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ABSTRACT

For linear space-invariant temporal systems, we provide a lower
bound on the penalty incurred by approximating system dynam-
ics in a Kalman filter by a random walk model, a common model
when dynamics are unknown. We then present a computationally
tractable algorithm for system identification of high-dimensional
linear space-invariant dynamical systems, whereby the circulant
structure of the state transition operator yields an estimate of the
governing dynamics from a small number of temporal steps. By
completing all operations in the frequency domain, we efficiently
provide an estimate of the system dynamics and the state of the
system. The estimation of system dynamics greatly improves the
state estimation over the random walk model, suggesting classical
estimators may remain applicable in modern imaging tasks.

Index Terms— Space-Invariant, Dynamical Systems, Model
Mismatch, System Identification, Sequential Estimation

1. INTRODUCTION

In a wide range of image and video processing applications where
frames are subject to temporal dynamics, recursive estimation has
been used extensively with varying degrees of success [1, 2, 3].
Kalman filters have found particular success in the area of super-
resolution (SR) video [4], due to the ease of explicitly modeling the
downsampling process [5]. Additionally, Kalman filters have shown
some success with estimating the optical flow used in other video
processing algorithms [6, 7]. Recently, frequency domain calcula-
tions have shown success in deblurring due to the computational effi-
ciency [8, 9]. As Kalman filters require a model of system dynamics,
in video processing, a “random walk” system model is often used for
state evolution when the true model is unknown [10, 11, 12], which
would imply that every pixel follows on its own random walk, with
no connection to its neighbors. Spatial information is typically in-
corporated separately [10, 13]. In such a model, each pixel changes
without “consulting” its neighbors, then updates based on the neigh-
bors within a single timestep; the model can be visualized as a 3D
rectangular lattice. While such a model may preserve the relevant
correlations, it is less physically motivated than the competing meth-
ods. In this paper, our spatiotemporal model has no direct connection
within a given timestep, and any correlations come indirectly from
other timesteps. In such a model, each adjacent pair of timesteps
form a bipartite probabilistic graphical model, conducive to classic
temporal methods.

As an example, in dynamic tomography, it has been shown that
in some cases, approximating complicated dynamics by a random
walk provides reasonable results, but there exists an unquantified
gap in performance [12]. Due to the joint wide sense stationarity
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(WSS) of spatial random fields in tomography given a linear space
invariant state transition operator, Kalman filter computations can be
sped up dramatically to allow tractable estimation [14].

In this paper, we provide a lower bound on the performance gap
between estimators using the correct linear system dynamics and the
random walk approximation. Furthermore, we provide a compu-
tationally tractable joint estimator of system dynamics and image
reconstruction. We show that by combining the frequency domain
version of the Kalman filter [14], from here on referred to as the
Kalman-Wiener Filter, with a new system identification method, we
produce joint estimates of the system dynamics and associated min-
imum mean squared error (MMSE) estimates of the video.

The rest of the paper is organized as follows. Section 2 defines
the signal model and section 3 provides an approximate lower bound
on the mean squared error of a mismatched Kalman filter. Section 4
provides an estimator of space-invariant system dynamics using the
observations directly. Section 5 provides numerical experiments of
video de-noising and de-blurring of a small diffusion process. Con-
cluding remarks are provided in section 6.

2. SIGNAL MODEL

The systems of interest in this work follow a standard linear state
space model:

Xi+1 = Fix; +u; (1
yi = Hix; + v (2)

where F; = F is a constant linear state transition operator for all
time indices ¢, resulting in time-invariant dynamics, and H; is a
linear measurement operator. u; and v; are sets of i.i.d centered
Gaussian random vectors with covariance matrices Q and R respec-
tively. Each vector in (1) and (2) are WSS spatial random fields as
described in dynamic tomography [14]. The inner product on the
associated Hilbert space is (x,y) = E [x"y], where E[X] denotes
the expected value of X. The norm induced by the inner product is
then ||x|| = \/E [|x|?]. Recall that the WSS constraint requires that
for a given timestep, E[x;(t)] = E[z;(s)] for all temporal indices 4
and spatial indices s, t. Finally, if we define the autocorrelation to
be Ry, 2, (s,t) = (zi(s),x:(t)), the WSS constraint requires that
Rz, 2, (s,t) = Ra, », (s — t,0) for all temporal indices, 4, and spa-
tial indices, s and t.

The Kalman filter is a classical method for providing estimates
of the state of a linear dynamical system (LDS). It is formulated with
two steps, a prediction step, and an update step, which take the forms

Xiji—1 = FiXi 1)1 (3)
il = X1 + Ki(ys — Hixgpi-1) “4)
ICIP 2020
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where %;; is the MMSE estimate of x; given {y; : 0 < ¢ < j}, and
K.; represents the model specific Kalman gain for timestep .

