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Abstract

We develop an equivalence between the equilibrium effects of incomplete information and those of

two behavioral distortions: myopia, or extra discounting of the future; and anchoring of current be-

havior to past behavior, as in models with habit persistence or adjustment costs. We show how these

distortions depend on higher-order beliefs and GE mechanisms, and how they can be disciplined by

evidence on expectations. We finally illustrate the use of our toolbox with a quantitative application

in the context of inflation, a bridge to the HANK literature, and an extension to networks.
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1 Introduction

What are the macroeconomic effects of informational frictions? How do they depend on general equilib-

rium (GE) mechanisms, market structures, and agent heterogeneity? And how can they be quantified?

We develop a toolbox for addressing such questions and illustrate its use. On the theoretical front,

we offer an illuminating representation result and draw connections to the literatures on networks and

HANK models. On the quantitative front, we show how to extract the informational friction from survey

evidence on expectations and proceed to argue that it can rationalize sizable sluggishness in the response

of inflation and aggregate spending to shocks.

Framework. Our starting point is a representative-agent model, in which an endogenous outcome of

interest, denoted by at , obeys the following law of motion:

at ='ªt +±Et [at+1] , (1)

where ªt is the underlying stochastic impulse, or fundamental, '> 0 and ± 2 (0,1] are fixed scalars, and

Et [·] is the rational expectation of the representative agent.

Condition (1) stylizes a variety of applications. In the textbook New Keynesian model, this condition

could be either the New Keynesian Philips Curve (NKPC), with at standing for inflation and ªt for the

real marginal cost, or the Euler condition of the representative consumer (a.k.a. the Dynamic IS curve),

with at standing for aggregate spending and ªt for the real interest rate. Alternatively, this condition can

be read as an asset-pricing equation, with ªt standing for the asset’s dividend and at for its price.

We depart from these benchmarks by letting people have a noisy “understanding” of the economy, in

the sense of incomplete information. The friction could be the product of dispersed knowledge (Lucas,

1972) or rational inattention (Sims, 2003). And it is the source of both first- and higher-order uncertainty.

Relative to the frictionless, full-information, rational-expectations benchmark, there is therefore not only

gradual learning of the exogenous innovations, but also a friction in how people reason about others

(Morris and Shin, 1998; Tirole, 2015) and thereby about GE effects (Angeletos and Lian, 2018).

An Observational Equivalence. Our main result is a representation of the equilibrium effects of the

informational friction in terms of two behavioral distortions. Under appropriate assumptions, the equi-

librium dynamics of the aggregate outcome at in the incomplete-information economy are shown to

coincide with that of a representative-agent economy in which condition (1) is modified as follows:

at ='ªt +±! f Et [at+1]+!b at°1, (2)

for some ! f < 1 and !b > 0. The first distortion (! f < 1) represents myopia towards the future, the sec-

ond (!b > 0) anchors current outcomes to past outcomes. One dulls the forward-looking behavior, the

other adds a backward-looking element akin to habit or adjustment costs.
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Crucially, both distortions increase not only with the level of noise but also with parameters that

regulate the strategic interaction, or the GE feedback in the economy. Economies in which the Keynesian

cross is steeper, firms are more strategic, or input-output linkages are stronger behave as if they are

populated by more impatient and more backward-looking agents.

Underlying insights and marginal contribution. The documented effects encapsulate the role of higher-

order beliefs. To fix ideas, consider the response of aggregate demand (= at ) to a drop in the real interest

rate (= ªt ). A consumer that becomes aware of this event now may nevertheless doubt that others will

be aware of the same event in the near future and may therefore also doubt that aggregate spending

will go up. As this logic applies for the average consumer, the economy as a whole systematically un-

derestimates the future movements in aggregate income, and behaves like a representative agent that

excessively discounts the future. And the larger the dependence of spending on income, or the steeper

the Keynesian cross, the larger this discounting.

This explains the documented myopia. The anchoring, on the other hand, has to do with learning.

As more times passes since the occurrence of any given shock, consumers become progressively more

aware of it. But higher-order beliefs adjust more sluggishly than first-order beliefs—equivalently, the

expectations of income adjust more sluggishly than expectations of interest rates. This reduces the speed

of adjustment in aggregate spending, or equivalently it increases the apparent dependence of current

spending on past spending. And the steeper the Keynesian cross, the larger this effect, too.

Versions of these insights have been documented in the literature before, albeit not in the sharp form

offered here.1 Relative to the state of the art, our theoretical contribution contains: the bypassing of the

curse of dimensionality in higher-order beliefs; the existence, uniqueness and analytical characterization

of the equilibrium; the aforementioned observational-equivalence result; and an extension to a class of

incomplete-information networks. This in turn paves the way to our applied contribution, which we

detail below.

DSGE, micro to macro, and bounded rationality. Our observational equivalence offers the sharpest

to-date illustration of how informational frictions may substitute for the ad hoc forms of sluggish ad-

justment employed in the DSGE literature: the backward-looking element in condition (2) is akin to that

introduced by habit persistence in consumption, adjustment costs to investment, or indexation of prices

to past inflation.

Crucially, the documented distortions increase not only with the level of noise but also with param-

eters that regulate the strength of GE feedback loops and the associated importance of higher-order be-

1In particular, the role of learning as source of sluggish adjustment in behavior is the common theme of Sims (2003) and
Mankiw and Reis (2002); the higher sluggishness of higher-order beliefs relative to first-order beliefs has been emphasized
by Woodford (2003) and Morris and Shin (2006); and the role of higher-order beliefs as a source of as-if myopia has been
highlighted by Angeletos and Lian (2018).
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liefs. In the context of the NKPC, examples of such parameters include the frequency of price adjustment,

the degree of market concentration, and the input-output matrix; and in the context of the Dynamic IS

curve, they include liquidity constraints and consumer heterogeneity.

Our analysis also yields the following, seemingly paradoxical, conclusion: more responsiveness at the

micro level often comes together with more sluggishness at the macro level. For instance, a smaller Calvo

friction maps to more sluggishness in aggregate inflation, and a higher marginal propensity to consume

(MPC) maps to more habit-like persistence in aggregate consumption. In both cases, the reason is that

the larger micro-level responsiveness is tied to a larger bite of higher-order uncertainty.

At the same time, our result builds a bridge to a recent literature that emphasizes how lack of com-

mon knowledge (Angeletos and Lian, 2018) and related kinds of bounded rationality (Farhi and Werning,

2019; Gabaix, 2020; Garcıa-Schmidt and Woodford, 2019) make agents behave as if they are myopic. But

whereas this prior literature has restricted the belief error triggered by any shock to be time-invariant, our

analysis lets it decay with the age of the shock, thanks to the accommodation of learning. This explains

why our approach yields not only ! f < 1 but also !b > 0, which is exactly what the data want.

Connection to evidence on expectations. Our results facilitate a simple quantitative strategy. We show

how estimates of ! f and !b can be obtained by combining knowledge about GE parameters with an ap-

propriate moment of the average forecasts. Such a moment is estimated in Coibion and Gorodnichenko

(2015), or CG for short: it is the the coefficient of the regression of the average forecast errors on past

forecast revisions.

The basic intuition is that a higher value for this moment indicates a larger informational friction.

But both the structural interpretation of this moment and its mapping to the macroeconomic dynamics

is modulated by the GE feedback. When this feedback is strong enough, a modest friction by the CG

metric may camouflage a large friction in terms of the values for ! f and !b .

At the same time, we explain why the evidence on the under-reaction of average forecasts provided

in CG is more “reliable” for our purposes than the conflicting evidence on the over-reaction of individ-

ual forecasts provided in Bordalo et al. (2020) and Broer and Kohlhas (2019). In an extension that adds

a behavioral element as in those papers (a form of overconfidence), we can vary the theory’s implica-

tions about individual forecasts without varying the structural relation between average forecasts and

aggregate outcomes. The values of ! f and !b are thus pinned down solely by the CG moment.

Applications: NKPC, HANK, and Asset Pricing. Our first application (Section 6) concerns inflation.

Using our toolbox, we show that the friction implicit in surveys of expectations is large enough to ratio-

nalize existing estimates of the Hybrid NKPC. This complements Nimark (2008), which articulated the

basic idea but did not discipline the theory with expectations data. To the best of our knowledge, ours is

indeed the first estimate of what the available evidence of expectations means for inflation dynamics.
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Echoing a core theme of our paper, we show that most of the documented effect regards the expecta-

tions of the behavior of others (inflation) rather than the expectations of the fundamental (real marginal

cost). We finally put forward three ideas, all of which stem from the endogeneity of the Hybrid NKPC

under the prism of our analysis. The first two draw a possible causal link from the increase in market

concentration and the conduct of monetary policy to the reduction in inflation persistence. The third

highlights that the economy’s production network may influence not only the slope of the Philips curve

(as in Rubbo, 2020; La’O and Tahbaz-Salehi, 2020) but also its backward-looking element.

Our second application (Section 7) turns to aggregate demand. As already mentioned, our theory

provides a micro-foundation of habit-like persistence in aggregate spending. For a plausible calibra-

tion, this persistence is quantitatively comparable to that assumed in the DSGE literature, but requires

no actual habit at the micro level. This helps reconcile the gap between the levels of habit required to

match the macroeconomic time series and the much smaller levels estimated in microeconomic data

(Havranek, Rusnak, and Sokolova, 2017).

Relatedly, because the as-if myopia and habit increase with the MPC, our results help reconcile the

high responsiveness of consumer spending to income shocks at the micro level with the sluggishness of

aggregate spending to interest-rate shocks at the macro level.2 This hints at a link between our contri-

bution and the emerging HANK literature. We take a step in this direction by studying a heterogeneous-

agent extension of our setting and showing the following property in it: a positive cross-sectional corre-

lation between MPC and income cyclicality, like that documented empirically in Patterson (2019), am-

plifies the expectations-driven sluggishness in the response of aggregate spending to monetary policy.

Other applications include investment (Appendix F) and asset pricing (Appendix G). In the latter

context, our results illustrate how higher-order uncertainty may be the source of both momentum and

excessive discounting. They also suggest that both distortions may be greater at the level of the entire

stock market than at the level of the stock of a particular firm, which in turn may help rationalize Samuel-

son’s dictum (Jung and Shiller, 2005).3

Networks. Our HANK application is an example of how our toolbox can be extended to a class of net-

works. In this context, we offer a tractable characterization of the equilibrium dynamics as functions of

the network and information structures. This builds a bridge to a growing literature that emphasizes the

network structure of the economy but often ignores informational frictions.4

2A similar point has been made recently by Auclert, Rognlie, and Straub (2020).
3Choi, Rondina, and Walker (2020) also attempt to rationalize the discrepancies between aggregate and individual asset

prices based on incomplete information and segmented markets, but their work focuses on pricing efficiency and volatility
instead of momentum and discounting.

4A few notable exemptions are Bergemann, Heumann, and Morris (2017) and Golub and Morris (2019) on the abstract front,
and Nimark, Chahrour, and Pitschner (2019), Auclert, Rognlie, and Straub (2020) and La’O and Tahbaz-Salehi (2020) on the
applied front. None of these papers, however, share either our analytical results or our emphasis on forward-looking behavior.
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2 Framework

In this section we set up our framework and illustrate its applicability.

2.1 Basic Ingredients

Time is discrete, indexed by t 2 {0,1, ...}, and there is a continuum of agents, indexed by i 2 [0,1]. At any

t , each agent chooses an action ai ,t 2R. Let at be the average action. Best responses admit the following

recursive formulation:

ai ,t = Ei ,t
£
'ªt +Øai ,t+1 +∞at+1

§
, (3)

where ªt is an underlying fundamental, Ei ,t [·] is the agent’s expectation in period t , and (',Ø,∞) are

parameters, with'> 0, ∞ 2 [0,±), andØ¥ ±°∞, for some ± 2 (0,1). As it will become clear, ± parameterizes

the agent’s overall concern about the future and ∞ the GE, or strategic, considerations.

Iterating on condition (3) yields the following representation of i ’s best response:

ai ,t =
1X

k=0
ØkEi ,t

£
'ªt+k

§
+∞

1X

k=0
ØkEi ,t [at+k+1] . (4)

While the recursive form (3) is more convenient for certain derivations, the extensive form given above

is more precise because it embeds appropriate “boundary” conditions for t !1.5 It also makes salient

how a agent’s optimal behavior at any given point of time depends on her expectations of the entire

future paths of the fundamental and of the average action.

Aggregating condition (4) yields the following equilibrium restriction:

at ='
1X

k=0
ØkEt [ªt+k ]+∞

1X

k=0
ØkEt [at+k+1] , (5)

where Et [.] denotes the average expectation in the population. This condition highlights the fixed-point

relation between the equilibrium value of at and the expectations of it. As it will become clear, this

condition also allows us to nest a variety of applications.6

2.2 Complete Information and Beyond

Suppose that information is complete, meaning that all agents share the same information and this fact

itself is common knowledge. The economy then admits a representative agent. That is, ai ,t = at and

5Namely, we have imposed that, for any date ø and history, limt!1ØtEi ,ø[ai ,t ] = 0, limt!1ØtEi ,ø[ªt ] = 0, and
limt!1ØtEi ,ø[at ] = 0. The first property can be understood as the transversality condition. The second represents a restriction
on the fundamental process, trivially satisfied when ªt is bounded. The third represents an equilibrium refinement.

6The same best-response structure is assumed in Angeletos and Lian (2018). But whereas that paper considers a non-
stationary setting where ªt is fixed at zero for all t 6= T , for some given T ∏ 1, we consider a stationary setting in which ªt

varies in all t and, in addition, there is gradual learning over time. Our framework also reminds the static beauty contests stud-
ied in Morris and Shin (2002), Woodford (2003), Angeletos and Pavan (2007), and Huo and Pedroni (2020). There, agents try to
predict the concurrent behavior of others. Here, they try to predict the future behavior of others.
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Ei ,t = Et , where Et stands for the representative agent’s expectation, and condition (3) reduces to

at = Et ['ªt +±at+1]. (6)

This may correspond to the textbook versions of the Dynamic IS and New Keynesian Philips curves, or

an elementary asset-pricing equation. By the same token, the equilibrium outcome is given by

at ='
1X

h=0
±hEt [ªt+h]. (7)

This can be read as “inflation equals the present discounted value of real marginal costs” or “the asset’s

price equals the present discounted value of its dividends.”

Clearly, only the composite parameter±=Ø+∞ enters the determination of the equilibrium outcome:

its decomposition betweenØ and ∞ is irrelevant. As made clear in Section 3.1 below, this underscores that

the decomposition between PE and GE considerations is immaterial in this benchmark. Furthermore,

the outcome is pinned down by the expectations of the fundamental alone.

These properties hold because this benchmark imposes that agents can reason about the behavior of

others with the same ease and precision as they can reason about their own behavior. Conversely, intro-

ducing incomplete (differential) information and higher-order uncertainty, as we shall do momentarily,

amounts to accommodating a friction in how agents reason about the behavior of others, or about GE.

2.3 Two Examples: Dynamic IS and NKPC

Before digging any further into the theory, we illustrate how our setting can nest the two building blocks

of the New Keynesian model, the Dynamic IS curve and the New Keynesian Philips curve (NKPC). The

familiar, log-linearized, representative-agent versions of these equations are given by, respectively,

ct = Et [°&rt + ct+1] and ºt = Et [∑mct +¬ºt+1],

where ct is aggregate consumption, rt is the real interest rate, ºt is inflation, mct is the real marginal

cost, & > 0 is the elasticity of intertemporal substitution, ∑ ¥ (1°¬µ)(1°µ)
µ is the slope of the Philips curve,

µ 2 (0,1) is the Calvo parameter, ¬ 2 (0,1) is the representative agent’s discount factor, and Et is her ex-

pectation. Clearly, both of these conditions are nested in condition (6).

Relaxing the common-knowledge foundations of the New Keynesian model along the lines of An-

geletos and Lian (2018) yields the following incomplete-information extensions of these equations:

ct =°&
1X

k=0
¬kEt [rt+k ]+ (1°¬)

1X

k=1
¬k°1Et [ct+k ], (8)

ºt = ∑
1X

k=0
(¬µ)kEt [mct+k ]+¬(1°µ)

1X

k=0
(¬µ)kEt [ºt+k+1] , (9)

where Et denotes the average expectation of the consumers in condition (8) and that of the firms in
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condition (9). The first equation is nested in condition (5) by letting at = ct , ªt = rt , ' = °&, Ø = ¬,

∞= 1°¬, and ±= 1; the second by letting at =ºt , ªt = mct , '= ∑, Ø=¬µ, ∞=¬(1°µ) and ±=¬.

To understand condition (8), recall that the Permanent Income Hypothesis gives consumption as a

function of the present discounted value of income. Incorporating variation in the real interest rate and

heterogeneity in beliefs, and using the fact that aggregate income equals aggregate spending in equilib-

rium, yields condition (8). Finally, note that 1°¬ measures the marginal propensity to consume (MPC)

out of income. The property that ∞= 1°¬ therefore means that, in this context, ∞ captures the slope of

the Keynesian cross, or the GE feedback between spending and income.

To understand condition (9), recall that a firm’s optimal reset price is given by the present discounted

value of its nominal marginal cost. Aggregating across firms and mapping the average reset price to in-

flation yields condition (9). When all firms share the same, rational expectations, this condition reduces

to the familiar, textbook version of the NKPC. Away from that benchmark, condition (9) reveals the pre-

cise manner in which expectations of future inflation (the behavior of firms) feed into current inflation.

Note in particular that ∞= ¬(1°µ), which means that the effective degree of strategic complementarity

increases with the frequency of price adjustment. This is because the feedback from the expectations

of future inflation to current inflation increases when a higher fraction of firms are able to adjust their

prices today on the basis of such expectations.

3 The Equivalence Result

This section contains the core of our contribution. We motivate the requisite assumptions, solve for

the rational-expectations fixed point, develop our observation-equivalence result, and discuss the main

insights encapsulated in it.

3.1 Higher-Order Beliefs: The Wanted Essence and the Unwanted Complexity

Higher-order beliefs are synonymous to how agents reason about GE effects. To see this, revisit condition

(5), which allows the following decomposition of the aggregate outcome:

at ='
1X

k=0
ØkEt [ªt+k ]

| {z }
PE component

+∞
1X

k=0
ØkEt [at+k+1]

| {z }
GE component

. (10)

We label the first term as the PE component because it captures the agents’ response to any innovation

holding constant their expectations about the endogenous outcome; the additional change triggered by

any adjustment in these expectations, or the second term above, represents the GE component.

Consider now two economies, labeled A and B , that share the same ± ¥ Ø+∞ but have a different

mixture ofØ and ∞. Economy A featuresØ= ± and ∞= 0, which means that GE considerations are entirely
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absent. Economy B features Ø= 0 and ∞= ±, which corresponds to “maximal” GE considerations.

In economy A, condition (5) reduces to at = '
P1

k=0±
kEt [ªt+k ], that is, only the first-order beliefs

of the fundamental matter. This is similar to the representative-agent benchmark, except that the repre-

sentative agent’s expectations are replaced by the average expectations in the population. In economy B ,

instead, condition (5) reduces to at ='Et [ªt ]+±Et [at+1] and recursive iteration yields

at ='
1X

h=1
±hF

h

t [ªt+h°1] , (11)

where, for any variable X , F
1
t [X ] ¥ Et [X ] denotes the average first-order forecast of X and, for all h ∏ 2,

F
h

t [X ] ¥ Et

h
F

h°1
t+1 [X ]

i
denotes the corresponding h-th order forecast. The key difference from both the

representative-agent benchmark and economy A is the emergence of such higher-order beliefs. These

represent GE considerations, or the agents’ reasoning about the behavior of others.

The logic extends to the general case, in which both Ø and ∞ are positive. The only twist is that the

relevant set of higher-order beliefs is significantly richer than that seen in condition (11). Indeed, let

≥t ¥
P1
ø=0Ø

øªt+ø and consider the following set of forward-looking, higher-order beliefs:

Et1 [Et2 [· · · [Eth
[≥t+k ] · · · ]],

for any t ∏ 0, k ∏ 2, h 2 {2, ...,k}, and {t1, t2, ..., th} such that t = t1 < t2 < ... < th = t + k. As behavior

depends on all these higher-order beliefs, this adds considerable complexity relative to the Ø = 0 case.

For instance, when k = 10 (thinking about the outcome 10 periods later), there are 210 beliefs of the

fourth order that are relevant when Ø> 0 compared to only one such belief when Ø= 0.7

An integral part of our contribution is the bypassing of this complexity. The assumptions that permit

this bypassing are spelled out below. They come at the cost of some generality, in particular we abstract

from the possible endogeneity of information.8 But they also bear significant gains on both the theoret-

ical and the quantitative front, which will become evident as we proceed.

3.2 Specification

We henceforth make two assumptions. First, we let the fundamental ªt follow an AR(1) process:

ªt = Ωªt°1 +¥t =
1

1°ΩL
¥t , (12)

where ¥t ª N (0,1) is the period-t innovation, L is the lag operator, and Ω 2 (0,1) parameterizes the

persistence of the fundamental. Second, we assume that agent i receives a new private signal in each

7More generally, for any t and any k ∏ 2, there are now k °1 types of second-order beliefs, plus (k °1)£ (k °2)/2 types of
third-order beliefs, and so on.

8This abstraction is the right benchmark for our purposes, including the connections built to the evidence on expectations:
this evidence helps discipline the theoretical mechanisms we are concerned with, but contains little guidance on the degree or
manner in which information may be endogenous.
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period t , given by

xi ,t = ªt +ui ,t , ui ,t ªN (0,æ2), (13)

where æ ∏ 0 parameterizes the informational friction (the level of noise). The agent’s information in

period t is the history of signals up to that period.

As anticipated in the previous subsection, these assumptions aim at minimizing complexity with-

out sacrificing essence. Borrowing from the literature on rational inattention, we also invite a flexible

interpretation of our setting as one where fundamentals and outcomes are observable but cognitive lim-

itations makes agents act as if they observe the entire state of nature with idiosyncratic noise. But instead

of endogenizing the noise, we fix it in a way that best serves our purposes.

3.3 Solving the Rational-Expectations Fixed Point

Consider momentarily the frictionless benchmark (æ = 0), in which case the outcome is pinned down

by first-order beliefs, as in condition (7). Thanks to the AR(1) specification for the fundamental, we

have Et [ªt+k ] = Ωkªt , for all t ,k ∏ 0. We thus reach the following result, which states that the complete-

information outcome follows the same, up to a rescaling, AR(1) process as the fundamental.9

Proposition 1. In the frictionless benchmark (æ= 0), the equilibrium outcome is given by

at = a
§
t
¥ '

1°Ω±ªt =
'

1°Ω±
1

1°ΩL
¥t . (14)

Consider next the case in which information is incomplete (æ> 0). As already explained, the outcome

is then a function of an infinite number of higher-order beliefs. Despite the assumptions made here

about the process of ªt and the signals, these beliefs remain exceedingly complex.

Let us illustrate this point. Using the Kalman filter, one can readily show that the first-order belief

Et [ªt ] obeys the following AR(2) dynamics:

Et [ªt ] =
µ
1° ∏

Ω

∂µ
1

1°∏L

∂
ªt , (15)

where ∏= Ω(1° g ) and g 2 (0,1) is the Kalman gain, itself a decreasing function of the level of noise.10 It

follows that the second-order belief Et [Et+1[ªt+1]] follows an ARMA(3,1). By induction, for any h ∏ 1, the

h-th order belief Et [Et+1[...Et+h[ªt+h]] follows an ARMA(h +1,h °1). Beliefs of higher order thus exhibit

increasingly complex dynamics.

As explained in Section 3.1, the above set of higher-order beliefs is the relevant one when Ø = 0.

The general case with Ø > 0 is subject to an even greater curse of dimensionality in terms of higher-

order beliefs. And yet, this complexity vanishes once we focus on the rational-expectations fixed point:

9All proofs are delegated to Appendix A.
10The Kalman gain is given by the unique g 2 (0,1) such as that (1° g ) = (1°Ω2(1° g ))gæ2. This yields g as a continuous and

decreasing function of æ, with g = 1 when æ= 0 and g ! 0 when æ!1.
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under our assumptions, the fixed point turns out to be merely an AR(2) process, whose exact form is

characterized below.

Proposition 2 (Solution). The equilibrium exists, is unique and is such that the aggregate outcome obeys

the following law of motion:

at =
µ
1° #

Ω

∂µ
1

1°#L

∂
a
§
t

, (16)

where a
§
t

is the frictionless counterpart, obtained in Proposition 1, and where # is a scalar that satisfies

# 2 (0,Ω) and that is given by the reciprocal of the largest root of the following cubic:

C (z) ¥° z
3 +

µ
Ω+ 1

Ω
+ 1
Ωæ2 +

°
±°∞

¢∂
z

2 (17)

°
µ
1+

°
±°∞

¢µ
Ω+ 1

Ω

∂
+ ±

Ωæ2

∂
z +

°
±°∞

¢
.

Condition (16) gives the incomplete-information dynamics as a transformation of the complete-

information counterpart. This transformation is indexed by #. Relative to the frictionless benchmark

(herein nested by # = 0), a higher # means both a smaller impact effect, captured by the factor 1° #
Ω in

condition (16), and a more sluggish build up over time, captured by the lag term #L.

To understand the math behind the result, let Ø= 0 momentarily. In this case, the outcome obeys

at ='Et [ªt ]+∞Et [at+1]. (18)

If we guess that at follows an AR(2), we have that Et [at+1] follows an ARMA(3,1). As already noted, Et [ªt ]

follows the AR(2) given in (15). The right-hand side of the above equation is therefore the sum of an AR(2)

and an ARMA(3,1). If the latter was arbitrary, this sum would have returned an ARMA(5,3), contradicting

our guess that at follows an AR(2). But the relevant ARMA(3,1) is not arbitrary.

Because the impulse behind at is ªt , one can safely guess that at inherits the root of ªt . That is,

(1°#L)(1°ΩL)at = b¥t , for some scalars b and #. This in turn implies that the AR roots of the ARMA(3,1)

process for Et [at+1] are the reciprocals of Ω, # and ∏. As seen in (15), the roots of Et [ªt ] are the reciprocals

of Ω and ∏. It follows that the sum in the right-hand side of (18) is at most an ARMA(3,1) of the following

form:

at =
c(1°dL)

(1°#L)(1°ΩL)(1°∏L)
¥t , (19)

where c and d are functions of b and #. For our guess to be correct, it has to be that d = ∏ and c = b.

