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Abstract

We develop an equivalence between the equilibrium effects of incomplete information and those of
two behavioral distortions: myopia, or extra discounting of the future; and anchoring of current be-
havior to past behavior, as in models with habit persistence or adjustment costs. We show how these
distortions depend on higher-order beliefs and GE mechanisms, and how they can be disciplined by
evidence on expectations. We finally illustrate the use of our toolbox with a quantitative application

in the context of inflation, a bridge to the HANK literature, and an extension to networks.
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1 Introduction

What are the macroeconomic effects of informational frictions? How do they depend on general equilib-
rium (GE) mechanisms, market structures, and agent heterogeneity? And how can they be quantified?
We develop a toolbox for addressing such questions and illustrate its use. On the theoretical front,
we offer an illuminating representation result and draw connections to the literatures on networks and
HANK models. On the quantitative front, we show how to extract the informational friction from survey
evidence on expectations and proceed to argue that it can rationalize sizable sluggishness in the response

of inflation and aggregate spending to shocks.

Framework. Our starting point is a representative-agent model, in which an endogenous outcome of

interest, denoted by a;, obeys the following law of motion:

ar =@ +0E [ags], (1)

where ¢ is the underlying stochastic impulse, or fundamental, ¢ > 0 and 6 € (0, 1] are fixed scalars, and
E;[-] is the rational expectation of the representative agent.

Condition (1) stylizes a variety of applications. In the textbook New Keynesian model, this condition
could be either the New Keynesian Philips Curve (NKPC), with a; standing for inflation and ¢, for the
real marginal cost, or the Euler condition of the representative consumer (a.k.a. the Dynamic IS curve),
with a; standing for aggregate spending and ¢, for the real interest rate. Alternatively, this condition can
be read as an asset-pricing equation, with ¢; standing for the asset’s dividend and a; for its price.

We depart from these benchmarks by letting people have a noisy “understanding” of the economy, in
the sense of incomplete information. The friction could be the product of dispersed knowledge (Lucas,
1972) or rational inattention (Sims, 2003). And it is the source of both first- and higher-order uncertainty.
Relative to the frictionless, full-information, rational-expectations benchmark, there is therefore not only
gradual learning of the exogenous innovations, but also a friction in how people reason about others

(Morris and Shin, 1998; Tirole, 2015) and thereby about GE effects (Angeletos and Lian, 2018).

An Observational Equivalence. Our main result is a representation of the equilibrium effects of the
informational friction in terms of two behavioral distortions. Under appropriate assumptions, the equi-
librium dynamics of the aggregate outcome a; in the incomplete-information economy are shown to

coincide with that of a representative-agent economy in which condition (1) is modified as follows:
ar= @S +owskslar] + wpag-, 2)

for some wy <1 and wy, > 0. The first distortion (w s < 1) represents myopia towards the future, the sec-
ond (wp > 0) anchors current outcomes to past outcomes. One dulls the forward-looking behavior, the

other adds a backward-looking element akin to habit or adjustment costs.



Crucially, both distortions increase not only with the level of noise but also with parameters that
regulate the strategic interaction, or the GE feedback in the economy. Economies in which the Keynesian
cross is steeper, firms are more strategic, or input-output linkages are stronger behave as if they are

populated by more impatient and more backward-looking agents.

Underlying insights and marginal contribution. The documented effects encapsulate the role of higher-
order beliefs. To fix ideas, consider the response of aggregate demand (= a;) to a drop in the real interest
rate (= ¢;). A consumer that becomes aware of this event now may nevertheless doubt that others will
be aware of the same event in the near future and may therefore also doubt that aggregate spending
will go up. As this logic applies for the average consumer, the economy as a whole systematically un-
derestimates the future movements in aggregate income, and behaves like a representative agent that
excessively discounts the future. And the larger the dependence of spending on income, or the steeper
the Keynesian cross, the larger this discounting.

This explains the documented myopia. The anchoring, on the other hand, has to do with learning.
As more times passes since the occurrence of any given shock, consumers become progressively more
aware of it. But higher-order beliefs adjust more sluggishly than first-order beliefs—equivalently, the
expectations of income adjust more sluggishly than expectations of interest rates. This reduces the speed
of adjustment in aggregate spending, or equivalently it increases the apparent dependence of current
spending on past spending. And the steeper the Keynesian cross, the larger this effect, too.

Versions of these insights have been documented in the literature before, albeit not in the sharp form
offered here.! Relative to the state of the art, our theoretical contribution contains: the bypassing of the
curse of dimensionality in higher-order beliefs; the existence, uniqueness and analytical characterization
of the equilibrium; the aforementioned observational-equivalence result; and an extension to a class of
incomplete-information networks. This in turn paves the way to our applied contribution, which we

detail below.

DSGE, micro to macro, and bounded rationality. Our observational equivalence offers the sharpest
to-date illustration of how informational frictions may substitute for the ad hoc forms of sluggish ad-
justment employed in the DSGE literature: the backward-looking element in condition (2) is akin to that
introduced by habit persistence in consumption, adjustment costs to investment, or indexation of prices
to past inflation.

Crucially, the documented distortions increase not only with the level of noise but also with param-

eters that regulate the strength of GE feedback loops and the associated importance of higher-order be-

ln particular, the role of learning as source of sluggish adjustment in behavior is the common theme of Sims (2003) and
Mankiw and Reis (2002); the higher sluggishness of higher-order beliefs relative to first-order beliefs has been emphasized
by Woodford (2003) and Morris and Shin (2006); and the role of higher-order beliefs as a source of as-if myopia has been
highlighted by Angeletos and Lian (2018).



liefs. In the context of the NKPC, examples of such parameters include the frequency of price adjustment,
the degree of market concentration, and the input-output matrix; and in the context of the Dynamic IS
curve, they include liquidity constraints and consumer heterogeneity.

Our analysis also yields the following, seemingly paradoxical, conclusion: more responsiveness at the
micro level often comes together with more sluggishness at the macro level. For instance, a smaller Calvo
friction maps to more sluggishness in aggregate inflation, and a higher marginal propensity to consume
(MPC) maps to more habit-like persistence in aggregate consumption. In both cases, the reason is that
the larger micro-level responsiveness is tied to a larger bite of higher-order uncertainty.

