/refractive imaging optics [2],
[4], [5].

In this paper, we develop a computational multi-spectral
imaging technique with the goal of enabling diffraction-limited
high spatial resolution and better spectral resolution than the
conventional spectral imagers with wavelength filters. Our imag-
ing technique exploits a diffractive lens for both dispersing
and focusing the optical field, allowing us to overcome these
limitations in the spatial and spectral resolutions, while not
creating any physical trade-off between them. Fig. 1 provides
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a schematic of the imaging system involved. This system takes
advantage of the wavelength-dependent behavior of a diffractive
lens, i.e. the fact that each wavelength is focused differently
by a diffractive lens. The main idea is to differently focus each
spectral component and acquire measurements that are superpo-
sitions of these spectral images (with each spectral component
exposed to different type of blur). Hence each measurement is
the superposition of differently blurred spectral components. To
obtain the needed information for decomposing this multiplexed
data, multiple measurements are acquired and jointly used to
reconstruct the individual spectral images by solving an inverse
problem.

To solve the image reconstruction problem, we first formulate
the continuous image-formation model and then obtain its dis-
crete version. The resulting inverse problem can be viewed as a
multi-frame deconvolution problem where multiple images need
to be deblurred from their superimposed and blurred versions. To
solve this inverse problem, we develop two fast reconstruction
algorithms. The first algorithm exploits analysis priors (such
as total variation) using the alternating direction method of
multipliers (ADMM). As the analytical priors have recently been
outperformed by deep priors [6]–[8], the second algorithm learns
the prior through a deep network that is end-to-end trained with
an unrolling approach. Thanks to the shift-invariance behavior
of the system and the resulting convolutional forward model,
each step in the developed algorithms has fast computation using
FFTs.

We illustrate the high spatial and spectral resolutions enabled
by the developed spectral imaging technique for a potential
application in astrophysical imaging of space plasmas in the
extreme ultraviolet (EUV) regime. A detailed conditioning-
based analysis is also performed for the spatial resolution of
the technique. Although the presented results in this manuscript
are for the UV regime, the developed imaging concept is equally
applicable to other spectral regimes.

To achieve measurement diversity, multiple measurements
can be acquired either with a moving monochrome detector
(so measurements are taken from different distances) or with
multiple diffractive lens designs (so spectral bands focused dif-
ferently onto a fixed detector). The latter may require additional
optical components such as beam splitters and a larger detector.
It can also be performed using a compound diffractive lens
design that focus multiple wavelengths onto different locations
on the fixed detector or with a variable diffractive lens through
a programmable spatial light modulator (SLM) or a digital
micromirror device (DMD).

Earlier approaches in computational spectral imaging have
been developed with the goal of providing faster acquisition
and/or reduced hardware complexity than the conventional
methods. These can be regarded as compressive or snapshot
methods, and each use a different encoding scheme to ac-
quire reduced number of measurements. Examples are coded
aperture snapshot spectral imaging (CASSI) [9] and its vari-
ants [10]–[12], and coded aperture spectral imaging with diffrac-
tive lenses (CSID) [13], [14]. However, in none of these com-
pressive/snapshot approaches, the main goal was to improve the

spatial and spectral resolutions of the conventional scanning-
based methods beyond their physical limitations. To the best of
our knowledge, there have been no reports of higher spatial and
spectral resolutions than the conventional systems, and ours is
the first work that demonstrates this. Moreover, our system has
no trade-off between spatial and spectral resolutions unlike many
of the earlier systems; that is, the spatial and spectral resolutions
can be increased independently.

Note that our technique is not a compressive imaging tech-
nique; it has indeed a different objective than the compres-
sive/snapshot methods. Different than these methods, we do
not also solve an under-determined inverse problem for image
reconstruction. Moreover, our technique is designed so as to
be also applicable for scenes whose spectra consist of discrete
spectral lines, or equivalently lack strong spectral correlation
(i.e. has frequent peaks and fast transitions). Spectral sensing
of such scenes are of interest in various applications including
astrophysical imaging of space plasmas, atmospheric physics,
and remote sensing [15], [16].

In the earlier diffractive imaging works, diffractive lenses have
been mostly used with monochromatic sources [5], [17]–[19] be-
cause of their wavelength-dependent focal length. When work-
ing with monochromatic illumination (i.e. single wavelength),
diffractive lenses have many attractive properties such as their
low weight, low cost, and flat structure. Another important ad-
vantage of diffractive imaging elements is that they can provide
diffraction-limited high spatial resolution for a wide spectral
range including UV and x-rays [2], [5], [18], [20], [21]. This
is not true for the refractive or reflective imaging elements.
For example, at short wavelengths such as UV and x-rays,
refractive lenses do not exist due to the strong absorption of
available materials, and mirrors are costly to fabricate to achieve
diffraction-limited resolution.

To reduce chromatic aberration and enable broadband (full-
spectrum) imaging, different techniques have also been devel-
oped with diffractive lenses to focus different wavelengths onto
a common plane either physically or computationally [22]–[29].
In contrast to these broadband imaging techniques, our approach
exploits chromatic aberration to enable high-resolution multi-
spectral imaging. Some preliminary results of this research were
presented in [1], [30], [31]. Other spectral imaging works that
take advantage of chromatic aberration focus on compressive or
snapshot spectral imaging of spectrally correlated scenes. Dif-
ferent techniques and system architectures have been proposed
for this purpose such as coded aperture spectral imaging with
diffractive lenses (CSID) [13], [14], the use of a diffractive lens
equipped with a light-field detector [32], a random diffractive
filter in close proximity to an image sensor [33], a diffractive op-
tical array after a pinhole array [34], and a specifically designed
diffractive lens attached to a DSLR camera [35]. However,
as mentioned before, in none of these compressive/snapshot
imaging approaches, the main goal was to improve the spatial
and spectral resolutions of the conventional systems beyond
their physical limitations as in this work. Our approach can
enable high spatial and spectral resolutions with low cost designs
for a variety of applications and with scenes that can possibly
lack spectral correlation. Moreover, the novel reconstruction
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algorithms developed in this paper can be useful to improve
the performance of the other diffractive imaging modalities.

The paper is organized as follows. We discuss the related work
in spectral imaging and imaging with diffractive lenses in Sec-
tion II. We introduce the forward model of the developed imag-
ing technique in Section III. The inverse problem is discussed
in Section IV. Section V presents the fast ADMM-based im-
age reconstruction algorithm that exploits analysis priors (such
as total variation). Section VI develops another model-based
reconstruction algorithm that learns the prior through a deep
network that is end-to-end trained with an unrolling approach.
The performance of the developed imaging technique and the
reconstruction algorithms are illustrated for EUV solar imaging
in Section VII through computer simulations. A detailed analysis
is also performed to demonstrate the resolution of the technique.
In Section VIII, conclusions and final remarks are provided.

II. RELATED WORK

A. Multi-Spectral Imaging

Over the past decades, different techniques have been used
for multi-spectral imaging. These techniques can be classified
into three general groups: conventional methods, spectral filter
array methods, and compressive or snapshot methods.

Conventional (scanning-based) methods obtain the spectral
data cube from a series of 2D measurements that are acquired
simultaneously, or sequentially. Generally this data cube is mea-
sured using an imager with a series of spectral filters (obtained
through multilayer coating) scanning the scene spectrally, or by
using a spectrometer that involves a dispersion element with a
slit scanning the scene spatially. One of the most important draw-
backs of these techniques is the intrinsic physical limitations on
their spatial, spectral, and temporal resolutions, as well as the in-
herent trade-off between spatial and spectral resolutions [2], [3].