The first equation, which lets the MA part and the last AR part cancel out so as to reduce the above to an

AR(2), and yields (17). The second equation, which pins down the scale, yields b =
≥
1° #

Ω

¥≥
'

1°Ω±

¥
.

This is the crux of how the rational expectations fixed point works. The proof presented in Appendix A

follows a somewhat different path, which is more constructive, accommodates Ø > 0, and can be ex-

tended to richer settings along the lines of Huo and Takayama (2018).

When ∞ = 0, GE considerations are absent, the outcome is pinned down by first-order beliefs, and
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Proposition 2 holds with # = ∏, where ∏ is the same root as that seen in (15). When instead ∞ > 0, GE

considerations and higher-order beliefs come into play. As already noted, these beliefs follow compli-

cated ARMA processes of ever increasing orders. And yet, the equilibrium continues to follow an AR(2)

process. The only twist is that # > ∏, which, as mentioned above, means that the equilibrium outcome

exhibits less amplitude and more persistence than the first-order beliefs. This is the empirical footprint

of higher-order uncertainty, or of the kind of imperfect GE reasoning accommodated in our analysis.

Below, we translate these properties in terms of our observational-equivalence result (Propositions 3

and 5). The following corollary, which proves useful when connecting the theory to evidence on expec-

tations, is also immediate.

Corollary 1 (Forecasts). Any moment of the joint process of the aggregate outcome, at , and of the average

forecasts, Et [at+k ] for all k ∏ 1, are functions of only the triplet (#,∏,Ω), or equivalently of (∞,±,Ω,æ).

3.4 The Equivalence Result

Momentarily put aside our incomplete-information economy and, instead, consider a “behavioral” econ-

omy populated by a representative agent whose aggregate Euler condition (6) is as follows:

at ='ªt +±! f Et [at+1]+!b at°1, (20)

for some scalars ! f ,!b . It is easy to verify that the equilibrium process of at in this economy is an AR(2)

whose coefficients are functions of (! f ,!b) and (',±,Ω). In comparison, the equilibrium process of at

in our incomplete-information economy is an AR(2) whose coefficients determined as in Proposition 2.

Matching the coefficients of the two AR(2) processes, and characterizing the mapping from the latter to

the former, we reach the following result.

Proposition 3 (Observational Equivalence). Fix (',±,∞,Ω). For any noise level æ > 0 in the incomplete-

information economy, there exists a unique pair (! f ,!b) in the behavioral economy such that the two

economies generate the same joint dynamics for the fundamental and the aggregate outcome. Further-

more, this pair satisfies ! f < 1 and !b > 0.

This result allows one to recast the informational friction as the combination of two behavioral dis-

tortions: extra discounting of the future, or myopia, in the form of ! f < 1; and backward-looking behav-

ior, or anchoring of the current outcome to past outcome, in the form of !b > 0.

This representation is, of course, equivalent to the closed-form solution provided in Proposition 2.

We prefer the new representation not only because it serves the applied purposes of our paper, but also

because the main insights about myopia and anchoring extend to richer settings, while the specific AR(2)

solution provided in Proposition 2 does not. This idea is formalized in Appendix H.
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3.5 The Roles of Noise and GE Considerations

As one would expect, both distortions increase with the level of noise.

Proposition 4 (Noise). A higher æ maps to a lower ! f and a higher !b.

What this result, however, fails to highlight is the dual meaning of “noise” in our setting: a higher

æ represents not only less accurate information about the fundamental (larger first-order uncertainty)

but also more friction in how agents reason about others (larger higher-order uncertainty). The latter,

strategic or GE, channel is highlighted by the next result.

Proposition 5 (GE). Consider an increase in the relative importance of GE considerations, as captured by

an increase in ∞ holding ±¥ Ø+∞, as well as æ and Ω, constant. This maps to both greater myopia (lower

! f ) and greater anchoring (higher !b).

This result circles backs to our discussion in Section 3.1 regarding the interpretation of higher-order

uncertainty as a distortion in agents’ GE reasoning. It also anticipates a point we make in Section 5.

While the kind of evidence on informational frictions provided by Coibion and Gorodnichenko (2015) is

an essential ingredient for the quantitative evaluation of the assumed friction, it is not sufficient. One

must combine such evidence with knowledge of how important the GE feedback from expectations to

actual behavior is.

3.6 Robustness

The results presented above depend on stark assumptions about the process of ªt and the information

structure. But the key insights regarding myopia, anchoring, and the role of higher-order beliefs are

more general. Appendix H shows how to generalize these insights in a setting that allows ªt to follow an

essentially arbitrary MA process, as well as information to diffuse in a flexible manner.11 The elegance of

our observational-equivalence result is lost, but the essence remains.

Another extension, better suited for applied purposes, is offered in Section 8. There, we consider a

multi-variate analogue of condition (4). This allows one to handle the full, three-equation New Keyne-

sian model, the HANK variant considered in Section 7, and a large class of linear networks.

4 Connection to DSGE, Bounded Rationality, and Beyond

In the end of Section 2 we sketched how our framework nests incomplete-information extensions of the

Dynamic IS curve and the NKPC. We also discussed how ∞ relates to the slope of the Keynesian cross,

11Such richness is prohibitive in general. We cut the Gordian knot by orthogonalizing the information about the innovations
occurring at different points of time. Although this modeling approach is unusual, it nests “sticky information” (Mankiw and
Reis, 2002) as a special case and clarifies the theoretical mechanisms.
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or the income-spending multiplier, in the first context and to the frequency of price adjustment in the

second. The following translations of our abstract results are thus immediate.

Corollary 2. Applying our result to condition (9) yields the following NKPC:

ºt = ∑mct +! f ¬Et [ºt+1]+!bºt°1. (21)

In this context, the distortions increase with the frequency of price adjustment.

Corollary 3. Applying our result to condition (8) yields the following Dynamic IS curve:

ct =°&rt +! f Et [ct+1]+!bct°1. (22)

In this context, the distortions increase with the MPC, or the slope of the Keynesian cross.

Condition (21) looks like the Hybrid NKPC. Condition (22) looks like the Euler condition of repre-

sentative consumer who exhibits habit persistence plus myopia. Appendix F offers a related result for

investment: we take a model in which adjustments cost depend on the change in the stock of capital,

as in traditional Q theory; add incomplete information; and show that this model looks like a model in

which adjustment costs depend on the change in the rate of investment.

Together, these results illustrate how informational frictions can substitute for the more ad hoc sources

of sluggishness in all the equations of DSGE models. The basic idea is familiar from previous works (e.g.,

Sims, 2003; Mankiw and Reis, 2002; Woodford, 2003; Nimark, 2008). The added value here is the sharp-

ness of the provided representation and the following, complementary lessons.

First, we build a bridge to a recent literature that shows how lack of common knowledge and related

forms of bounded rationality make agents behave as if they are myopic. These works help generate

! f < 1 but restrict !b = 0. In Angeletos and Lian (2018), this is because there is no learning. In Farhi

and Werning (2019), Garcıa-Schmidt and Woodford (2019) and Iovino and Sergeyev (2017), it is a direct

implication of the adopted solution concept: level-k thinking amounts to equating beliefs of order h ∑
k to their complete-information counterparts, and beliefs of order h > k to zero. This makes agents

underestimate GE effects, which maps to! f < 1, but precludes the mistake in beliefs to be corrected over

time, which maps to !b = 0. Our approach, instead, naturally delivers both ! f < 1 and !b > 0, which is

what the macroeconomic data want.12 By the same token, our approach allow both for under-reaction

and momentum in average expectations, which is what the available survey evidence want.

Second, we offer a new rationale for why the information-driven sluggishness may loom large at

the macro level even if is absent at the micro level. Previous work has emphasized that agents may

naturally have less information about aggregate shocks than about idiosyncratic shocks (Maćkowiak and

12This point applies to dynamic settings. In static games such as Morris and Shin (2002), the three approaches are observa-
tionally equivalent vis-a-vis the macroeconomic time series.
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Wiederholt, 2009). We add that higher-order uncertainty effectively amplifies the friction at the macro

level. We further clarify these points in Appendix C by considering an extension of our framework with

idiosyncratic shocks. And in Appendix G, we discuss how the exact same logic transported to an asset-

pricing context may help rationalize larger momentum at the macro level than at the micro level, or what

is known as Samuelson’s dictum (Jung and Shiller, 2005).

Third, by tying the macro-level distortions to strategic complementarity and GE feedbacks, we high-

light how the former can be endogenous to market structures and policies that regulate the latter. We

come back to this point in Section 6.

Fourth, in the context of the NKPC, we show that higher price flexibility contributes to more sluggish-

ness in inflation by intensifying the role of higher-order beliefs. This seems an intriguing, new addition

to the “paradoxes of flexibility.” And in the context of the Dynamic IS curve, we tie the habit-like per-

sistence in consumption to the MPC, or the slope of the Keynesian cross. This hints at the promise of

incorporating incomplete information in the HANK literature, an idea we expand on in Section 7.

Finally, we offer a simple strategy for quantifying the distortions of interest. We spell out the elements

of this strategy in the next section and put it at work in our subsequent applications to inflation and

consumption dynamics.

5 Connection to Evidence on Expectations

Proposition 3 ties the documented distortions toæ. This parameter may not be a priori known to the ana-

lyst (“econometrician”). Surveys of expectations, however, can help identify it. In this section, we use our

results to map readily available evidence on expectations to the macroeconomic distortions of interest.

We also clarify which subset of such evidence is best suited for our purposes (moments of average fore-

casts) and provide two examples of robustness for the offered mapping (one regarding overconfidence

and another regarding public signals).

5.1 Calibrating the Friction

Consider Coibion and Gorodnichenko (2015), or CG for short. This paper runs the following regression

on data from the Survey of Professional Forecasters:

at+k °Et [at+k ] = KCG
°
Et [at+k ]°Et°1[at+k ]

¢
+ vt+k,t , (23)

where at is an economic outcome such as inflation and Et [at+k ] is the average (“consensus”) forecast

of the value of this outcome k periods later. CG’s main finding is that KCG, the coefficient of the above

regression, is positive. That is, a positive revision in the average forecast between t °1 and t predicts a

positive average forecast error at t .
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What does this mean under the lenses of the theory? Insofar as agents are rational, an agent’s forecast

error ought to be orthogonal to his own past revision, itself an element of the agent’s information set.

But this does not have to be true at the aggregate level, because the past average revision may not be

commonly known. More succinctly, KCG 6= 0 is possible because the forecast error of one agent can be

predictable by the past information of another agent.

Furthermore, because forecasts adjust sluggishly towards the truth, the theory suggests that KCG

ought to be positive and increasing in the informational friction. To illustrate this, CG treat at as an ex-

ogenous AR(1) process, assume the same Gaussian signals as we do, and show that in this case KCG = 1°g

g
,

where g 2 (0,1) is the Kalman gain, itself a decreasing function of æ. They therefore argue that their esti-

mate of KCG offers a measure of the informational friction.

In our context, at is endogenous to expectations. This complicates the structural interpretation and

use of this measure. The level of noise now influences not only the agents’ forecasting of at , but also

its own stochastic process. Furthermore, because the level of noise interacts with the GE feedback in

shaping the process for at , the GE parameter ∞ enters the mapping between æ and KCG. The next result

shows what exactly is going on.

Proposition 6 (KCG). The theoretical counterpart of the coefficient of regression (23) for k = 1 is given by

KCG =∏
#+Ω°Ω#(∏+#)°Ω∏#(1°∏#)

(Ω°∏)(1°∏#)(Ω+#°∏Ω#)
, (24)

where ∏ and # are defined as in Section 3.3. It follows that

(i) KCG is increasing in æ, the level of noise; and

(ii) KCG is decreasing in ∞, the GE feedback.

The formula for KCG is not particularly intuitive. However, in combination with our closed-form

characterizations for ∏ and #, it allows us to prove the two illuminating comparative statics stated above.

The first verifies that CG’s logic that a high value for KCG signals a high informational friction extends

from their PE context, where at follows an exogenous process, to our GE context, where the process for

at is influenced by the informational friction. The second comparative static highlights the limits of this

logic: a small value for KCG could conceal a large value for æ if the GE feedback is large enough.

At first glance, this may appear to contradict our result in Proposition 5 that a higher ∞ translates to

larger distortions in the equilibrium dynamics. But the underlying logic for both results is actually the

same. When ∞ is higher, agents are more willing to coordinate their behavior. This reduces the reliance

of behavior on private information and increases the reliance on the prior or higher-order beliefs. As this

happens, the equilibrium outcome becomes less responsive to innovations. But precisely because of this

reason, the reliance of the forecasts of the outcome on private information is also reduced, which means

that the forecast error of one agent is less predictable by the information of another agent, and hence

that the KCG coefficient is closer to zero.
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Figure 1: Myopia and Anchoring

Note: The distortions as functions of the proxy offered in Coibion and Gorodnichenko (2015). The solid lines

correspond to a stronger degree of strategic complementarity, or GE feedback, than the dashed one.

What does this mean for the structural interpretation and use of the available expectations evidence?

When the GE effect increases, both of the aforementioned channels work in the same direction: for given

æ, a higher ∞ means both larger distortions in terms of (! f ,!b) and a smaller observable footprint in

terms of KCG. The following is therefore true:

Corollary 4. As ∞ increases, the same value for KCG maps to both more myopia (smaller ! f ) and more

anchoring (larger !b) in the aggregate outcome.

This is illustrated in Figure 1. On the horizontal axis, we vary the value of KCG that may be recovered

from running regression (23) on the applicable expectations data. On the vertical axis, we report the

predicted values for ! f and !b . For given ∞, a higher KCG maps to a higher æ and thereby to larger dis-

tortions. But a higher ∞ maps to larger distortions for given KCG not only because it amplifies the effect

of noise, but also because it requires a larger æ to match the given KCG.

5.2 Individual Forecasts and Overconfidence

So far, we have emphasized how one could make use of the moment estimated in CG, along with our

tools, to obtain an estimate of! f and!b . Other moments of the average forecasts, such as the persistence

of the average forecast errors estimated in Coibion and Gorodnichenko (2012), could serve a similar role.

But what about moments of the individual forecasts? We next explain why such moments can be largely

ignored for our purposes (but not for other purposes).

Consider, in particular, the individual-level counterpart of the CG regression, that is, the regression of

one’s forecast errors on one’s own past revisions. As noted earlier, rational expectations requires that the
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coefficient of this regression be zero. Bordalo et al. (2020) and Broer and Kohlhas (2019) argue that this

coefficient is negative in the data, supporting the presence of overconfidence. Our own take is that the

evidence is inconclusive: the relevant coefficient switches signs across variables and samples (inflation

vs. unemployment, pre- vs post-Volker, etc), making it hard to reject rational expectations. But even if

we take for granted those papers’ preposition of systematic bias in beliefs, this does not necessarily upset

either our theoretical results or our proposed quantitative strategy.

We illustrate this point by augmenting our model with the same kind of over-confidence as Broer

and Kohlhas (2019): whereas the actual level of noise is æ, agents perceive it to be æ̂, for some æ̂<æ. (For

completeness, under-confidence, or æ̂>æ, is also allowed.) In this extension, the gap between æ̂ and æ,

or the degree of overconfidence, emerges as the essential determinant of the aforementioned individual-

level moment.13 But this moment and its determinant “drop out of the picture” for our purposes:

Proposition 7. Propositions 2–6 and Corollary 1 remain valid, modulo the replacement of æ with æ̂

throughout. By implication, the mapping from KCG to (! f ,!b) is invariant to the degree of overconfidence.

To understand this result, note that the perceived æ̂ alone determines how much each agent’s beliefs

and choices vary with his information, and thereby how much the corresponding aggregates vary with

the underlying fundamental. The true æ instead determines how unequal beliefs and choices are in the

cross section, but such inequality does not matter for aggregates in our class of economies. It follows

that all our results, including the characterization of (! f ,!b) and KCG, carry over by replacing æ with æ̂.

Suppose, now, that the analyst knows all parameters except æ̂ and æ and wishes to quantify the equi-

librium effects of the friction under consideration (as we do, for example, in Section 6). Suppose further

that the analyst combines the CG coefficient with the individual-level counterpart estimated in Bordalo

et al. (2020) and Broer and Kohlhas (2019). Then, the CG coefficient alone allows the identification of æ̂

and the quantification of its effect on the actual dynamics. The individual-level counterpart allows the

identification of æ, but this does not affect the aforementioned quantitative evaluation.

A similar point applies to the cross-sectional dispersion of forecasts. A large part of it is accounted

by individual-specific fixed effects, which themselves correlate with life-time experiences unrelated to

the current macroeconomic context (Malmendier and Nagel, 2016). This can be accommodated in the

theory by letting each agent i have a different prior mean, µi , about ªt . Such prior-mean heterogeneity

is then a key determinant of the cross-sectional dispersion of forecasts. But it does not matter at all for

our observational equivalence result and the offered mapping from KCG to (! f ,!b).

This also anticipates the exercise conducted in Table 1: for our quantitative application to inflation,

13Broer and Kohlhas (2019) establish this point in a setting where at follows an exogenous AR(1) process, but the logic extends
to our context. When agents are overconfident (æ̂ < æ), they over-react to their information relative to what a rational agent
would do, so a positive forecast revision today predicts a negative forecast error in the future. And the converse is true if agents
are under-confident (æ̂>æ). Also note that, although the formulation used in Bordalo et al. (2020) has different methodological
underpinnings, it works in essentially the same way as the form overconfidence considered here.
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we test the ability of our model to capture the cross-sectional dispersion of the forecast errors or the fore-

cast revisions precisely because these objects partial out individual fixed effects such as those associated

with the aforementioned kind of heterogeneity.

More challenging is the evidence presented in Kohlhas and Walther (2019). In direct contradiction

to CG’s message, these authors argue that expectations over-react in the sense that average forecasts

errors are negatively correlated with past outcomes. They then proceed to offer a resolution based on

asymmetric attention to pro-cyclical and counter-cyclical components of the forecasted variable. In Ap-

pendix I, we explain how our methods can be adapted to their setting. And in Angeletos, Huo, and Sastry

(2020), we propose an alternative resolution, one based on the combination of informational frictions

and over-extrapolation. But we leave this issue out of the present paper.

5.3 Public Information

So far we have have let agents observe only private signals. If we add public signals, the CG moment is

no more sufficient for uniquely identifying the information structure: there are multiple combinations of

the precisions of the private and public signals that generate the same value for KCG. By the same token,

any given value for KCG maps to a set of possible values for the pair (! f ,!b).

At first glance, this poses a challenge for the quantitative strategy proposed in this section. However,

as explained in Appendix B and illustrated in our application to inflation below, this challenge is resolved

by two key observations.

First, KCG puts a tight upper bound on the relative precision of the public signal. Intuitively, as infor-

mation gets more and more correlated, everybody’s expectations converge to those of a representative

agent, and KCG converges to zero. A high value for KCG therefore means necessarily either that there is

little public information to start with, or that people pay little attention to it.

Second, by varying the precision of public information between zero and the aforementioned upper

bound, we can span the entire range of values (! f ,!b) that are consistent with any given value of KCG.

In Appendix D.3, we implement this strategy in our application to inflation, which is the topic of the next

section, and show that the distortions reported therein under the simplifying assumption of no public

information represent a lower bound on the distortions obtained when public information is added.

6 Application to Inflation

We now apply our toolbox the context of inflation. We argue that the theory can not only rationalize

existing estimates of the Hybrid NKPC with some level of noise, but also do so with a level of noise con-

sistent with that inferred from CG’s evidence on expectations. We also illustrate how our theory ties the
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coefficients of the Hybrid NKPC to policy and market structures.14

6.1 Operationalizing the Theory

Consider the incomplete-information NKPC introduced in Section 2:15

ºt = ∑
1X

k=0
(¬µ)kEt [mct+k ]+¬(1°µ)

1X

k=0
(¬µ)kEt [ºt+k+1] , (25)

Unlike the representation obtained in Corollary 2, this equation is structural: it is invariant to the process

for the real marginal cost and the specification of information. But it is also hard to implement empiri-

cally, because it requires data on the term structure of the relevant forecasts over long horizons. This is

where our toolbox comes handy: using our results, we can connect the above structural equation both

to existing estimates of the Hybrid NKPC and to the available evidence on expectations.

To evaluate these connections, we henceforth interpret the time period as a quarter and impose the

following parameterization: ¬ = 0.99, µ = 0.6, and Ω = 0.95. The value of ¬ requires no discussion. The

value of µ is in line with micro data and textbook treatments of the NKPC. The value of Ω is obtained

by estimating an AR(1) process on the labor share, the empirical proxy for the real marginal cost used

in, inter alia, Galí and Gertler (1999) and Galí, Gertler, and Lopez-Salido (2005).16 Finally, the value of ∑

is left undetermined: because this parameter scales up and down the inflation dynamics equally under

any information structure, it is irrelevant for the conclusions drawn below.17

6.2 Connecting to Existing Estimates of the Hybrid NKPC

While an unrestricted estimation of the Hybrid NKPC allows ! f and !b to be free, our theory ties them

together: a higher !b can be obtained only if the noise is larger, which in turns requires ! f to be smaller.

A quick test of the theory is therefore whether the existing estimates of the Hybrid NKPC happen to satisfy

14Nimark (2008) foresaw the first part of our application by showing that an econometrician would estimate a Hybrid NKPC
on artificial data generated by his model. Relative to that paper, we offer a sharper illustration of this possibility and, most
importantly, let the evidence on expectations bear on the theory. Such a connection to the expectations evidence is also absent
from Woodford (2003), Mankiw and Reis (2002), Reis (2006), Kiley (2007), Maćkowiak and Wiederholt (2009, 2015) and Matejka
(2016). Melosi (2016) utilizes expectations data but studies a different issue, the signaling role of monetary policy. Finally, the
literature on adaptive learning (Sargent, 1993; Evans and Honkapohja, 2012) also allows for the anchoring of current outcomes
to past outcomes; see in particular Carvalho et al. (2017) for an application to inflation. But the anchoring found in our paper
has three distinct qualities: it is consistent with rational expectations; it is tied to the strength of the GE feedback; and it is
directly comparable to that found in the DSGE literature.

15Recall that ºt is the inflation rate, mct is the real marginal cost, ¬ 2 (0,1) is the discount factor, µ 2 (0,1) is the Calvo parame-
ter, and ∑> 0 is the slope of the NKPC. Appendix D.1 contains a detailed derivation, a discussion of the underlying assumptions,
and an explanation of a mistake in versions of this condition found in some prior work.

16We use seasonally adjusted business sector labor share as proxy for the real marginal cost, from 1947Q1 to 2019Q2. This
yields an estimate of Ω equal to 0.97 or 0.92 depending on whether we exclude or include a linear trend.

17In the textbook version of the NKPC, ∑ is itself pinned down by ¬ and µ. But the literature has provided multiple rationales
for why ∑ can differ from its textbook value (e.g., it can vary with the curvature of “Kimball aggregator”). For our purposes, this
amounts to treating ∑ as a free parameter.
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this restriction. We implement this test in Figure 2. The negatively slopped line depicts the aforemen-

tioned restriction. The crosses represent the three main estimates of the pair (! f ,!b) from Galí, Gertler,

and Lopez-Salido (2005), and the surrounding disks give the corresponding confidence regions.18
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Figure 2: Testing the Theory

Note: The straight line represents the relation between ! f and !b implied by the theory. Raising the level of noise

maps to moving northwest along this line. The darker, thicker segment of this line corresponds to the confidence

interval of KCG, the relevant moment of the inflation forecasts, as reported in column (1) of Table 1 Coibion and

Gorodnichenko (2015). The three crosses represent the three estimates of the pair (! f ,!b ) provided in Table 1 of

Galí, Gertler, and Lopez-Salido (2005), and the surrounding disks give the corresponding confidence regions.

As evident in the figure, the theory passes the aforementioned test: the existing estimates of the

Hybrid NKPC can be rationalized by some level of noise.19 But is the requisite level of noise empirically

plausible? We address this question next by making use of the mapping developed in Section 5.

6.3 Bringing in the Evidence on Expectations

As already noted, CG have run regression (23) using data from the Survey of Professional Forecasters.20

Their main OLS specification, reported in column (1) of Table 1 of that paper, yields a mean estimate for

18The three estimates are taken from Table 1 of that paper. In particular, the left one of the three points shown in Figure 2
corresponds to (! f ,!b ) = (0.618,0.374) and is obtained by the GMM estimation of the closed-form solution that expresses
current inflation as the sum of past inflation and all the expected future real marginal costs. The middle point corresponds to
(! f ,!b ) = (0.635,0.349) and is obtained by GMM estimation of the hybrid NKPC directly. Finally, the right point corresponds
to (! f ,!b ) = (0.738,0.260) and is obtained by a nonlinear instrumental variable estimation.

19Mavroeidis, Plagborg-Møller, and Stock (2014) review the extensive literature on the empirical literature of the NKPC and
questions the robustness of the estimates provided by Galí, Gertler, and Lopez-Salido (2005). This debate is beyond the scope
of our paper. In any event, the exercise conducted next bypasses the estimation of the Hybrid NKPC on macroeconomic data
and instead infers it by calibrating our theory to survey data on expectations.

20In the present context, it would be preferable to have an estimate of KCG for the average forecasts of a representative sample
of US firms. Such an estimate is lacking in the literature, but the evidence in Coibion and Gorodnichenko (2012) suggests that
the friction among firms and consumers is, as one would expect, larger than that among professional forecasters.
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Figure 3: Response of Inflation to Higher Real Marginal Cost

KCG equal to 1.193, with a standard deviation of 0.185. Translating the 95% confidence interval through

the mapping developed in Section 5 yields the darker, thicker segment in Figure 2. This segment thus

identifies the combinations of (! f ,!b) that can be rationalized with a level of noise consistent with the

expectation evidence in CG.

Clearly, only the third of the three estimates provided by Galí, Gertler, and Lopez-Salido (2005), that

corresponding to the furthest right point in the figure, is noticeably away from this segment. This hap-

pens to be the estimate that these authors trust the least for independent, econometric, reasons. We

conclude that, when the theory is disciplined by the evidence in CG, it generates distortions broadly in

line with existing estimates of the Hybrid NKPC. More succinctly, the informational friction implicit in

the expectations data may alone account for all the observed inertia in inflation.

6.4 A Decomposition

The quantitative implications of the theory are further illustrated in Figure 3. This figure compares the

impulse response function of inflation under three scenarios. The solid line corresponds to frictionless

benchmark. The dashed line corresponds to the frictional case, calibrated to the mean estimate of KCG

reported above. The circled dotted line is explained shortly.