At the same time, our result builds a bridge to a recent literature that emphasizes how lack of com-
mon knowledge (Angeletos and Lian, 2018) and related kinds of bounded rationality (Farhi and Werning,
2019; Gabaix, 2020; Garcia-Schmidt and Woodford, 2019) make agents behave as if they are myopic. But
whereas this prior literature has restricted the belief error triggered by any shock to be time-invariant, our
analysis lets it decay with the age of the shock, thanks to the accommodation of learning. This explains

why our approach yields not only w ¢ < 1 but also wj, > 0, which is exactly what the data want.

Connection to evidence on expectations. Our results facilitate a simple quantitative strategy. We show
how estimates of w  and w;, can be obtained by combining knowledge about GE parameters with an ap-
propriate moment of the average forecasts. Such a moment is estimated in Coibion and Gorodnichenko
(2015), or CG for short: it is the the coefficient of the regression of the average forecast errors on past
forecast revisions.

The basic intuition is that a higher value for this moment indicates a larger informational friction.
But both the structural interpretation of this moment and its mapping to the macroeconomic dynamics
is modulated by the GE feedback. When this feedback is strong enough, a modest friction by the CG
metric may camouflage a large friction in terms of the values for w r and wp.

At the same time, we explain why the evidence on the under-reaction of average forecasts provided
in CG is more “reliable” for our purposes than the conflicting evidence on the over-reaction of individ-
ual forecasts provided in Bordalo et al. (2020) and Broer and Kohlhas (2019). In an extension that adds
a behavioral element as in those papers (a form of overconfidence), we can vary the theory’s implica-
tions about individual forecasts without varying the structural relation between average forecasts and

aggregate outcomes. The values of w y and w), are thus pinned down solely by the CG moment.

Applications: NKPC, HANK, and Asset Pricing. Our first application (Section 6) concerns inflation.
Using our toolbox, we show that the friction implicit in surveys of expectations is large enough to ratio-
nalize existing estimates of the Hybrid NKPC. This complements Nimark (2008), which articulated the
basic idea but did not discipline the theory with expectations data. To the best of our knowledge, ours is

indeed the first estimate of what the available evidence of expectations means for inflation dynamics.



Echoing a core theme of our paper, we show that most of the documented effect regards the expecta-
tions of the behavior of others (inflation) rather than the expectations of the fundamental (real marginal
cost). We finally put forward three ideas, all of which stem from the endogeneity of the Hybrid NKPC
under the prism of our analysis. The first two draw a possible causal link from the increase in market
concentration and the conduct of monetary policy to the reduction in inflation persistence. The third
highlights that the economy’s production network may influence not only the slope of the Philips curve
(as in Rubbo, 2020; La’O and Tahbaz-Salehi, 2020) but also its backward-looking element.

Our second application (Section 7) turns to aggregate demand. As already mentioned, our theory
provides a micro-foundation of habit-like persistence in aggregate spending. For a plausible calibra-
tion, this persistence is quantitatively comparable to that assumed in the DSGE literature, but requires
no actual habit at the micro level. This helps reconcile the gap between the levels of habit required to
match the macroeconomic time series and the much smaller levels estimated in microeconomic data
(Havranek, Rusnak, and Sokolova, 2017).

Relatedly, because the as-if myopia and habit increase with the MPC, our results help reconcile the
high responsiveness of consumer spending to income shocks at the micro level with the sluggishness of
aggregate spending to interest-rate shocks at the macro level.? This hints at a link between our contri-
bution and the emerging HANK literature. We take a step in this direction by studying a heterogeneous-
agent extension of our setting and showing the following property in it: a positive cross-sectional corre-
lation between MPC and income cyclicality, like that documented empirically in Patterson (2019), am-
plifies the expectations-driven sluggishness in the response of aggregate spending to monetary policy.

Other applications include investment (Appendix F) and asset pricing (Appendix G). In the latter
context, our results illustrate how higher-order uncertainty may be the source of both momentum and
excessive discounting. They also suggest that both distortions may be greater at the level of the entire
stock market than at the level of the stock of a particular firm, which in turn may help rationalize Samuel-

son’s dictum (Jung and Shiller, 2005).

Networks. Our HANK application is an example of how our toolbox can be extended to a class of net-
works. In this context, we offer a tractable characterization of the equilibrium dynamics as functions of
the network and information structures. This builds a bridge to a growing literature that emphasizes the

network structure of the economy but often ignores informational frictions.*

2 similar point has been made recently by Auclert, Rognlie, and Straub (2020).

3Choi, Rondina, and Walker (2020) also attempt to rationalize the discrepancies between aggregate and individual asset
prices based on incomplete information and segmented markets, but their work focuses on pricing efficiency and volatility
instead of momentum and discounting.

4A few notable exemptions are Bergemann, Heumann, and Morris (2017) and Golub and Morris (2019) on the abstract front,
and Nimark, Chahrour, and Pitschner (2019), Auclert, Rognlie, and Straub (2020) and La’O and Tahbaz-Salehi (2020) on the
applied front. None of these papers, however, share either our analytical results or our emphasis on forward-looking behavior.



2 Framework

In this section we set up our framework and illustrate its applicability.

2.1 Basic Ingredients

Time is discrete, indexed by ¢ € {0, 1,...}, and there is a continuum of agents, indexed by i € [0, 1]. At any
t, each agent chooses an action a; ; € R. Let a; be the average action. Best responses admit the following
recursive formulation:

ai,t:[Ei,t[(Pft"',Bai,Hl +Yat+l]r 3)

where ¢; is an underlying fundamental, E; ;[-] is the agent’s expectation in period ¢, and (¢, B,y) are
parameters, with ¢ >0, v € [0,6), and B = 67, for some 6 € (0,1). As it will become clear, § parameterizes
the agent’s overall concern about the future and y the GE, or strategic, considerations.

Iterating on condition (3) yields the following representation of i’s best response:
S gk S gk
aic =Y BEir[@Ersk] +7 Y B EilArrks]. 4)
k=0 k=0

While the recursive form (3) is more convenient for certain derivations, the extensive form given above
is more precise because it embeds appropriate “boundary” conditions for t — co.” It also makes salient
how a agent’s optimal behavior at any given point of time depends on her expectations of the entire
future paths of the fundamental and of the average action.
Aggregating condition (4) yields the following equilibrium restriction:
0 o0
ar=¢ kZOﬂ’CE [kl +YICZO/3’“E [@rsi], (5)

where E,[.] denotes the average expectation in the population. This condition highlights the fixed-point
relation between the equilibrium value of a; and the expectations of it. As it will become clear, this

condition also allows us to nest a variety of applications.®

2.2 Complete Information and Beyond

Suppose that information is complete, meaning that all agents share the same information and this fact

itself is common knowledge. The economy then admits a representative agent. That is, a;; = a; and

SNamely, we have imposed that, for any date 7 and history, lim;—co B°E;;[a; ] = 0, lim;—co B'E; ;[¢;] = 0, and
lim—oo B'E; 7 [ar] = 0. The first property can be understood as the transversality condition. The second represents a restriction
on the fundamental process, trivially satisfied when ¢ is bounded. The third represents an equilibrium refinement.