In fact, for multi-spectral imagers employing spectral filters,
the spectral resolution is strictly limited by the bandwidth of
the producible wavelength filters in that spectral range, and
the spatial resolution is limited by the quality and cost of the
used imaging optics [2], [4], [5]. For example, existing EUV
imagers offer spatial resolutions worse than the diffraction-limit
and provide spectral resolutions of 10% of the central wave-
length at best [2], [4], [5], which preclude resolving impor-
tant spatial and spectral features. At larger wavelengths such
as visible and infrared, diffraction-limited spatial resolution is
easier to attain while spectral resolution - achieved with the
current multi-layer coating technology - is around 2-20% of the
central wavelength [36], [37]. Our imaging technique enables to
overcome these limitations on the spatial and spectral resolutions
(without any physical trade-off between them), by using a single
diffractive imaging element for both dispersing and focusing the
optical field.

In the earlier works, super-resolution methods have been
proposed to improve the resolutions of the conventional systems
through post-processing [38]. However, these methods aim to
guess information that is not captured by the observation system
and rely on spectral correlations; as a result, their performance
is limited. On the other hand, our approach improves the spatial

and spectral resolutions by proposing a novel system architecture
to capture the observation data and then reconstruct the high-
resolution spectral cube without requiring spectral correlations.

Spectral filter array methods rely on recent technology
developments that extend the Bayer filters used in color imaging
to multi-spectral sensors [39]–[43]. These methods use tiled
filter arrays and enable to measure different spectral bands with
a single sensor. They have generally been realized at small
spatial scales and particular spectral ranges, and have an inherent
trade-off between spatial and spectral resolutions.

Compressive or snapshot methods use different encoding
schemes to acquire reduced number of measurements than the
conventional methods [3], [11], [44]. The first approach in
this respect is the computed tomography imaging spectrometry
(CTIS) [45]–[47], which uses a tomographic reconstruction
approach with an optical system similar to a slit spectrometer,
where the main difference is to remove the slit (to allow an
instantaneous 2D field-of-view). An optical system similar to
CTIS is also used with a parametric reconstruction approach
that requires a parametric prior to hold along the spectral di-
mension [48]. In the compressive spectral imaging techniques
- inspired by compressed sensing, the spectral data cube is
reconstructed from compressive measurements by exploiting
the correlations along the spatial and spectral dimensions. A
commonly known compressive spectral imaging technique is
coded aperture snapshot spectral imaging (CASSI) [9], with
many variants [10]–[12]. The CASSI system is similar to the
CTIS system where the major difference is the addition of a
coded aperture, and the use of a sparse recovery algorithm for
reconstruction. To provide a better alternative to CASSI, many
other compressive or snapshot spectral imaging systems have
been developed such as those exploiting single-pixel compres-
sive camera architecture [49], diffractive lenses [13], [14], [32],
[35], [50], random diffractive filter [33], diffractive optical array
with a pinhole array [34], prism with a DSLR camera [51] and
diffuser with a multi-spectral sensor [52].

All of these compressive/snapshot methods have been
developed with the goal of providing faster acquisition
and/or reduced hardware complexity/cost than the conven-
tional methods. However, in none of these approaches, the
main goal was to improve the spatial and spectral resolu-
tions of the conventional scanning-based methods beyond their
physical limitations. To the best of our knowledge, there
have been no reports of higher spatial and spectral resolutions
than the conventional scanning-based systems, and ours is the
first work that demonstrates this. Moreover, our system has no
trade-off between spatial and spectral resolutions unlike many
of the earlier systems; that is, the spatial and spectral resolutions
can be increased independently of each other.

A related work in this respect aims to overcome the physical
limitation on the spectral resolution of CASSI-type architec-
tures [53]. The spectral resolution in CASSI is limited mainly
by the pitch size of the detector and the spectral dispersion of
the used disperser. Spectral resolution improvement by a factor
of two has been demonstrated in this work by replacing the
binary coded apertures in the original CASSI system with color
coded ones; however there are some technical challenges in the

Authorized licensed use limited to: University of Illinois. Downloaded on June 21,2021 at 01:48:38 UTC from IEEE Xplore.  Restrictions apply. 



492 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

fabrication of such apertures that may affect the resulting spatial
resolution [53]. There are also superresolution works that aims
to improve the spatial resolution of a CASSI system with a
low resolution detector by taking additional measurements [54].
A similar superresolution problem that takes into account the
decimation effect caused by a low-resolution detector has been
studied in [55] for the spectral imaging system developed in this
paper.

B. Imaging With Diffractive Lenses

Diffractive lenses such as Fresnel lenses and photon sieves
have been used for various imaging techniques. These tech-
niques can be classified into three general groups: monochro-
matic imaging, broadband imaging, and spectral imaging.

Monochromatic imaging has been the main area of use
for diffractive lenses because of their wavelength-dependent
focal length. When working with monochromatic illumination
(i.e. single wavelength), diffractive lenses have many attractive
properties such as their low weight, low cost, and flat structure.
Another important advantage of diffractive imaging elements is
that they can provide diffraction-limited high spatial resolution
for a wide spectral range including UV and x-rays [2], [5], [18],
[20], [21]. This is not true for the refractive or reflective imaging
elements. For example, at short wavelengths such as UV and
x-rays, refractive lenses do not exist due to the strong absorp-
tion of available materials, and mirrors are costly to fabricate
to achieve diffraction-limited resolution. In fact, for reflective
optics, surface roughness and figure errors cause substantially
worse spatial resolution than the diffraction limit [17]. On the
other hand, diffractive lenses can provide diffraction-limited
high spatial resolution with relaxed fabrication tolerances. Many
monochromatic imaging systems have been developed with
diffractive lenses at visible, UV, and x-ray wavelengths to ap-
proach diffraction-limited imaging performance [5], [17]–[19].

Broadband (full-spectrum) imaging techniques are based
on the development of new diffractive lens designs with reduced
chromatic aberration than the conventional designs [22]–[28].
These techniques aim to focus different wavelengths onto a
common plane so as to operate with broad-band illumination.
Recent approaches [29] also exploit the computational imag-
ing framework and neural networks to improve the broadband
imaging performance.

In contrast to these broadband imaging techniques, our ap-
proach exploits chromatic aberration to enable high-resolution
multi-spectral imaging. Some preliminary results of this re-
search were presented in [1], [30], [31], [56]. Other spectral
imaging works exploiting chromatic aberration focus on com-
pressive or snapshot spectral imaging of spectrally correlated
scenes. Different techniques and system architectures have been
proposed for this purpose such as coded aperture spectral imag-
ing with diffractive lenses (CSID) [13], [14], the use of a diffrac-
tive lens equipped with a light-field detector [32], a random
diffractive filter in close proximity to an image sensor [33],
a diffractive optical array after a pinhole array [34], and a
specifically designed diffractive lens attached to a DSLR cam-
era [29], [35]. However, in none of these compressive/snapshot

approaches, the main goal was to improve the spatial and spectral
resolutions of the conventional methods beyond their physical
limitations as in this work. Our approach can enable unprece-
dented spatial and spectral resolutions with low cost designs
for a variety of applications and for scenes that can possibly
lack spectral correlation. Moreover, the efficient reconstruction
algorithms developed in this paper can be useful to improve the
performance of other diffractive imaging modalities as well.

III. FORWARD PROBLEM

A. Proposed Multi-Spectral Imaging System

Fig. 1 depicts a schematic of the proposed spectral imaging
system, which contains a diffractive lens (such as a photon
sieve) and a monochrome detector. Here the optical field is
first passed through a diffractive lens before recording with
a monochrome detector. The diffractive lens performs both
focusing and dispersion of the field. Because the focal length
of the diffractive lens varies with the wavelength, each spectral
component is focused at a different distance. As a result of this,
when one of the spectral components is in focus, on the same
plane there also exists defocused images of the other spectral
components. Hence, if a measurement is taken from a plane
where one spectral component is focused, the focused image of
this spectral component overlaps with the defocused images of
the remaining components. A total of K such measurements are
taken by the spectral imaging system. For the kth measurement,
ds and dk respectively denote the distances from the object and
measurement planes to the plane where the diffractive lens lies,
where k = 1, . . . ,K.