As evident in the figure, the quantitative bite of the informational friction is significant: the impact

effect on inflation is about 60% lower than its complete-information counterpart, and the peak of the

inflation response is attained 5 quarters after impact rather than on impact. But what drives this quanti-

tative bite? The lack of information about the real marginal cost (the PE component), or the beliefs about

inflation (the GE component)?

The answer to this question is provided by the circled dotted line in Figure 3. This line represents
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a counterfactual that shuts down the effect of the informational friction on the expectations of the be-

havior of others (inflation) and isolates its effect on the the expectations of the fundamental (the real

marginal cost). As evident in the figure, this counterfactual is very close to the complete-information

benchmark and far away from the incomplete-information case. It follows that most of documented

quantitative bite is due to the GE channel, or the anchoring of the expectations of inflation.21

6.5 Cross-Sectional Moments

Thus far we have disregarded the individual-level evidence of Bordalo et al. (2020) and Broer and Kohlhas

(2019). For the reasons explained in Section 5, this evidence can be matched by letting agents be over-

or under-confident, without influencing any of the preceding findings. This, however, does not mean

that such evidence has no bite on the quantitative performance of the model. If we use the CG moment

in combination with the individual-level counterpart estimated in the aforementioned papers, we can

jointly identify æ̂ and æ̂, the perceived and the actual level of noise. We can then further test the model

by looking at its predictions for other, non-targeted moments, such as the cross-sectional dispersion of

the individual forecast errors or that of the individual forecast revisions.

We implement this test in Table 1. We continue to denote with KCG the coefficient of regression (23),

and we denote with KBGMS/BK the individual-level counterpart. We then consider three sets of estimates

for these coefficients. The first corresponds to Coibion and Gorodnichenko (2015) and to the exercise

conducted above. The second and the third sets are from Bordalo et al. (2020) and Broer and Kohlhas

(2019), respectively.22 For each set, we report the identified belief parameters, the implied degrees of

myopia and anchoring, and the model’s predictions about the aforementioned cross-sectional moments.

We finally compare the latter to their empirical counterparts.

As explained in the legend of the table, we consider two possible normalizations of the cross-sectional

moments. Some normalization is needed because the analysis so far has been silent about the scale

of the fluctuations in inflation. In one, we normalize by the unconditional volatility of the quarter-to-

quarter change in inflation. In the other, we normalize by the unconditional volatility of the level of

inflation. We a priori prefer the first normalization, because our model is not supposed to capture low-

frequency phenomena (e.g., great moderation) that may be “polluting” the second measure. But the

model does a good job in both cases.

21The decomposition offered in Figure 3 mirrors the decomposition of PE and GE effects introduced in Section 3.1. See
Appendix D.2 for the detailed construction.

22Though both papers confirm that the original CG findings that KCG is positive, they disagree on the sign of KBGMS. This
reflects differences in the treatment of outliers and other implementation details.
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Table 1: Moments on Average and Individual Inflation Forecasts

KCG KBGMS/BK æ̂ æ ! f !b

CG 1.19 0.00 1.76 1.76 0.52 0.43

BGMS 1.41 0.18 2.04 1.61 0.48 0.46

BK 1.27 -0.19 1.86 2.61 0.51 0.44

Forecast error dispersion Forecast revision dispersion
data1 model1 data2 model2 data1 model1 data2 model2

CG 2.08 2.03 0.40 0.24 1.97 1.63 0.38 0.19

BGMS 2.08 1.80 0.40 0.20 1.97 1.32 0.38 0.14

BK 2.08 2.98 0.40 0.34 1.97 2.31 0.38 0.26

Note: The three rows correspond to different estimates for KCG, the coefficient of regression (23), and KBGMS/BK, the individual-level counter-

part. In the first row, KCG is taken form Panel B, Table 1 of Coibion and Gorodnichenko (2015), and KBGMS/BK is fixed to zero. In the second row,

both KCG and KBGMS/BK are taken from Table 3 of Bordalo et al. (2020). And in the third row, they are taken from Table 1 of Broer and Kohlhas

(2019). The columns under forecast error dispersion correspond to the standard deviation of the cross-sectional forecast errors normalized by

the standard deviation of either the quarter-to-quarter change in inflation (columns with superscript 1) or the level of inflation (with super-

script 2). The columns under forecast revision dispersion correspond to the standard deviation of the cross-sectional forecast revisions with the

same normalizations.

6.6 Food for Thought

We wrap up our application to inflation with a few additional insights about the possible determinants

of the Hybrid NKPC implied by our analysis.

We start by studying the role of market concentration.23 To this goal, we modify the micro-foundations

as follows. There is now a continuum of markets, in each of which there is a finite number, N ∏ 2, of

competitors. We index the markets by m 2 [0,1] and the firms in a given market by i 2 {1, ..., N }. We let

consumers have nested-CES preferences, so that the demand faced by firm i in market m is given by

Yi ,m,t =
µ

Pi ,m,t

Pm,t

∂°√ µ
Pm,t

Pt

∂°"
Yt ,

where Pi ,m,t is the price of that firm, Pm,t is the price index of the market that firm operates in, Pt is the

aggregate price level, Yt is aggregate income, √ > 1 is the within-market elasticity of substitution and

≤ 2 (0,√) is the cross-market counterpart. We finally assume that each firm has complete information

about its own market but incomplete information about the entire economy.24

23We thank a referee for suggesting this direction.
24The logic for the offered result requires only that information is more correlated within a market than across markets, or

that firms face less higher-order uncertainty about their immediate links in the market network than about their remote links.
The sharper assumption that firms face no higher-order uncertainty about their immediate links only simplifies the exposition.
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Proposition 8. In the economy described above, Corollary 2 continues to hold, modulo the following mod-

ification: both distortions decrease with market concentration (i.e., they increase with N ).

The intuition behind this result is that a higher degree of market concentration increases the strategic

complementarity within markets and decreases it across markets. To the extent that firms know more

about their own market than about the entire economy, this amounts to a lower bite of higher-order

uncertainty, and therefore less myopia and less anchoring in the aggregate inflation dynamics.

This result links two empirical trends: the increase in market concentration (De Loecker, Eeckhout,

and Unger, 2020; Autor et al., 2020) and the reduction in inflation persistence (Cogley, Primiceri, and

Sargent, 2010; Fuhrer, 2010). Of course, this correlation does not establish causality. Still, the result

illustrates how our analysis sheds new light on the possible determinants of inflation persistence.

We conclude with two additional ideas along these lines. The first one regards the conduct of mone-

tary policy. Under the lens of our approach, a more hawkish monetary policy, such as that followed in the

post-Volker era, is predicted to contribute to lower inflation persistence by reducing the effective degree

of strategic complementarity in the firms’ pricing decisions.

The second idea regards the economy’s input-output structure. Rubbo (2020) has recently argued,

in a setting abstracting from informational frictions, that changes in the input-output structure help

explain the flattening of the NKPC. Our own analysis suggests that, in the presence of informational fric-

tions, such changes may have also influenced the endogenous persistence in inflation, or the backward-

looking component of the Hybrid NKPC.25

The exploration of these ideas is left for future work. But Section 8 paves the way for them by extend-

ing our tools to multi-variate systems and networks.

7 Application to Consumption and Bridge to HANK

Now we turn to the effects of incomplete information on aggregate demand. As already shown in Corol-

lary 3, the Euler equation is modified as if there is additional discounting together with habit persistence.

In this section, we illustrate the quantitative potential of this idea. We also build a bridge to the HANK

literature by showing that the habit-like sluggishness generated by the informational friction is amplified

when the agents with the highest MPC are also the ones with the most cyclical income (Patterson, 2019;

Flynn, Patterson, and Sturm, 2019).

25La’O and Tahbaz-Salehi (2020) make a similar point as Rubbo (2020) in a setting where nominal rigidity originates in in-
complete information, but abstract from forward-looking behavior and learning, which are the forces highlighted here.
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7.1 A HANK-like Extension

We consider a perpetual-youth, overlapping-generations version of the New Keynesian model, along the

lines of Piergallini (2007), Del Negro, Giannoni, and Patterson (2015), and Farhi and Werning (2019).

As in those papers, finite horizons (mortality risk) serve as convenient proxies for liquidity constraints,

self-control problems, and other micro-level frictions that help explain why most estimates of the MPC

in microeconomic data are almost an order of magnitude larger than that predicted by the textbook

infinite-horizon model. We take this basic insight a step further by letting heterogeneity in mortality risk

capture heterogeneity in the MPC. We couple this with heterogeneity in cyclical exposure. And, crucially,

we let information be incomplete.

There are n types, or groups, of consumers, indexed by g 2 {1, ...,n}, with respective mass ºg . In each

period, a consumer in group g remains alive with probability $g 2 (0,1]; with the remaining probability,

she dies and gets replaced by a new consumer of the same type. Consumers can trade actuarially fair

annuities, so the return to saving, conditional on survival, is Rt /$g . This makes sure that the mortality

risk does not distort intertemporal smoothing. Still, heterogeneity in !g matters because it maps to

heterogeneity in MPCs. On top of that, different groups can have different exposures to the business

cycle: the (log) income of group g is yg ,t =¡g yt , where¡g ∏ 0 is the elasticity of that group’s income with

respect to aggregate income and
P

g ºg¡g = 1.

These assumptions allow us to study how the propagation mechanism under consideration, namely

that related to incomplete information and higher-order beliefs, depends on heterogeneity in MPCs and

business-cycle exposures. But they also open the door to a separate propagation mechanism: the dy-

namics of wealth inequality and the associated role of fiscal policy. To isolate the effects of interest, to

nest the present application to the abstract analysis of Section 8, and to obtain a sharp theoretical result

(Proposition 9 below), we neutralize the second mechanism by letting appropriate fiscal transfers undo

any wealth inequality triggered by interest-rate shocks.26

As shown in Appendix E, the group-level spending can be expressed as follows:

cg ,t = mg¡g

1X

k=0
(1°mg )kE

g

t
[ct+k ]° (1°mg )

1X

k=0
(1°mg )kE

g

t
[rt+k ], (26)

where mg ¥ 1°¬$g , ¬ is the subjective discount rate, and E
g

t
is the average expectation. For each g ,

equation (26) follows from aggregating the consumption functions of the individuals within group g and

replacing their income in terms of aggregate consumption. The collection of these equations across

g recasts the demand block of the economy as a dynamic network among the various groups of con-

sumers. This echoes Auclert, Rognlie, and Straub (2019), which develops similar network representations

for more general HANK economies.

26An earlier draft had not clarified this assumption, without which the wealth distribution becomes a relevant state variable
for the aggregate dynamics. We thank Dmitriy Sergeyev for pointing out this. See Appendix E for details.
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Inspection of (26) reveals, first, that mg identifies the MPC of group g and, second, that the strategic

complementarity, or the Keynesian cross, depends on how the product mg¡g varies across groups, or

whether a higher MPC is positively correlated with a higher business-cycle exposure. Patterson (2019)

provides evidence of such a positive correlation and shows how it translates to a steeper Keynesian cross

in a static, complete-information context. In the light of our insight of how the as-if distortions intro-

duced by informational frictions depend on GE feedback mechanisms, one may expect such a positive

correlation to translate also to more myopia and habit-like persistence in the aggregate consumption

dynamics. We verify this intuition in part (iii) below, at least under the simplifying assumption of two

groups.

Proposition 9 (HANK). (i) Under complete information, there exists a scalar & > 0 such that aggregate

consumption obeys a textbook Euler condition of the following form:

ct =°&rt +Et [ct+1].

(ii) Under incomplete information, there exist scalars! f < 1 and!b > 0 such that aggregate consump-

tion obeys a hybrid Euler condition of the form:

ct =°&rt +! f Et [ct+1]+!bct°1,

where the scalar & > 0 is the same as that under complete information and the scalars ! f < 1 and !b > 0

are functions of æ and (ºg ,mg ,¡g )g2{1,...,n}.

(iii) Suppose there are two groups, with m1 > m2. An increase in ¡1, the business-cycle exposure of

high-MPC group, maps to a lower ! f and a higher !b , that is, more as-if myopia and anchoring in the

aggregate dynamics.

Part (i) mirrors an irrelevance result from Werning (2015). With complete information, the DIS curve

of our HANK economy is the same as a representative agent’s Euler condition. There is neither extra

discounting of the future nor habit-like persistence. Heterogeneity matters at most for &, the elasticity of

aggregate consumption with respect to the real interest rate.

Part (ii) extends Corollary 3 to heterogeneity in MPC and business-cycle exposure. Once again, in-

complete information amounts to adding myopia and habit-like persistence in the DIS curve. But now

heterogeneity interacts with information in shaping the magnitude of these distortions.

Part (iii) completes the picture by showing how exactly heterogeneity matters. An increase in the

business-cycle exposure of the high-MPC group (and a corresponding reduction in the business-cycle

exposure of the low-MPC group) translates to both more myopia and more habit-like persistence.

The basic logic behind this result was anticipated above. Its proof utilizes the techniques developed

in Section 8. In the remainder of this section, we use a numerical example to illustrate our findings.
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7.2 Numerical Example

Figure 4 compares four economies. The first one corresponds to the textbook, representative-agent

benchmark. We refer to this benchmark as “Complete Information” in the figure. The second economy

is a variant of the first one that adds habit persistence, of the type and magnitude found in the DSGE

literature.27 We refer to this economy as “Complete Info + Habit.” The remaining two economies remove

habit but add incomplete information. Both of them feature an average MPC equal to m = .30, which is

roughly consistent with the relevant evidence. The one referred to as “Incomplete Info” in the figure, ab-

stracts from heterogeneity; this is the economy described in Corollary 3. The other one, which is referred

to as “Incomplete Info + HANK” in the figure, adds heterogeneity: there are two groups of consumers,

with m1 = .55, m2 = .05, ¡1 = 2, and ¡2 = 0.28
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Figure 4: Response of Consumption to Lower Interest Rates

Let us first compare “Incomplete Info” to “Complete Info + Habit.” This extends the lesson of the

previous section from the inflation context to the consumption context: the informational friction alone

generates a similar degree of sluggishness as that generated by habit persistence in the DSGE literature.

Importantly, whereas the degree of habit assumed in that literature is far larger than that supported by

micro-economic evidence (Havranek, Rusnak, and Sokolova, 2017), the informational friction assumed

27In particular, we assume external habit and specify the per-period utility as log(Ct °bC̄t ), where Ct and C̄t denote, respec-
tively, own consumption and aggregate consumption. In equilibrium, C̄t = Ct and the log-linearized Euler condition reduces
to the following low of motion of consumption:

ct =°1°b

1+b
rt +

1
1+b

Et [ct+1]+ b

1+b
ct°1.

We finally set b = .7, which is in the middle of the macro-level estimates reported in the meta-analysis by Havranek, Rusnak,
and Sokolova (2017).

28For the incomplete-information economies, we target KCG = 0.9. This is in the middle of the range of values Angeletos,
Huo, and Sastry (2020) estimate when they repeat the CG regression on forecasts of unemployment, with the rationale being
that unemployment is a proxy for the output gap in the model.
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here is broadly consistent with survey evidence. This illustrates how our approach help merge the gap

between the micro and macro estimates of habit.

Relatedly, if we consider an extension with transitory idiosyncratic income shocks along the lines of

Appendix C, our economy can feature simultaneously two properties: a large and front-loaded response

to such shocks at the micro level, in line with the relevant microeconomic evidence; and a dampened

and sluggish response to monetary policy at the macro level, in line with the relevant macroeconomic

evidence. By contrast, if there was true habit persistence in consumption of the kind and level assumed

in the DSGE literature, the micro-level responses would also be dampened and sluggish, contradicting

the relevant microeconomic evidence. This idea is pushed further, and is more carefully quantified, in a

recent paper by Auclert, Rognlie, and Straub (2020).

Finally, let us inspect the economy “Incomplete Info + HANK.” Needless to say, this economy is not

meant to capture a realistic degree of heterogeneity: our two-group specification is only a gross ap-

proximation to the kind of heterogeneity captured in the quantitative HANK literature (e.g., Kaplan and

Violante, 2014; Kaplan, Moll, and Violante, 2018)). Nevertheless, this economy helps illustrate how such

heterogeneity, and in particular the kind of positive cross-sectional correlation between MPCs and in-

come cyclicality documented in Patterson (2019), can reinforce both the habit-like sluggishness and the

myopia-like dampening generated by incomplete information.

7.3 Informational Friction Plus Wealth Dynamics

In the preceding analysis we used appropriate fiscal transfers to make sure that the wealth distribution

is not a state variable for the aggregate dynamics and to nest the exercise into the analysis of Section 8.

We now shut down these transfers and study how the endogenous dynamics of wealth matter both in

isolation and in combination with our mechanisms.

Consider first the case with complete information and suppose again that there are two groups, with

only the high-MPC group being exposed to the business cycle (!1 <!2 and ¡1 > 0 =¡2), and consider a

negative innovation in ¥t . This causes, in equilibrium, an expansion. But because only the first group’s

income is exposed to it, and because the income increase is less than permanent, this group will try to

save some of this increase, while the second group has no such incentive. Along with the fact that the

total saving of the two groups has to be zero, this explains why the first group responds to the shock by

saving and accumulating wealth, whereas the second group responds by borrowing and accumulating

debt. But since the first group has a larger MPC, the accumulation of wealth by this group helps in-

crease aggregate spending in the future. This suggests that, even with complete information, the wealth

dynamics add persistence to the response of aggregate demand to interest-rate shocks.

We verify this intuition in Figure 5 and proceed to show how this source of persistence extends to the
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Figure 5: Shutting Down the Fiscal Transfers

case of incomplete information, without however upsetting, and indeed only reinforcing, our own mes-

sage. This figure compares the response of consumption to a negative (expansionary) interest rate shock

under four scenarios. Two of them replicate the complete-information and the incomplete-information

HANK cases from Figure 4. The remaining two show how the results change when fiscal transfers are

switched off and, equivalently, the aforementioned wealth channel is switched on. Regardless of the

information structure, this channel adds persistence.29 The effect of the informational friction, which

is our own focal point, is qualitatively the same whether the wealth channel is present or not. Perhaps

more interestingly, the two mechanisms reinforce each other, yielding a much more pronounced hump-

shaped response than each mechanism alone.

8 Multivariate Systems, or Networks

We close the paper with the extension of our analytical results to multi-variate systems, or networks. We

already made implicit use of this extension in our HANK application. Here, we fill in the details and

develop tools that could aid analytical and quantitative evaluations of how informational frictions and

network structures interact in a variety of applications.

The economy consists of n groups, each containing a continuum of agents. Groups are indexed by

g 2 {1, ...,n}, agents by (i , g ) where i 2 [0,1] is an agent’s name and g her group affiliation (e.g., consumer

or firm). The best response of agent i in group g is specified as follows:

ai ,g ,t ='gEi ,g ,t [ªt ]+ØgEi ,g ,t [ai ,g ,t+1]+
nX

j=0
∞g jEi ,g ,t [a j ,t+1]. (27)

The parameter 'g captures the direct, contemporaneous exposure of an agent in group g to the exoge-

nous shock, holding constant her expectations of both her own future actions and the actions of others.

29This channel also adds amplification. To focus on the persistence effects, in the figure we renormalize the magnitude of the
shock as we change the fiscal rule so that the complete-information response of consumption on impact remains 1.
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The parameter {Øg } captures the additional, forward-looking, PE effect that obtains because of the con-

sideration of own future actions. Finally, the parameter {∞g , j } captures the dependence of the optimal

action of an agent in group g to her expectation of the average action of group j . This allows for rich

strategic of GE interactions both within groups (when j = g ) and across groups (when j 6= g ).30

Turning now to the information structure, this is specified as a collection of private Gaussian signals,

one per agent and per period. The period-t signal received by agent i in group t is given by

xi ,g ,t = ªt +ui ,g ,t , ui ,g ,t ªN (0,æ2
g

). (28)

where æg ∏ 0 parameterizes the noise of group g . Notice that, by allowing æg to differ across g , we can

accommodate information heterogeneity in addition to payoff and strategic heterogeneity. For instance,

firms could be more informed than consumers on average, and “sophisticated” consumers could be

more informed than “unsophisticated” ones.

Let at = (ag ,t ) be a column vector collecting the aggregate actions of all the groups (e.g., the vector of

aggregate consumption and aggregate inflation). Let ' = ('g ) be a column vector containing the value

of 'g across the groups. Let Ø = diag
©
Øg

™
be a n £n diagonal matrix whose off-diagonal elements are

zero and whose diagonal elements are the values of Øg across groups. Finally, let ∞ = (∞g k ) be an n £n

matrix collecting the interaction parameters, ∞g j , and let ±¥Ø+∞. Similarly to Section 2, we impose that

Øg 2 (0,1) and the spectral radius of (I°Ø)°1∞ is less than 1. The following extensions of Propositions 2

and 3 are then possible.

Proposition 10 (Solution). There exists a unique equilibrium, and the aggregate outcome ag ,t of each

group g is given by

ag ,t =
nX

j=1
√g , j

8
<

:
1° # j

Ω

1°# j L
ªt

9
=

; , (29)

where {√g , j } are fixed scalars, characterized in Appendix A, and {#g } are the inverse of the outside roots of

the following polynomial:

C (z) = det

√

(±°∞° Iz) diag
n

z
2 °

√

Ω+ 1
Ω
+ 1

Ωæ2
g

!

z +1
o
° z diag

n 1

Ωæ2
g

o
∞

!

. (30)

Proposition 11 (Observational Equivalence). There exist matrices ! f and !b such that the incomplete-

information economy is observationally equivalent to the following complete-information economy:

at ='ªt +! f ±Et [at+1]+!b at°1. (31)
30Like our baseline framework, the extension considered here rules out the dependence of an agent’s best response on the

concurrent choices of others. This, however, is without serious loss of generality for two reasons. First, in all applications of
interest, this dependence vanishes as the length of the time period goes to zero. Second, if we incorporate a general form of
such dependence by adding the term

P
j Æg ,iEi , j ,t [ai , j ,t ] in equation (27), the results stated below, namely Propositions 10 and

11, continue to hold, modulo a minor adjustment in the cubic that appears in condition (29).
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One subtlety with representation (31) is that it is not unique: there are multiple values of the ma-

trices ! f and !b that replicate the incomplete-information equilibrium. Intuitively, it is possible to

make agents myopic vis-a-vis the future by letting them discount enough either only their own group’s

future actions, or the future actions of other groups too.31 This complicates the interpretation and the

comparative statics of the provided representation but is of little substantial consequence: although the

representation in terms of condition (31) is not unique, the equilibrium itself is determinate, and so are

its observable properties, which can be directly obtained from Proposition 10.

Proposition 10 is indeed quite telling. It shows that the equilibrium outcome can now be expressed

as a linear combination of n terms, each of which is an AR(2) process that has a similar structure as in

our baseline analysis. The one root of these processes is the same across g and is given, naturally, by that

of the fundamental. The other root, denoted above by #g , encodes how the information friction faced by

group g interacts with the network structure of the economy.

In the knife-edge case in which ∞ is diagonal, meaning that the behavior of each group is indepen-

dent of that of other groups, each #g is pinned down by the characteristics of group g alone and the

outcome of that group is given by the corresponding AR(2) process alone (√g , j = 0 for j 6= g ). For generic

∞, instead, each #g depends on the entire Ø and ∞ matrices, that is, on all the PE and GE parameters, as

well as on all the information parameters. Furthermore, the outcome of a group depends on all the n

different AR(2) processes.

To illustate how the network structure matters, let Ø= 0 and æg =æ for all g . In this case, we show in

Appendix A that the polynomial given in condition (30) reduces to the product of n quadratics, one for

each #g . Furthermore, each #g is determined in the same manner as in our baseline analysis, namely as

the reciprocal of the largest solution of cubic (17), with the g -th eigenvalue of the matrix∞ in place of the

scalar ∞. Because the eigenvalues of ∞ encode the GE feedback both within and across groups, we have

that an increase in either kind of feedback maps to a higher #g and, thereby, to both less amplitude and

more volatility. The essence of our baseline analysis is thus fully preserved.

Finally, note that the results presented here not only offer a robustness of our main insights to multi-

variate systems and networks, but also a straightforward numerical algorithm: one only needs to solve

the polynomial in condition (30).

9 Conclusion

We developed a toolbox for analyzing and quantifying the equilibrium effects of informational frictions

and of the associated higher-order uncertainty. We represented these effects as the combination of two

31Indeed, both of the following two choices are possible: let! f have unit off-diagonal elements, meaning that a distortion is
applied only to expectations of own-group future outcomes; or let the elements of each row of ! f be the same, meaning that
the same distortion is applied to all expectations. If one of these choices is made, there is no residual indeterminacy.
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behavioral distortions: a form of myopia, or extra discounting of the future; and a form of habit, or

anchoring of current behavior to past behavior. We further showed how these as-if distortions increase

with the strength of the underlying strategic interaction or GE feedback, and how they can be disciplined

with available evidence on expectations. And we used these results to argue that the friction implicit in

survey evidence of expectations is large enough to generate a comparable amount of sluggishness in the

dynamics of inflation and aggregate spending as that captured in the DGSE literature with more ad hoc

modeling devices.

While connecting the theory to the available evidence on expectations, we clarified which such ev-

idence is best suited for the purpose of quantifying the distortions of interest: it is evidence on average

forecasts, such as that provided in Coibion and Gorodnichenko (2015), as opposed to evidence on indi-

vidual forecasts, such as that provided in Bordalo et al. (2020) and Broer and Kohlhas (2019). Left outside

this paper was a more comprehensive investigation of the lessons contained in surveys of expectations

for macroeconomic theory.

We undertake this task in a follow-up paper (Angeletos, Huo, and Sastry, 2020). There, we use a vari-

ety of existing evidence along with new evidence of our own to argue that, among a large set of candidate

theories, the one that best accounts for the joint dynamics of inflation, aggregate spending and forecasts

thereof in the US is a theory that blends two frictions: incomplete information or rational inattention, as

in the present paper and the literature we have built on; and over-extrapolation, as in Greenwood and

Shleifer (2014) and Gennaioli, Ma, and Shleifer (2015). This points in the opposite direction than cogni-

tive discounting and level-k thinking, two close cousins of under-extrapolation, but leaves room for the

kinds of myopia and anchoring accommodated via our approach.

Another element of our contribution was to extend our tools to multi-variate systems and networks.