6The same best-response structure is assumed in Angeletos and Lian (2018). But whereas that paper considers a non-
stationary setting where ¢ is fixed at zero for all ¢ # T, for some given T = 1, we consider a stationary setting in which ¢;
varies in all ¢ and, in addition, there is gradual learning over time. Our framework also reminds the static beauty contests stud-
ied in Morris and Shin (2002), Woodford (2003), Angeletos and Pavan (2007), and Huo and Pedroni (2020). There, agents try to
predict the concurrent behavior of others. Here, they try to predict the future behavior of others.



E; ; = E;, where E; stands for the representative agent’s expectation, and condition (3) reduces to
ar =E¢l@r+6arl. (6)

This may correspond to the textbook versions of the Dynamic IS and New Keynesian Philips curves, or

an elementary asset-pricing equation. By the same token, the equilibrium outcome is given by

ar=@ Y 6"E(E in). @)
h=0

This can be read as “inflation equals the present discounted value of real marginal costs” or “the asset’s
price equals the present discounted value of its dividends.”

Clearly, only the composite parameter 6 = f+7 enters the determination of the equilibrium outcome:
its decomposition between f and v is irrelevant. As made clear in Section 3.1 below, this underscores that
the decomposition between PE and GE considerations is immaterial in this benchmark. Furthermore,
the outcome is pinned down by the expectations of the fundamental alone.

These properties hold because this benchmark imposes that agents can reason about the behavior of
others with the same ease and precision as they can reason about their own behavior. Conversely, intro-
ducing incomplete (differential) information and higher-order uncertainty, as we shall do momentarily,

amounts to accommodating a friction in how agents reason about the behavior of others, or about GE.

2.3 Two Examples: Dynamic IS and NKPC

Before digging any further into the theory, we illustrate how our setting can nest the two building blocks
of the New Keynesian model, the Dynamic IS curve and the New Keynesian Philips curve (NKPC). The

familiar, log-linearized, representative-agent versions of these equations are given by, respectively,
¢t =Eil—¢ri+ceral and  mp=Eelxme; + ¥l

where c; is aggregate consumption, r; is the real interest rate, n; is inflation, mc; is the real marginal

cost, ¢ > 0 is the elasticity of intertemporal substitution, x = (l_xgaﬂ

is the slope of the Philips curve,
0 € (0,1) is the Calvo parameter, y € (0,1) is the representative agent’s discount factor, and E; is her ex-
pectation. Clearly, both of these conditions are nested in condition (6).

Relaxing the common-knowledge foundations of the New Keynesian model along the lines of An-

geletos and Lian (2018) yields the following incomplete-information extensions of these equations:

ce=—¢ Y X Eilrel + -0 Y ¥ Erlers, ®)
k=0 k=1

we=% Y (WO E; mcpi] +x1-0) Y. (WO Es (714411, €)
k=0 k=0

where E, denotes the average expectation of the consumers in condition (8) and that of the firms in



condition (9). The first equation is nested in condition (5) by letting a; = ¢;, {&r =1, @ = —¢, B =7,
Y =1-y,and é = 1; the second by letting a; =7, {; =mc;, p =x, =0,y =x(1—-0) and 6 = y.

To understand condition (8), recall that the Permanent Income Hypothesis gives consumption as a
function of the present discounted value of income. Incorporating variation in the real interest rate and
heterogeneity in beliefs, and using the fact that aggregate income equals aggregate spending in equilib-
rium, yields condition (8). Finally, note that 1 — y measures the marginal propensity to consume (MPC)
out of income. The property that y = 1 — y therefore means that, in this context, y captures the slope of
the Keynesian cross, or the GE feedback between spending and income.

To understand condition (9), recall that a firm’s optimal reset price is given by the present discounted
value of its nominal marginal cost. Aggregating across firms and mapping the average reset price to in-
flation yields condition (9). When all firms share the same, rational expectations, this condition reduces
to the familiar, textbook version of the NKPC. Away from that benchmark, condition (9) reveals the pre-
cise manner in which expectations of future inflation (the behavior of firms) feed into current inflation.
Note in particular that y = y(1 —0), which means that the effective degree of strategic complementarity
increases with the frequency of price adjustment. This is because the feedback from the expectations
of future inflation to current inflation increases when a higher fraction of firms are able to adjust their

prices today on the basis of such expectations.

3 The Equivalence Result

This section contains the core of our contribution. We motivate the requisite assumptions, solve for
the rational-expectations fixed point, develop our observation-equivalence result, and discuss the main

insights encapsulated in it.

3.1 Higher-Order Beliefs: The Wanted Essence and the Unwanted Complexity

Higher-order beliefs are synonymous to how agents reason about GE effects. To see this, revisit condition

(5), which allows the following decomposition of the aggregate outcome:

o0 o0

ar=@ Y PE il +y ), BErlariknl. (10)
k=0 N k=0 .
PE corr‘ﬁ)onent GE cor;lrponent

We label the first term as the PE component because it captures the agents’ response to any innovation

holding constant their expectations about the endogenous outcome; the additional change triggered by

any adjustment in these expectations, or the second term above, represents the GE component.
Consider now two economies, labeled A and B, that share the same § = § + y but have a different

mixture of § and y. Economy A features § = § and y = 0, which means that GE considerations are entirely



absent. Economy B features § = 0 and y = §, which corresponds to “maximal” GE considerations.

In economy A, condition (5) reduces to a; = ¢332 S¥E,[&,44), that is, only the first-order beliefs
of the fundamental matter. This is similar to the representative-agent benchmark, except that the repre-
sentative agent’s expectations are replaced by the average expectations in the population. In economy B,

instead, condition (5) reduces to a; = (pE [£,]1+ OE, [a;+1] and recursive iteration yields
ar=¢ ) 8"F, [Erin-1l, (11)
h=1

where, for any variable X, Fi [X] = E, [X] denotes the average first-order forecast of X and, for all h = 2,

F? (X] =E, F?;ll (X ]] denotes the corresponding h-th order forecast. The key difference from both the

representative-agent benchmark and economy A is the emergence of such higher-order beliefs. These
represent GE considerations, or the agents’ reasoning about the behavior of others.