3. MISMATCH IN SPACE-INVARIANT MODELS

In this section, we derive a lower bound on the performance discrep-
ancy from model mismatch between the true system dynamics, and
the random walk approximation. We construct the bound by show-
ing that the error can be factored into a term identical to the ideal
Kalman filter, but with the wrong gain, and an additional discrep-
ancy term focused on the difference between the true state transition
matrix and the identity matrix representing a random walk.

We begin our derivation by bounding the error of a single step
of the mismatched Kalman filter. We then move to the steady state
case.

Under the true signal model, the error from a single timestep
given the previous state takes the form

eopt = K(yit1 — Hit1Fxi) — uip (5)
=K(Hit1Ui41 + Vit1) — Uit (6)

Under a mismatched state transition operator, F’, the error be-
comes

e=Kiii(yit1 — HimF'xi) —uin @)
= (K§+1(Hi+1ui+1 + Vig1) — ui+1)

, _ (3
+(I-Ki1Hip)Fx;
where F = F — F', L is the identity matrix, and K/ is a perturbed
version of the Kalman gain computed using the incorrect transition
matrix. Because the first term is simply the error from the Kalman
filter with a different gain term, we will give it a special notation

&i0=Ki (Hit1Wis1 + Vit1) — W1 9)

As x; is uncorrelated with future noise for all timesteps and the
noise is assumed to be centered, the mean squared error reduces to

mse = [[&ol|* + [|(I - Ki11Hip)Fxil|* (10)
> mseop + || (T — K1 Hip1)Fx || (11)

where (11) comes from the fact that the Kalman filter and associated
gain is optimal in the MSE sense, and thus, replacing K’ with K
reduces the norm. As a sanity check, it is easy to validate that if our
observations are noiseless, we return to the MMSE of 0.

While the single step Kalman mismatch error is useful for un-
derstanding the source and form of the error, the ultimate quantity of
interest is the steady state error. We anticipate some form of correla-
tion decay, where we describe our finite time Kalman mismatch error
as a transient error, and the asymptotic behavior to be steady state.
To this effect, we denote the Kalman filter state estimate at time 7 us-
ing the incorrect gain K’ to be &;‘i and the model mismatched state
estimate to be ’:‘ili- Finally, we denote the discrepancy between the
two estimates to be d; = X;j); — Xili-
Algebraically, it can be shown that, with dg = 0,

d; = (I- K/H;)(F%}_ ), , +F'di_1) (12)
By writing out the recursive relationship, we find that

i—1 /j<i—1
di —Z( 11 (I—K;Hi)F/> (I -K/H,FX);, (13

7=0 \k=i—1

where the product term for j = ¢ — 1 is equal to the identity and
the indices of the product increase from right to left. Note that this
discrepancy term takes the form that we expect, where the product
forms the correlation decay (assuming a stable system), and we have
the model mismatch from the single step version. Unfortunately,
unlike the single step version, the discrepancy is no longer uncorre-
lated with the true Kalman error. Beginning with e; = x; — 3:(2'\2' =
e; 0 + d;, we proceed to look at the error:

llei]|* = [leiol|* + [Idi||* + 2Re{(e; 0, di) } (14)
> mseop + ||di]]® + 2Re{(ei0,d:)} (15)
eap > ||di]|* + 2Ref(es0,di)} (16)

where e; o is the original form of the error from the Kalman filter,
but with the suboptimal gain from the incorrect system model, and
Coap = |eiH2 — mseop. Note that there exists a classical result for
[|ei,ol|?, despite our use of a potentially weak bound [15].

At this point, we start specializing this general form to the mis-
match from the random walk model described in the introduction.
We begin by looking at the error when H; = H and F’ = I, which
reduces the discrepancy term to

i—1 /j<i—1
d; = Z( II (I—K;H)) I-K/HF%;; A7)

7=0 \k=i—1

Combining the model with the definition in the Kalman filter,

K, =P, H(HP,;, ,H" +R)™' (18)
P =I-KH)P;;_1+Q (19)

Equations (18) and (19) fully define the evolution of the Kalman
gain. P;;_; is the computed covariance matrix of the prediction
error assuming the random walk model and given all y; for j < i—1.
Recalling our original model assumption that the noise is i.i.d. across
time, every term in the equations can be computed element-wise in
the frequency domain.