We illustrated the use of these extended tools within a HANK economy. Other possible applications in-

clude production networks, whether in the context of the NKPC (La’O and Tahbaz-Salehi, 2020; Rubbo,

2020) or in the context of the RBC framework (Acemoglu et al., 2012; Baqaee and Farhi, 2019; Nimark,

Chahrour, and Pitschner, 2019), as well as dynamic extensions of the more abstract incomplete-information

networks studied in Bergemann, Heumann, and Morris (2017).
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ONLINE APPENDIX

The materials in this online appendix are organized as follows: Section A contains the proofs of

propositions in the main text. The next two sections extend the main theoretical results in two differ-

ent environments; Section B adds public signals and Section C introduces idiosyncratic fundamentals.

Section D contains various results that complement the analysis of inflation with incomplete informa-

tion in the main text. Section E contains the model details in the HANK application with incomplete

information. Section F and Section G apply our observational equivalence result in the contexts of in-

vestment and asset prices, respectively. Section H generalizes the main insights in an environment with

more flexible fundamental and signal processes. Section I shows how the observational equivalence

result is modified when allowing the fundamental to be driven by multiple shocks. Section J contains

proofs for additional propositions in this appendix.

A Proofs of Propositions in Main Text

Proof of Proposition 1

The proof follows from the main text.

Proof of Proposition 2

As a preliminary step, we look for the fundamental representation of the signals. Define ø¥ = æ°2
¥ and

øu = æ°2 as the reciprocals of the variances of, respectively, the innovation in the fundamental and the

noise in the signal. (In the main text, we have normalized æ¥ = 1.) The signal process can be rewritten as

xi ,t = M(L)

2

4 b¥t

bui ,t

3

5 , with M(L) =
h
ø
° 1

2
¥

1
1°ΩL

ø
° 1

2
u

i
.

Let B(L) denote the fundamental representation of the signal process. By definition, B(L) needs to be an

invertible process that satisfies the following requirement

B(L)B(L
°1) = M(L)M0(L

°1) =
ø°1
¥ +ø°1

u
(1°ΩL)(L°Ω)

(1°ΩL)(L°Ω)
. (32)

This condition implies that

B(L) = ø
° 1

2
u

r
Ω

∏

1°∏L

1°ΩL
,

where ∏ is the inside root of the numerator in the last term of equation (32)

∏ = 1
2

"

Ω+ 1
Ω

µ
1+ øu

ø¥

∂
°

sµ
Ω+ 1
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µ
1+ øu
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°4
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. (33)
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The forecast of a random variable

ft = A(L)

2

4 b¥t

bui ,t

3

5

can be obtained by using the Wiener-Hopf prediction formula:32

Ei ,t [ ft ] =
£
A(L)M0(L

°1)B(L
°1)°1§

+ B(L)°1
xi ,t .

Now we proceed to solve the equilibrium. Denote agents’ equilibrium policy function as

ai ,t = h(L)xi ,t

for some lag polynomial h(L). The aggregate outcome can then be expressed as follows:

at = h(L)ªt =
h(L)

1°ΩL
¥t .

In the sequel, we verify that the above guess is correct and characterize h(L).

Consider the forecast of the fundamental. Note that

ªt =
h
ø
° 1

2
¥

1
1°ΩL

0
i
2

4 b¥t

bui ,t

3

5 ,

from which it follows that

Ei ,t [ªt ] =G1(L)xi ,t , G1(L) ¥ ∏

Ω

øu

ø¥

1
1°Ω∏

1
1°∏L

.

Consider the forecast of the future own and average actions. Using the guess that ai t+1 = h(L)xi ,t+1 and

at+1 = h(L)ªt+1, we have

at+1 =
h
ø
° 1

2
¥

h(L)
L(1°ΩL) 0

i
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5 , ai ,t+1 °at+1 =
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and the forecasts are

Ei ,t [at+1] =G2(L)xi ,t , G2(L) ¥ ∏
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Now, turn to the fixed point problem that characterizes the equilibrium:

ai ,t = Ei ,t ['ªt +Øai ,t+1 +∞at+1]

Using our guess, we can replace the left-hand side with h(L)xi ,t . Using the results derived above, on the

other hand, we can replace the right-hand side with
£
G1(L)+ (Ø+∞)G2(L)+ØG3(L)

§
xi ,t . It follows that

32See Whittle (1963) for more details about Wiener-Hopf prediction formula.
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our guess is correct if and only if

h(L) =G1(L)+ (Ø+∞)G2(L)+ØG3(L)

Equivalently, we need to find an analytic function h(z) that solves

h(z) ='
∏
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øu

ø¥

1
1°Ω∏

1
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which can be transformed as

C (z)h(z) = d(z;h(∏),h(0))

where

C (z) ¥ z(1°∏z)(z °∏)° ∏
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Note that C (z) is a cubic equation and therefore contains with three roots. We will verify later that there

are two inside roots and one outside root. To make sure that h(z) is an analytic function, we choose h(0)

and h(∏) so that the two roots of d(z;h(∏),h(0)) are the same as the two inside roots of C (z). This pins

down the constants {h(0),h(∏)}, and therefore the policy function h(L)

h(L) =
µ
1° #

Ω

∂
'

1°Ω±
1

1°#L
,

where #°1 is the root of C (z) outside the unit circle.

Now we verify that C (z) has two inside roots and one outside root. C (z) can be rewritten as

C (z) =∏
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3 +
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With the assumption that Ø > 0, ∞ > 0, and Ø+∞ < 1, it is straightforward to verify that the following

properties hold:

C (0) =Ø> 0

C (∏) =°∏∞ 1
Ω

øu

ø¥
< 0

C (1) = øu(1°Ø°∞)
ø¥Ω

+ (1°Ø)
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1
Ω
+Ω°2

∂
> 0
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Therefore, the three roots are all real, two of them are between 0 and 1, and the third one #°1 is larger

than 1.

Finally, to show that # is less than Ω, it is sufficient to show that

C

µ
1
Ω

∂
= øu(1°ΩØ°Ω∞)

ø¥Ω3 > 0.

Since C (#°1) = 0, it has to be that #°1 is larger than Ω°1, or #< Ω.

Proof of Proposition 3

The equilibrium outcome in the hybrid economy is given by the following AR(2) process:

at =
≥0

1°≥1L
ªt ,

where

≥1 =
1

2! f ±

≥
1°

q
1°4±! f !b

¥
and ≥0 =

'≥1

!b °Ω! f ±≥1
, (34)

and ±¥Ø+∞. The solution to the incomplete-information economy is

at =
µ
1° #

Ω

∂
'

1°Ω±
1

1°#L
ªt .

To match the hybrid model, we need

≥1 =# and ≥0 =
µ
1° #

Ω

∂
'

1°Ω± . (35)

Combining (34) and (35), and solving for the coefficients of ! f and !b , we infer that the two economies

generate the same dynamics if and only if the following two conditions hold:

! f =
±Ω2 °#
±(Ω2 °#2)

, (36)

!b = #(1°±#)Ω2

Ω2 °#2 . (37)

Since ±¥Ø+∞ and since # is a function of the primitive parameters (æ,Ω,Ø,∞), the above two conditions

give the coefficients ! f and !b as as functions of the primitive parameters, too.

It is immediate to check that ! f < 1 and !b > 0 if # 2 (0,Ω), which in turn is necessarily true for any

æ> 0; and that ! f = 1 and !b = 0 if #= Ω, which in turn is the case if and only if æ= 0.
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Proof of Propositions 4 and 5

To prove the comparative statics, we first show that ! f is decreasing in # and !b is increasing in #. This

can be verified as follows

@! f

@#
= °±(Ω2 +#2)+2±2Ω2#

(±(Ω2 °#2))2 < °±(Ω2 +#)+2±Ω#
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(Ω2 °#2)2 > Ω2(Ω2 +#2 °2#Ω)
(Ω2 °#2)2 =

µ
Ω

Ω+#

∂2

> 0.

Now to prove Proposition 5, it is sufficient to show that # is increasing in ∞. Note that

C

µ
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ø¥Ω3 > 0 and C
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1
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∂
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∞Ø
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By the continuity of C (z), it must be the case that C (z) admits a root between 1
Ω and 1

∏ . Recall from the

proof of Proposition 2, #°1 is the only outside root, and it follows that ∏<#< Ω. It also implies that C (z)

is decreasing in z in the neighborhood of z = #°1, a property that we use in the sequel to characterize

comparative statics of #.

Next, using the definition of C (z), namely

C (z) ¥°z
3 +
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taking its derivative with respect to ∞, and evaluating that derivative at z =#°1, we obtain

@C (#°1)
@∞

=° øu

Ωø¥
< 0.

Combining this with the earlier observation that @C (#°1)
@z

< 0, and using the Implicit Function Theorem,

we infer that # is an increasing function of ∞.

Similarly, taking derivative with respect to øu , we have

@C (#°1)
@øu

= 1
Ωø¥

#°1(#°1 °Ø°∞) > 1
Ωø¥

#°1(1°Ø°∞) > 0.

Since øu =æ°2, we conclude that # is also increasing in æ.

Proof of Proposition 6

Given the law of motion of the aggregate outcome at = '
1°±Ω

≥
1° #

Ω

¥
1

1°#L
ªt , the average forecasts of at+1

and at+2 can be obtained by applying the Wiener-Hopf prediction formula:
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The average forecast error and the average forecast revision are defined as

Errort ¥ at+1 °Et [at+1], Revisiont = Et [at+1]°Et°1[at+1],

and it follows that

Cov(Errort ,Revisiont ) =
µ

'

1°±Ω

∂2 ∏#2(Ω°∏)(1°Ω#)(Ω+#°∏Ω#)
Ω4(1°∏2)(#°∏)2(1°∏#)5

+
µ

'

1°±Ω

∂2 ∏(∏°Ω)(Ω+#°∏Ω#)(∏Ω+∏#°Ω#°∏2Ω#)
Ω2(1°∏2)(#°∏)(1°∏#)2

Var(Revisiont ) =
µ

'

1°±Ω

∂2 (∏°Ω)2(Ω+#°∏Ω#)2

Ω2(1°∏2)(1°∏#)2 .

The moment KCG can be computed as

KCG = Cov(Errort ,Revisiont )
Var(Revisiont )

=∏
#+Ω°Ω#(∏+#)°Ω∏#(1°∏#)

(Ω°∏)(1°∏#)(Ω+#°∏Ω#)
,

which is the formula given in the Proposition.

Consider next the partial derivatives of KCG with respect to ∏ and #:

@KCG

@∏
=

0

@ µ4∏2Ω
°
∏2 °

Ω2 +1
¢
°4∏Ω+Ω2 +1

¢
°µ3 °

4∏3Ω3 +∏2 °
1°6Ω2¢+Ω2¢ ,

+µ2Ω
°
∏2 °

6Ω2 °1
¢
°4∏Ω°Ω2 +1

¢
+2µΩ2(1°2∏Ω)+Ω3

1

A

(1°µ∏)2(Ω°∏)2(µ+Ω°µ∏Ω)2 . (38)

@KCG

@#
=°

µ∏
°
2Ω(1°µ∏)+µ

¢

(1°µ∏)2(µ+Ω°µ∏Ω)2 (39)

It is possible to verify that 0 <∏<#< Ω < 1 implies

@KCG

@∏
> 0 > @KCG

@#
.

Because # increases in ∞ and ∏ is invariant in ∞, we immediately have that KCG is decreasing in ∞, as

stated in the Proposition.

What remains is to prove that KCG is increasing in æ. This is complicated because æ has opposing

effects via ∏ and #. The rest of the proof deals with this complication. Because the calculations involved

are highly cumbersome, we have done them with the help of the analytical tools in Mathematica.

Because ∏ is a monotone transformation of æ, we can re-express # as function of ∏ and take the total

derivative of KCG with respect to ∏ instead of its total derivative with respect to æ. That is, we seek to

prove dKCG
d∏ > 0, where

dKCG

d∏
= @KCG

@∏
+ @KCG

@#

@#

@∏
, (40)

@KCG
@∏ and @KCG

@# are the partial derivatives obtained above, and @#
@∏ is the derivative of # with respect to ∏

implied by the solution for #. The latter derivative is obtained by re-expressing the cubic in (17) in terms

of ∏ in place of æ and applying the Implicit Function Theorem. In particular, we first re-write the cubic
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as follows:

Ω(1°Øµ)(µ°∏)(1°µ∏)°∞µ2(Ω°∏)(1°∏Ω) = 0. (41)

We then apply the Implicit Function Theorem to obtain

@#

@∏
=

Ω(Øµ°1)
°
µ2 °2µ∏+1

¢
+∞µ2 °

°2∏Ω+Ω2 +1
¢

Ω
°
Ø

°
3µ2∏°2µ

°
∏2 +1

¢
+∏

¢
°2µ∏+∏2 +1

¢
°2∞µ

°
∏2Ω°∏

°
Ω2 +1

¢
+Ω

¢ . (42)

Next, we solve (41) for ∞:

∞= °(µ;∏,Ø,Ω) ¥ Ω(1°Øµ)(µ°∏)(1°µ∏)
µ2(Ω°∏)(1°∏Ω)

. (43)

This identifies the value of ∞ that induces as an equilibrium any given value form # in the admissible

range [∏,Ω). Replacing this value for ∞ into (42) allows us to re-express the latter as follows:

@#

@∏
=

µ
°
∏2 °1

¢
(Øµ°1)

°
µ2Ω°µ

°
Ω2 +1

¢
+Ω

¢

(∏°Ω)(∏Ω°1)
°
Øµ3∏°µ

°
Ø∏+∏2 +1

¢
+2∏

¢ . (44)

Combining the above with (38), (39), and (40), we obtain the following result:

dKCG

d∏
=

0

BBBBBBBBBBBBBBBBBBB@

Ø∏5Ω4µ6 +Ø∏3Ω4µ6 °5Ø∏4Ω3µ6 °Ø∏2Ω3µ6 +Ø∏5Ω2µ6 +5Ø∏3Ω2µ6 °Ø∏4Ωµ6 °Ø∏2Ωµ6

°3Ø∏4Ω4µ5 +Ø∏2Ω4µ5 +3Ø∏3Ω3µ5 +Ø∏2µ5 +3Ø∏4Ω2µ5 °2Ø∏2Ω2µ5 °3Ø∏3Ωµ5 °∏6Ω4µ4

°Ø∏5Ω4µ4 °2∏4Ω4µ4 +4Ø∏3Ω4µ4 °∏2Ω4µ4 °2Ø∏Ω4µ4 +Ø∏3µ4 +5∏5Ω3µ4 +3Ø∏4Ω3µ4 +8∏3Ω3µ4

°3Ø∏2Ω3µ4 °∏Ω3µ4 °∏6Ω2µ4 °Ø∏5Ω2µ4 °8∏4Ω2µ4 °2Ø∏3Ω2µ4 °4∏2Ω2µ4 +2Ø∏Ω2µ4 +Ω2µ4

+∏5Ωµ4 °Ø∏4Ωµ4 +3∏3Ωµ4 +5∏5Ω4µ3 +3Ø∏4Ω4µ3 +2∏3Ω4µ3 °2Ø∏2Ω4µ3 +∏Ω4µ3 °2∏3µ3

°13∏4Ω3µ3 °7Ø∏3Ω3µ3 °6∏2Ω3µ3 +4Ø∏Ω3µ3 +Ω3µ3 +∏5Ω2µ3 +Ø∏4Ω2µ3 +7∏3Ω2µ3 +Ø∏2Ω2µ3

+2∏Ω2µ3 +2∏4Ωµ3 +Ø∏3Ωµ3 +∏2Ωµ3 °Ø∏Ωµ3 °Ωµ3 °9∏4Ω4µ2 °3Ø∏3Ω4µ2 °∏2Ω4µ2 +17∏3Ω3µ2

+5Ø∏2Ω3µ2 +∏Ω3µ2 °6∏2Ω2µ2 °2Ø∏Ω2µ2 °2Ω2µ2 °2∏3Ωµ2 +2∏Ωµ2 +7∏3Ω4µ+Ø∏2Ω4µ+∏Ω4µ

°11∏2Ω3µ°Ø∏Ω3µ°Ω3µ+4∏Ω2µ°2∏2Ω4 +2∏Ω3

1

CCCCCCCCCCCCCCCCCCCA

(1°µ∏)(1°∏Ω)
°
Ø∏µ3 °∏2µ°Ø∏µ°µ+2∏

¢
(Ω°∏)2(∏Ωµ°µ°Ω)2

(45)

The proof is then completed by verifying that both the numerator and the denominator are positive.

Consider first the denominator and note that this is a decreasing linear function of Ø. It is therefore

positive if and only if Ø < µ∏2+µ°2∏
µ3∏°µ∏ . Because the latter fraction is decreasing in µ, it is bounded from

below by the limit of this fraction as #! Ω! 1. Because this limit is 1, which is necessarily higher than

Ø, we have that the denominator is necessarily positive.

Consider next the numerator. This, too, is a decreasing linear function of Ø. And it is positive if and
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only if

Ø<Ø# ¥

0

BBBBB@
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°
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°∏5 °
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+∏2Ω

°
Ω2 +4

¢
+∏Ω2 °Ω

¢

°µ3 °
∏5 °

5Ω4 +Ω2¢+∏4 °
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°
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¢
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¢
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Ω°3Ω3¢+∏2 °

°4Ω4 +2Ω2 °1
¢
+3∏Ω3 +2Ω2 °

Ω2 °1
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+

µ2Ω
°
∏3 °

3Ω3 +Ω
¢
+∏2 °

1°7Ω2¢+∏
°
Ω°2Ω3¢+4Ω2 °1

¢
+µΩ2 °

°3∏2Ω2 +5∏Ω°2
¢
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1

CCA

To verify that the above is necessarily true, we return to condition (43).

Recall that this condition gives the value of ∞ that induces a given µ as an equilibrium. Using this, the

primitive Ø+∞< 1 can be re-expressed as Ø+°(µ;∏,Ø,Ω) < 1, or equivalently

Ø< b
§ ¥ µ2∏2Ω+µ2(°∏)Ω2 +µ2∏Ω°µ2∏+µ2Ω°µ∏2Ω°µΩ+∏Ω

µ3∏Ω°µ2∏Ω2 °µ2∏+µ∏Ω . (46)

We thus have that Ø< b
§ is necessarily satisfied. If we prove that b

§ ∑Ø# is also satisfied, we are done.

Let F (∏,#,Ω) denote difference Ø# °b
§ as a function of (∏,#,Ω); this function is obtained simply by

using the definitions of these thresholds. We have used Mathematica to verify numerically that F takes

non-negative values over the entire [0,1]3 set, which itself necessarily contains the admissible values of

(∏,#,Ω). We conclude that both the numerator and the denominator in (45) are positive, which means

that KCG is increasing in ∏ (equivalently, in æ).

Proof of Proposition 7

The proof follows from the main text.

Proof of Proposition 8

See Appendix D.4.

Proof of Proposition 9

Assume that all agents across groups share the same information structure by receiving a private signal

about the interest rate rt

xi ,g ,t = rt +ui ,g ,t , ui ,g ,t ªN (0,æ2).

We proceed with a guess-and-verify approach. The conjecture is that the law of motion of the aggre-

gate consumption ct is given by the following AR(2) process for some scalars b and # 2 (°1,1),

ct =
b

(1°#L)(1°ΩL)
¥t = b

Ω

Ω°#ªt °b
#

Ω°#≥t .
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where ªt ¥ 1
1°ΩL

¥t and ≥t ¥ 1
1°#L

¥t . To simplify the notation, denote Æg ¥ mg¡g and Øg ¥ 1°mg . Con-

sider the individual best response in group g

ci ,g ,t =°Ei ,g ,t [rt ]+bÆg

µ
Ω

Ω°#Ei ,g ,t [ªt ]° #

Ω°#Ei ,g ,t [≥t ]
∂
+ØgEi ,g ,t [ci ,g ,t+1]

= 1
1°ØgΩ

µ
°1+bÆg

Ω

Ω°#

∂
Ei ,g ,t [ªt ]° 1

1°Øg#
bÆg

#

Ω°#Ei ,g ,t [≥t ].

Due to the fact that the signal structure is independent of their group identity, the average expectation

across the economy is the same as that within the group. The average forecasts of ªt and ≥t are given by

Et [ªt ] =
µ
1° ∏

Ω

∂
1

(1°ΩL)(1°∏L)
¥t ,

Et [≥t ] =
µ
1° ∏

Ω

∂
1°Ω∏
1°#∏

1
(1°#L)(1°∏L)

¥t ,

where ∏ is defined in equation (33). It follows that the average action of group g is

cg ,t =
1

1°∏L

µ
1° ∏

Ω

∂n 1
1°ØgΩ

µ
°1+bÆg

Ω

Ω°#

∂
1

1°ΩL
° 1

1°Øg#
bÆg

#

Ω°#
1

1°#L

o
¥t .

The aggregate consumption is a weighted average of the actions across different groups

ct =
X

g

ºg cg ,t ,

= 1
1°∏L

µ
1° ∏

Ω

∂nX

g

ºg

1
1°ØgΩ

µ
°1+bÆg

Ω

Ω°#

∂
1

1°ΩL
°

X

g

ºg

1
1°Øg#

bÆg

#

Ω°#
1

1°#L

o
¥t ,

¥ 1
1°∏L

µ
1° ∏

Ω

∂
¢1 °¢2 ° (#¢1 °Ω¢2)L

(1°ΩL)(1°#L)
,

where

¢1 =
X

g

ºg

1
1°ØgΩ

µ
°1+bÆg

Ω

Ω°#

∂
,

¢2 =
X

g

ºg

1
1°Øg#

bÆg

#

Ω°# .

To verify the conjecture, we need to make sure that the actual outcome follows the same AR(2) process

as the conjectured one. By matching coefficients, it has to be that

¢1 =
Ω°∏
#°∏¢2, (47)

b =
µ
1° ∏

Ω

∂
(¢1 °¢2). (48)

Note that without informational frictions, the aggregate outcome is given by

ct = b
§ªt , with b

§ =°
P

g ºg
1

1°ØgΩ

1°P
g ºg

Æg

1°ØgΩ

.
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The consumption under perfect information satisfies the standard Euler equation

ct =°&rt +Et [ct+1],

where °&¥ (1°Ω)b
§.

Going back to the incomplete-information economy, it follows from (47) and(48) that the scale b is

given by

b =
µ
1° #

Ω

∂
b
§,

and # is the inside root of the following equation

C (z) = (1° z∏)(z °∏)Ω° z(1°∏Ω)(Ω°∏)
X

g

ºg

Æg

1°Øg z
.

Therefore, the aggregate consumption under incomplete information follows an AR(2) process, which is

the same as the baseline case. The particular form of the impact response captured by b also permits the

as-if representation, with ! f and !b now being functions of {ºg ,¡g ,mg }.

For the two-group case, the variable # is the inside root of the following condition by rewriting C (z)

as a polynomial equation

eC (z) = (1° (1°m1)z)(1° (1°m2)z)(1° z∏)(z °∏)Ω° z(1°∏Ω)(Ω°∏)Q,

where

Q =º1m1¡1(1° (1°m2)z)+º2m2¡2(1° (1°m1)z).

Denote ¡1 =¡, and by construction, we have ¡2 = 1°º1¡
º2

. It follows that

@Q

@¡
=º1(m1 °m2)(1° z).

Note that

eC (∏) =°∏(1°∏Ω)(Ω°∏)(º1m1¡1(1° (1°m2)∏)+º2m2¡2(1° (1°m1)∏)) < 0

eC (1) = m1m2∏(1°Ω)2 > 0.

Therefore, # 2 (∏,1) and eC (z) is increasing in the neighborhood of #. When m1 > m2, @Q

@¡ |z=# > 0. It

follows that # is increasing in ¡.
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Proof of Proposition 10

We first show that ifØg 2 (0,1) and the spectral radius of (I°Ø)°1∞ is less than 1, then there exists a unique

equilibrium. Recall that the individual’s best response is

ai ,g ,t ='gEi ,g ,t [ªt ]+ØgEi ,g ,t [ai ,g ,t+1]+
nX

j=0
∞g kEi ,g ,t [a j ,t+1] ='gEi ,g ,t

"
1

1°Øg L°1 ªt +
nX

j=0

∞g k L
°1

1°Øg L°1 a j ,t

#

The aggregate outcome for group g is then

ag ,t ='gEg ,t

"
1

1°Øg L°1 ªt +
nX

j=0

∞g k L
°1

1°Øg L°1 a j ,t

#

.

By an abuse of notation, we have

at = Et

£
(I°ØL

°1)°1'ªt + (I°ØL
°1)°1∞L

°1at

§
,

where Et denotes
h
E1,t . . . En,t

i0
. Denote e'¥ (I°ØΩ)°1' and ∑(L) ¥ (I°ØL

°1)°1∞L
°1. The aggregate

outcome at has the following representation

at = e'Et [ªt ]+Et

£
∑(L) e'Et [ªt ]

§
+Et

£
∑(L)Et

£
∑(L) e'Et [ªt ]

§§
+ . . .

The aggregate outcome has a unique solution if the power series above is a stationary process or the

variance of ag ,t is bounded for all g .

Note that: (1) Var(Et [X ]) ∏ Var(Et [Et+k [X ]]) for k ∏ 0; (2) Var(aX +bY ) ∑ (a
p

Var(X )+b
p

Var(Y ))2. To

show the variance of ag ,t is bounded, it is sufficient to show that
P1

k=0∑
k (1) is bounded. Since ∑(1) =

(I°Ø)°1∞, if the spectral radius of (I°Ø)°1∞ is less than 1,
P1

k=0∑
k (1) is bounded and at is stationary.

Now we show that the aggregate outcomes have to be a linear combination of n different AR(2) pro-

cesses. The signal for agents in group g is

xi ,g ,t = M(L)

2

4 b¥t

bui ,g ,t

3

5 , with M(L) =
h

1
1°ΩL

ø
° 1

2
g

i
.

Similar to the proof of Proposition 2, let Bg (L) denote the fundamental representation of the signal pro-

cess, which is given by

Bg (L) = ø
° 1

2
g

s
Ω

∏g

1°∏g L

1°ΩL
,

where ∏g is

∏g = 1
2

"

Ω+ 1
Ω

°
1+øg

¢
°

sµ
Ω+ 1

Ω

°
1+øg

¢∂2

°4

#

.

Denote the policy rule of agents in group g as hg (L), and the law of motion of the aggregate outcome in

group g is ag ,t =
hg (L)
1°ΩL

¥t . Agents need to forecast the fundamental, their own future action, the aggregate
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outcomes in each group, which are given by

Ei ,g ,t [ªt ] =
∏gøg

Ω(1°Ω∏g )
1

1°∏g L
xi ,g ,t ,

Ei ,g ,t
£
ak,t+1

§
=
∏gøg

Ω

µ
hk (L)

(1°∏g L)(L°∏g )
°

hk (∏g )(1°ΩL)

(1°Ω∏g )(L°∏g )(1°∏g L)

∂
xi ,g ,t ,

Ei ,g ,t
£
ai ,g ,t+1 °ag ,t+1

§
=
∏g

Ω

µ
hg (L)(L°Ω)

L(L°∏g )
°

h(∏g )(∏g °Ω)

∏g (L°∏g )
° Ω

∏g

hg (0)

L

∂
1°ΩL

1°∏g L
xi ,g ,t .