The measurement diversity can be achieved in different ways.
One possible way is to use a moving detector along the axial
direction in order to take successive measurements at different
planes. In this case, a single diffractive lens can be used by
changing the distance dk between the diffractive lens and the
measurement plane. Alternatively, one can fix the measurement
plane, i.e. the distance dk, and use different diffractive lens
designs with a different focusing behavior to take multiple
measurements at the fixed held detector. Such measurements can
be acquired in many different ways depending on the wavelength
regime. For example, one possible way is to generate a variable
diffractive lens through a programmable spatial light modulator
(SLM) or a digital micromirror device (DMD). This is a feasible
approach in visible and infrared regimes at the expense of
an additional optical element. More cost-effective approaches
that also enable snapshot imaging are i) to design a single
compound diffractive lens that focus multiple wavelengths onto
different locations on the fixed detector [23], [57]–[59], or ii)
to use multiple optical paths with different diffractive lenses by
using beam-splitters. These require a larger detector (or multiple
detectors), but are feasible for a wide spectral range.

From the input object, we consider a polychromatic inco-
herent illumination consisting of P different wavelengths λp

for p = 1, . . . , P . In the general case, these wavelengths are
uniformly sampled from the spectral range observed by the
system. The spectral sampling interval should be chosen in
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accordance with the spectral bandwidth of the designed diffrac-
tive lens (which determines the length of the spectral range
that the response of the lens starts to change moderately with
wavelength [17][Chap.9].) However, it is not necessary that
the sampled wavelengths are contiguous or uniform. In various
multi-spectral imaging applications such as astrophysical imag-
ing, remote sensing, and tissue spectroscopy, the wavelengths
that will be observed are known a priori from spectroscopic ob-
servations, and these wavelengths do not need to be contiguous,
uniformly sampled, or correlated [3]. Unlike earlier approaches,
our approach is general enough to work for such cases. This will
be illustrated in Section VII.

In general, the diffractive lens can form images either with
spatially coherent or incoherent illumination [21]. In this work,
we consider the incoherent case where the diffractive lens
produces images in intensity, but similar concepts can also be
applied to the coherent or partially coherent case.

B. Continuous Image-Formation Model

The first task is to mathematically relate the input spectral
images to the multiple measurements obtained. Each measure-
ment is a superposition of differently blurred spectral images.
Mathematically, this can be formulated as follows:

tk(u, v) =

P∑
p=1

sp(u, v) ∗ gk,p(u, v). (1)

Here tk(u, v) is the intensity of the kth measurement, ∗ denotes

convolution, and sp(u, v) =
d2
s

d2
k
fp(− ds

dk
u,− ds

dk
v) is a scaled

version of the pth spectral image fp(u, v) at the wavelength
λp. Hence each measurement contains P terms resulting from
P different spectral components.

At distancedk the intensity of the spectral component at wave-
length λp is convolved with the point-spread function (PSF),
gk,p(u, v), of the diffractive lens, given by [21], [60]

gk,p(u, v) =

∣∣∣∣∣i λp

Δk
e
−iπ u2+v2

Δkλpd2
k ∗Ak

(
u

λpdk
,

v

λpdk

)∣∣∣∣∣
2

. (2)

Here Δk = 1/ds + 1/dk, and Ak(fu, fv) is the Fourier trans-
form of the aperture (transmittance) function of the diffractive
lens used in the kth measurement. The aperture function of a
diffractive lens is defined as the ratio of the transmitted field
amplitude to the incident field amplitude at every point on
the lens. For the commonly used diffractive lens designs with
circular holes [18], Ak(fu, fv) is sum of jinc functions resulting
from the Fourier transform of the circle functions corresponding
to each hole. Note that this incoherent PSF formula is derived
under Fresnel approximation [21], which is valid in almost
all practical imaging scenarios of interest, and also has a fast
computation algorithm [60].

An approximate, but a simpler model can also be used for
the PSF in Eq. (2) when the number of zones in the diffractive
lens design is large and the diffractive lens behaves like a
conventional (refractive) lens in its first diffraction order. This

approximate PSF is given as follows [21]:

gk,p(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π2 (λpdk)

4D4
k jinc2( Dk

λpdk
u, Dk

λpdk
v), εk = 0∣∣∣ 1π (λpdk)

2D2
k jinc( Dk

λpdk
u, Dk

λpdk
v)∗

i
λp

εk
exp(−iπ u2+v2

εkλpd2
k
)
∣∣∣2 , εk �= 0,

(3)
where Dk is the outer diameter of the diffractive lens in the kth
measurement, f1 = Dkwk

λp
is its first-order focal distance, wk is

the outer zone width of the lens, and εk = 1/dk + 1/ds − 1/f1
is a parameter related to the amount of defocusing. This ap-
proximate model provides easier computation as well as simpler
analysis of the imaging system.

C. Discrete Model

In practice, only a finite number of discrete measurements is
available through a digital sensor such as a CCD array. Since
image reconstruction will be performed computationally on a
computer, a discrete representation of the spectral images is also
necessary. Now, our goal is to obtain such a discrete-to-discrete
model between the unknown spectral images and measurements.

For this, we exploit the band-limitedness of the continuous
functions involved. First note that each PSF gk,p is band-limited
to a circle of diameter2Dk/(λpdk). This is because the argument
inside the magnitude sign in Eq.(2) has a circular frequency
support with diameter Dk/(λpdk). The incoherent PSF is the
magnitude square of this function, and hence the frequency
support of this PSF can be found by convolving this circular
support with itself, which results in a circular support with twice
diameter [61]. Due to the band-limitedness of these PSFs gk,p
in Eq. (1), each measurement tk is bandlimited.

Secondly, note that high frequencies of the spectral images,
sp, that are outside the frequency support of the PSF, gk,p, are not
captured in the measurements, which is known as the inherent
diffraction-limit [17]. As a result, the forward operator involv-
ing convolutions with these PSFs has a non-trivial nullspace.
For discretization, we restrict our attention to the band-limited
version of each spectral image and aim for recovering these
band-limited versions, which are simply given by

xp(u, v) ≡ sp(u, v) ∗ jinc
(
2Dk

λpdk
u,

2Dk

λpdk
v

)
. (4)

The jinc function jinc(u, v) = J1(π
√
u2+v2)

2
√
u2+v2 where J1(u) is the

first-order Bessel function of the first kind. The forward model
in Eq. (1) is still valid when the unknown source intensities,
sp, are replaced with their band-limited versions, xp. Hence,
we can treat all functions in the continuous forward model as
band-limited functions and represent them using sinc basis [61].

Now by representing each continuous band-limited function
with sinc basis, the continuous convolution operations in Eq. (1)
reduce to discrete convolutions of the form

tk[m,n] =

P∑
p=1

xp[m,n] ∗ gk,p[m,n], (5)
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where m,n = [0, . . . , N − 1]. Here tk[m,n], xp[m,n], and
gk,p[m,n] are sampled versions of their continuous counter-
parts, e.g. tk[m,n] = tk(mΔ, nΔ) for some Δ smaller than the
Nyquist sampling interval (i.e. Δ <

λpdk

2Dk
for all k). Here the

uniformly sampled observations, tk[m,n], are assumed to be
same as the detector measurements, i.e. the averaged intensity
over detector pixels of width Δ.

Let the PSF gk,p[m,n] has M ×M support, i.e. gk,p[m,n] ≈
0 for m,n /∈ [0,M − 1]. We assume that the supports of the
spectral images are slightly smaller than the detector range
covered by N pixels, i.e. xp[m,n] = 0 for m,n /∈ [0, N −M ].
Then the linear convolution in Eq. (5) can be replaced with a
circular convolution ofN points, which will be useful to develop
fast image reconstruction methods.

Due to the linearity of the convolution operator, the discrete
model can be formulated in the following matrix-vector form
using appropriate lexicographic ordering:

tk =
P∑

p=1

Hk,pxp. (6)

Here Hk,p is an N2 ×N2 block circulant matrix with circular
blocks corresponding to the circular convolution operation with
the PSF gk,p[m,n]. Vectors tk and xp correspond to lexico-
graphically ordered versions of the observation, tk[m,n], and
spectral image, xp[m,n], respectively. By combining all the
observation vectors into a single vector, t, and all the image
vectors into the vector x, we obtain

t = Hx, (7)

H =

⎡
⎢⎣
H1,1 . . . H1,P

...
...