Using p* and k™ to represent a fixed point of the scalar iteration
for P and K respectively (representing a single frequency), r to be
the scalar version of R, ¢ to be the scalar version of Q, and h to
be the scalar version of H, we find the set of fixed points through
solving the equation

p* 2 | h|2
|hl?p* +r

The solution of which implies fixed points at

. /@ drg/[h?
p= 1EVE ! q/1h| 21

—14+,/1+ |,f|2q

Lt/ 1+ g

where the positive p™ is chosen due to the PSD requirement on the
matrix. By noting that (1 — k*h) € [0, 1), we see that a summation
of the power series of the term converges:

oo , 1+ 1+ 25
S -khy = [ — 23)

2

=q (20)

1—k'h= (22)

=0

For convenience, we denote the linear operator representing the ap-
propriate filtering applied by the result of the power series to be D.
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We are interested in the steady state error, and so we assume
k; = k™ for the purpose of the bound. The discrepancy for large
values of i becomes:

i—1

Z~Z(I—KH)1 P (24)

For sufficiently large ¢, such that the power summation for all
separations of X:;u are either sufficiently uncorrelated, or the sum-
mation can be approximated by our filter D:

i—1

Z(Dsz\wDsz jli— ]> (25)

7=0

Idill?
By using the transformation between estimate timesteps and re-
moving orthogonal terms, we can write:

(%Kil T = KHY %)
+ (Xl KHF X j)

Al s/
Xi—jli—j» Xili) =
(XiejlimjsXifi) (26)

i—1
~ ) |DFI-KH) %,

j=0

[|d. + (DF%},;, DFK'HF’x;)
27

We now set up an iteration for the cross terms between our gain-
perturbed estimate and the true state. If we define P; . = E[x});x x; ]

and P; = E[szi ]

Pi.=E[(I- KH)Fx;_1;_1(Fxi_1)"] (28)
+ K'HE[x;x, ] (29)
=(I-K'HFP,_, .F' +KHP; (30)

Continuing the steady state approximation, P; can be treated as
a constant input computed separately from the true system dynamics.
Continuing our theme of linear space invariance enabling a scalar it-
eration in the frequency domain, noting that x; = Z;‘:o Fi_jUj,
and that each u; is orthogonal to each other, each point in the fre-
quency domain can be computed as

pi=pu y_|f*¥ 31
Pu
SR 2

Substituting in (32), our cross term iteration in the frequency
domain then becomes

k' hp.,
L—I[f]?

pie=(1—Kh)|fI’pi-1.c +

K hp.
S AR - P

where equations (32) and (34) come from approximating the finite
sum as infinite to model steady state behavior.

Finally, we set up the iteration of the power spectral density of
the estimate itself, where P; = = E[x] Xils x 1]. First note the recursive
formula for the estimate:

(33)

(34)

K =(1-KHF% 1, +KHx +Kvi (39

From here we find a recursion for the covariance matrix. By
removing orthogonal terms, we set up the iteration:

P, =(I- K'H)FP, ,F'(I
+KP,K'"
+KHP,H'K'"
+2(I- K'H)FP; .F'

~-K'H)"

(36)

Converting to a scalar iteration as before

pi= |(1—Kh)f*pimr
+ K [*(po + |1|*pi) (37)
+2(1 = K'h)|f*pi.c

and doing one final steady state approximation, we find

~ K P o + [h?pi) + 200 — K'h)|f i

[0 RR)P 9
Now, plugging all of our intermediate results into (27):
l|d:||? ZTr( (I-K'HY F D DF(I-KH)P;
Jj=0 )

+F D'DFK'HF’P; .)

This term is the sum over all of the frequency components, and
the representation of a single element is:

i—1
de = |dPIFPD (0= KB)pi + K hfpie  (40)

~ 2712 f)’L klhpi,c
R e A =

Now that we have all of the intermediate results, the original
cross term is easier to derive.

<ei,0,d'> = <)2;‘ — Xi,di> (42)
Z Xiji — %, (I- K'H)'FL));) (43)
7=0
i—1 )

=) (-F'"x;,(I1-KH)"™ ]FXJ‘J>
7=0

+ (KHF x;, (I - K'H)'"/F%) ;)
+(I-KH)%),;, (I-KH) TF);)

(44)
Each element in the frequency domain takes the form
fpi (1—Kh)fpi.c
2 - : 4
<1—|1—k/h|2 -0k )

None of the operations break the conjugate symmetry, so (45)
doesn’t require any modification to take the real part in the spatial
domain. Thus, the performance gap is simply the sum of (45) and
(41) for each element in the frequency domain, and then summed
over the entire frequency domain.
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The bound can provide most insight by observing relative con-
tributions of terms. As an example, consider all (1 — k’h) under
large measurement noise to be approximately 1. For this reason,
we may want to consider the terms with a denominator of the form
1 — |1 — k’h|? to be more dominant in general. Such an approxima-
tion would produce an error at each frequency

(AP +2F Y
6g"‘"”(1—|1—k/h|2 b “e)

where

o |k/|2> (2|f|2k’h+\k/h|2) i
”’N(l—mz P\ A )P @

From this approximation, it can be seen that model mismatch
can produce a significant penalty at every frequency as a quadratic
function of the model discrepancy. In the next section, we provide a
method to reduce this gap directly from the measurements.