Using the best response, the fixed point problem is

hg (L)xi ,g ,t ='g

∏gøg

Ω(1°Ω∏g )
1

1°∏g L
xi ,g ,t +Øg

∏g

Ω

µ
hg (L)(L°Ω)

L(L°∏g )
°

hg (∏g )(∏g °Ω)

∏g (L°∏g )
° Ω

∏g

hg (0)

L

∂
1°ΩL

1°∏g L
xi ,g ,t

+
X

k

∞g ,k
∏gøg

Ω

µ
hk (L)

(1°∏g L)(L°∏g )
°

hk (∏g )(1°ΩL)

(1°Ω∏g )(L°∏g )(1°∏g L)

∂
xi ,g ,t

+Øg

∏gøg

Ω

µ
hg (L)

(1°∏g L)(L°∏g )
°

hg (∏g )(1°ΩL)

(1°Ω∏g )(L°∏g )(1°∏g L)

∂
xi ,g ,t .

The system of equation in terms of h(L) is

A(L)h(L) = d (L),

where

A(L) = diag
n

L(L°∏g )(1°∏g L)
o
°Ø diag

n∏g

Ω
(L°Ω)(1°ΩL)+

∏gøg

Ω
L

o
°diag

n∏gøg

Ω
L

o
∞,

and

dg (L) ='g

∏gøg

Ω(1°Ω∏g )
L(L°∏g )°Øg (L°∏g )(1°ΩL)hg (0)

°
√

Øg hg (∏g )
µ
∏g °Ω
Ω

+
∏gøg

Ω(1°Ω∏g )

∂
+

∏gøg

Ω(1°Ω∏g )

X

k

∞g ,k hk (∏g )

!

L(1°ΩL).

The solution is given by

h(L) = adj A(L)
detA(L)

d (L).

Utilizing the identify that

∏g +
1
∏g

= Ω+ 1
Ω
+ 1

Ωæ2
g

,

the matrix A(L) can be simplified to

A(L) =diag
n
°∏g L

√

L°
√

Ω+ 1
Ω
+ 1

Ωæ2
g

!

L+1

!o

+Ø diag
n
∏g

√

L°
√

Ω+ 1
Ω
+ 1

Ωæ2
g

!

L+1

!o
°diag

n∏gøg

Ω
L

o
∞.
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The roots of detA(z) is the same as the roots of

C (z) = det

√

(±°∞° Iz) diag
n

z
2 °

√

Ω+ 1
Ω
+ 1

Ωæ2
g

!

z +1
o
° z diag

n 1

Ωæ2
g

o
∞

!

.

Note that the degree of detA(L) is 3n. Denote the inside roots of detA(L) as {≥1, . . . ,≥n1 } and the out-

side roots as {µ°1
1 , . . . ,µ°1

n2
}. Because agents cannot use future signals, the inside roots have to removed.

Note that the number of free constants in d (L) is 2n:

{hg (0)}n

g=1, and

(

Øg hg (∏g )
µ
∏g °Ω
Ω

+
∏gøg

Ω(1°Ω∏g )

∂
+

∏gøg

Ω(1°Ω∏g )

X

k

∞g ,k hk (∏g )

)
n

g=1

. (49)

With a unique solution, it has to be the case that the number of outside roots is n. Also note that by

Cramer’s rule, hg (L) is given by

hg (L) =
det

h
A1(L) . . . Ag°1(L) d(L) Ag (L) . . . An(L)

i

detA(L)
.

The degree of the numerator is 3n°1 as the highest degree of dg (L) is 1 degree less than that of Ag ,g (L). By

choosing the constants in equation (49), the 2n inside roots will be removed. Therefore, the 2n constants

are solutions to the following system of linear equations:33

det
h

A1(≥i ) . . . Ag°1(≥i ) d(≥i ) Ag (≥i ) . . . An(≥i )
i
= 0, for i = 1, . . . ,n.

After removing the inside roots in the denominator, the degree of the numerator is n °1 and the degree

of the denominator is n. As a result, the solution to hg (L) takes the following form

hg (L) = 1
¶n

k=1(1°#k L)

nX

k=1

e√g ,k L
k°1 =

nX

k=1
√g ,k

µ
1° #k

Ω

∂
1

1°#k L
.

In the special case where Ø= 0 and æg =æ, we have

at ='Et [ªt ]+∞Et [at+1].

Denote the eigenvalue decomposition of ∞ as

∞¥ Q°1§Q,

where§= diag{µ1, . . . ,µn} is a diagonal matrix, and where ±g is the g -th eigenvalue of ∞. It follows that

Qat = Q'Et [ªt ]+§Et [Qat+1].

Denote eat ¥ Qat . Because§ is a diagonal matrix, it follows that eag ,t is independent of ea j ,t for g 6= j , and

eag ,t satisfies Proposition 2. The degree of complementarity for eag ,t is µg , and the corresponding #g is

33The set of constants that solve the system of equations for hg (L) also solves that for h j (L) where i 6= g . This is because
{≥i }n

i=1 are the roots of the determinant of A(L), leaving the vectors in A(≥i ) being linearly dependent.
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the reciprocal of the outside root of the following quadratic equation:

Cg (z) =°z
2 +

µ
Ω+ 1

Ω
+ 1
Ωæ2 +Øg

∂
z °

µ
1+Øg

µ
Ω+ 1

Ω

∂
+
Øg +µg

Ωæ2

∂
.

Because at is a linear transformation of eat , they share the same AR roots.

Proof of Proposition 11

Now we move to show there exists ! f and !b in the complete-information model to rationalize the

incomplete-information model solution. In the incomplete-information economy, the average action in

group g , ag ,t , is given by

ag ,t =
nX

k=1
√g ,k

µ
1° #k

Ω

∂
1

1°#k L
ªt .

Let µk,t ¥
≥
1° #k

Ω

¥
1

1°#k L
ªt , and it follows that

ag ,t =
nX

k=1
√g ,kµk,t .

Denote Q,§, and D as

Q ¥

2

6664

√1,1 . . . √1,n
...

. . .
...

√n,1 . . . √n,n

3

7775 , §¥

2

6664

#1

. . .

#n

3

7775 , D ¥

2

6664

1° #1
Ω

...

1° #n

Ω

3

7775 .

The vector that collects µk,t can be written as

µt ¥

2

6664

µ1,t
...

µn,t

3

7775=§µt°1 +Dªt ,

and the vector at that collects ag ,t is

at = Qµt = Q§Q°1at°1 +QDªt .

Define A ¥ Q§Q°1 and B ¥ QD, we have

at = Aat°1 +Bªt . (50)

In the perfect-information hybrid model, the law of motion of at follows

at ='ªt +! f ±Et [at+1]+!b at°1.
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If (50) is a solution to the perfection-information hybrid model, it has to be that

Aat°1 +Bªt ='ªt +! f ±
≥
ΩBªt +A(Aat°1 +Bªt )

¥
+!bat°1.

By method of undetermined coefficients, we have

! f ±(ΩB+AB) = B°',

!b = A(I°! f ±A).

Note that the dimension of B°' is n£1 and the dimension of! f is n£n. As a result, ! f is not uniquely

determined.

B The Role of Public Information

Throughout the main analysis, we have assumed that the noise is entirely idiosyncratic. We have thus as-

sumed away, not only correlated errors in expectations, but also the coordination afforded when agents

condition their behavior on noisy but public information (Morris and Shin, 2002). In this appendix, we

accommodate these possibilities by letting agents observe a public signal in addition to their private sig-

nals. We first explain how this modifies our observational equivalence result. We then explain how this

matters for our mapping between the theory and the expectations evidence.

B.1 Solution with a Public Signal

In addition to the private signal xi ,t = ªt +ui ,t considered so far, a public signal of the form

zt = ªt +≤t , (51)

where ui ,t ªN (0,æ2
u

) and ≤t ªN (0,æ2
≤) are, respectively, idiosyncratic and aggregate noises. We next let

æ°2 ¥ æ°2
u

+æ°2
≤ measure the overall precision of the available information about the fundamental and

¬¥ æ°2
≤

æ°2
u +æ°2

≤
the fraction of it that reflects public information, or common knowledge.34

Proposition 12. In the extension with public signals described above, the following properties are true.

(i) The equilibrium outcome is given by

at = a
ª
t
+ vt ,

where a
ª
t

is the projection of at on the history of ªt and vt is the residual.

34It is worth emphasizing that a “public signal” in the theory represents a piece of information that is not only available in
the public domain but also common knowledge: every agent observes and acts on it, every agent knows that every other agent
observes and acts on it, and so on. Such a signal is therefore at odds with the primary motivation of our paper. It may also not
have an obvious empirical counterpart. For instance, aggregate statistics could be effectively observed with idiosyncratic noise
due to rational inattention. Nevertheless, the incorporation of a perfect, common-knowledge public signal allows us to shed
additional light on the mechanics of the theory as well as on its empirical implications.
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(ii) a
ª
t

satisfies Propositions 2 and 3, modulo the replacement of the cubic seen in condition (17) with

the following:

C (z) ¥°z
3 +

µ
Ω+ 1

Ω
+ 1
Ωæ2 +

°
±°∞

¢∂
z

2 °
µ
1+

°
±°∞

¢µ
Ω+ 1

Ω

∂
+ ±°∞¬

Ωæ2

∂
z +

°
±°∞

¢
. (52)

(iii) Provided ∞ > 0, # is decreasing ¬ and, therefore, both ! f and !b get closer to their frictionless

counterparts as ¬ increases.

(iv) The residual ∫t follows an AR(1) process with innovation ≤t , the noise in the public signal.

Part (i) expresses the equilibrium outcome as the sum of two components: a “fundamental compo-

nent,” defined by the projection of at on the history of ªt ; and a residual, itself measurable in the history

of ≤t , the aggregate noise.

Part (ii) verifies that all our earlier results extend to the fundamental component here. In other words,

although the aggregate outcome is now contaminated by noise, our earlier results continue to character-

ize its impulse response function (IRF) with respect to the fundamental. Part (ii) also provides the mod-

ified cubic that pins down # (and, thereby, the distortions ! f and !b). The old cubic is readily nested in

the new one by setting ¬= 0.

Part (iii) highlights that, holding æ constant, an increase in ¬ maps to a smaller # and, thereby, to

smaller distortions, but only if ∞> 0; if instead ∞= 0, ¬ is irrelevant. To understand why, note that an in-

crease in ¬ for givenæmeans a substitution of private for public information. This maps to a smaller and

less persistent wedge between first- and higher-order beliefs holding constant the dynamics of the first-

order beliefs. By the same token, the PE effect of any given innovation remains unchanged, but its GE

effect, which is non-zero if and only if ∞ 6= 0, is enhanced and gets closer to its frictionless, representative-

agent counterpart.

In a nutshell, a higher ¬ represents an increase in the degree of common knowledge, which in turn

amounts to making GE considerations more salient. Clearly, this is a direct extension of the logic devel-

oped in our baseline analysis. But what is its empirical content? In particular, does our baseline specifi-

cation biases upwards the documented distortions by fixing ¬ at its lowest possible value? As illustrated

next, once the theory is required to match relevant evidence on expectations, the incorporation of pub-

lic information (¬> 0) may actually translate to higher distortions than those predicted by our baseline

specification (¬= 0).

Part (iv) makes it clear that the residual ∫t is itself an AR(1) transformation of the noise in the public

signal. This means that, unlike the fundamental component, the residual does not exhibit hump-shape

dynamics.

We find this property is intriguing. If one looks at the response of inflation to either identified mon-

etary shocks (Christiano, Eichenbaum, and Evans, 2005; Romer and Romer, 2004) or to the shock that

accounts for most of the business cycle volatility in unemployment, output, or the output gap (the MBC
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shock in Angeletos, Collard, and Dellas (2019)), one finds a hump shape. But if one looks at the residual,

which the DSGE literature captures with a markup shock, then one sees no hump shape. From this per-

spective, the introduction of public information helps the theory generate a “residual” in inflation that

is of the same type as that found in the data. And it helps reconcile why one sees a hump shape in one

dimension but not in another.

B.2 Revisiting the Mapping from KCG to (! f ,!b)

Ceteris paribus, the addition of public information reduces the documented distortions by increasing

the degree of common knowledge. But it also reduces the predictability of the average forecasts errors.

The relevant question is therefore how the accommodation of public information affects the lessons we

draw in this paper under the requirement that the theory continues to match the available evidence on

expectations.

In our benchmark, which abstracts from public information, the CG coefficient uniquely identifies

the value ofæ, which in turn pins down the pair (! f ,!b), or equivalently the equilibrium dynamics. Now

that we have added a public a signal, the CG coefficient and the equilibrium dynamics alike depend

on two unknown parameters, the precisions øx ¥ æ°2
u

and øz ¥ æ°2
≤ of, respectively, the private and the

public information. As a result, we loose point identification but preserve set identification: only certain

pairs of øz and øx are consistent, under the lens of the theory, with the evidence in CG. Furthermore,

because the theoretical value of KCG converges to zero as the public information becomes sufficiently

precise, the estimated value of KCG puts an upper bound on øz .35

Figure 6 illustrates the implications of these properties for the documented distortions within the

context of our application to inflation (Section 6). On the horizontal axis, we let øz vary between zero

(our benchmark) and the aforementioned bound. For each øz in this range, we find the value of øx that

matches the point estimate of KCG provided in CG and report the implied values for ! f and !b .

For the application under consideration, the upper bound on øz turns out to be quite low. This is

because evidence in CG points towards considerable predictability in average forecast errors, which in

turn requires a significant departure from common knowledge. What is more, the distortions increase as

we raise øz within the admissible range. That is, once the theory is disciplined with the relevant evidence,

the incorporation of public information reinforces the documented distortions.

Similar points apply if we let for an endogenous public signal of the form zt = at +≤t , which in the ap-

plication under consideration can be thought of as statistic of inflation contaminated with measurement

35That is, the set of the admissible values for the pair (øx ,øz ) can be expressed as

S(KCG) =
©
(øx ,øz ) : øz ∑ T (KCG) and øx = f (øz ,KCG)

™
,

where KCG is the CG moment, T (·) is a function that gives corresponding upper bound on øz , and f (·) is a function that gives
the value of øx that lets the theory match this moment for any given øz below the aforementioned bound.
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Figure 6: The Role of Public Information

error.36 Similar to the exogenous-information case, matching the CG moment puts an upper bound on

the informativeness of this signal. Different from the exogenous-information case, this informativeness

is now endogenous to the actual inflation dynamics. This introduces an additional fixed point problem,

which can only be solved numerically. But as illustrated in Figure 7 in Appendix D.3, the main message

goes through.

C Idiosyncratic Shocks and Micro- vs Macro-level Distortions

The various adjustment costs assumed in the DSGE literature are supposed to be equally present at the

macroeconomic and the microeconomic level. But this is not true. For instance, the macroeconomic

estimates of the habit in consumption obtained in the DSGE literature are much larger than the corre-

sponding microeconomic estimates (see Havranek, Rusnak, and Sokolova, 2017, for a metanalysis).

Consider next the menu-cost literature that aims at accounting for the microeconomic data on prices

(Golosov and Lucas Jr, 2007; Midrigan, 2011; Alvarez and Lippi, 2014; Nakamura and Steinsson, 2013).

Different “details” such as the number of products that are simultaneously re-priced and the so-called

selection effect matter for how steep the effective Philips curve is, but do not help generate the requisite

sluggishness in inflation that the DSGE literature captures with the ad hoc Hybrid NKPC.

A similar point applies to the literature that aims at accounting for the lumpiness of investment at

the plant level (Caballero and Engel, 1999; Bachmann, Caballero, and Engel, 2013): this literature has not

provided support for the kind of adjustment costs to investment employed in the DSGE literature.

In sort, whether one goes “downstream” from DSGE models to their microeconomic implications or

36This specification is close to that studied in Nimark (2008). The main difference is that the theory is herein disciplined by
the evidence in Coibion and Gorodnichenko (2015).
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“upstream” from the more realistic, fixed-cost models used to account for the microeconomic data to

their macroeconomic implications, there is a pervasive gap between micro and macro.

Our result that the distortions increase with the importance of GE considerations contributes to-

wards filling this micro-to-macro gap. When an individual responds to aggregate shocks, she has to pre-

dict the responses of others and align hers with theirs. To the extent that GE considerations are strong

enough, this generates a feedback loop from sluggish expectations to sluggish outcomes and back. When

instead an individual responds to idiosyncratic shocks, this mechanism is muted. Furthermore, agents

may naturally have much more information about idiosyncratic shocks than about aggregate shocks

both because of decentralized market interactions (Lucas, 1972) and because of rational inattention

Maćkowiak and Wiederholt (2009). It follows that the documented distortions may loom large at the

macroeconomic time series even if they appear to be small in the microeconomic time series.

We illustrate this point in the rest of this appendix by adding idiosyncratic shocks to our framework.

The optimal behavior of agent i now obeys the following equation:

ai ,t = Ei ,t ['ªi ,t +Øai ,t+1 +∞at+1], (53)

where

ªi ,t = ªt +≥i ,t .

and where ≥i ,t is a purely idiosyncratic shock. We let the latter follow a similar AR(1) process as the

aggregate shock: ≥i ,t = Ω≥i ,t°1 +≤i ,t , where ≤i ,t is i.i.d. across both i and t .37

We then specify the information structure as follows. First, we let each agent observe the same sig-

nal xi ,t about the aggregate shock ªt as in our baseline model. Second, we let each agent observe the

following signal about the idiosyncratic shock ≥i ,t :

zi ,t = ≥i ,t + vi ,t ,

where vi ,t is independent of ≥i ,t , of ªt , and of xi ,t .

Because the signals are independent, the updating of the beliefs about the idiosyncratic and the ag-

gregate shocks are also independent. Let 1 ° ∏
Ω be the Kalman gain in the forecasts of the aggregate

fundamental, that is,

Ei ,t [ªt ] =∏Ei ,t°1[ªt ]+
µ
1° ∏

Ω

∂
xi ,t .

Next, let 1° ∏̂
Ω be the Kalman gain in the forecasts of the idiosyncratic fundamental, that is,

Ei ,t [≥i ,t ] = ∏̂Ei ,t°1[≥i ,t ]+
√

1° ∏̂

Ω

!

zi ,t .

37The restriction that the two kinds of shocks have the same persistence is only for expositional simplicity.
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It is straightforward to extend the results of Section 3.3 to the current specification. It can thus be shown

that the equilibrium action is given by the following:

ai ,t =
√

1° ∏̂

Ω

!
'

1°ΩØ
1

1° ∏̂L

≥i ,t +
µ
1° #

Ω

∂
'

1°Ω±
1

1°#L
ªt +ui ,t ,

where # is determined in the same manner as in our baseline model and where ui ,t is a residual that is

orthogonal to both ≥i ,t and ªt and that captures the combined effect of all the idiosyncratic noises in the

information of agent i . Finally, it is straightforward to check that #=∏when ∞= 0; #>∏when ∞> 0; and

the gap between # and ∏ increases with the strength of the GE effect, as measured with ∞.

In comparison, the full-information equilibrium action is given by

a
§
i ,t =

'

1°ΩØ≥i ,t +
'

1°Ω±ªt .

It follows that, relative to the full-information benchmark, the distortions of the micro- and the macro-

level IRFs are given by, respectively,
√

1° ∏̂

Ω

!
1

1° ∏̂L

and
µ
1° #

Ω

∂
1

1°#L
.

The macro-level distortions is therefore higher than its micro-level counterpart if and only if #> ∏̂.

As already mentioned, it is natural to assume that ∏̂ is lower than ∏, because the typical agent is likely

to be better informed about, allocate more attention to, idiosyncratic shocks relative to aggregate shocks.

This guarantees a lower distortion at the micro level than at the macro level even if we abstract from GE

interactions (equivalently, from higher-order uncertainty). But once such interactions are taken into

account, we have that # remains higher than ∏̂ even if ∏̂ = ∏. That is, even if the first-order uncertainty

about the two kind of shocks is the same, the distortion at the macro level may remain larger insofar as

there are positive GE feedback effects, such as the Keynesian income-spending multiplier or the dynamic

strategic complementarity in price-setting decisions of the firms.

In short, the mechanism identified in our paper is distinct from the one identified in Maćkowiak

and Wiederholt (2009) and employed in subsequent works such as Carroll et al. (2020) and Zorn (2018),

but the two mechanisms complement each other towards generating more pronounced distortions at

the macro level than at the micro level. The two mechanisms are combined in recent work by Auclert,

Rognlie, and Straub (2020).
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D Application to Inflation: Micro-foundations and Additional Results

D.1 Derivation of Incomplete-Information NKPC

The original derivations of the incomplete-information versions of the Dynamic IS and New Keynesian

Philips curves seen in conditions (8) and (9) can be found in Angeletos and Lian (2018). Those derivations

are based in an extension of the New Keynesian model that incorporates a variety of idiosyncratic and

aggregate shocks so as to noise up the information that consumers and firms may extract from the perfect

observation of concurrent prices, wages, and other endogenous outcomes. Here, we offer a simplified

derivation that bypasses these “details” and, instead, focuses on the essence. To economize, we do so

only in the context of the NKPC, which is the application we push quantitatively. We also use this as an

opportunity to point out a mistake in the variant equations found in Nimark (2008) and Melosi (2016).

Apart for the introduction of incomplete information, the micro-foundations are the same as in fa-

miliar textbook treatments of the NKPC (e.g., Galí, 2008). There is a continuum of firms, each producing

a differentiated commodity. Firms set prices optimally, but can adjust them only infrequently. Each pe-

riod, a firm has the option to reset its price with probability 1°µ, where µ 2 (0,1); otherwise, it is stuck at

the previous-period price. Technology is linear, so that the real marginal cost of a firm is invariant to its

production level.

The optimal reset price solves the following problem:

P
§
i ,t = argmax

Pi ,t

1X

k=0
(¬µ)kEi ,t

n
Qt |t+k

≥
Pi ,t Yi ,t+k|t °Pt+kmct+k Yi ,t+k|t

¥o

subject to the demand equation, Yi ,t+k =
≥

Pi ,t
Pt+k

¥°≤
Yt+k , where Qt |t+k is the stochastic discount factor

between t and t + k, Yt+k and Pt+k are, respectively, aggregate income and the aggregate price level

in period t + k, Pi ,t is the firm’s price, as set in period t , Yi ,t+k|t is the firm’s quantity in period t + k,

conditional on not having changed the price since t , and mct+k is the real marginal cost in period t +k.

Taking the first-order condition and log-linearizing around a steady state with no shocks and zero

inflation, we get the following, familiar, characterization of the optimal rest price:

p
§
i ,t = (1°¬µ)

1X

k=0
(¬µ)kEi ,t [mct+k +pt+k ]. (54)

We next make the simplifying assumption that the firms observe that past price level but do not extract

information from it. Following Vives and Yang (2017), this assumption can be interpreted as a form of

bounded rationality or inattention. It can also be motivated on empirical grounds: in the data, inflation

contains little statistical information about real marginal costs and output gaps—it’s dominated by the

residual, or what the DSGE literature interprets as “markup shocks.” This means that, even if we were

to allow firms to extract information from past inflation, this would make little quantitative difference,

provided that we accommodate an empirically relevant source of noise. Furthermore, as we show in
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the end of Section 6, our observational-equivalence result remains a useful approximation of the true

equilibrium in extension that allow for such endogenous information.

With this simplifying assumption, we can restate condition (54) as

p
§
i ,t °pt°1 = (1°¬µ)

1X

k=0
(¬µ)kEi ,t [mct+k ]+

1X

k=0
(¬µ)kEi ,t [ºt+k ], (55)

Since only a fraction 1°µ of the firms adjust their prices each period, the price level in period t is given

by pt = (1°µ)
R

p
§
i ,t di +µpt°1. By the same token, inflation is given by

ºt ¥ pt °pt°1 = (1°µ)
Z≥

p
§
i ,t °pt°1

¥
.

Combining this with condition (55) and rearranging, we arrive at the following expression:

ºt = ∑
1X

k=0
(¬µ)kEt [mct+k ]+¬(1°µ)

1X

k=0
(¬µ)kEt [ºt+k+1] . (56)

where ∑¥ (1°¬µ)(1°µ)
µ . This is the same as condition 25 in the main text.

When information is complete, we can replace Et [·] with Et [·], the expectation of the representative

agent. We can then use the Law of Iterated Expectations to reduce condition (56) to the standard NKPC.

When instead information is incomplete, the Law of Iterated Expectations does not apply at the aggre-

gate level, because average forecast errors can be auto-correlated, and therefore condition (56) cannot

be reduced to the standard NKPC.

As explained in the main text, condition (56) involves extremely complex higher-order beliefs and

precludes a sharp connection to the data—and this is where the toolbox provided in this paper comes to

rescue.

Let us now explain the two reasons why the incomplete-information NKPC seen in condition (56)

is different from that found in Nimark (2008) and Melosi (2016). The first reason is that, while we let

firms observe the current-period price level, these papers let them observe only the past-period price

level. Clearly, this difference vanishes as the time length of a period gets smaller. The second, and most

important, reason is a mistake, which we explain next.

Take condition (54) and rewrite it in recursive form as follows:

p
§
i ,t = (1°¬µ)Ei ,t [mct +pt ]+ (¬µ)Ei ,t [p

§
i ,t+1].

Aggregate this condition yields a term of the form
R
Ei ,t [p

§
i ,t+1]di , the average expectation of the own

reset price, in the right-hand side. And this is where the oversight occurs: the aforementioned term is

inadvertently replaced with the average expectation of the average reset price.

In more abstract terms, this is like equating
R
Ei ,t [ai ,t+1]di with

R
Ei ,t [at+1]di . If this were true, we
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could have readily aggregated condition (4) to obtain the following equation:

at ='Et [ªt ]+±Et+1[at+1].

Relative to condition (5), this amounts to dropping the expectations of the aggregate outcome a horizons

k ∏ 2, or restricting Ø = 0. But this is not true. Except for knife-edge cases such as that of an improper

prior, incomplete information implies that the typical agent forms a different expectation about his own

actions than the actions of others, which means that
Z
Ei ,t [ai ,t+1]di 6=

Z
Ei ,t [at+1]di .

and the aforementioned simplification does not apply.