HK,1 . . . HK,P

⎤
⎥⎦ , (8)

where t = [tT1 | . . . |tTK ]T , x = [xT
1 | . . . |xT

p ]
T , and H is a

KN2 × PN2 matrix. The final observation model can be ex-
pressed with noise as follows:

y = t+w = Hx+w (9)

where w = [wT
1 | . . . |wT

K ]T is the additive noise vector. Here,
white Gaussian noise is assumed, where (wk)i ∼ N(0, σ2

k) is
uncorrelated over different pixels i and measurements k, with
σk representing the noise standard deviation for the kth mea-
surement. This noise assumption is generally valid for practical
multi-spectral imaging scenarios of interest.

IV. INVERSE PROBLEM

In the inverse problem, the goal is to recover the unknown
spectral images, x, from the measurements, y, obtained with
the proposed spectral imaging system. This inverse problem can
be considered as a multi-frame deconvolution problem where the
measurements are in the form of superimposed blurred images.
That is, each measurement is a superposition of focused or defo-
cused versions of all spectral images. This problem is inherently
ill-posed; as the PSFs, gk,p[m,n], of different wavelengths, p,
and measurements, k, become more similar (for example, when

the difference between different wavelengths or measurement
distances decreases), the conditioning of the problem gets worse
due to increased dependency of the columns or rows of H,
respectively.

There are various approaches for solving ill-posed linear
inverse problems. A systematic approach to regularization uses
prior knowledge about the unknown solution and leads to the
minimization of an appropriately formulated cost function [62],
[63]. The prior information can be introduced in a deterministic
or a statistical setting, with the latter related to the Bayes frame-
work [64]. A general formulation of the inverse problem can be
expressed as

min
x

||y −Hx||22 + λΦ(Px). (10)

where the first term measures data fidelity, and the second
term, Φ(Px), controls how well the solution matches the prior
knowledge, with the parameter λ trading off between these two
terms. Here P is a matrix representing an analysis operator.

Equivalently, we can reformulate this problem as a con-
strained problem:

min
x

Φ(Px) subject to ||y −Hx||2 ≤ ε, (11)

where ε ≥ 0 is a parameter that depends on noise level. Note
that if the problem in Eq. (11) is feasible for some ε ≥ 0, then
it is equivalent to Eq. (10) for some λ ≥ 0. The formulation
in Eq. (11) has advantage over Eq. (10) due to the fact that
the parameter ε is directly proportional to the noise standard
deviation, so it is easier to choose than the parameter λ [65].

There are popular and powerful choices for the regularizer
Φ(.) [7], [8], [65], [66]. Because we want our approach to be
applicable for scenes that can possibly lack spectral correlation,
we exploit 2D priors for each spectral image (rather than a
3D prior for the entire spectral cube). Among 2D analytical
priors, total-variation (isotropic or anisotropic) has significant
popularity as it provides superior results for images with signifi-
cant structure or piecewise-constant characteristics [63]. As the
analytical priors have recently been shown to be outperformed
by deep priors [6]–[8], there is also significant interest in learning
the prior through a deep network that is trained offline or end-
to-end with an unrolling approach. In this work, we develop two
reconstruction algorithms to solve the inverse problem, one with
analytical priors and another with deep priors, and comparatively
evaluate their performance.

V. IMAGE RECONSTRUCTION WITH ANALYTICAL PRIORS

In this work, we first develop a fast reconstruction algorithm
using the ADMM framework to solve the resulting optimiza-
tion problem in Eq. (11) with an analytical prior (particularly,
with an analysis prior). ADMM belongs to the family of aug-
mented Lagrangian methods [67] and is used in many signal
and image reconstruction problems [65], [68]. It provides a
divide-and-conquer approach by splitting the minimization steps
in an unconstrained multi-objective optimization problem. Its
convergence is guaranteed under mild conditions.

Following the ADMM framework [65], we first convert the
problem in Eq. (11) to an unconstrained problem by adding the
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constraint to the cost function as a penalty:

min
x

Φ(Px) + ι(||y−Hx||2≤ε)(x), (12)

where the indicator function ι(||y−Hx||2≤ε)(x) is defined as

ι(||y−Hx||2≤ε)(x) =

{
0, if ||y −Hx||2 ≤ ε

+∞, if ||y −Hx||2 > ε.

After variable-splitting, we arrive at the following problem:

minimize
x,u,v

Φ(u) + ι(||y−v||2≤ε)(v)

subject to u = Px, v = Hx
(13)

where u and v are the auxiliary variables in the ADMM
framework. After formulating the problem in (13) in augmented
Lagrangian form [65], minimization overx,u, andv is required.
We perform each minimization in an alternating fashion. For the
lth iteration, the required minimizations are

xl+1 = arg min
x

μ

2

∥∥∥∥
[
H
P

]
x−

[
vl

ul

]
−
[
f l

dl

]∥∥∥∥
2

2

(14)

ul+1 = arg min
u

Φ(u) + μ
2 ‖u− (Pxl+1 − dl)‖22 (15)

vl+1 = arg min
v

ι(||y−v||2≤ε)(v) +
μ
2 ‖v − (Hxl+1 − f l)‖22

(16)

with d and f denoting the dual variables in the ADMM frame-
work, and μ is a penalty parameter. We now explain how these
update steps, referred to as x-update, u-update, and v-update,
are performed.

In the x-update step, we face the least squares problem in
Eq. (14) with the following closed-form solution:

xl+1 = (I+HHH)−1(PH(ul + dl) +HH(vl + f l)). (17)

HereP is assumed to be a unitary transform resulting inPHP =
I. This solution can be efficiently obtained through computations
in the frequency domain by exploiting the diagonalizability of
the 2D circular convolution operations [69].

Note that each block of H is diagonalized by the discrete
Fourier transform (DFT) matrix because Hk,p is block circu-
lant with circular blocks (BCCB). HenceHk,p = FH

2DΛk,pF2D

where F2D is the unitary 2D DFT matrix and Λk,p is a diagonal
matrix whose diagonal consists of the 2D DFT of the PSF
gk,p[m,n], for k = 1, . . . ,K and p = 1, . . . , P . As a result,
the overall matrix H can be written as H = F̄HΛF̃ where
F̄ = IK ⊗ F2D and F̃ = IP ⊗ F2D with ⊗ denoting the Kro-
necker product and In denoting the identity matrix of sizen× n.
Here Λ is a matrix of K × P blocks with each block given by
Λk,p. By inserting this expression ofH in Eq. (17), the following
form can be obtained for the efficient computation of the image
update step:

xl+1 = F̃H(I+ΛHΛ)−1(F̃PH(ul + dl) +ΛHF̄(vl + f l)).
(18)

To compute the solution in Eq. (18), we do not need to
form huge matrices, which provides significant savings for
memory and computation time. In fact, multiplication by F̃
or F̃H corresponds to taking the DFT or inverse DFT of all

2D spectral bands for p = 1, . . . , P . Similarly, multiplication
by F̄ corresponds to taking the DFT of the 2D measure-
ment signals for k = 1, . . . ,K. For example, F̄(vl + f l) =
[(F2D(vl

1 + f l1))
T | . . . |(F2D(vl

K + f lK))T ]T , where each term
can be computed via the 2D FFT. Moreover, because Λ is a
block matrix consisting of diagonal matrices, multiplication by
ΛH corresponds to element-wise 2D multiplication with the
conjugated DFTs of the underlying PSFs and then summation.
Furthermore, for a unitaryP, multiplication byPH corresponds
to taking the inverse transform. Note that when the image data is
correlated in all directions, this can be chosen as a 3D transform;
otherwise, it can be a 2D transform applied on each spectral band
separately.