The logic extends to the general case, in which both § and y are positive. The only twist is that the
relevant set of higher-order beliefs is significantly richer than that seen in condition (11). Indeed, let

(=X, B¢ r+r and consider the following set of forward-looking, higher-order beliefs:
g, [Ep [ [Egy [Crad 11,

forany t =0, k=2, he {2,..,k}, and {1, f»,....,tp} such that t = ) < 1, < ... < t;, = t + k. As behavior
depends on all these higher-order beliefs, this adds considerable complexity relative to the § = 0 case.
For instance, when k = 10 (thinking about the outcome 10 periods later), there are 210 beliefs of the
fourth order that are relevant when 8 > 0 compared to only one such belief when §=0.”

An integral part of our contribution is the bypassing of this complexity. The assumptions that permit
this bypassing are spelled out below. They come at the cost of some generality, in particular we abstract
from the possible endogeneity of information.? But they also bear significant gains on both the theoret-

ical and the quantitative front, which will become evident as we proceed.

3.2 Specification

We henceforth make two assumptions. First, we let the fundamental ¢ follow an AR(1) process:

1
§t=10'ft—1+77t=1_—7hy (12)

pL
where n; ~ A(0,1) is the period-¢ innovation, L is the lag operator, and p € (0,1) parameterizes the

persistence of the fundamental. Second, we assume that agent i receives a new private signal in each

"More generally, for any ¢ and any k = 2, there are now k — 1 types of second-order beliefs, plus (k — 1) x (k —2)/2 types of
third-order beliefs, and so on.

8This abstraction is the right benchmark for our purposes, including the connections built to the evidence on expectations:
this evidence helps discipline the theoretical mechanisms we are concerned with, but contains little guidance on the degree or
manner in which information may be endogenous.



period t, given by
Xie =&+ i, Ui~ N (0,0, (13)

where o = 0 parameterizes the informational friction (the level of noise). The agent’s information in
period ¢ is the history of signals up to that period.

As anticipated in the previous subsection, these assumptions aim at minimizing complexity with-
out sacrificing essence. Borrowing from the literature on rational inattention, we also invite a flexible
interpretation of our setting as one where fundamentals and outcomes are observable but cognitive lim-
itations makes agents act as if they observe the entire state of nature with idiosyncratic noise. But instead

of endogenizing the noise, we fix it in a way that best serves our purposes.

3.3 Solving the Rational-Expectations Fixed Point

Consider momentarily the frictionless benchmark (o = 0), in which case the outcome is pinned down
by first-order beliefs, as in condition (7). Thanks to the AR(1) specification for the fundamental, we
have E;[&; k] = pkg‘ i, for all £, k = 0. We thus reach the following result, which states that the complete-

information outcome follows the same, up to a rescaling, AR(1) process as the fundamental.’

Proposition 1. In the frictionless benchmark (o = 0), the equilibrium outcome is given by

_x__9 9 1
e P AL WPy gy

M- (14)

Consider next the case in which information is incomplete (o > 0). As already explained, the outcome
is then a function of an infinite number of higher-order beliefs. Despite the assumptions made here
about the process of ¢; and the signals, these beliefs remain exceedingly complex.

Let us illustrate this point. Using the Kalman filter, one can readily show that the first-order belief
E;[¢;] obeys the following AR(2) dynamics:

A

_ 1
E: (el = (1—5) (m)fh (15)

where A = p(1—-g) and g € (0,1) is the Kalman gain, itself a decreasing function of the level of noise.'? Tt
follows that the second-order belief E,[EH [¢t+1]] follows an ARMA(3,1). By induction, for any h = 1, the
h-th order belief E[EH [..EH nl¢¢+n]l follows an ARMA(h + 1, h —1). Beliefs of higher order thus exhibit
increasingly complex dynamics.

As explained in Section 3.1, the above set of higher-order beliefs is the relevant one when g = 0.
The general case with § > 0 is subject to an even greater curse of dimensionality in terms of higher-

order beliefs. And yet, this complexity vanishes once we focus on the rational-expectations fixed point:

9All proofs are delegated to Appendix A.
10The Kalman gain is given by the unique g € (0,1) such as that (1 - g) = (1 — p?(1 — g))go. This yields g as a continuous and
decreasing function of o, with g =1 when ¢ =0 and g — 0 when 0 — co.



under our assumptions, the fixed point turns out to be merely an AR(2) process, whose exact form is

characterized below.
Proposition 2 (Solution). The equilibrium exists, is unique and is such that the aggregate outcome obeys
-2
ar=|1-—||———]a;,
! pJ\1-9L)""

where a; is the frictionless counterpart, obtained in Proposition 1, and where 9 is a scalar that satisfies

the following law of motion:

9 € (0, p) and that is given by the reciprocal of the largest root of the following cubic:
1 1
C(z)E—z3+(p+E+P+(6—y))z2 (17)

z+(6-7).

eoenled)

Condition (16) gives the incomplete-information dynamics as a transformation of the complete-
information counterpart. This transformation is indexed by 9. Relative to the frictionless benchmark
(herein nested by 9 = 0), a higher 9 means both a smaller impact effect, captured by the factor 1 - ‘g in
condition (16), and a more sluggish build up over time, captured by the lag term 9L.

To understand the math behind the result, let f = 0 momentarily. In this case, the outcome obeys
a :(PEt[ft] +YEt[ﬂt+1]. (18)

If we guess that a; follows an AR(2), we have that E;[a;+1]) follows an ARMA(3,1). As already noted, E,[&,]
follows the AR(2) given in (15). The right-hand side of the above equation is therefore the sum of an AR(2)
and an ARMA(3,1). If the latter was arbitrary, this sum would have returned an ARMA(5,3), contradicting
our guess that a; follows an AR(2). But the relevant ARMA(3,1) is not arbitrary.

Because the impulse behind a; is {;, one can safely guess that a; inherits the root of ¢;. That is,
(1-9L)(1—-pL)a; = by, for some scalars b and 9. This in turn implies that the AR roots of the ARMA(3,1)
process for E [a;+1] are the reciprocals of p, 9 and A. As seen in (15), the roots ofEt [¢] are the reciprocals
of p and A. It follows that the sum in the right-hand side of (18) is at most an ARMA(3,1) of the following

form:
c(1-dL)

T U-9D(1-pL(1-AL)

as Nt (19)

where ¢ and d are functions of b and 9. For our guess to be correct, it has to be that d = A and ¢ = b.
The first equation, which lets the MA part and the last AR part cancel out so as to reduce the above to an
AR(2), and yields (17). The second equation, which pins down the scale, yields b = (1 - %) (%).