4. SYSTEM IDENTIFICATION

In this section, we derive an estimator for the system dynamics di-
rectly from the measurements for a linear space-invariant system.
We do this by defining the iteration to step from one measurement to
the next, then solving for the transition operator as a function of the
power spectral densities and cross spectral densities. We denote the
power spectral density of a WSS random field W as Sw,w .

By noting that our measurement and state transition operators
commute, an inexpensive estimate of the system dynamics can be
found directly from the observations. By stepping through a single
timestep from y; to y;+1, we find the transition can be represented
directly as

yir1 = HEFH '(yi — vi) + W) + Vi (48)
=Fyi —Fv; +vit1 + Hu; (49)
If we assume some initial yo = Hug + vy, then
yi =Vi+ Z F" "Hu; (50)
i=0

Assuming WSS, the power spectral density of y; is then

Svivi =Svv+ Y F'/FTTHHSuu (51)

Jj=0

and the cross spectral density between y;, yit1 is

Syivig = FIFTIH HS (52)
j=0
=F(Svi,vi = Svv) (53)

Thus we propose an estimator of the form:

_ Zz SYUYI'M (f)
> (Sviy; (F) = Svv(f))

where Syi Yiq, and Syi ,y; are the empirical spectral densities. A de-
tailed analysis of the estimator is beyond the scope of this paper, and
is left to future work. It can be shown that the estimator has relation-
ships with Linear Inverse Modeling [16, 17, 18] and thus Dynamic
Mode Decomposition [19, 20].

E(f) (54)

= Estimated Modal ﬁ
— * +True Madel - =4
2 1} [==Random Wak Model -~ %
g -~ =3
= _— -
8 z
= i 2t
@
=

2

3 2 4 0

logyo || 7%

o
-

-4 -2 0 2
Noise Power {log10)

Fig. 1. Left: Mean Squared Error as a function of measurement
noise, ratio equal for ease of viewing slopes; Right: Ratio of error
with random walk model and true model varying diffusion rate.

5. NUMERICAL EXPERIMENTS

In this section, we describe results of numerical experiments. We
simulated diffusion with various noise powers and diffusion rates.

The Kalman-Wiener filter and our system identification algo-
rithm were both implemented in Julia 1.2.0. The Kalman-Wiener
filter was simulated with the correct model, an independent random
walk model of the system, and the estimated system model. The
true state transition operator was a diffusion operation with a small
amount of drift. The convolutional kernel was

0.25 0.5 0.25
kernel o< | 0.5 a 0.5 (55)
0.25 0.5 0.25

shifted to the right by one sample and normalized such that a conser-
vation of mass principle is followed. That is to say, the sum of the
terms is equal to 1. 20 timesteps were simulated, with iid gaussian
noise of power 1 added to the state at each timestep. The image was
initialized at O then simulated until clusters formed. Additionally,
the measurement operator was a 5 X 5 centered square convolution
kernel blurring the image. Mean squared error was evaluated on the
final timestep.

In one experiment, a = 1 was fixed and the measurement noise
power was sweeped. The mean squared error results of the simu-
lations are available in the left panel of figure 1. We see that, as
expected, for small amounts of noise, there is no benefit to having a
good model, as the Kalman filter directly incorporates the measure-
ment and ignores the transitions. For moderate amounts of noise,
the joint estimation technique outperforms the random walk model,
providing almost equivalent performance to the true model.

Additionally, a set of simulations were done maintaining a fixed
level of measurement noise power of 1 with no drift while vary-
ing the rate of diffusion, and thus the distance from a random walk
model. In the right panel of figure 1, we show the ratio of mean
squared error between random walk model estimation and the true
model estimation as a function of the Frobenius norm of the differ-
ence between the true model and the random walk model.

We additionally simulated other blurring measurement operators
and found similar results, though they are not included in this paper
due to space constraints.

6. CONCLUSION

This work suggests that classically optimal estimators may still be
useful for some imaging tasks when combined with simple system
identification methods, despite the comparatively poor performance
caused by model mismatch. The model estimate greatly improves
the state estimation over the random walk model, helping to close
the derived performance gap induced by model mismatch.
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