Lastly, the inverse of Σ � (I+ΛHΛ) needs to be computed
only once, and hence does not affect the computational cost of
the iterations. Nevertheless, it is possible to reduce the required
time and memory for this pre-computation through a recursive
block matrix inversion approach [70]. Note that Σ is a block
matrix of P × P blocks, where each block is a diagonal matrix
given by Σi,j =

∑K
k=1 Λ

H
k,iΛk,j + δi,jI with δi,j denoting the

Kronecker delta function and i, j = 1, . . . , P . Hence, for P = 2,
the inverse can be computed as[

Σ1,1 Σ1,2

Σ2,1 Σ2,2

]−1

=

[
C Σ−1

1,1Σ1,2K

KΣ2,1Σ
−1
1,1 −K

]
(19)

where K = −(Σ2,2 −Σ2,1Σ
−1
1,1Σ1,2)

−1 and C = Σ−1
1,1 −

Σ−1
1,1Σ1,2KΣ2,1Σ

−1
1,1. For P > 2 case, the overall matrix Σ

is partitioned into 2× 2 blocks and each block is inverted
recursively using Eq. (19). Because all the matrices involved
in these computations are diagonal, computing the inverse of Σ
requires element-wise multiplication and division operations.

For the u-update step, the problem in Eq. (15) needs to be
solved, which corresponds to a denoising problem of the form:

Ψf (z) = arg min
u

f(u) + μ
2 ‖u− z‖22. (20)

Here f is a regularization functional and z is a noisy observation
for u. The solution is given by the Moreau proximal mapping
of the regularization functional f/μ evaluated at z. Hence, the
solution of Eq. (15) is, by definition, the Moreau proximal
mapping of Φ(.)/μ evaluated at Pxl+1 − dl. We denote this
proximal mapping as ΨΦ/μ(Pxl+1 − dl):

ul+1 = ΨΦ/μ(Pxl+1 − dl). (21)

There are efficient computations of ΨΦ(Pxl+1 − dl) for the
different choices of the functional Φ(.). For example, if �1-
norm is used, i.e. Φ(Px) = ‖Px‖1, then ΨΦ/μ(Pxl+1 − dl) is
simply soft-thresholding, i.e. soft(Pxl+1 − dl, 1/μ) with 1/μ
denoting the threshold. Here, multiplication by P corresponds
to either a single 3D transform or multiple 2D transforms along
each spectral band. The soft-thresholding operation, soft(n, τ),
is component-wise computed as ni → sign(ni)max(|ni| −
τ, 0) for each voxel i, with sign(ni) taking value 1 if ni > 0
and −1 otherwise [65]. If Φ(.) is chosen as the 2D isotropic TV
operator applied on each spectral band, P becomes an identity
matrix, and the resulting proximal mapping, ΨTV(x

l+1 − dl),
has an efficient decoupled calculation for each spectral band
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TABLE I
IMAGE RECONSTRUCTION ALGORITHM WITH ANALYTICAL PRIOR

using Chambolle’s algorithm [65], [71]. Specifically, we com-
pute the proximal mapping for each band of xl+1 − dl using
Chambolle’s algorithm and then concatenate the updated bands
along the spectral dimension.

For the v-update step given in Eq. (16), similar
to the u-update, we have the proximal mapping of
ι(||y−v||2≤ε)/μ(.) evaluated at Hxl+1 − f l, which we denote as
Ψι(||y−v||2≤ε)/μ

(Hxl+1 − f l). Calculation of this proximal map-

ping requires a projection of s � (Hxl+1 − f l) onto ε-radius
ball centered at y. The solution is given [65] by

Ψι(||y−v||2≤ε)
(s) =

{
y + ε s−y

‖s−y‖2 , if ‖s− y‖2 > ε

s, if ‖s− y‖2 ≤ ε.
(22)

Finally, ADMM dual variables, d and f , are updated as

dl+1 = dl − (Pxl+1 − ul+1), (23)

f l+1 = f l − (Hxl+1 − vl+1). (24)

The overall algorithm is summarized in Table I. In the numer-
ical results, we choose Φ(.) as the 2D isotropic TV operator and
Step 4 is solved efficiently using Chambolle’s algorithm [71] for
each spectral band, as explained before.

A. Computational Complexity

The computational complexity of the algorithm is dominated
by thex-update, given in Step 3 in Table I. This requires 2P FFT
and P inverse FFT computations. Thus, its computational com-
plexity is O(PN2 log(N)) where N2 is the size of each spectral
image and P is the number of spectral bands. Calculation of the
proximal mapping in Step 4 and ADMM dual variable update
in Step 6 have O(N2) complexity if P is a diagonal matrix, or
O(PN2 log(N)) if P has a fast implementation such as with
FFT. Steps 5 and 7 require multiplication with H, which are
computed using FFT with O(PN2 log(N)) complexity. Thus,
the overall complexity of the algorithm is O(PN2 log(N))
as determined by the complexity of the computation of the
forward operator and its adjoint. It is also worth noting that the
complexity of the recursive inversion in Eq. (19) is O(P 3 N2).
Since it is pre-calculated once, it does not affect the algorithm’s
overall complexity.

VI. LEARNED RECONSTRUCTION WITH DEEP PRIORS

We also develop a model-based learned reconstruction
method with deep priors motivated by the idea presented in [7].
Model-based learned reconstruction methods can simultane-
ously incorporate physics-based forward model and the data,
and have been successfully applied to various inverse problems
in imaging [6]–[8], [35].

Our approach learns a 2D prior through a deep network that
is end-to-end trained through unrolling. For this, we apply half-
quadratic splitting to Eq. (10) with P = I, resulting in

min
x,z

||y −Hx||22 + λΦ(z) + ν||x− z||22. (25)

Here ν is a learned penalty parameter. This problem can be
alternatingly solved as follows:

zl = D(xl), (26a)

xl+1 = arg min
x

||y −Hx||22 + ν||x− zl||22, (26b)

These can be regarded as denoising and data fidelity updates,
respectively. Here D(x) is the denoised and artifact free version
of x that is obtained by passing x through a convolutional neural
network (CNN).

For the data-fidelity update, the least-squares problem in Eq.
(26b) can be solved in closed-form as follows:

xl+1 = (νI+HHH)−1(HHy + νzl). (27)

This solution can be efficiently obtained through computations
in the frequency domain by exploiting the diagonalizability of
the convolution operations involved. Remember that H can be
written asH = F̄HΛF̃. By inserting this expression in Eq. (27),
we obtain the following form for the efficient data fidelity update
step:

xl+1 = F̃H(νI+ΛHΛ)−1(ΛHF̄y + νF̃zl). (28)

Here, multiplication by F̃ or F̃H corresponds to taking the
FFT or inverse FFT of all 2D spectral bands for p = 1, . . . , P .
Similarly, multiplication by F̄ corresponds to taking the FFT of
the 2D measurements for k = 1, . . . ,K. Moreover, because Λ
is a block matrix consisting of diagonal matrices, multiplication
by ΛH corresponds to element-wise 2D multiplication with the
conjugated FFTs of the PSFs and then summation. The inverse
of νI+ΛHΛ can be computed through a recursive block matrix
inversion approach [70], as before.

For the denoising update in Eq. (26a), the CNN architecture
proposed in [7] is used. This CNN consists of N layers, with
each layer having 64 filters of size 3× 3. First N − 1 layer
has convolution, batch normalization, and non-linear activation
function ReLU units. The last layer, i.e., N th layer, does not
have ReLU so that the negative part of the learned noise is
not truncated. Residual learning strategy is used to speed up
the learning. After fixing the number of iterations to L for the
alternating updates, the steps in Eq. (26a) and (26b) can be
unrolled to an end-to-end trainable network as shown in Fig. 2.
Sharing weights are used between different iterations to decrease
the number of trainable parameters. After training the network,
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Fig. 2. Model-based learned reconstruction framework. (a) The iterative algo-
rithm described by (26a) and (26b), (b) the resulting architecture after unrolling.

the images are reconstructed by simply feeding the network with
the available measurements.