This is the crux of how the rational expectations fixed point works. The proof presented in Appendix A
follows a somewhat different path, which is more constructive, accommodates > 0, and can be ex-
tended to richer settings along the lines of Huo and Takayama (2018).

When y = 0, GE considerations are absent, the outcome is pinned down by first-order beliefs, and

10



Proposition 2 holds with 9 = A, where A is the same root as that seen in (15). When instead y > 0, GE
considerations and higher-order beliefs come into play. As already noted, these beliefs follow compli-
cated ARMA processes of ever increasing orders. And yet, the equilibrium continues to follow an AR(2)
process. The only twist is that J > A, which, as mentioned above, means that the equilibrium outcome
exhibits less amplitude and more persistence than the first-order beliefs. This is the empirical footprint
of higher-order uncertainty, or of the kind of imperfect GE reasoning accommodated in our analysis.
Below, we translate these properties in terms of our observational-equivalence result (Propositions 3
and 5). The following corollary, which proves useful when connecting the theory to evidence on expec-

tations, is also immediate.

Corollary 1 (Forecasts). Any moment of the joint process of the aggregate outcome, a;, and of the average

forecasts, E;[ay k] for all k = 1, are functions of only the triplet (9, A, p), or equivalently of (y, 6, p, o).

3.4 The Equivalence Result

Momentarily put aside our incomplete-information economy and, instead, consider a “behavioral” econ-

omy populated by a representative agent whose aggregate Euler condition (6) is as follows:
ar= @St +0wskar] +wpas-, (20)

for some scalars w r, wp. It is easy to verify that the equilibrium process of a; in this economy is an AR(2)
whose coefficients are functions of (wf,wp) and (9,8, p). In comparison, the equilibrium process of a;
in our incomplete-information economy is an AR(2) whose coefficients determined as in Proposition 2.
Matching the coefficients of the two AR(2) processes, and characterizing the mapping from the latter to

the former, we reach the following result.

Proposition 3 (Observational Equivalence). Fix (¢,6,y,p). For any noise level 0 > 0 in the incomplete-
information economy, there exists a unique pair (wf,wp) in the behavioral economy such that the two
economies generate the same joint dynamics for the fundamental and the aggregate outcome. Further-

more, this pair satisfies w f <1 and wp > 0.

This result allows one to recast the informational friction as the combination of two behavioral dis-
tortions: extra discounting of the future, or myopia, in the form of w r<p and backward-looking behav-
ior, or anchoring of the current outcome to past outcome, in the form of w;, > 0.

This representation is, of course, equivalent to the closed-form solution provided in Proposition 2.
We prefer the new representation not only because it serves the applied purposes of our paper, but also
because the main insights about myopia and anchoring extend to richer settings, while the specific AR(2)

solution provided in Proposition 2 does not. This idea is formalized in Appendix H.
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3.5 The Roles of Noise and GE Considerations

As one would expect, both distortions increase with the level of noise.
Proposition 4 (Noise). A higher a maps to a lower w s and a higher wy,.

What this result, however, fails to highlight is the dual meaning of “noise” in our setting: a higher
o represents not only less accurate information about the fundamental (larger first-order uncertainty)
but also more friction in how agents reason about others (larger higher-order uncertainty). The latter,

strategic or GE, channel is highlighted by the next result.

Proposition 5 (GE). Consider an increase in the relative importance of GE considerations, as captured by
an increase in'y holding 6 = B+, as well as o and p, constant. This maps to both greater myopia (lower

wy) and greater anchoring (higher wp).

This result circles backs to our discussion in Section 3.1 regarding the interpretation of higher-order
uncertainty as a distortion in agents’ GE reasoning. It also anticipates a point we make in Section 5.
While the kind of evidence on informational frictions provided by Coibion and Gorodnichenko (2015) is
an essential ingredient for the quantitative evaluation of the assumed friction, it is not sufficient. One
must combine such evidence with knowledge of how important the GE feedback from expectations to

actual behavior is.

3.6 Robustness

The results presented above depend on stark assumptions about the process of {; and the information
structure. But the key insights regarding myopia, anchoring, and the role of higher-order beliefs are
more general. Appendix H shows how to generalize these insights in a setting that allows ¢ to follow an
essentially arbitrary MA process, as well as information to diffuse in a flexible manner.'! The elegance of
our observational-equivalence result is lost, but the essence remains.

Another extension, better suited for applied purposes, is offered in Section 8. There, we consider a
multi-variate analogue of condition (4). This allows one to handle the full, three-equation New Keyne-

sian model, the HANK variant considered in Section 7, and a large class of linear networks.

4 Connection to DSGE, Bounded Rationality, and Beyond

In the end of Section 2 we sketched how our framework nests incomplete-information extensions of the

Dynamic IS curve and the NKPC. We also discussed how v relates to the slope of the Keynesian cross,

1 guch richness is prohibitive in general. We cut the Gordian knot by orthogonalizing the information about the innovations
occurring at different points of time. Although this modeling approach is unusual, it nests “sticky information” (Mankiw and
Reis, 2002) as a special case and clarifies the theoretical mechanisms.
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or the income-spending multiplier, in the first context and to the frequency of price adjustment in the

second. The following translations of our abstract results are thus immediate.
Corollary 2. Applying our result to condition (9) yields the following NKPC:
r=Kkmer+pXEe[Me1] + Wpe-y. (21)
In this context, the distortions increase with the frequency of price adjustment.
Corollary 3. Applying our result to condition (8) yields the following Dynamic IS curve:
ct=—¢ri+wrkilcii1]l +wpcr—y. (22)
In this context, the distortions increase with the MPC, or the slope of the Keynesian cross.

Condition (21) looks like the Hybrid NKPC. Condition (22) looks like the Euler condition of repre-
sentative consumer who exhibits habit persistence plus myopia. Appendix F offers a related result for
investment: we take a model in which adjustments cost depend on the change in the stock of capital,
as in traditional Q theory; add incomplete information; and show that this model looks like a model in
which adjustment costs depend on the change in the rate of investment.

Together, these results illustrate how informational frictions can substitute for the more ad hoc sources
of sluggishness in all the equations of DSGE models. The basic idea is familiar from previous works (e.g.,
Sims, 2003; Mankiw and Reis, 2002; Woodford, 2003; Nimark, 2008). The added value here is the sharp-
ness of the provided representation and the following, complementary lessons.