D.2 Decomposition of PE and GE in Figure 3

This appendix describes the construction of the dotted red line in Figure 3, that is, the counterfactual that

isolates the PE channel. This builds on the decomposition between PE and GE effects first introduced in

in Section 3.1.

Using condition (56), the incomplete-information inflation dynamics can be decomposed into two

components: the belief of the present discounted value of real marginal costs, '
P1

k=0Ø
kEt [mct+k ]; and

the belief of of the present discounted value of inflation, ∞
P1

k=0Ø
kEt [ºt+k+1]. The same decomposition

can also be applied when agents have perfect information:

º§
t
= '

1X

k=0
ØkEt [mct+k |mct ]

| {z }
complete-info PE component

+∞
1X

k=0
ØkEt

£
º§

t+k+1|mct

§

| {z }
complete-info GE component

. (57)

A natural question is which component contributes more to the anchoring of inflation as we move from

the complete to incomplete information.

To answer this question, we define the following auxiliary variable:

eºt = '
1X

k=0
ØkEt [mct+k ]

| {z }
incomplete-info PE component

+∞
1X

k=0
ØkEt

£
º§

t+k+1|mct

§

| {z }
complete-info GE component

. (58)

The difference between º§
t

and eºt measures the importance of beliefs about real marginal costs, and the

difference between eºt and ºt measures the importance of beliefs about inflation.

The dotted red line in Figure 3 corresponds to eºt . Clearly, most of the difference between complete

and incomplete information is due the anchoring of beliefs about future inflation. Or, to put it in terms

of our discussion of PE and GE effects, most of the action is through the GE channel.

The logic behind this finding can be understood by computing the GE multiplier that is hidden inside

the standard NKPC. Let µ§ be the ratio of the GE component to the PE component under complete
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information, that is, the ratio of the two terms seen in condition (57). This identifies the GE multiplier;

the total effect is 1+µ§ times the PE effect. Straightforward calculation shows that

µ§ = Ω¬(1°µ)
1°¬Ω º 6.4.

That is, even in the familiar, complete-information benchmark, the expectations of future inflation are

6.4 times more important than the expectations of future real marginal costs in driving actual inflation.

This in turn helps explains why most of the informational friction works through the GE channel, or the

anchoring of the expectations of inflation, as seen in Figure 3 in the main text.

D.3 Adding Public Information

In Section 6, we quantified the effects of the informational friction assuming away public information.

Here, building on the insights developed in Appendix B, we illustrate how that exercise has provided a

conservative estimate of the effects that are obtained once we add public information. We further show

that this point is reinforced if the public information is endogenous.

We thus consider two cases: an exogenous public signal of the form zt = mct +noise, and an endoge-

nous public signal of the form zt = ºt +noise, namely a noisy statistic of inflation. The first case affords

an analytical characterization, along the lines of Appendix B; the second case requires a numerical ap-

proximation but, as shown below, only reinforces our message.38

Figure 7: IRF of Inflation, Exogenous vs Endogenous Information

Figure 7 compares the IRF of inflation to innovations in the real marginal cost under three informa-

tion structures, all required to match the regression coefficient KCG estimated in CG. The blue, solid line

38We thank an anonymous referee for suggesting these explorations.
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corresponds to our benchmark, which abstracts from public information. As explained in Appendix B,

once we allow for a public signal, there is a range of admissible values for its precision, each one map-

ping to a different pair (! f ,!b), or a different IRF. The red, dashed line in the figure gives the IRF that

is obtained when the public signal is exogenous and its precision is the maximal one consistent with

KCG. The area between this line and the benchmark line spans all the admissible parameterizations of

the exogenous-information case. Finally, the black, dotted line gives the IRF that obtains when the pub-

lic signal is endogenous and its precision equals the appropriate upper bound. The area between this

line and the benchmark line spans all the admissible parameterizations of the endogenous-information

case.

The main takeaways are twofold. First, the exogenous-information setting provides a useful ana-

lytical tool to understand the more realistic but less tractable endogenous-information case. Second,

the accommodation of public information, exogenous or endogenous, only reinforces the quantitative

findings once the theory is disciplined by the available evidence on expectations.39

D.4 Market Concentration

In the environment where each market consists only a finite number of firms, the (log-linearized) indi-

vidual firm’s optimal reset price is characterized as below.

Lemma 1. The optimal reset price of individual firm i in market m follows

p
§
i ,m,t = (1°¬µ)

1X

k=0
(¬µ)k∑Ei ,m,t [mct+k ]+ (1°¬µ)

1X

k=0
(¬µ)kEi ,m,t [ÆN pm°i ,t+k + (1°ÆN )pt+k ], (59)

where ÆN is given by

ÆN = N (√°1)(√°")

√
°
N 2(√°1)° (N °1)√

¢
+ (N °2)√"+"2

.

In condition (59), ¬, µ, and ∑ are the same parameters as in the baseline NKPC setup, while ÆN 2
(0,1) is a new scalar which summarizes how much a firm’s pricing strategy depends on the prices of its

competitors relative to the aggregate price level. It is easy to verify that √> 1 and √> ≤ suffices for ÆN to

be decreasing in N . And in the special case in which √=1, which amounts to a Cournot-like game for

each market, we have more simply that ÆN = 1/(2N ).

The economy-wide inflation can be obtained by aggregating the above condition across markets,

which leads to a modified version of our incomplete-information NKPC.

39A third, subtler takeaway is that the endogenous public signal contributes to more persistence than the exogenous one. We
find this intriguing and we suspect it is because inflation moves more sluggishly than the fundamental, thus slowing down the
learning. Nimark (2008) also hypothesizes that endogenous signals add persistence. The logic is, however, complicated by the
fact that, as we vary the form of the signal, we adjust its precision to make sure that theory keeps matching the CG moment.
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Lemma 2. The aggregate inflation rate follows

ºt = ∑
1X

k=0

µ
¬µ

1° (1°µ)ÆN

∂
k

Et [mct+k ]+ ¬(1°µ)(1°ÆN )
1° (1°µ)ÆN

1X

k=0

µ
¬µ

1° (1°µ)ÆN

∂
k

Et [ºt+k+1]. (60)

For our purposes, the key observation is that ÆN is decreasing in N , or decreasing in market concen-

tration. Intuitively, as N ! 1 and the firm becomes infinitesimally small not only vis-a-vis the entire

economy but also vis-a-vis its own market, the firm only care to set a price in proportion to its nominal

marginal cost, which itself is driven by the aggregate price level. That is, as N !1, ÆN approaches 1,

condition (60) reduces to condition (25), and we recover the case studied before. But when N is finite, a

new consideration emerges: when a firm raises its price, it depresses its market share. This effect scales

up with market concentration, explaining why higher market concentration maps to a higher ÆN , or a

higher consideration for local conditions relative to aggregate conditions.

Under complete information, this consideration is of no consequence for the aggregate inflation dy-

namics: when an aggregate shock to the real marginal cost occurs, a typical firm expects both its im-

mediate competitors and the rest of the economy to respond in tandem, so it makes no difference how

much firms care about the former versus the latter. But when information is incomplete, and under the

plausible assumption that firms know more about their immediate competitors than about the rest of the

economy, the aforementioned consideration amounts to reducing the extent of higher-order uncertainty

and its footprint on the inflation dynamics.

These points are evident from condition (60). Mapping this condition to our framework yields

∞= ¬(1°µ)(1°ÆN )
1° (1°µ)ÆN

and Ø= ¬µ

1° (1°µ)ÆN

=¬°∞.

That the sum Ø+∞ equals ¬ means that, with complete information, inflation continues to obey the

standard NKPC (ºt = ∑mct +¬Etºt+1) and is invariant to market concentration. That ∞ increases with

ÆN means that higher market concentration maps to a smaller degree of strategic complementarity and

thereby to a smaller # in the incomplete-information outcome. Applying our observational-equivalence

result then yields Proposition 8.

E Heterogeneity à la HANK

In this appendix we detail the micro-foundations of the HANK application considered in Section 7. As

described in the main text, households are heterogeneous in terms of mortality risk, associated MPC,

and exposure to business cycles. They can trade annuities, so as to insure against mortality risk, but

are precluded from trading more sophisticated assets such as GDP futures, so that we can bypass the

complications of endogenous information aggregation. We also let firms’ profits be taxed by the govern-

ment, and distributed to consumers in proportion to labor income and regardless of age. This makes
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sure that consumers of all types and ages hold zero financial wealth in steady state. And we shut down

the distribution effects of interest-rate shocks by appropriate fiscal transfers, as explained shortly.

Consider a consumer i , of type g , born in period ø. Taking into account the mortality risk, her ex-

pected lifetime utility at birth is given by

1X

t=ø

°
¬$g

¢
t°ø log

°
Ci ,g ,t ;ø

¢
,

where Ci ,g ,ø;t denotes her consumption in period t (conditional on survival) and ¬ 2 (0,1) is the subjec-

tive discount factor. Her budget constraint, on the other hand, is given by

Ci ,g ,ø;t +Si ,g ,ø;t =
Rt°1

$g

Si ,g ,ø;t°1 + (Yt )¡g +Tg ,t , 8ø∏ t

where Si ,g ,t ;ø denotes savings in terms of the annuity, Yt denotes aggregate income, Tg ,t denotes a group-

specific lump-sum transfer, and ¡g parameterizes the elasticity of group g ’s income with respect to ag-

gregate income.

We henceforth work with the log-linearized solution around a steady state in which there are no

shocks, ¬Rt = 1, and Ct = Yt = Y
§, where Y

§ is the natural rate of output.40 We use lower-case variables

to represent log-deviations from the steady state (e.g., rt ¥ logRt °log¬°1), with the exception that si ,g ,ø;t

and øg ,t stand for, respectively,
Si ,g ,ø;t

Y § and
Tg ,t

Y § as their steady-state values are zero. We can then express

the optimal expenditure of a consumer in group g as follows:

ci ,g ,ø,t =(1°¬$g )
µ

1
¬$g

si ,g ,ø,t°1 +Ei ,t [Tg ,t ]
∂
°¬!g

1X

j=0
(¬$g ) jEi ,t [rt+ j ] (61)

+ (1°¬$g )¡g

1X

j=0
(¬$g ) jEi ,t [yt+ j ]

where Tg ,t ¥
P1

j=0(¬$g ) jøg ,t+ j captures the present discounted value of transfers.

The average consumption of group g in period t is given by

cg ,t ¥ (1°!g )
1X

j=0
($g ) j

Z
ci ,g ,t° j ,t di .

Aggregating (61) across all consumers of any given group g , we get

cg ,t = (1°¬!g )
µ

1
¬

sg ,t°1 +Et [Tg ,t ]
∂
°¬!g

1X

j=0
(¬!g ) jEt [rt+ j ] (62)

+ (1°¬!g )¡g

1X

j=0
(¬!g ) jEt [yt+ j ].

Similarly, by aggregating the budget constraints of all consumers in group g , and taking into account

40To simplify the exposition, we suppress the production side of the economy and the determination of the flexible-price out-
comes. The details can be filled in the usual way; let technology be linear in labor and assume constant aggregate productivity
to get a time-invariant natural rate of output.

65



how the annuities effectively redistribute wealth from deceased to surviving agents, we get the following

group-level budget constraint:

cg ,t + sg ,t =
1
¬

sg ,t°1 +¡g yt °øg ,t ,

where sg ,t is the saving of group g .

Market clearing imposes yt = ct , or equivalently st = 0, where ct ¥
P

g ºg cg ,t and st ¥
P

g ºg sg ,t . We

close the model by specifying a rule for fiscal policy (more on this below) and by treating the real interest

rate as an exogenous AR(1) process, with persistence Ω. As mentioned in the main text, this amounts

to studying the aggregate-demand effects of a monetary policy that targets such a process for the real

interest rate. Alternatively, one can assume that prices are infinitely rigid, in which case rt coincides with

the nominal rate (the policy instrument) and its innovations can be interpreted monetary shocks.

Let us now fill in the details of fiscal policy. For the analysis in the main text, we let the transfers be

such that following condition is satisfied in every period:

X

g

ºg (1°¬!g )sg ,t +
X

g

ºgEt [Tg ,t ] = 0, (63)

When all groups have the same MPC (i.e., !g = !g 0 for all g , g
0), this condition is trivially satisfied with

Tg ,t = 0 for all g , t . When instead different groups have different MPCs, this condition requires that fiscal

policy offsets the interaction of MPC heterogeneity with wealth inequality. In particular, a sufficient

condition for (63) to hold is that Et [Tg ,t ] = (1°¬!g )sg ,t for all g , t . And since sg ,t is measurable in the

history of the aggregate shock alone, the transfers do not have to be conditioned on the consumers’ age

or idiosyncratic histories.

As long as condition (63) is satisfied, we can aggregate condition (62) across groups to obtain the

economy-wide aggregate consumption as follows:

ct =
X

g

ºg

n
°¬!g

1X

j=0
(¬!g ) jEt [rt+ j ]+ (1°¬!g )¡g

1X

j=0
(¬!g ) jEt [yt+ j ]

o
(64)

Combining this with market clearing, or ct = yt , we infer that the equilibrium process of aggregate in-

come (and aggregate consumption) in this economy is the same as the solution of a network where the

best response of group g is given by

yg ,t =°¬!g

1X

j=0
(¬!g ) jEt [rt+ j ]+ (1°¬!g )¡g

1X

j=0
(¬!g ) jEt [yt+ j ].

and where yt =
P

g ºg yt ,g . Note that cg ,t , the actual consumption of group g , may differ from yg ,t , the

auxiliary variable introduced above. This will indeed be the case whenever Et [Tg ,t ] 6= (1°¬!g )sg ,t for

some g and some t . Still, as long as (63) is satisfied, the economy-wide outcomes are determined in the

manner described above—and coincide with those reported in the main text.

This completes the details behind Figure 4. Consider next what happens when condition (63) is vi-

66



olated and, as a result, wealth inequality can feed into the aggregate dynamics. In particular, impose

Tg ,t = 0 for all g , t . If all groups had the same MPC, (63) and (64) would still hold; but then the hetero-

geneity in business-cycle exposure would also not matter. The interesting case is when fiscal policy is

inactive and, in addition, there is joint heterogeneity in the business-cycle exposure and the MPC. This

case is studied in Figure 5 in the main text.

F Application to Investment

A long tradition in macroeconomics that goes back to Hayashi (1982) and Abel and Blanchard (1983) has

studied representative-agent models in which the firms face a cost in adjusting their capital stock. In this

literature, the adjustment cost is specified as follows:

Costt =©
µ

It

Kt°1

∂
(65)

where It denotes the rate of investment, Kt°1 denotes the capital stock inherited from the previous pe-

riod, and© is a convex function. This specification gives the level of investment as a decreasing function

of Tobin’s Q. It also generates aggregate investment responses that are broadly in line with those pre-

dicted by more realistic, heterogeneous-agent models that account for the dynamics of investment at

the firm or plant level (Caballero and Engel, 1999; Bachmann, Caballero, and Engel, 2013; Khan and

Thomas, 2008).41

By contrast, the DSGE literature that follows Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2007) assumes that the firms face a cost in adjusting, not their capital stock, but rather

their rate of investment. That is, this literature specifies the adjustment cost as follows:

Costt =™
µ

It

It°1

∂
(66)

As with the Hybrid NKPC, this specification was adopted because it allows the theory to generate sluggish

aggregate investment responses to monetary and other shocks. But it has no obvious analogue in the

literature that accounts for the dynamics of investment at the firm or plant level.

In the sequel, we set up a model of aggregate investment with two key features: first, the adjustment

cost takes the form seen in condition (65); and second, the investments of different firms are strategic

complements because of an aggregate demand externality. We then augment this model with incom-

plete information and show that it becomes observationally equivalent to a model in which the adjust-

ment cost takes the form seen in condition (66). This illustrates how incomplete information can merge

the gap between the different strands of the literature and help reconcile the dominant DSGE practice

41These works differ on the importance they attribute to heterogeneity, lumpiness, and non-linearities, but appear to share
the prediction that the impulse response of aggregate investment is peaked on impact. They therefore do not provide a micro-
foundation of the kind of sluggish investment dynamics featured in the DSGE literature.
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with the relevant microeconomic evidence on investment.

Let us fill in the details. We consider an AK model with costs to adjusting the capital stock. There is

a continuum of monopolistic competitive firms, indexed by i and producing different varieties of inter-

mediate investment goods. The final investment good is a CES aggregator of intermediate investment

goods. Letting Xi ,t denote the investment good produced by firm i , we have that the aggregate invest-

ment is given by

It =
∑Z

X

æ°1
æ

i ,t

∏ æ
æ°1

.

And letting Qi ,t denote the price faced by firm i , we have that the investment price index is given by

Qt =
∑Z

Q
1°æ
i ,t

∏ 1
1°æ

.

A representative final goods producer has perfect information and purchases investment goods to max-

imize its discounted profit

max
{Kt ,It }

1X

t=0
¬tE0

∑
exp(ªt )AKt °Qt It °©

µ
It

Kt

∂
Kt

∏
,

subject to

Kt+1 = Kt + It .

Here, the fundamental shock, ªt , is an exogenous productivity shock to the final goods production, and

©
≥

It

Kt

¥
Kt represents the quadratic capital-adjustment cost. The following functional form is assumed:

©

µ
It

Kt

∂
= 1

2
√

µ
It

Kt

∂2

.

Let Zt ¥ It

Kt

denote the investment-to-capital ratio. On a balanced growth path, this ratio and the price

for the investment goods remain constant, i.e., Zt = Z and Qt =Q. The log-linearized version of the final

goods producer’s optimal condition around the balanced growth path can be written as

Qqt +√Z zt =¬Et

h
Aªt+1 +Qqt+1 +√Z (1+Z )zt+1

i
. (67)

When the producers of the intermediate investment goods choose their production scale, they may

not observe the underlying fundamental ªt perfectly. As a result, they have to make their decision based

on their expectations about fundamentals and others’ decisions. Letting

max
Xi ,t

Ei ,t
£
Qi ,t Xi ,t ° c Xi ,t

§
,

subject to

Qi ,t =
µ

Xi ,t

It

∂° 1
æ

Qt .
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Define Zi ,t ¥ Xi ,t
Kt

as the firm-specific investment-to-capital ratio, and the log-linearized version of the

optimal choice of Xi ,t is

zi ,t = Ei ,t
£
zt +æqt

§
.

In steady state, the price Q simply equals the markup over marginal cost c,

Q = æ

æ°1
c,

and the investment-to-capital ratio Z solves the quadratic equation

Q +√Z =¬
µ

A+Q +√Z +√Z
2 ° 1

2
√Z

2
∂

.

Frictionless Benchmark. If all intermediate firms observe ªt perfectly, then we have

zi ,t = zt +æqt

Aggregation implies that zi ,t = zt and qt = 0. It follows that zt obeys the following Euler condition:

zt ='ªt +±Et [zt+1]

where

'= Ω¬A

√Z
and ±=¬(1+Z ).

Incomplete Information. Suppose now that firms receive a noisy signal about the fundamental ªt as

in Section 2. Here, we make the same simplifying assumption as in the NKPC application. We assume

that firms observe current zt , but preclude them from extracting information from it. Together with the

pricing equation (67), the aggregate investment dynamics follow

zt =
Ω¬A

√Z

1X

k=0
¬kEt [ªt+k ]+¬Z

1X

k=0
¬kEt [zt+k+1]

The investment dynamics can be understood as the solution to the dynamic beauty contest studied in

Section 2 by letting

'= Ω¬A

√Z
, Ø=¬, and ∞=¬Z .

It is then immediate that when information is incomplete, there exist ! f < 1 and !b > 0 such that the

equilibrium process for investment solves the following equation:

zt ='ªt +! f ±Et [zt+1]+!b zt°1.

Finally, it straightforward to show that the above equation is of the same type as the one that governs

investment in a complete-information model where the adjustment cost is in terms of the investment
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rate, namely a model in which the final good producer’s problem is modified as follows:

max
{Kt ,It }

1X

t=0
¬tE0

∑
exp(ªt )AKt °Qt It °™

µ
It

eIt°1

∂
It

∏
,

where eIt is the aggregate investment.

G Application to Asset Prices

Consider a log-linearized version of the standard asset-pricing condition in an infinite horizon, representative-

agent model:

pt = Et [dt+1]+¬Et [pt+1],

where pt is the price of the asset in period t , dt+1 is its dividend in the next period, Et is the expectation of

the representative agent, and ¬ is his discount factor. Iterating the above condition gives the equilibrium

price as the expected present discounted value of the future dividends.

By assuming a representative agent, the above condition conceals the importance of higher-order

beliefs. A number of works have sought to unearth that role by considering variants with heterogeneously

informed, short-term traders, in the tradition of Singleton (1987); see, for example, Allen, Morris, and

Shin (2006), Kasa, Walker, and Whiteman (2014), and Nimark (2017). We can capture these works in our

setting by modifying the equilibrium pricing condition as follows:

pt = Et [dt+1]+¬Et [pt+1]+≤t ,

where Et is the average expectation of the traders in period t and ≤t is an i.i.d shock interpreted as the

price effect of noisy traders. The key idea embedded in the above condition is that, as long as the traders

have different information and there are limits to arbitrage, asset markets are likely to behave like (dy-

namic) beauty contests.

Let us now assume that the dividend is given by dt+1 = ªt +ut+1, where ªt follows an AR(1) process

and ut+1 is i.i.d. over time, and that the information of the typical trader can be represented by a series

of private signals as in condition (13).42 Applying our results, and using the fact that ªt = Et [dt+1], we

then have that the component of the equilibrium asset price that is driven by ªt obeys the following law

of motion, for some ! f < 1 and !b > 0:

pt = Et [dt+1]+! f ¬Et [pt+1]+!b pt°1, (68)

42Here, we are abstracting from the complications of the endogenous revelation of information and we think of the signals
in (13) as convenient proxies for all the information of the typical trader. One can also interpret this as a setting in which the
dividend is observable (and hence so is the price, which is measurable in the dividend) and the assumed signals are the repre-
sentation of a form of rational inattention. Last but not least, we have verified that the solution with endogenous information
can be approximated very well by the solution obtained with exogenous information.
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where Et [·] is the fully-information, rational expectations. We thus have that asset prices can display

both myopia, in the form of ! f < 1, and momentum, or predictability, in the form of !b > 0.

Although they do not contain such an observational-equivalence result, Kasa, Walker, and Whiteman

(2014) have already pointed out that incomplete information and higher-order uncertainty can help ex-

plain momentum and predictability in asset prices. Our result offers a sharp illustration of this insight

and blends it with the insight regarding myopia.

In the present context, the latter insight seems to challenge the asset-price literature that emphasizes

long-run risks: news about the long-run fundamentals may be heavily discounted when there is higher-

order uncertainty. Finally, our result suggests that both kinds of distortions are likely to be greater at

the level of the entire stock market than at the level of the stock of a particular firm insofar as financial

frictions and GE effects cause the trades to be strategic complements at the macro level even if they are

strategic substitutes at the micro level, which in turn may help rationalize Samuelson’s dictum (Jung and

Shiller, 2005). We leave the exploration of these—admittedly speculative—ideas open for future research.

We conclude by iterating that the exact form of condition (68) relies on assuming away the role of

the equilibrium price as an endogenous public signal. This may be an important omission for certain

counterfactuals. But as indicated by the exercise conducted at the end of Section 6, the quantitative

implications may be similar provided that the theory is disciplined with the relevant evidence on expec-

tations.

H Robustness of Main Insights

Although our observational-equivalence result depends on stringent assumptions about the process of

the fundamental and the available signals, it encapsulates a few broader insights, which in turn justify

the perspective put forward in our paper.

The broader insights concerning the role of incomplete information and especially that of higher-

order uncertainty can be traced in various previous works, including Angeletos and Lian (2018), Morris

and Shin (2006), Nimark (2008), and Woodford (2003). But like our paper, these earlier work rely on

strong assumptions about the underlying process of the fundamental, as well as about the information

structure.

In this appendix, we relax completely the restrictions on the stochastic process for the fundamental.

We then use a different, flexible but not entirely free, specification of the information structure to obtain a

close-form characterization of the dynamics of the equilibrium outcome and the entire belief hierarchy.

Our exact observational equivalence result is lost, but a generalization of the insights about myopia,

anchoring and higher-order beliefs obtains.
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Setup. We henceforth let the fundamental ªt follow a flexible, possibly infinite-order, MA process:

ªt =
1X

k=0
Ωk¥t°k , (69)

where the sequence {Ωk }1
k=0 is non-negative and square summable. Clearly, the AR(1) process assumed

earlier on is nested as a special case where Ωk = Ωk for all k ∏ 0. The present specification allows for

richer, possibly hump-shaped, dynamics in the fundamental, as well as for “news shocks,” that is, for

innovations that shift the fundamental only after a delay.

Next, for every i and t , we let the incremental information received by agent i in period t be given by

the series {xi ,t ,t°k }1
k=0, where

xi ,t ,t°k = ¥t°k +≤i ,t ,t°k 8k,

where ≤i ,t ,t°k ª N (0, (øk )°2) is i.i.d. across i and t , uncorrelated across k, and orthogonal to the past,

current, and future innovations in the fundamental, and where the sequence {øk }1
k=0 is non-negative

and non-decreasing. In plain words, whereas our baseline specification has the agents observe a signal

about the concurrent fundamental in each period, the new specification lets them observe a series of

signals about the entire history of the underlying past and current innovations.

Although this specification may look exotic at first glance, it actually nest sticky information as a

special case. We will verify this momentarily. It also preserves two key features of our baseline setting:

it allows information to be incomplete at any given point of time; it lets more precise information and

higher levels of common knowledge to be obtained as time passes.

Still, the present specification differs from our baseline one in two respects. First, it “orthogonalizes”

the information structure in the sense that, for every t , every k, and every k
0 6= k, the signals received at

or prior to date t about the shock ¥t°k are independent of the signals received about the shock ¥t°k 0 .

Second, it allows for more flexible learning dynamics in the sense that the precision øk does not have to

be flat in k: the quality of the incremental information received in any given period about a past shock

may either increase or decrease with the lag since the shock has occurred.