VII. NUMERICAL RESULTS

In this section, we demonstrate the high spatial and spectral
resolutions enabled by the developed multi-spectral imaging
technique in solar imaging [2]. For this, we consider three nearby
solar emission lines in the EUV regime, with central wavelengths
of λ1 = 33.28 nm, λ2 = 33.42 nm and λ3 = 33.54 nm (i.e.,
P = 3) [72]. Our goal is to obtain the spectral images for these
three nearby emission lines with diffraction-limited spatial reso-
lution. Such high spatial and spectral resolutions are not possible
to achieve with the conventional spectral imagers involving
wavelength filters [1], [2], [4], [5]. Obtaining these spectral
images will provide information about the important physical
parameters of the Sun’s extended atmosphere, and hence will en-
able the investigation of the dynamic plasma behavior [72], [73].

For the diffractive lens, a sample photon sieve (PS) design
developed in [2] for the considered application is used, where
the outer diameter is chosen as D = 25 mm, and the diam-
eter of the smallest hole as Δ = 5μm. The resulting photon
sieve has first-order focal lengths of f1 = 3.756 m, f2 = 3.740
m, and f3 = 3.727 m at the corresponding wavelengths (i.e.
f = DΔ/λ) [2]. As determined by the smallest hole diameter
Δ, the resulting (Abbe’s) diffraction-limited spatial resolution
is 5μm [17]. The detector pixel size is chosen as 2.5μm to
match the diffraction-limited resolution with two pixels on the
detector (i.e. the Nyquist rate sampling). Moreover, the expected
spectral resolution is 4Δλ/D ≈ 0.03 nm near a wavelength of
33 nm, as given by the spectral bandwidth of the diffractive
lens [17][Chap.9]. This bandwidth is slightly larger than the
typical width of the considered emission lines and hence the
entire spectral line will be in good focus at each focal plane [2].
Moreover, the distance between the wavelength sources is∼ 0.1
nm, which is larger than the spectral resolution supported by
the system. Note that the spatial and spectral resolutions of the
system can be increased independently of each other, as the
former is determined by the minimum hole diameter Δ while
the latter is by 4Δλ/D.

For the imaging system, two different measurement settings
are considered. In the moving detector (MD) case, the system
measures the intensities at the three focal planes, f1, f2 and f3

(i.e., K = 3). Hence at the first focal plane, the measurement
contains a focused image of the first source and the defocused
images of the second and third sources, and vice versa at the other
focal planes. Note that the spectral bandwidth of the PS design
is equal to 4Δλ/D ≈ 0.03 nm near a wavelength of 33 nm,
which is slightly larger than the typical width of an emission
line in this application. Hence, in each measurement, one of the
spectral (emission) lines will be entirely in focus, while the other
two will be defocused.

Alternatively, in the fixed detector (FD) case, we fix the mea-
surement plane at the distance f2 and obtain the measurements
by changing the PS design at each shot. For each measurement,
same design parameters are used as before by only changing the
diameter D to focus λ1 or λ3 onto the distance f2. Because
the measurement plane is fixed to f2 = 3.740 m, the outer
diameter is decreased by 104.6 μm for λ1 and is increased
by 89.9 μm for λ3. These modifications on the PS design are
well within the limits of modern lithography techniques [19].
FD measurement setting obtains similar measurements with the
MD setting without moving the detector in the axial direction,
but at the expense of additional optical components (SLM or
beamsplitters), larger detector array, and/or lower SNR due to
the reduced diffraction efficiency of the compound lens designs.
Replacing the diffractive lens may also be considered for the
FD setting using a mechanical component, but this may be more
challenging in practice.

A. Performance Analysis

We present numerical simulations to demonstrate the perfor-
mance of the developed imaging technique and algorithms under
different imaging scenarios with MD and FD settings. For this,
solar EUV images of size 256× 256 pixels are used as the input
images. However, because the spatial resolution of the existing
solar imagers are worse than the diffraction-limited resolution
enabled by the proposed technique, realistic (high-resolution)
solar images are not available for the simulations. Here we use
these images as if they were images of some other sun-like
object, and demonstrate the diffraction-limited resolution for
this. Hence this experiment will illustrate that objects with
similar characteristics can be observed with diffraction-limited
high spatial resolution.

Using the forward model in Eq. (9), we first simulate the
measurements y at the signal-to-noise ratio (SNR) of 25 dB
(where SNR is defined as 10 log10

σ2
t

σ2
w

). Fig. 3 illustrates the
simulated measurements at the three focal planes together with
the contribution from each spectral source. To also demonstrate
the wavelength-dependent behavior of the system, the acting
PSFs of the diffractive lens at the three source wavelengths are
illustrated in Fig. 3(e), (j), (o) when the measurement is taken
at the 1st focal plane. These PSFs illustrate that each spectral
source is exposed to a different amount of blur. As clearly
seen from the shown contributions and PSFs, the first source
is focused and the other two sources are defocused when the
measurement is taken at the 1st focal plane. We have similar
behavior for the measurements at the 2nd and 3 rd focal planes.
Hence the measurements involve not only the superposition of

Authorized licensed use limited to: University of Illinois. Downloaded on June 21,2021 at 01:48:38 UTC from IEEE Xplore.  Restrictions apply. 



498 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 3. Measured intensities for SNR = 25 dB at the first focal plane (a), at the second focal plane (f), and at the third focal plane (k); the contribution of the 1st,
2nd, and 3 rd sources to the measurement at the first focal plane (b)-(d), at the second focal plane (g)-(i), at the third focal plane (l)-(n); sampled and zoomed PSFs
of the system at the first focal plane for the 1st, 2nd, and 3 rd sources, (e), (j), and (o), respectively.

all spectral images but also substantial and varying amount of
blur and noise.

We obtain the reconstructions using the algorithm in Table I
with isotropic TV prior and the learned reconstruction method
with deep prior. For TV prior, one reconstruction takes a couple
of minutes while for learned reconstruction it takes a couple of
seconds on a computer with 32 GB of RAM, Intel i 9− 9900 K
3.60 GHz CPU, and Nvidia GeForce RTX 2080 Ti GPU.

For the model-based learned reconstruction method, we train
our model using solar EUV images from the NASA SDO
database [4]. We use SDO images from the 1st, 5th, 10th, 15th,
25th, and 30th days of every month for years between 2012 and
2020, to have training data diversity. After removing the images
with artifacts (such as out-of-focus), we randomly pick 6 images
from each day. These images are then converted to grayscale,
resized to 256× 256, and normalized between [0,1]. Finally,
we combine randomly chosen three images to form 725 training
datasets (for P = 3 case). In a similar way, we have generated
separate 105 test datasets.

We train four different models for signal-to-noise ratios (SNR)
of 15 dB, 20 dB, 25 dB, and 30 dB. For this, we simulate
the measurements y at these SNRs using the forward model
in Eq. (9). We then train our models by minimizing the l2
loss between the ground truth and reconstructed images by
using Adam solver [74]. We initialize the model parameters
with Xavier initialization. We choose N = 5, L = 20, and the
learning rate as 0.001 after some empirical efforts. Codes are
implemented with Tensorflow on Nvidia GeForce RTX 2080 Ti
GPU. Training takes approximately 30 hours.

To illustrate the performance of the developed imaging modal-
ity and the two reconstruction methods, we use the randomly
constructed 105 test datasets described above. For each dataset,
we perform 5 Monte Carlo runs and compute the average PSNR

and SSIM values between the diffraction-limited ground truth
images and the reconstructed spectral images using TV and
learned reconstruction methods. Note that here the comparison
is performed with the diffraction-limited versions of the original
images to check the imaging system’s capability for achieving
diffraction-limited spatial resolution. Table II presents the re-
sulting PSNR and SSIM values. The first row demonstrates the
average performance over the entire test dataset as SNR changes
from 15 dB to 30 dB. To illustrate the performance at different
levels of difficulty, 5 spectral datasets are also selected from
this large test dataset and their PSNR/SSIM values are also
separately given. Numbered as 1 to 5, these selected datasets
have increasing levels of abrupt changes along both spatial
and spectral dimensions, corresponding to observations with
different sizes of active and quiet regions on the sun.