First, we build a bridge to a recent literature that shows how lack of common knowledge and related
forms of bounded rationality make agents behave as if they are myopic. These works help generate
wr <1 but restrict w, = 0. In Angeletos and Lian (2018), this is because there is no learning. In Farhi
and Werning (2019), Garcia-Schmidt and Woodford (2019) and Iovino and Sergeyev (2017), it is a direct
implication of the adopted solution concept: level-k thinking amounts to equating beliefs of order h <
k to their complete-information counterparts, and beliefs of order & > k to zero. This makes agents
underestimate GE effects, which maps to w <l but precludes the mistake in beliefs to be corrected over
time, which maps to w;, = 0. Our approach, instead, naturally delivers both w r<l1 and wy, > 0, which is
what the macroeconomic data want.'? By the same token, our approach allow both for under-reaction
and momentum in average expectations, which is what the available survey evidence want.

Second, we offer a new rationale for why the information-driven sluggishness may loom large at
the macro level even if is absent at the micro level. Previous work has emphasized that agents may

naturally have less information about aggregate shocks than about idiosyncratic shocks (Mackowiak and

12This point applies to dynamic settings. In static games such as Morris and Shin (2002), the three approaches are observa-
tionally equivalent vis-a-vis the macroeconomic time series.
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Wiederholt, 2009). We add that higher-order uncertainty effectively amplifies the friction at the macro
level. We further clarify these points in Appendix C by considering an extension of our framework with
idiosyncratic shocks. And in Appendix G, we discuss how the exact same logic transported to an asset-
pricing context may help rationalize larger momentum at the macro level than at the micro level, or what
is known as Samuelson’s dictum (Jung and Shiller, 2005).

Third, by tying the macro-level distortions to strategic complementarity and GE feedbacks, we high-
light how the former can be endogenous to market structures and policies that regulate the latter. We
come back to this point in Section 6.

Fourth, in the context of the NKPC, we show that higher price flexibility contributes to more sluggish-
ness in inflation by intensifying the role of higher-order beliefs. This seems an intriguing, new addition
to the “paradoxes of flexibility.” And in the context of the Dynamic IS curve, we tie the habit-like per-
sistence in consumption to the MPC, or the slope of the Keynesian cross. This hints at the promise of
incorporating incomplete information in the HANK literature, an idea we expand on in Section 7.

Finally, we offer a simple strategy for quantifying the distortions of interest. We spell out the elements
of this strategy in the next section and put it at work in our subsequent applications to inflation and

consumption dynamics.

5 Connection to Evidence on Expectations

Proposition 3 ties the documented distortions to o. This parameter may not be a priori known to the ana-
lyst (“econometrician”). Surveys of expectations, however, can help identify it. In this section, we use our
results to map readily available evidence on expectations to the macroeconomic distortions of interest.
We also clarify which subset of such evidence is best suited for our purposes (moments of average fore-
casts) and provide two examples of robustness for the offered mapping (one regarding overconfidence

and another regarding public signals).

5.1 Calibrating the Friction

Consider Coibion and Gorodnichenko (2015), or CG for short. This paper runs the following regression

on data from the Survey of Professional Forecasters:

ark —Erlagi] = Ke (Et[dﬁk] ~E4 (@rsk]) + Virkr (23)

where a; is an economic outcome such as inflation and E;[a,,] is the average (“consensus”) forecast
of the value of this outcome k periods later. CG’s main finding is that K¢g, the coefficient of the above
regression, is positive. That is, a positive revision in the average forecast between ¢ —1 and ¢ predicts a

positive average forecast error at t.
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What does this mean under the lenses of the theory? Insofar as agents are rational, an agent’s forecast
error ought to be orthogonal to his own past revision, itself an element of the agent’s information set.
But this does not have to be true at the aggregate level, because the past average revision may not be
commonly known. More succinctly, Kcg # 0 is possible because the forecast error of one agent can be
predictable by the past information of another agent.

Furthermore, because forecasts adjust sluggishly towards the truth, the theory suggests that Kcg
ought to be positive and increasing in the informational friction. To illustrate this, CG treat a; as an ex-

ogenous AR(1) process, assume the same Gaussian signals as we do, and show that in this case Kcg = Tg’
where g € (0,1) is the Kalman gain, itself a decreasing function of o. They therefore argue that their esti-
mate of K¢g offers a measure of the informational friction.

In our context, a; is endogenous to expectations. This complicates the structural interpretation and
use of this measure. The level of noise now influences not only the agents’ forecasting of a;, but also
its own stochastic process. Furthermore, because the level of noise interacts with the GE feedback in
shaping the process for a;, the GE parameter y enters the mapping between o and K¢g. The next result

shows what exactly is going on.

Proposition 6 (Kcg). The theoretical counterpart of the coefficient of regression (23) for k = 1 is given by

9+ p-pdA+9) - pAI(1 - AD)
T (- MA-A9)(p+9-ApD)

Kcg ) (24)

where A and 9 are defined as in Section 3.3. It follows that
(i) Kcg is increasing in g, the level of noise; and

(ii) Kcg is decreasing in 'y, the GE feedback.

The formula for K¢ is not particularly intuitive. However, in combination with our closed-form
characterizations for A and 49, it allows us to prove the two illuminating comparative statics stated above.
The first verifies that CG’s logic that a high value for K¢ signals a high informational friction extends
from their PE context, where a; follows an exogenous process, to our GE context, where the process for
a; is influenced by the informational friction. The second comparative static highlights the limits of this
logic: a small value for K¢ could conceal a large value for o if the GE feedback is large enough.

At first glance, this may appear to contradict our result in Proposition 5 that a higher y translates to
larger distortions in the equilibrium dynamics. But the underlying logic for both results is actually the
same. When v is higher, agents are more willing to coordinate their behavior. This reduces the reliance
of behavior on private information and increases the reliance on the prior or higher-order beliefs. As this
happens, the equilibrium outcome becomes less responsive to innovations. But precisely because of this
reason, the reliance of the forecasts of the outcome on private information is also reduced, which means
that the forecast error of one agent is less predictable by the information of another agent, and hence

that the K¢ coefficient is closer to zero.
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Figure 1: Myopia and Anchoring

Note: The distortions as functions of the proxy offered in Coibion and Gorodnichenko (2015). The solid lines
correspond to a stronger degree of strategic complementarity, or GE feedback, than the dashed one.