The first property is essential for tractability. The pertinent literature has struggled to solve for, or ac-

curately approximate, the complex fixed point between the equilibrium dynamics and the Kalman filter-

ing that obtains in dynamic models with incomplete information, especially in the presence of endoge-

nous signals; see, for example, Nimark (2017). By adopting the aforementioned orthogonalization, we

cut the Gordian knot and facilitate a closed-form solution of the entire dynamic structure of the higher-

order beliefs and of the equilibrium outcome.43 The second property then permits us, not only to ac-

43Such an orthogonalization may not square well with rational inattention or endogenous learning: in these contexts, the
available signals may naturally confound information about current and past innovations, or even about entirely different
kinds of fundamentals. The approach taken here is therefore, not a panacea, but rather a sharp instrument for understanding
the specific friction we are after in this paper, namely the inertia of first- and higher-order beliefs. The possible confusion of
different shocks is a conceptual distinct matter, outside the scope of this paper.
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commodate a more flexible learning dynamics, but also to disentangle the speed of learning from level

of noise—a disentangling that was not possible in Section 3 because a single parameter, æ, controlled

both objects at once.

Dynamics of Higher-Order Beliefs. The information regarding ¥t°k that an agent has accumulated

up to, and including, period t can be represented by a sufficient statistic, given by

exk

i ,t =
kX

j=0

ø j

ºk

xi ,t° j ,t°k ,

where ºk ¥ P
k

j=0ø j . That is, the sufficient statistic is constructed by taking a weighted average of all the

available signals, with the weight of each signal being proportional to its precision; and the precision

of the statistic is the sum of the precisions of the signals. Letting ∏k ¥ ºk

æ°2
¥ +ºk

, we have that Ei ,t [¥t°k ] =
∏k exk

i ,t , which in turn implies Et [¥t°k ] =∏k¥t°k and therefore

Et [ªt ] = Et

"
1X

k=0
Ωk¥t°k

#

=
1X

k=0
f1,k¥t°k , with f1,k =∏kΩk . (70)

The sequence F1 ¥ { f1,k }1
k=0 = {∏kΩk }1

k=0 identifies the IRF of the average first-order forecast to an

innovation. By comparison, the IRF of the fundamental itself is given by the sequence
©
Ωk

™1
k=0 . It follows

that the relation of the two IRFs is pinned down by the sequence {∏k }1
k=0, which describes the dynamics

of learning. In particular, the smaller ∏0 is (i.e., the less precise the initial information is), the larger the

initial initial gap between the two IRFs (i.e., a larger the initial forecast error). And the slower∏k increases

with k (i.e., the slower the learning over time), the longer it takes for that gap (and the average forecast)

to disappear.

These properties are intuitive and are shared by the specification studied in the rest of the paper. In

the information structure specified in Section 3, the initial precision is tied with the subsequent speed of

learning. By contrast, the present specification disentangles the two. As shown next, it also allows for a

simple characterization of the IRFs of the higher-order beliefs, which is what we are after.

Consider first the forward-looking higher-order beliefs. Applying condition (70) to period t +1 and

taking the period-t average expectation, we get

F
2
t [ªt+1] ¥ Et

£
Et+1 [ªt+1]

§
= Et

"
1X

k=0
∏kΩk¥t+1°k

#

=
1X

k=0
∏k∏k+1Ωk+1¥t°k

Notice here, agents in period t understand that in period t +1 the average forecast will be improved, and

this is why ∏k+1 shows up in the expression. By induction, for all h ∏ 2, the h-th order, forward-looking

belief is given by

F
h

t [ªt+h°1] =
1X

k=0
fh,k¥t°k , with fh,k =∏k∏k+1...∏k+h°1Ωk+h°1. (71)

The increasing components in the product∏k∏k+1...∏k+h°1 seen above capture the anticipation of learn-
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ing. We revisit this point at the end of this section.

The set of sequences Fh = { fh,k }1
k=0, for h ∏ 2, provides a complete characterization of the IRFs of the

relevant, forward-looking, higher-order beliefs. Note that @E[ ªt+h |¥t°k ]
@¥t°k

= Ωk+h°1. It follows that the ratio
fh,k

Ωk+h°1
measures the effect of an innovation on the relevant h-th order belief relative to its effect on the

fundamental. When information is complete, this ratio is identically 1 for all k and h. When, instead,

information is incomplete, this ratio is given by

fh,k

Ωk+h°1
=∏k∏k+1...∏k+h°1.

The following result is thus immediate.

Proposition 13. Consider the ratio
fh,k

Ωk+h°1
, which measures the effect at lag k of an innovation on the h-th

order forward-looking belief relative to its effect on the fundamental.

(i) For all k and all h, this ratio is strictly between 0 and 1.

(ii) For any k, this is decreasing in h.

(iii) For any h, this ratio is increasing in k.

(iv) As k !1, this ratio converges to 1 for any h ∏ 2 if and only if it converges for h = 1, and this in

turn is true if and only if ∏k ! 1.

These properties shed light on the dynamic structure of higher-order beliefs. Part (i) states that,

for any belief order h and any lag k, the impact of a shock on the h-th order belief is lower than that

on the fundamental itself. Part (ii) states that higher-order beliefs move less than lower-order beliefs

both on impact and at any lag. Part (iii) states that that the gap between the belief of any order and

the fundamental decreases as the lag increases; this captures the effect of learning. Part (iv) states that,

regardless of h, the gap vanishes in the limit as k ! 1 if and only if ∏k ! 1, that is, if and only if the

learning is bounded away from zero.

Sticky information. We now verify the claim made in the main text that the assumed information

structure nests sticky information Ãă la Mankiw and Reis (2002).

Each agent updates her information set with probability 1° q 2 (0,1) in each period. When she up-

dates, she gets to see the entire state of Nature. Otherwise, her information remains the same as in the

previous period.

Consider now an arbitrary innovation ¥t in some period t . A fraction 1°q of the population becomes

aware of it immediately and hence Et [¥t ] = (1° q)¥t . A period later, an additional (1° q)q fraction be-

comes aware of it and hence Et+1[¥t ] = (1° q
2)¥t . And so on. It follows that sticky information Ãă la

Mankiw and Reis (2002) is nested in the present setting under the following restriction on the sequence

{∏k } :

∏k = 1°q
k .
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Furthermore, under this interpretation, endogenizing the frequency 1°q with which agents update

their information maps merely to endogenizing the sequence {∏ø}1ø=0. Conditional on it, all the results

presented in the sequel remain intact. This hints to the possible robustness of our insights to endogenous

information acquisition, an issue that we however abstract from: in what follows, we treat {∏ø}1ø=0 as

exogenous.

Myopia and Anchoring. To see how these properties drive the equilibrium behavior, we henceforth

restrictØ= 0 and normalize'= 1. As noted earlier, the law of motion for the equilibrium outcome is then

given by at = Et [ªt ]+∞Et [at+1], which in turn implies that at =
P1

h=1∞
h°1F

h

t [ªt+h°1] . From the preceding

characterization of the higher-order beliefs F
h

t [ªt+h°1], it follows that

at =
1X

k=0
gk¥t°k , with gk =

1X

h=1
∞h°1

fh,k =
(

1X

h=1
∞h°1∏k∏k+1...∏k+h°1Ωk+h°1

)

. (72)

This makes clear how the IRF of the equilibrium outcome is connected to the IRFs of the first- and higher-

order beliefs. Importantly, the higher ∞ is, the more the dynamics of the equilibrium outcome tracks the

dynamics higher-order beliefs relative to the dynamics of lower-order beliefs. On the other hand, when

the growth rate of the IRF of the fundamental Ωk+1
Ωk

is higher, it also increases the relative importance of

higher-order beliefs.44

We are now ready to explain our result regarding myopia. For this purpose, it is best to abstract from

learning and focus on how the mere presence of higher-order uncertainty affects the beliefs about the

future. In the absence of learning, ∏k = ∏ for all k and for some ∏ 2 (0,1). The aforementioned formula

for the IRF coefficients then reduces to the following:

gk =
(

1X

h=1
(∞∏)h°1Ωk+h°1

)

∏.

Clearly, this the same IRF as that of a complete-information, representative-economy economy in which

the equilibrium dynamics satisfy

at = ª0
t
+∞0Et [at+1], (73)

where ª0
t
¥∏ªt and ∞0 ¥ ∞∏. It is therefore as if the fundamental is less volatile and, in addition, the agents

are less forward-looking. The first effect stems from first-order uncertainty: it is present simply because

the forecast of the fundamental move less than one-to-one with the true fundamental. The second effect

originates in higher-order uncertainty: it is present because the forecasts of the actions of others move

even less than the forecast of the fundamental.

44The last point is particularly clear if we set Ωk = Ωk (meaning that ªt follows an AR(1) process). In this case, the initial
response is given by

g0 =
1X

h=1
(∞Ω)h°1∏0∏1 . . .∏h°1,

from which it is evident that the importance of higher-order beliefs increases with both ∞ and Ω. This further illustrates the
point made in Section 3.4 regarding the role of the persistence of the fundamental.
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This is the crux of the forward-looking component of our observational-equivalence result (that is,

the one regarding myopia). Note in particular that the extra discounting of the future remains present

even if when if control for the impact of the informational friction on first-order beliefs. Indeed, replacing

ª0
t

with ªt in the above shuts down the effect of first-order uncertainty. And yet, the extra discounting

survives, reflecting the role of higher-order uncertainty. This complements the related points we make

in Section 3.5.

So far, we shed light on the source of myopia, while shutting down the role of learning. We next

elaborate on the robustness of the above insights to the presence of learning and, most importantly,

on how the presence of learning and its interaction with higher-order uncertainty drive the backward-

looking component of our observational-equivalence result.

To this goal, and as a benchmark for comparison, we consider a variant economy in which all agents

share the same subjective belief about ªt , this belief happens to coincide with the average first-order

belief in the original economy, and these facts are common knowledge. The equilibrium outcome in this

economy is proportional to the subjective belief of ªt and is given by

at =
1X

k=0
bgk¥t°k , with bgk =

1X

h=1
∞h°1∏kΩk+h°1.

This resembles the complete-information benchmark in that the outcome is pined down by the first-

order belief of ªt , but allows this belief to adjust sluggishly to the underlying innovations in ªt .

By construction, the variant economy preserves the effects of learning on first-order beliefs but shuts

down the interaction of learning with higher-order uncertainty. It follows that the comparison of this

economy with the original economy reveals the role of this interaction.

Proposition 14. Let {gk } and {bgk } denote the Impulse Response Function of the equilibrium outcome in

the two economies described above.

(i) 0 < gk < bgk for all k ∏ 0

(ii) If
Ωk

Ωk°1
∏ Ωk+1

Ωk

and Ωk > 0 for all k > 0, then
gk+1

gk

> bgk+1
bgk

for all k ∏ 0

Consider property (i), in particular the property that gk < bgk . This property means that our economy

exhibits a uniformly smaller dynamic response for the equilibrium outcome than the aforementioned

economy, in which higher-order uncertainty is shut down. But note that the two economies share the

following law of motion:

at ='Et [ªt ]+∞Et [at+1]. (74)

Furthermore, the two economies share the same dynamic response for Et [ªt ]. It follows that the re-

sponse for at in our economy is smaller than that of the variant economy because, and only because, the

response of Et [at+1] is also smaller in our economy. This verifies that the precise role of higher-order un-

certainty is to arrest the response of the expectations of the future outcome (the future actions of others)
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beyond and above how much the first-order uncertainty (the unobservability of ªt ) arrests the response

of the expectations of the future fundamental.

A complementary way of seeing this point is to note that gk satisfies the following recursion:

gk = f1,k +∏k∞gk+1. (75)

The first term in the right-hand side of this recursion corresponds to the average expectation of the future

fundamental. The second term corresponds the average expectation of the future outcome (the actions

of others). The role of first-order uncertainty is captured by the fact that f1,k is lower than Ωk . The role

of higher-order uncertainty is captured by the presence of ∏k in the second term: it is as if the discount

factor ∞ has been replaced by a discount factor equal to ∏k∞, which is strictly less than ∞. This represents

a generalization of the form of myopia seen in condition (73). There, learning was shut down, so that

that ∏k and the extra discounting of the future were invariant in the horizon k. Here, the additional dis-

counting varies with the horizon because of the anticipation of future learning (namely, the knowledge

that ∏k will increase with k).

Consider next property (ii), namely the property that

gk+1

gk

>
bgk+1

bgk

.

This property helps explain the backward-looking component of our observational-equivalence result

(that is, the one regarding anchoring).

To start with, consider the variant economy, in which higher-order uncertainty is shut down. The

impact of a shock k +1 periods from now relative to its impact k periods from now is given by

bgk+1

bgk

= ∏k+1

∏k

P1
h=0∞

hΩk+h+1
P1

h=0∞
hΩk+h

>
P1

h=0∞
hΩk+h+1

P1
h=0∞

hΩk+h

.

The inequality captures the effect of learning on first-order beliefs. Had information being perfect, we

would have had bgk+1
bgk

=
P1

h=0∞
hΩk+h+1P1

h=0∞
hΩk+h

; now, we instead have bgk+1
bgk

>
P1

h=0∞
hΩk+h+1P1

h=0∞
hΩk+h

. This means that, in the

variant economy, the impact of the shock on the equilibrium outcome can build force over time because,

and only because, learning allows for a gradual build up in first-order beliefs.45

Consider now our economy, in which higher-order uncertainty is present. We now have

gk+1

gk

>
bgk+1

bgk

This means that higher-order uncertainty amplifies the build-up effect of learning: as time passes, the

impact of the shock on the equilibrium outcome builds force more rapidly in our economy than in the

45This is easiest to see when Ωk = 1 (i.e., the fundamental follows a random walk), for then bgk+1 is necessarily higher than
bgk for all k. In the AR(1) case where Ωk = Ωk with Ω < 1, bgk+1 can be either higher or lower than bgk , depending on the balance
between two opposing forces: the build-up effect of learning and the mean-reversion in the fundamental.
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variant economy. But since the impact is always lower in our economy,46 this means that the IRF of the

equilibrium outcome is likely to display a more pronounced hump shape in our economy than in the

variant economy. Indeed, the following is a directly corollary of the above property.

Corollary 5. Let the variant economy display a hump-shaped response: {bgk } is single peaked at k = k
b

for some k
b ∏ 1. Then, the equilibrium outcome also displays a hump-shaped response: {gk } is also sin-

gle peaked at k = k
g . Furthermore, the peak of the equilibrium response is after the peak of the variant

economy: k
g ∏ k

b
necessarily, and k

g > k
b

for an open set of {∏k } sequences.

To interpret this result, think of k as a continuous variable and, similarly, think of ∏k , bgk , and gk as

differentiable functions of k. If bgk is hump-shaped with a peak at k = kb > 0, it must be that bgk is weakly

increasing prior to kb and locally flat at kb . But since we have proved that the growth rate of gk is strictly

higher than that of bgk , this means that gk attains its maximum at a point kg that is strictly above k
b . In

the result stated above, the logic is the same. The only twist is that, because k is discrete, we must either

relax kg > kb to kg ∏ kb or put restrictions on {∏k } so as to guarantee that kg ∏ kb +1.

Summing up, learning by itself contributes towards a gradual build up of the impact of any given

shock on the equilibrium outcome; but its interaction with higher-order uncertainty makes this build up

even more pronounced. It is precisely these properties that are encapsulated in the backward-looking

component of our observational equivalence result: the coefficient !b , which captures the endogenous

build up in the equilibrium dynamics, is positive because of learning and it is higher the higher the

importance of higher-order uncertainty.

Multiple Fundamental Shocks. So far, we have focused on the case where there is a single funda-

mental shock. Now we extend the analysis to a case where multiple fundamental shocks are present.

On one hand, we will show that relative to the frictionless benchmark, when these shocks cannot be

perfectly separated, agents may overact to some of these shocks and underact to the others when we fo-

cus on the PE effects, as in Lucas (1976). On the other hand, we will show that higher-order uncertainty,

which exclusively related to the GE effects, still results in distortions in the form of myopia and anchoring

relative to its complete-information counterpart.

Suppose that the best response is

ai ,t = Ei ,t [¡1ª
1
t
+¡2ª

2
t
]+∞Ei ,t [at+1],

where the two fundamental shocks are driven by two different innovations ¥1
t

and ¥2
t

ª1
t
=

1X

k=0
Ω1

k
¥1

t°k
, and ª2

t
=

1X

k=0
Ω2

k
¥2

t°k
.

We assume that agents do not observe separate signals about the innovations to the two fundamental

46Recall, this is by property (i) of Proposition 14.
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shocks, but only a sum of them, i.e.,

xi ,t ,t°k = ¥1
t°k

+¥2
t°k

+≤i ,t ,t°k 8k.

This signal structure is the same as before if agents only care about the sum ¥t ¥ ¥1
t
+¥2

t
, and it follows

that

Et [¥t°k ] =∏k .

where the sequence of ∏k is defined in a similar way as before. The average expectations on each of the

aggregate innovations is given by

Et [¥1
t°k

] =$1∏k , and Et [¥2
t°k

] =$2∏k ,

where the weights ¡1 and ¡2 depend on the relative volatility of ¥1
t

versus ¥2
t
, satisfying $1 +$2 = 1.

First consider the case where ∞= 0, that is, only the PE consideration is at work. The average expec-

tations about the fundamental are given by

Et

£
¡1ª

1
t

§
=¡1$1

1X

k=0
∏kΩ

1
k
¥t°k =¡1$1

1X

k=0
∏kΩ

1
k
¥1

t°k
+¡1$1

1X

k=0
∏kΩ

1
k
¥2

t°k
,

Et

£
¡2ª

1
t

§
=¡2$2

1X

k=0
∏kΩ

2
k
¥t°k =¡2$2

1X

k=0
∏kΩ

2
k
¥1

t°k
+¡2$2

1X

k=0
∏kΩ

2
k
¥2

t°k
.

In the absence of GE consideration and higher-order expectation, we can see that agents may overact to

some of the fundamental. Consider the response to innovation of the first fundamental, ¥1
t
. In the fric-

tionless case, Et

£
!1ª

1
t

§
= !1

P1
k=0Ω

1
k
¥1

t°k
. The average expectation of ª1

t
under incomplete information

is modified in two ways: on one hand, it is attenuated by the terms {∏k¡1}; on the other hand, it also

responds to ¥2
t

due to informational frictions. The total effects could well be a higher response overall.

Now we turn to the effects of the GE consideration and higher-order uncertainty with ∞ > 0. The

average higher-order expectations are given by

F
h

t

£
!1ª

1
t+h°1 +!2ª

2
t+h°1

§
=

1X

k=0
fh,k¥t°k , with fh,k =∏k∏k+1...∏k+h°1(!1¡1Ω

1
k+h°1+!2¡2Ω

2
k+h°1).

Here, we utilize the property that agents cannot separate ¥1
t

from ¥2
t

and the expectations can be effec-

tively written as functions of ¥t .

Similar to the single-shock economy, the aggregate outcome can be written as

at =
1X

k=0
gk¥t°k , with gk =

1X

h=1
∞h°1

fh,k =
(

1X

h=1
∞h°1∏k∏k+1...∏k+h°1(!1¡1Ω

1
k+h°1 +!2¡2Ω

2
k+h°1)

)

.

(76)

In contrast, with complete but imperfect information that shares the same first-order belief, the aggre-
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gate outcome is

at =
1X

k=0
bgk¥t°k , with bgk =

(
1X

h=1
∞h°1∏k (!1¡1Ω

1
k+h°1 +!2¡2Ω

2
k+h°1)

)

. (77)

Define bªt as

bªt ¥
1X

k=0
(!1¡1Ω

1
k
+!2¡2Ω

2
k

)¥t°k .

By replacing ªt by bªt , the analysis on myopia and anchoring in Proposition 14 extends to the current

setting. Therefore, relative to the complete-information counterpart, the effects of additional myopia

and anchoring remain the same when there exist multiple fundamental shocks.

Two Forms of Bounded Rationality. We now shed light on two additional points, which were antici-

pated earlier on: the role played by the anticipation that others will learn in the future; and the possible

interaction of incomplete information with Level-k Thinking.

To illustrate the first point, we consider a behavioral variant where agents fail to anticipate that others

will learn in the future. To simplify, we also set Ø= 0. Recall from equation (71), when agents are rational,

the forward higher-order beliefs are

F
h

t [ªt+h°1] =
1X

k=0
∏k∏k+1...∏k+h°1Ωk+h°1¥t°k .

In the variant economy, by shutting down the anticipation of learning, the nature of higher-order beliefs

changes, as Ei ,t
£
Et+k

£
ªt+q

§§
= Ei ,t

£
Et

£
ªt+q

§§
for k, q ∏ 0, and the counterpart of F

h

t [ªt+h°1] becomes

E
h

t [ªt+h°1] ¥ Et

£
Et [. . .Et [[ªt+h°1] . . .]

§
=

1X

k=0
∏h

k
Ωt+h°1¥t°k .

Learning implies ∏k+1 > ∏k , and the anticipation of learning implies ∏k∏k+1...∏k+h°1 > ∏h

k
. As a result,

higher-order beliefs in the behavioral variant under consideration vary less than those under rational

expectations. By the same token, the aggregate outcome in this economy, which is given

at =
1X

h=1
∞h°1E

h

t [ªt+h°1] ,

behaves as if the myopia and anchoring are stronger than in the rational-expectations counterpart. In

line with these observations, it can be shown that, if we go back to our baseline specification and impose

that agents fail to anticipate that others will learn in the future, Proposition 3 continues to hold with the

following modification: ! f is smaller and !b is higher.

To illustrate the second point, we consider a variant that lets agents have limited depth of reasoning

in the sense of Level-k Thinking. With level-0 thinking, agents believe that the aggregate outcome is fixed

at zero for all t , but still form rational beliefs about the fundamental. Therefore, a
0
i ,t = Ei ,t [ªt ], and the

implied aggregate outcome for level-0 thinking is a
0
t
= Et [ªt ].
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With level-1 thinking, agent i ’s action changes to

a
1
i ,t = Ei ,t [ªt ]+∞Ei ,t [a

0
t+1] = Ei ,t [ªt ]+∞Ei ,t

£
Et+1[ªt+1]

§
,

where the second-order higher-order belief shows up. By induction, the level-k outcome is given by

a
k

t
=

k+1X

h=1
∞h°1F

h

t [ªt+h°1] .

In a nutshell, Level-k Thinking truncates the hierarchy of beliefs at a finite order.

Compared with the rational-expectations economy that has been the focus of our analysis, the GE

feedback effects in both of the aforementioned two variants are attenuated, and the resulting as-if my-

opia is strengthened. Furthermore, by selecting the depth of thinking, we can make sure that the second

variant produces a similar degree of myopia as the first one.47 That said, the source of the additional

myopia is different. In the first, the relevant forward-looking higher-order beliefs have been replaced by

myopic counterparts, which move less. In the second, the right, forward-looking higher-order beliefs are

still at work, but they have been truncated at a finite point.

I Multiple Shocks

Our baseline specification has assumed that there is a single shock that drives the fundamental. In this

section, we extend our analysis in the direction of Kohlhas and Walther (2019) to include both procyclical

and countercyclical components, and show that a modified version of our main result holds.

Consider the following best response, which is similar to our baseline specification:

yi t ='Ei t [≥t ]+ØEi t [yi t+1]+∞Ei t [yt+1]. (78)

But now allow the fundamental ≥t to be driven by N different components:

≥t =
NX

j=1
d j t , with d j t = ∑ jªt +≤ j ,t .

The common shock among different components, ªt , follows an AR(1) process:

ªt = Ωªt°1 +¥t .

The component-specific shocks ≤ j ,t ª N (0,ø°1
j

) are i.i.d. across both j and t . The loading of compo-

nent j on ªt is ∑ j , which could be both positive or negative, capturing for procyclical or counter-cyclical

components. Finally,
P

j ∑ j = 1.

In terms of the information structure, assume that each agent receives N private signals, one per

47This follows directly from the fact that impact of effect of an innovation in the first variant is bounded between those of the
level-0 and the level-1 outcome in the second variant.
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component:

xi , j ,t = d j t +ui , j ,t , ui , j ,t ªN (0,!°1
j

).

This is the same structure considered in Kohlhas and Walther (2019), which leads to asymmetric atten-

tion by allowing heterogeneity in ! j .

To see how this structure connects with our equivalence result, we turn to the following auxiliary best

response in which only the persistent shock ªt is pay-off relevant:

ai t ='Ei t [ªt ]+ØEi t [ai t+1]+∞Ei t [at+1]. (79)

This best response is exactly the same as our model. The aggregate outcome yt from condition (78) is

related to the aggregate outcome at from condition (79) in the following way:

yt ='
1X

k=0
ØkEt [≥t+k ]+∞

1X

k=0
ØkEt [yt+k+1]

='
NX

j=1
Et [≤ j ,t ]+

1X

k=0
ØkEt [ªt+k ]+∞

1X

k=0
ØkEt [yt+k+1]

='
NX

j=1
Et [≤ j ,t ]+at ,

where the last equality is due to that only the persistent shock ªt matters for yt+k in the future, and the

forecasts of the transitory shocks ≤ j ,t are zero. We conclude that

yt = at +ut ,

where ut ¥'
P

N

j=1Et [≤ j ,t ].

Consider how ut is determined. To this goal, let us first compute the forecast of the persistent shock

ªt . Since this object only involves the first-order belief, it is more convenient to consolidate the N differ-

ent signals into a single one

xi ,t = ªt +
1
ø

NX

j=1
∑ j (ø°1

j
+!°1

j
)°1(≤ j ,t +ui , j ,t ) ¥ ªt +ui ,t , ui ,t ªN (0,ø°1),

where ø = P
N

j=1∑
2
j
(ø°1

j
+!°1

j
)°1. That is, it is as if each agent observes a single signal, which however

contains both idiosyncratic and aggregate noise—a hybrid of the private and public signals considered

in Appendix B. Using this observation, we can compute the average forecast as follows:

Et [ªt ] =
µ
1° g

Ω

∂
1

1° g L

NX

j=1

∑2
j
(ø°1

j
+!°1

j
)°1

ø
(ªt +∑°1

j
≤ j ,t ),

or equivalently

Et [ªt ] =
µ
1° g

Ω

∂
1

1° g L
(ªt +≤t ), (80)
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where g ¥ 1
2

"

Ω+ 1
Ω (1+ø)°

r≥
Ω+ 1

Ω (1+ø)
¥2
°4

#

< Ω and ≤t ¥ 1
ø

P
N

j=1∑ j (ø°1
j

+!°1
j

)°1≤ j ,t . Next, denote

with ∏ j ¥
! j

ø j+! j

2 (0,1) the signal-to-noise ratio applied when inferring ≤ j ,t from ui , j ,t . The average fore-

cast of the sum of component-specific shocks is given by

NX

j=1
Et [≤ j ,t ] =

NX

j=1
∏ j (∑ jªt +≤ j ,t °∑ jEt [ªt ]) =

NX

j=1
∏ j∑ j (ªt °Et [ªt ])+

NX

j=1
∏ j ≤ j t . (81)

It follows that the determination of ut boils down to a pure forecasting problem spelled out by equations

(80) and (81).