As seen from Table II, the learned reconstruction method pro-
vides the best performance in this large dataset with the average
PSNR changing from 29.7 dB to 35.8 dB and SSIM changing
from 0.79 to 0.92 as SNR increases from 15 to 30 dB. The
obtained PSNR and SSIM values between the reconstructions
and diffraction-limited original images illustrate the imaging
system’s diffraction-limited spatial resolution capability over a
wide range of SNRs. As expected, the learned reconstruction
method provides significantly better performance than the TV
reconstruction on the average both in terms of PSNR and SSIM.
This illustrates the better generalization capability of the learned
reconstruction method for a particular application. Moreover, as
expected, the performance of the TV reconstruction decreases
with the increased structure in the images (i.e. from dataset
1 to dataset 5). The performance improvement achieved with
the learned reconstruction method is more significant for the
datasets with significant structure (for example, for datasets 4
and 5). Note that for the case that all three spectral images

Authorized licensed use limited to: University of Illinois. Downloaded on June 21,2021 at 01:48:38 UTC from IEEE Xplore.  Restrictions apply. 



S. OKTEM et al.: HIGH-RESOLUTION MULTI-SPECTRAL IMAGING WITH DIFFRACTIVE LENSES AND LEARNED RECONSTRUCTION 499

TABLE II
PSNR (DB) AND SSIM VALUES FOR TV AND LEARNED RECONSTRUCTION METHODS AT DIFFERENT INPUT SNRS AND FOR DIFFERENT SPECTRAL DATASETS

Fig. 4. Diffraction-limited original images (top), reconstructed spectral images with isotropic TV regularization (middle), and reconstructed spectral images
with learned-reconstruction method (bottom) for dataset 2 at 25 dB SNR. (Courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.) For each case,
false-color representations are also provided on the right.

are mostly smooth and have few edges (such as dataset 1) TV
reconstruction performs better. This may also result from using
limited number of such examples in the training phase of the
learning-based method.

To visually evaluate the results for images with different
amount of structure, we provide the reconstructed spectral im-
ages for the datasets 2 and 5 in Fig. 4 and 5, respectively.
For comparison, the diffraction-limited versions of the original
images are also given. Here SNR is taken as 25 dB. These
also illustrate that the developed imaging system provides near
diffraction-limited resolution. Visual inspection shows that im-
portant characteristic features, such as solar flares, are success-
fully recovered. The learned reconstruction method is more
successful in this respect than the TV reconstruction, but the TV
reconstruction performs closely to the learned reconstruction for
the dataset 2. However, even for these mostly smooth spectral
images, TV reconstruction introduces some blur for the rapidly
varying spatial structures.

TABLE III
PSNR (DB) AND SSIM VALUES FOR DIFFERENT INPUT SNRS WHEN MOVING

DETECTOR (MD) AND FIXED DETECTOR (FD) MEASUREMENT SETTINGS ARE

USED. SNR AND PSNR VALUES ARE REPORTED IN DECIBEL (DB)

Another important observation is given in Table III, which
illustrates that MD and FD settings provide similar reconstruc-
tion quality. Here the solar images in dataset 2 with a larger
size of 512× 512 are used. As seen, for a given input SNR
level, maximum differences in the reconstructions for the two
measurement settings are less than 0.07 dB in PSNR and 0.01 in
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Fig. 5. Diffraction-limited original images (top), reconstructed spectral images with isotropic TV regularization (middle), and reconstructed spectral images
with learned-reconstruction method (bottom) for dataset 5 at 25 dB SNR. (Courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.) For each case,
false-color representations are also provided on the right.

SSIM. This suggests that one setting can be chosen over the other
based on the design requirements of a particular application.

In addition to the measurement noise, other practical chal-
lenges should also be considered in real implementation such as
the dynamic range of the detector, calibration of the system, or
model mismatch. Dynamic range of the chosen monochromatic
detector will actually contribute to the noise level as another
source of error, but this error can be kept at a desired level to
achieve a particular SNR. Likewise, the calibration is also an
easy task as the imaging system is shift-invariant (unlike many
of the earlier spectral imaging systems). In particular, measuring
the PSFs for different wavelengths is sufficient for calibration.
Hence there is no need to measure the system response for each
voxel in the spectral data cube.

Model mismatch can be, however, more critical in practice.
For example, for the moving detector (MD) case, there can be
misplacement errors due to the mechanically moving compo-
nent, resulting in model errors for the assumed PSFs of different
spectral bands. Other non-ideal factors during operation (such
as in-flight distortions) can also cause similar widening in the
PSFs. Hence errors in the assumed PSFs will constitute the main
sources of model mismatch. To illustrate the effect of such model
errors on the performance, we have performed a sensitivity anal-
ysis with varying misplacement errors for the MD setting. Note
that in the considered MD setting, the moving detector takes
measurements from the distances varying between dk = 3.727
m (f3) to 3.756 m (f1), covering a range of 29 mm. In the sensi-
tivity analysis, maximum placement error, Δdmax, is considered

Fig. 6. The average PSNR (a) and SSIM (b) values for the reconstructed
spectral images as a function of maximum placement error Δdmax in the
measurement planes.

between 0 and 3 mm. Then the error in the measurement distance
dk, denoted asΔd, is modeled as a uniformly distributed random
variable between [−Δdmax,Δdmax] for each measurement taken.
After performing a Monte-Carlo simulation at 25 dB SNR, the
average PSNR and SSIM values for the reconstructed spectral
images are obtained in the presence of these measurement errors.
The results are given in Fig. 6 as a function of Δdmax. As seen
from this figure, the random misplacement errors up to 3 mm
degrades the performance gracefully; hence the reconstructions
are mostly robust to such errors. But for larger misplacement
errors, it could be better to modify the reconstruction methods
to take into account such model mismatch errors (for example,
through semi-blind multi-channel deconvolution).
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TABLE IV
PSNR (DB) AND SSIM VALUES FOR DIFFERENT NUMBER OF SOURCES (P)

AND MEASUREMENTS (K) FOR SNR = 25 DB

Another type of model error can arise when the spectral
sampling interval is not chosen to be smaller than the spectral
bandwidth of the designed diffractive lens. To illustrate this, we
have considered Eq. (5) with a continuous spectrum consisting of
three Gaussian spectral lines, each with a width slightly larger
than the spectral bandwidth. Although the reconstruction was
still successful for the three spectral images reconstructed at
the central wavelengths, the performance was slightly decreased
(36.57 dB PSNR and 0.92 SSIM for dataset 2 with 25 dB SNR).
To avoid such issues, one can consider to revise the design of
the diffractive lens to decrease its spectral bandwidth. Other
options are to use finer sampling for the spectral discretization
(i.e. more terms in Eq. (5)) and take more measurements, or
train the network with the measurements obtained through a
more realistic simulation.

Lastly, we demonstrate the system performance for increased
number of spectral bands, P . For this, we also perform simu-
lations for P = 2 and P = 4 cases by taking same number of
measurements as the number of spectral bands (i.e. K = P ). In
the first case, we consider two spectral bands at λ2 = 33.42 nm,
λ3 = 33.54 nm with the measurements obtained at f2 and f3
for the MD setting. In the latter case, we consider four spectral
bands, namely λ0 = 33.16 nm, λ1 = 33.28 nm, λ2 = 33.42
nm, λ3 = 33.54 nm, and obtain four measurements at the cor-
responding focal planes, f0, f1, f2, and f3. Table IV shows
PSNR and SSIM values for these cases together withP = 3 case
described before. The results demonstrate that the reconstruction
quality gets worse with increasing P . This is expected since the
ill-posedness of the inverse problem increases with the number
of spectral bands, P . Nevertheless, the system provides high
quality reconstructions even for P = 4 case, with a PSNR of
31.91 dB and an SSIM of 0.91 at 25 dB input SNR.