What does this mean for the structural interpretation and use of the available expectations evidence?
When the GE effect increases, both of the aforementioned channels work in the same direction: for given
o, a higher y means both larger distortions in terms of (wf,wp) and a smaller observable footprint in

terms of Kcg. The following is therefore true:

Corollary 4. Asy increases, the same value for Kcg maps to both more myopia (smaller w ) and more

anchoring (larger wyp) in the aggregate outcome.

This is illustrated in Figure 1. On the horizontal axis, we vary the value of K¢ that may be recovered
from running regression (23) on the applicable expectations data. On the vertical axis, we report the
predicted values for w ¢ and wy,. For given y, a higher Kcg maps to a higher o and thereby to larger dis-
tortions. But a higher y maps to larger distortions for given K¢ not only because it amplifies the effect

of noise, but also because it requires a larger o to match the given K¢g.

5.2 Individual Forecasts and Overconfidence

So far, we have emphasized how one could make use of the moment estimated in CG, along with our
tools, to obtain an estimate of w f and wj,. Other moments of the average forecasts, such as the persistence
of the average forecast errors estimated in Coibion and Gorodnichenko (2012), could serve a similar role.
But what about moments of the individual forecasts? We next explain why such moments can be largely
ignored for our purposes (but not for other purposes).

Consider, in particular, the individual-level counterpart of the CG regression, that is, the regression of

one’s forecast errors on one’s own past revisions. As noted earlier, rational expectations requires that the
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coefficient of this regression be zero. Bordalo et al. (2020) and Broer and Kohlhas (2019) argue that this
coefficient is negative in the data, supporting the presence of overconfidence. Our own take is that the
evidence is inconclusive: the relevant coefficient switches signs across variables and samples (inflation
vs. unemployment, pre- vs post-Volker, etc), making it hard to reject rational expectations. But even if
we take for granted those papers’ preposition of systematic bias in beliefs, this does not necessarily upset
either our theoretical results or our proposed quantitative strategy.

We illustrate this point by augmenting our model with the same kind of over-confidence as Broer
and Kohlhas (2019): whereas the actual level of noise is o, agents perceive it to be &, for some 6 < o. (For
completeness, under-confidence, or 6 > g, is also allowed.) In this extension, the gap between 6 and o,
or the degree of overconfidence, emerges as the essential determinant of the aforementioned individual-

level moment.'® But this moment and its determinant “drop out of the picture” for our purposes:

Proposition 7. Propositions 2-6 and Corollary 1 remain valid, modulo the replacement of o with ¢

throughout. By implication, the mapping from Kcg to (w r,wp) is invariant to the degree of overconfidence.

To understand this result, note that the perceived 6 alone determines how much each agent’s beliefs
and choices vary with his information, and thereby how much the corresponding aggregates vary with
the underlying fundamental. The true ¢ instead determines how unequal beliefs and choices are in the
cross section, but such inequality does not matter for aggregates in our class of economies. It follows
that all our results, including the characterization of (w r,wp) and Kcg, carry over by replacing o with 6.

Suppose, now, that the analyst knows all parameters except & and o and wishes to quantify the equi-
librium effects of the friction under consideration (as we do, for example, in Section 6). Suppose further
that the analyst combines the CG coefficient with the individual-level counterpart estimated in Bordalo
et al. (2020) and Broer and Kohlhas (2019). Then, the CG coefficient alone allows the identification of &
and the quantification of its effect on the actual dynamics. The individual-level counterpart allows the
identification of g, but this does not affect the aforementioned quantitative evaluation.

A similar point applies to the cross-sectional dispersion of forecasts. A large part of it is accounted
by individual-specific fixed effects, which themselves correlate with life-time experiences unrelated to
the current macroeconomic context (Malmendier and Nagel, 2016). This can be accommodated in the
theory by letting each agent i have a different prior mean, u;, about ¢;. Such prior-mean heterogeneity
is then a key determinant of the cross-sectional dispersion of forecasts. But it does not matter at all for
our observational equivalence result and the offered mapping from Kcg to (w ¢, wp).

This also anticipates the exercise conducted in Table 1: for our quantitative application to inflation,

13Broer and Kohlhas (2019) establish this point in a setting where a; follows an exogenous AR(1) process, but the logic extends
to our context. When agents are overconfident (6 < o), they over-react to their information relative to what a rational agent
would do, so a positive forecast revision today predicts a negative forecast error in the future. And the converse is true if agents
are under-confident (6 > o). Also note that, although the formulation used in Bordalo et al. (2020) has different methodological
underpinnings, it works in essentially the same way as the form overconfidence considered here.
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we test the ability of our model to capture the cross-sectional dispersion of the forecast errors or the fore-
cast revisions precisely because these objects partial out individual fixed effects such as those associated
with the aforementioned kind of heterogeneity.

More challenging is the evidence presented in Kohlhas and Walther (2019). In direct contradiction
to CG’s message, these authors argue that expectations over-react in the sense that average forecasts
errors are negatively correlated with past outcomes. They then proceed to offer a resolution based on
asymmetric attention to pro-cyclical and counter-cyclical components of the forecasted variable. In Ap-
pendix I, we explain how our methods can be adapted to their setting. And in Angeletos, Huo, and Sastry
(2020), we propose an alternative resolution, one based on the combination of informational frictions

and over-extrapolation. But we leave this issue out of the present paper.

5.3 Public Information

So far we have have let agents observe only private signals. If we add public signals, the CG moment is
no more sufficient for uniquely identifying the information structure: there are multiple combinations of
the precisions of the private and public signals that generate the same value for K¢g. By the same token,
any given value for Kcg maps to a set of possible values for the pair (w ¢, wp).

At first glance, this poses a challenge for the quantitative strategy proposed in this section. However,
as explained in Appendix B and illustrated in our application to inflation below, this challenge is resolved
by two key observations.

First, Kcg puts a tight upper bound on the relative precision of the public signal. Intuitively, as infor-
mation gets more and more correlated, everybody’s expectations converge to those of a representative
agent, and Kcg converges to zero. A high value for K¢ therefore means necessarily either that there is
little public information to start with, or that people pay little attention to it.

Second, by varying the precision of public information between zero and the aforementioned upper
bound, we can span the entire range of values (w fr@p) that are consistent with any given value of K¢g.
In Appendix D.3, we implement this strategy in our application to inflation, which is the topic of the next
section, and show that the distortions reported therein under the simplifying assumption of no public

information represent a lower bound on the distortions obtained when public information is added.