Consider next the determination of at . As already mentioned, this obtains from the same best re-

sponses as our model, with ªt been the sole fundamental. The information structure about it is more

complicated that in our baseline analysis, as agents observed signals contaminated with both idiosyn-

cratic and common noise. But a result similar to Proposition 12 in Appendix B applies. That is,

at = a
ª
t
+∫t ,

where a
ª
t
, the fundamental component, obeys our observational equivalence result and vt , the residual,

is an AR(1) driven by the “noise” (here, the combination of the ≤ j ,t ’s). The only subtle difference is in the

precise cubic that pins down # (and thereby ! f and !b).

To complete the picture, consider the projection of yt on the history of ªt . This is given by

y
ª
t
= e'

1° g L
¥t +a

ª
t
,

where ¥t is the innovation in ªt and e'¥'
P

N

j=1∏ j∑ j

g

Ω . We thus have that the IRF of yt with respect to ¥t

is the sum of the AR(2) corresponding to a
x

t
i and of the AR(1) given by the first term above. Clearly, this

term does not contribute to a hump-shape. Furthermore, it is likely to be quantitatively less important

than a
ª
t

for the following reason: a
ª
t

consists of all the PE and GE effects across all the horizons, while
e'

1°g L
¥t captures only a fraction of the total PE effects. For instance, as explained in Appendix D.2, in

our inflation applications GE effects are about 7 times as large as PE effects. This suggests that, in that

context, the a
ª
t

term would easily overwhelm the other term.

Let us conclude with the following comment. Kohlhas and Walther (2019) have used a model of the

type described above to show that asymmetric attention allocation to various components of the out-

come may help reconcile the form of belief over-reaction documented in their paper with the form of

belief under-reaction documented in CG. Our network extension in Section 8 allows one to consider a

multi-sector economy in which different sectors have different exposures to the aggregate shock, either

directly or indirectly via differential GE effects. This may provide a more detailed micro-foundation for

pro- and counter-cyclical components of economic activity, along the lines suggested by the aforemen-

tioned paper. And it could help study the role of asymmetries in GE feedbacks, similarly in spirit to what
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we do in our HANK application in Section 7.48

J Additional Proofs

Proof of Lemma 1, Lemma 2, and Proposition 8

The demand schedule faced by an individual firm i in market m is given by

Yi ,m,t =
µ

Pi ,m,t

Pm,t

∂°√ µ
Pm,t

Pt

∂°"
Yt ,

where √ and " are within- and across-market elasticities of substitution, respectively. The price index in

market m and the aggregate price index are defined as

Pm,t =
√

1
N

X

j

P
1°√
j ,m,t

! 1
1°√

, Pt =
∑Z

m

P
1°"
m,t

∏ 1
1°"

.

In the absence of nominal rigidity and informational frictions, an individual firm i in market m sets its

price to maximize its profit in the current period

max
Pi ,m,t

Pi ,m,t Yi ,m,t °PtC (Yt )Yi ,m,t ,

where C (Yt ) is the marginal real cost which depends on the aggregate economic condition. Using the

following properties

@Yi ,m,t

@Pi ,m,t
=°√

Yi ,m,t

Pi ,m,t
+ (√°")

Yi ,m,t

Pm,t

@Pm,t

@Pi ,m,t
, and

@Pm,t

@Pi ,m,t
= 1

N
P
√
m,t P

°√
i ,m,t ,

the first-order condition is

(1°√)
Pi ,m,t

Pt

+√C (Yt ) = "°√
N

≥
Pi ,m,t

Pt

°C (Yt )
¥µ

Pi ,m,t

Pm,t

∂1°√
= 0.

We assume that C (Yt ) =C exp(mct ) where mct follows an AR(1) process

mct = Ωmct°1 +¥t .

In steady state where mct = 0 and Pi ,m,t = Pm,t = Pt , it follows that

C =
√°1+ "°√

N

√+ "°√
N

.

The log-linearized version of the first-order condition is

(1°√)(pi ,m,t °pt )+√C mct =
"°√

N

≥
pi ,m,t °pt °C mct + (1°C )(1°√)(pi ,m,t °pm,t )

¥
,

48There, asymmetric GE feedbacks emerge because of heterogeneous MPCs and heterogeneous exposures of income to
business-cycle fluctuations.
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which leads to the following best response

pi ,m,t ='mct +ÆN pm,t + (1°ÆN )pt ,

where ÆN is given by

ÆN = N (√°1)(√°")

√
°
N 2(√°1)° (N °1)√

¢
+ (N °2)√"+"2

.

Turn to the environment where there is nominal rigidity and incomplete information. The problem

of a firm that can reset its price becomes

max
Pi ,m,t

1X

k=0
(¬µ)kEi ,m,t

h
Pi ,m,t Yi ,m,t+k °Pt+kC (Yt+k )Yi ,m,t+k

i
,

and the linearized first-order condition becomes

p
§
i ,m,t = (1°¬µ)

1X

k=0
(¬µ)k'Ei ,m,t [mct+k ]+ (1°¬µ)

1X

k=0
(¬µ)kEi ,m,t [ÆN pm,t+k + (1°ÆN )pt+k ].

Under the assumption that all firms share the same information within the market, all newly set prices

within a market are identical. Denote the newly set price in market m as p
§
m,t , and it satisfies

p
§
m,t = (1°¬µ)

1X

k=0
(¬µ)k'Em,t [mct+k ]+ (1°¬µ)

1X

k=0
(¬µ)kEm,t [ÆN pm,t+k + (1°ÆN )pt+k ].

Denote ºm,t as the inflation rate in market m. Subtracting pm,t°1 from both sides of the equation above

leads to

ºm,t =(1°µ)(1°¬µ)
1X

k=0
(¬µ)k'Em,t [mct+k ]+ÆN (1°µ)

1X

k=0
(¬µ)kEm,t [ºm,t+k ]

+ (1°µ)(1°ÆN )
1X

k=0
(¬µ)kEm,t [ºt+k ]+ (1°µ)(1°ÆN )(pt°1 °pm,t°1).

To proceed, consider the following alternative inflation definition in market m

eºm,t =(1°µ)(1°¬µ)
1X

k=0
(¬µ)k'Em,t [mct+k ]+ÆN (1°µ)

1X

k=0
(¬µ)kEm,t [eºm,t+k ]

+ (1°µ)(1°ÆN )
1X

k=0
(¬µ)kEm,t [ºt+k ].

Since the aggregate inflation under these two models are identical (
R

m
ºm,t =

R
m

eºm,t ), we can derive the

aggregate inflation dynamics from the latter. By the law of iterated expectations, we have

eºm,t =Em,t

∑
(1°µ)(1°¬µ)'mct + (1°µ)(1°ÆN )ºt

1°¬µL°1

∏
+ (1°µ)ÆNEm,t

∑ eºm,t

1°¬µL°1

∏

=Em,t

∑
(1°µ)(1°¬µ)'mct + (1°µ)(1°ÆN )ºt

1°¬µL°1

µ
1° (1°µ)ÆN

1°¬µL°1

∂°1∏
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= 1
1° (1°µ)ÆN

1X

k=0

µ
¬µ

1° (1°µ)ÆN

∂
k

Em,t [(1°µ)(1°¬µ)'mct+k + (1°µ)(1°ÆNºt+k )].

Aggregating across markets and using the assumption that firms can observe current inflation, it follows

that the aggregate inflation satisfies

ºt = ∑
1X

k=0

µ
¬µ

1° (1°µ)ÆN

∂
k

Et [mct+k ]+ ¬(1°µ)(1°ÆN )
1° (1°µ)ÆN

1X

k=0

µ
¬µ

1° (1°µ)ÆN

∂
k

Et [ºt+k+1],

where ∑= (1°¬µ)(1°µ)'
µ . Mapping the fixed point problem above to our baseline framework, the aggregate

outcome is the result of the following forward-looking game

ai ,t ='Ei ,t [ªt ]+ØEi ,t [ai ,t+1]+∞Ei ,t [at+1],

where

Ø= ¬µ

1° (1°µ)ÆN

, and ∞= ¬(1°µ)(1°ÆN )
1° (1°µ)ÆN

.

with Ø+∞= ¬. Note that ∞ is decreasing in ÆN . To show that ∞ is increasing in N , it is sufficient to show

that ÆN is decreasing in N . When √> "> 1, and N ∏ 2

@ÆN

@N
=

(√°1)(√°")
°
√2 +"2 °2√"°√N

2(√°1)
¢

°
√

°
N 2(√°1)° (N °1)√

¢
+ (N °2)√"+"2

¢2

<
(√°1)(√°")

°
√2 °√+"2 °"°N

2(√2 °√)
¢

°
√

°
N 2(√°1)° (N °1)√

¢
+ (N °2)√"+"2

¢2

< 0,

which completes the proof.

Proof of Proposition 12

The signal process can be represented as

2

4 zt

xi ,t

3

5=

2

4ø
°1/2
" 0 1

1°ΩL

0 ø°1/2
u

1
1°ΩL

3

5

| {z }
¥M(L)

2

6664

b"t

bui ,t

b¥t

3

7775

| {z }
¥bsi ,t

.

where bsi ,t is a vector of standardized normal random variables. The auto-covariance generating function

for the signal process is

M (L)M0 °
L
°1¢= 1

°
L°Ω

¢°
1°ΩL

¢

2

4L+ (L°Ω)(1°ΩL)
ø"

L

L L+ (L°Ω)(1°ΩL)
øu

3

5 .
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In order to apply the Wiener-Hopf prediction formula we need to obtain the canonical factorization. Let

∏ be the inside root of the determinant of M (L)M0 °
L
°1¢

∏= 1
2

√
ø"+øu

Ω
+ 1
Ω
+Ω°

sµ
ø"+øu

Ω
+ 1
Ω
+Ω

∂2

°4

!

.

Then the fundamental representation is given by

B(z)°1 = 1
1°∏z

2

41° ø≤Ω+∏øu

ø≤+øu

z
øu (∏°Ω)
ø≤+øu

z

ø≤(∏°Ω)
ø≤+øu

z 1° øuΩ+∏ø≤
ø≤+øu

z

3

5 ,

V°1 = ø≤øu

Ω(ø≤+øu)

2

4
øuΩ+∏ø≤

øu

∏°Ω
∏°Ω ø≤Ω+∏øu

ø≤

3

5 ,

which satisfies

B (L)VB0 °
L
°1¢= M (L)M0 °

L
°1¢ .

Applying the Wiener-Hopf prediction formula, the forecast of ªt is given by

Ei ,t [ªt ] =
hh

0 0 1
1°ΩL

i
M0 °

L
°1¢B0 °

L
°1¢°1

i

+
V°1B (L)°1

2

4 zt

xi ,t

3

5=
∏

h
ø" øu

i

Ω (1°∏L)
°
1°Ω∏

¢

2

4 zt

xi ,t

3

5 .

Suppose the policy function is h1(L) and h2(L), that is,

ai ,t = h1(L)zt +h2(L)xi ,t .

Let g (L) ¥ h1(L)+h2(L), and it follows that the aggregate outcome is at = g (L)ªt +h1(L)≤t . The forecast

about at+1 is given by

Ei ,t [at+1] =
hh
ø°1/2
" L

°1
h1 (L) 0 L

°1
g (L)

1°ΩL

i
M0 °

L
°1¢B0 °

L
°1¢°1

i

+
V°1B (L)°1

2

4 zt

xi ,t

3

5

=

8
><

>:

h°°
Ωøu +∏ø"+∏Ω

°
∏øu +Ωø"

¢¢
L°∏Ω (øu +ø")

°
1+L

2¢¢
h1 (L) øu

°
∏°Ω

¢°
1°Ω∏

¢
Lh1 (L)

i

Ω (øu +ø")L (L°∏) (1°∏L)

°

h
ø"

°
Ω°∏

¢°
1°ΩL

¢
Lh1 (∏) øu

°
Ω°∏

¢°
1°ΩL

¢
Lh1 (∏)

i

Ω (øu +ø")L (L°∏) (1°∏L)

°

h
Ω (L°∏)

°°
∏øu +Ωø"

¢
L° (øu +ø")

¢
h1 (0) øu

°
Ω°∏

¢
LΩ (L°∏)h1 (0)

i

Ω (øu +ø")L (L°∏) (1°∏L)

+
∏

°°
1°Ω∏

¢
g (L)°

°
1°ΩL

¢
g (∏)

¢h
ø" øu

i

Ω
°
1°Ω∏

¢
(L°∏) (1°∏L)

9
=

;

"
zt

xi ,t

#

.
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Also, the forecast about ai ,t+1 °at+1 is

Ei ,t
£
ai ,t+1 °at+1

§
=

hh
0 ø°1/2

u
L
°1

h2 (L) 0
i

M0 °
L
°1¢B0 °

L
°1¢°1

i

+
V°1B (L)°1

2

4 zt

xi ,t

3

5

=

8
><

>:

h
ø"

°
∏°Ω

¢°
1°Ω∏

¢
Lh2 (L)

°°
∏øu +Ωø"+∏Ω

°
Ωøu +∏ø"

¢¢
L°∏Ω (øu +ø")

°
1+L

2¢¢
h2 (L)

i

Ω (øu +ø")L (L°∏) (1°∏L)

°

h
ø"

°
Ω°∏

¢°
1°ΩL

¢
Lh2 (∏) øu

°
Ω°∏

¢°
1°ΩL

¢
Lh2 (∏)

i

Ω (øu +ø")L (L°∏) (1°∏L)

°

h
ø"

°
Ω°∏

¢
LΩ (L°∏)h2 (0) Ω (L°∏)

°°
Ωøu +∏ø"

¢
L° (øu +ø")

¢
h2 (0)

i

Ω (øu +ø")L (L°∏) (1°∏L)

9
=

;

"
zt

xi ,t

#

.

These two objects are useful for agents to decide their optimal action, which should satisfy the best

response function

ai ,t ='Ei ,t [ªt ]+ØEi ,t [ai ,t+1]+∞Ei ,t [at+1] ='Ei ,t [ªt ]+ØEi ,t [ai ,t+1 °at+1]+ (∞+Ø)Ei ,t [at+1].

Substituting the forecast formulas into the best response function, it leads to the following functional

equation

A(L)

2

4h1 (L)

h2 (L)

3

5= d (L) ,

where49

A(L) =

2

41° (∞+Ø)L
°1 ° ∞∏ø"

Ω(L°∏)(1°∏L)

0 1° ∞∏øu

Ω(L°∏)(1°∏L) °ØL
°1

3

5 ,

and

D(L) ¥
'∏

h
ø" øu

i0

Ω (1°∏L)
°
1°Ω∏

¢ °'1

°
1°ΩL

¢h
ø" øu

i0

(L°∏) (1°∏L)

°'2

h°
∏øu +Ωø"

¢
L° (ø"+øu) øu

°
Ω°∏

¢
L

i0

L (1°∏L)
°'3

h
ø"

°
Ω°∏

¢
L

°
∏ø"+Ωøu

¢
L° (ø"+øu)

i0

L (1°∏L)
,

with

'1 =
°
Ω°∏

¢
((∞+Ø)h1 (∏)+Øh2(∏))

Ω (øu +ø")
+ (Ø+∞)

∏g (∏)

Ω
°
1°Ω∏

¢ , '2 =
∞+Ø
øu +ø"

h1 (0) , '3 =
Ø

øu +ø"
h2 (0) .

49We have used the following identities to simplify the expressions

Ωøu +∏ø"+∏Ω
°
∏øu +Ωø"

¢
+∏ø"(øu +ø") = Ω(1+∏2)(øu +ø"),

Ωø"+∏øu +∏Ω
°
∏ø"+Ωøu

¢
+∏øu (øu +ø") = Ω(1+∏2)(øu +ø").
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Next note that the determinant of A(L) is given by

det(A(L)) =
∏
≥
°L

3 +
≥
Ω+ 1

Ω +
øu+ø"
Ω +Ø

¥
L

2 °
≥
1+Ø

≥
Ω+ 1

Ω +
øu+ø"
Ω

¥
+ ∞øu

Ω

¥
L+Ø

¥
(L° (∞+Ø))

L2 (1°∏L) (L°∏)
,

which has four roots!1 to!4, with |!4| > 1 and the others being less than 1 in absolute value. We choose

'1, '2, and'3 to remove the inside poles of h1(L) at!1 to!3. This leads to the following policy function,

h1 (L) = '

1°Ω(Ø+∞)
ø"#

Ω(1°Ω#)
1

1°#L
, and h2 (L) = '

1°Ω(Ø+∞)
(1°Ω#)(Ω°#)°#ø"

Ω(1°Ω#)
1

1°#L
,

where #¥!°1
4 is the reciprocal of the outside root of the following cubic equation

C (z) =°z
3 +

µ
Ω+ 1

Ω
+ øu +ø"

Ω
+Ø

∂
z

2 °
µ
1+Ø

µ
Ω+ 1

Ω
+ øu +ø"

Ω

∂
+ ∞øu

Ω

∂
z +Ø

=°z
3 +

µ
Ω+ 1

Ω
+ 1
Ωæ2 +±°∞

∂
z

2 °
µ
1+ (±°∞)

µ
Ω+ 1

Ω

∂
+ ±°∞¬

Ωæ2

∂
z +±°∞.

where the last line using the definition æ°2 =æ°2
u

+æ°2
≤ . The aggregate outcome, at = (h1(L)+h2(L))ªt +

h1(L)≤t , is

at =
µ
1° #

Ω

∂
1

1°#L

'

1°Ω(Ø+∞)
ªt +

ø"#

Ω(1°Ω#)
'

1°Ω(Ø+∞)
1

1°#L
"t

¥ a
ª
t
+ vt .

In terms of comparative statics, note that

@C (#°1)
@¬

= ¬

Ωæ2 > 0.

By the same logic in the proof of Proposition 5, it follows that # is decreasing in ¬.

Proof of Proposition 13

This follows directly from the analysis in the main text.

Proof of Proposition 14

First, let us prove gk < bgk . Recall that {gk } is given by

gk =
1X

h=0
∞h∏k∏k+1...∏k+hΩk+h .

Clearly,

0 < gk <
1X

h=0
∞h∏kΩk+h = bgk ,
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which proves the first property. If limk!1∏k = 1 and
P1

h=0∞
hΩk+h exists for all k, then it follows that

lim
k!1

bgk

gk

=
limk!1

P1
h=0∞

hΩk+h

limk!1
P1

h=0∞
hΩk+h

= 1.

Next, let us prove that gk+1
gk

> bgk+1
bgk

. By definition,

bgk+1

bgk

= ∏k+1

∏k

P1
h=0∞

hΩk+h+1
P1

h=0∞
hΩk+h

,

gk+1

gk

= ∏k+1

∏k

P1
h=0∞

h∏k+2...∏k+h+1Ωk+h+1
P1

h=0∞
h∏k+1...∏k+hΩk+h

.

Since {∏k } is strictly increasing and Ωk > 0, we have

gk+1

gk

. bgk+1

bgk

>
P1

h=0∞
h∏k+1...∏k+hΩk+h+1

P1
h=0∞

h∏k+1...∏k+hΩk+h

.P1
h=0∞

hΩk+h+1
P1

h=0∞
hΩk+h

.

It is sufficient to show that the term on the right-hand side is greater than 1. To proceed, we start with

the following observation. If µ1 ∏ µ2 > 0, and y2
y1+y2

∏ x2
x1+x2

, then

x1µ1 +x2µ2

x1 +x2
∏ y1µ1 + y2µ2

y1 + y2
. (82)

Note that
P1

h=0∞
h∏k+1...∏k+hΩk+h+1

P1
h=0∞

h∏k+1...∏k+hΩk+h

= Ωk+1

Ωk

1+∞∏k+1
Ωk+2
Ωk+1

+∞2∏k+1∏k+2
Ωk+3
Ωk+1

+ . . .

1+∞∏k+1
Ωk+1
Ωk

+∞2∏k+1∏k+2
Ωk+2
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+ . . .
,

and
P1

h=0∞
hΩk+h+1

P1
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hΩk+h

= Ωk+1

Ωk

1+∞Ωk+2
Ωk+1

+∞2 Ωk+3
Ωk+1

+ . . .

1+∞Ωk+1
Ωk

+∞2 Ωk+2
Ωk

+ . . .
.

In what follows, we will show by induction that

1+∞∏k+1
Ωk+2
Ωk+1

+∞2∏k+1∏k+2
Ωk+3
Ωk+1

+ . . .

1+∞∏k+1
Ωk+1
Ωk
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Ωk+2
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+ . . .
∏
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Ωk+1

+∞2 Ωk+3
Ωk+1

+ . . .

1+∞Ωk+1
Ωk

+∞2 Ωk+2
Ωk

+ . . .
.

We first establish the following inequality

1+∞∏k+1
Ωk+2
Ωk+1

1+∞∏k+1
Ωk+1
Ωk

∏
1+∞Ωk+2

Ωk+1

1+∞Ωk+1
Ωk

.

This inequality is obtained by labeling µ1 = 1,µ2 = ΩkΩk+2

Ω2
k+1

, x1 = y1 = 1, x2 = ∞∏k+1
Ωk+1
Ωk

, and y2 = ∞
Ωk+1
Ωk

, and

applying inequality (82). By assumption, ΩkΩk+2

Ω2
k+1

∑ 1, which implies µ1 ∏ µ2 > 0. Meanwhile,

x2

x1 +x2
=

∞∏k+1
Ωk+1
Ωk

1+∞∏k+1
Ωk+1
Ωk

∑
∞∏k+1

Ωk+1
Ωk

∏k+1 +∞∏k+1
Ωk+1
Ωk

= y2

y1 + y2
.
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Now suppose that

1+∞∏k+1
Ωk+2
Ωk+1

+ . . .+∞n°1∏k+1 . . .∏k+n°1
Ωk+n

Ωk+1

1+∞∏k+1
Ωk+1
Ωk

+ . . .+∞n°1∏k+1 . . .∏k+n°1
Ωk+n°1
Ωk

∏
1+∞Ωk+2

Ωk+1
+ . . .+∞n°1 Ωk+n

Ωk+1

1+∞Ωk+1
Ωk

+ . . .+∞n°1 Ωk+n°1
Ωk

,

and we need to show

1+∞∏k+1
Ωk+2
Ωk+1

+ . . .+∞n°1∏k+1 . . .∏k+n°1
Ωk+n

Ωk+1
+∞n∏k+1 . . .∏k+n

Ωk+n+1
Ωk+1

1+∞∏k+1
Ωk+1
Ωk

+ . . .+∞n°1∏k+1 . . .∏k+n°1
Ωk+n°1
Ωk

+∞n∏k+1 . . .∏k+n

Ωk+n

Ωk

(83)

∏
1+∞Ωk+2

Ωk+1
+ . . .+∞n°1 Ωk+n

Ωk+1
+∞n Ωk+n+1

Ωk+1

1+∞Ωk+1
Ωk

+ . . .+∞n°1 Ωk+n°1
Ωk

+∞n Ωk+n

Ωk

.

Again, to apply (82), let µ1 =
1+∞ Ω

k+2
Ω

k+1
+...+∞n°1 Ω

k+n

Ω
k+1

1+∞ Ω
k+1
Ω

k

+...+∞n°1 Ω
k+n°1
Ω

k

, µ2 = ΩkΩk+n+1
Ωk+1Ωk+n

, x1 = 1+∞∏k+1
Ωk+1
Ωk

+. . .+∞n°1∏k+1 . . .∏k+n°1
Ωk+n°1
Ωk

,

x2 = ∞n∏k+1 . . .∏k+n

Ωk+n

Ωk

, y1 = 1+∞Ωk+1
Ωk

+ . . .+∞n°1 Ωk+n°1
Ωk

, y2 = ∞n Ωk+n

Ωk

. We have

1+∞∏k+1
Ωk+2
Ωk+1

+ . . .+∞n°1∏k+1 . . .∏k+n°1
Ωk+n

Ωk+1
+∞n∏k+1 . . .∏k+n

Ωk+n+1
Ωk+1

1+∞∏k+1
Ωk+1
Ωk

+ . . .+∞n°1∏k+1 . . .∏k+n°1
Ωk+n°1
Ωk

+∞n∏k+1 . . .∏k+n

Ωk+n

Ωk

=
x1

1+∞∏k+1
Ω

k+2
Ω

k+1
+...+∞n°1∏k+1...∏k+n°1

Ω
k+n

Ω
k+1

1+∞∏k+1
Ω

k+1
Ω

k

+...+∞n°1∏k+1...∏k+n°1
Ω

k+n°1
Ω

k

+x2µ2

x1 +x2

∏x1µ1 +x2µ2

x1 +x2
,

and

1+∞Ωk+2
Ωk+1

+ . . .+∞n°1 Ωk+n

Ωk+1
+∞n Ωk+n+1

Ωk+1

1+∞Ωk+1
Ωk

+ . . .+∞n°1 Ωk+n°1
Ωk

+∞n Ωk+n

Ωk

= y1µ1 + y2µ2

y1 + y2
.

To establish (83), it remains to show that µ1 ∏ µ2 and x2
x1+x2

∑ y2
y1+y2

. Note that

µ1

µ2
=

1+∞Ωk+1
Ωk

Ωk+2Ωk

Ω2
k+1

+ . . .+∞n°1 Ωk+n°1
Ωk

Ωk+nΩk

Ωk+1Ωk+n°1

µ2 +∞Ωk+1
Ωk

µ2 + . . .+∞n°1 Ωk+n°1
Ωk

µ2
.

By assumption, µ2 < 1 and µ2 ∑ ΩkΩk+i+1
Ωk+1Ωk+i

when i ∑ n, which leads to µ1 ∏ µ2. Also note that

x2

x1 +x2

=
∞n∏k+1 . . .∏k+n

Ωk+n

Ωk

1+∞∏k+1
Ωk+1
Ωk

+ . . .+∞n°1∏k+1 . . .∏k+n°1
Ωk+n°1
Ωk

+∞n∏k+1 . . .∏k+n

Ωk+n

Ωk

∑
∞n∏k+1 . . .∏k+n

Ωk+n

Ωk

∏k+1 . . .∏k+n +∞∏k+1 . . .∏k+n

Ωk+1
Ωk

+ . . .+∞n°1∏k+1 . . .∏k+n

Ωk+n°1
Ωk

+∞n∏k+1 . . .∏k+n

Ωk+n

Ωk

= y2

y1 + y2
.
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This completes the proof that gk+1
gk

> bgk+1
bgk

.
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