B. Resolution Analysis

An important advantage of the developed technique is the
unprecedented spectral resolution it enables. The technique of-
fers the capability of separating close-by spectral components
that would not otherwise be possible using conventional spectral
imagers employing wavelength filters. In the experiments, the
sources of interest have wavelengths 33.28 nm, 33.42 nm, and
33.54 nm; hence the developed spectral imager can achieve a
spectral resolution of approximately 0.1 nm, which is nearly
0.3% of the central wavelengths. On the other hand, the state-
of-the-art EUV wavelength filters at best provide a spectral
resolution of 10% of the central wavelength [4]; hence such
a high spectral resolution cannot be achieved with the con-
ventional filter-based imagers. This becomes critical especially

when more than one spectral line lie in this 10% range as in
the considered EUV spectral imaging application because, using
feasible wavelength filters, it is not possible to separately resolve
each line.

The obtained PSNR and SSIM values between the
reconstructions and diffraction-limited original images also
illustrate that the technique offers diffraction-limited high
spatial resolution as enabled by the diffractive lenses. Here we
further analyze the spatial resolution of the system to quantify
its diffraction-limited imaging performance better. For this
purpose, we first perform a conditioning-based analysis for
the resolution. We also reconstruct point targets separated
by various distances to verify that the resolvability of the
point targets in these results agree with the diffraction-limited
resolution. Each of these analysis provides additional support
for the imaging system’s diffraction-limited spatial resolution
capability. Note that existing EUV spectral imagers cannot
achieve diffraction-limited resolution due to surface roughness
and figure errors of the used reflective optics [2], [4].

In the conditioning-based resolution analysis, we investigate
the conditioning of the forward model in Eq. (9) when the
scene consists of point targets. For this, we consider different
number of point sources with varying distances between them.
If we assume that the locations of the point targets are known,
the reconstruction quality will only depend on the columns of
H associated with the locations of the point targets. Thus, by
examining the conditioning of the relevant submatrices of H,
we will gain an understanding of the resolving capability of the
system [75]. In this analysis, we suppose an oracle tells us the
exact locations of the point sources in the 3D spectral data cube,
which effectively corresponds to knowing the support of the cube
a priori. Then, the reconstruction task is to determine the values
of these nonzero components. If this problem cannot be solved,
the original problem of finding both the locations and values of
the point targets will also fail. As a result, the conditioning of
the resulting submatrices of H provides information about the
best possible capability of the system for resolving point targets.

Since this is not a conventional camera but a computational
imaging system, two-point resolution may not reveal the system
performance for more complex scenes. For this reason, we
also consider a higher number of point targets than two in our
analysis. In particular, we consider 2, 4, 16, 32, and 64 point
sources placed in a square grid. We choose the pixel size on the
detector as 1 μm for fine analysis of the resolution. We change
the spacing between the point sources from 1 μm to 20 μm
with 1 μm steps. Then, we calculate the conditioning of the
submatrix of H that contains the columns of H associated with
the locations of these point sources. The results are plotted in
Fig. 7 when all point sources are placed in the first, second or
third spectral bands for P = 3 and MD setting case.

As seen, conditioning is similar for each spectral band and gets
worse as the number of point sources increases, or the separation
distance between them decreases, as expected. An important
observation is the rapid decrease in the condition number around
5 μm separation distance, which indeed corresponds to the the-
oretical diffraction-limited resolution of the imaging system for
the monochromatic case. As the distance gets larger than 5 μm,
the change in conditioning becomes small. This observation
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Fig. 7. Conditioning of the relevant submatrices of H for different number
of point sources and separation distances. Conditioning results when the point
sources are placed at (a) the first, (b) the second, and (c) the third spectral bands.

agrees with the expected diffraction-limited resolution of the
system.

In the reconstruction-based resolution analysis, we simulta-
neously place 2, 4, and 16 point sources of size 1 μm in the first,
second, and third spectral bands, respectively. The separation
distance between point sources is chosen as the expected spatial
resolution of 5 μm. This data cube is reconstructed from the
measurements generated using the forward model in Eq. (9)
with 25 dB SNR. Fig. 8 shows the reconstructed and diffraction-
limited images for each band, together with the ground truth and
measurements. As seen, the imaging system can successfully
resolve point sources with 5 μm separation. In fact, the recon-
structed images are even sharper than their diffraction-limited
versions at this SNR level. This observation is certainly related
to our regularization choice (isotropic TV) as well.

By repeating this analysis for different SNRs and separation
distances, we also observe that point sources of 5 μm separation
can be resolved for SNRs as low as 3 dB. This suggests that
the expected theoretical resolution can be achieved even for
highly noisy cases. Moreover, resolving point sources with 4μm
spacing is also possible for SNRs as low as 5 dB. That is, the
imaging system can even provide spatial resolution beyond the
diffraction limit for a wide range of SNR values. However,
the system can not resolve point sources even at high SNR
levels when the separation distance becomes 3 μm. That is,
the system fails to resolve point sources shortly after 5 μm
separation distance, as the conditioning starts to degrade sig-
nificantly. Hence, the reconstruction-based resolution analysis
is in agreement with the conditioning-based analysis and also
supports the high spatial resolution enabled by the developed
multi-spectral imaging technique.

Fig. 8. Demonstration of 5µm resolution using point targets for SNR=25 dB.
(a)-(c) Noisy measurements with 25 dB SNR at the focal planes f1, f2, and f3,
(d)-(f) reconstructed images from the noisy measurements, (g)-(i) diffraction-
limited images, (j)-(l) ground truth images.

VIII. CONCLUSION

In this paper, we have developed a novel multi-spectral imag-
ing modality that enables higher spatial and spectral resolutions
than the conventional scanning-based techniques. Our approach
exploited the use of a diffractive lens and powerful image re-
construction to overcome the resolution limits of conventional
techniques. The proposed lightweight and low-cost imaging
system enables not only unprecedented spectral resolution but
also diffraction-limited high spatial resolution for a wide spectral
range including UV and x-rays. Spectral imaging with these
capabilities has profound impact for a variety of applications.
Moreover, the developed learning-based method is capable of
adapting the reconstruction (i.e. deep prior) to a particular ap-
plication. To illustrate these capabilities, the developed com-
putational imaging technique was applied to a potential solar
imaging application in the EUV regime. The presented results
for EUV spectral imaging illustrate the diffraction-limited spa-
tial resolution and unprecedented spectral resolution enabled
with this technique.

The developed imaging technique opens up new possibilities
for high-resolution multi-spectral imaging with low-cost and
simpler designs. One important application area is the observa-
tion of the spectra of space plasmas with new capabilities, as
demonstrated in the paper. Lightweight and low-cost diffractive
lenses provide diffraction-limited high spatial resolution for a
wide spectral range including UV and x-rays. This is not possible
with the imaging/collimating optics (such as mirrors and refrac-
tive lenses) prevalently used in the other spectral imaging tech-
niques. Another important advantage of the developed technique
is the unprecedented spectral resolution it enables. The technique
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provides the capability of resolving nearby spectral components
that would not otherwise be possible with the wavelength filters
used in conventional spectral imagers. For the considered EUV
application (which was the initial targeted domain), missions are
currently under development. The details of a mission concept
based on a distributed solar imager that exploits diffractive
lenses and two small satellites flying in formation can be found
elsewhere [30], [76].

Our technique is designed to provide high resolution for
general scenes including those that lack strong spectral cor-
relation (i.e. has frequent peaks and fast transitions) or have
spectra consisting of discrete spectral lines. Spectral sensing
of such scenes are of interest in various applications including
astrophysical imaging of space plasmas, atmospheric physics,
and remote sensing [15], [16]. Note that our approach will
naturally work better for spectrally correlated scenes (such as
those encountered in the visible regime) using 3D priors to
exploit spectral correlation. Sample results in visible regime can
be found elsewhere [55], [77].

Lastly we note that the performance of the developed tech-
nique can be further improved by taking more measurements
(such as at the intermediate planes) and optimizing the mea-
surement configuration or the diffractive lens design [78]. In the
presented results, a conventional photon sieve has been used,
but the performance may be improved with a diffractive lens
specifically designed for this imaging setting. The performance
of the learned reconstruction method can also be improved by
using different loss functions and priors.
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