6 Application to Inflation

We now apply our toolbox the context of inflation. We argue that the theory can not only rationalize
existing estimates of the Hybrid NKPC with some level of noise, but also do so with a level of noise con-

sistent with that inferred from CG’s evidence on expectations. We also illustrate how our theory ties the
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coefficients of the Hybrid NKPC to policy and market structures.*

6.1 Operationalizing the Theory

Consider the incomplete-information NKPC introduced in Section 2:'°

o0 )

me=% Y (WO E; mcp i +x1-0) Y. (WO Es (7 1k411, (25)

k=0 k=0
Unlike the representation obtained in Corollary 2, this equation is structural: it is invariant to the process
for the real marginal cost and the specification of information. But it is also hard to implement empiri-
cally, because it requires data on the term structure of the relevant forecasts over long horizons. This is
where our toolbox comes handy: using our results, we can connect the above structural equation both
to existing estimates of the Hybrid NKPC and to the available evidence on expectations.

To evaluate these connections, we henceforth interpret the time period as a quarter and impose the
following parameterization: y = 0.99, 0 = 0.6, and p = 0.95. The value of y requires no discussion. The
value of 8 is in line with micro data and textbook treatments of the NKPC. The value of p is obtained
by estimating an AR(1) process on the labor share, the empirical proxy for the real marginal cost used
in, inter alia, Gali and Gertler (1999) and Gali, Gertler, and Lopez-Salido (2005).16 Finally, the value of ¥
is left undetermined: because this parameter scales up and down the inflation dynamics equally under

any information structure, it is irrelevant for the conclusions drawn below.'”

6.2 Connecting to Existing Estimates of the Hybrid NKPC

While an unrestricted estimation of the Hybrid NKPC allows w s and wj, to be free, our theory ties them
together: a higher w;, can be obtained only if the noise is larger, which in turns requires w s to be smaller.

A quick test of the theory is therefore whether the existing estimates of the Hybrid NKPC happen to satisfy

14 Nimark (2008) foresaw the first part of our application by showing that an econometrician would estimate a Hybrid NKPC
on artificial data generated by his model. Relative to that paper, we offer a sharper illustration of this possibility and, most
importantly, let the evidence on expectations bear on the theory. Such a connection to the expectations evidence is also absent
from Woodford (2003), Mankiw and Reis (2002), Reis (2006), Kiley (2007), Mackowiak and Wiederholt (2009, 2015) and Matejka
(2016). Melosi (2016) utilizes expectations data but studies a different issue, the signaling role of monetary policy. Finally, the
literature on adaptive learning (Sargent, 1993; Evans and Honkapohja, 2012) also allows for the anchoring of current outcomes
to past outcomes; see in particular Carvalho et al. (2017) for an application to inflation. But the anchoring found in our paper
has three distinct qualities: it is consistent with rational expectations; it is tied to the strength of the GE feedback; and it is
directly comparable to that found in the DSGE literature.

15Recall that 7, is the inflation rate, mc; is the real marginal cost, y € (0,1) is the discount factor, 6 € (0, 1) is the Calvo parame-
ter, and x > 0 is the slope of the NKPC. Appendix D.1 contains a detailed derivation, a discussion of the underlying assumptions,
and an explanation of a mistake in versions of this condition found in some prior work.

16We use seasonally adjusted business sector labor share as proxy for the real marginal cost, from 1947Q1 to 2019Q2. This
yields an estimate of p equal to 0.97 or 0.92 depending on whether we exclude or include a linear trend.

171n the textbook version of the NKPC, « is itself pinned down by y and 6. But the literature has provided multiple rationales
for why « can differ from its textbook value (e.g., it can vary with the curvature of “Kimball aggregator”). For our purposes, this
amounts to treating x as a free parameter.
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this restriction. We implement this test in Figure 2. The negatively slopped line depicts the aforemen-
tioned restriction. The crosses represent the three main estimates of the pair (v, wp) from Gali, Gertler,
and Lopez-Salido (2005), and the surrounding disks give the corresponding confidence regions.'®
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Figure 2: Testing the Theory

Note: The straight line represents the relation between w s and w, implied by the theory. Raising the level of noise
maps to moving northwest along this line. The darker, thicker segment of this line corresponds to the confidence
interval of Kcg, the relevant moment of the inflation forecasts, as reported in column (1) of Table 1 Coibion and
Gorodnichenko (2015). The three crosses represent the three estimates of the pair (w ¢, w},) provided in Table 1 of

Gali, Gertler, and Lopez-Salido (2005), and the surrounding disks give the corresponding confidence regions.

As evident in the figure, the theory passes the aforementioned test: the existing estimates of the
Hybrid NKPC can be rationalized by some level of noise.'” But is the requisite level of noise empirically

plausible? We address this question next by making use of the mapping developed in Section 5.

6.3 Bringing in the Evidence on Expectations

As already noted, CG have run regression (23) using data from the Survey of Professional Forecasters.*’

Their main OLS specification, reported in column (1) of Table 1 of that paper, yields a mean estimate for

18The three estimates are taken from Table 1 of that paper. In particular, the left one of the three points shown in Figure 2
corresponds to (wf,wp) = (0.618,0.374) and is obtained by the GMM estimation of the closed-form solution that expresses
current inflation as the sum of past inflation and all the expected future real marginal costs. The middle point corresponds to
(wf,wp) = (0.635,0.349) and is obtained by GMM estimation of the hybrid NKPC directly. Finally, the right point corresponds
to (wf,wp) = (0.738,0.260) and is obtained by a nonlinear instrumental variable estimation.

19Mavroeidis, Plagborg-Moller, and Stock (2014) review the extensive literature on the empirical literature of the NKPC and
questions the robustness of the estimates provided by Gali, Gertler, and Lopez-Salido (2005). This debate is beyond the scope
of our paper. In any event, the exercise conducted next bypasses the estimation of the Hybrid NKPC on macroeconomic data
and instead infers it by calibrating our theory to survey data on expectations.

20In the present context, it would be preferable to have an estimate of K¢ for the average forecasts of a representative sample
of US firms. Such an estimate is lacking in the literature, but the evidence in Coibion and Gorodnichenko (2012) suggests that
the friction among firms and consumers is, as one would expect, larger than that among professional forecasters.
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Figure 3: Response of Inflation to Higher Real Marginal Cost

Kcg equal to 1.193, with a standard deviation of 0.185. Translating the 95% confidence interval through
the mapping developed in Section 5 yields the darker, thicker segment in Figure 2. This segment thus
identifies the combinations of (w ¢, wp,) that can be rationalized with a level of noise consistent with the
expectation evidence in CG.

Clearly, only the third of the three estimates provided by Gali, Gertler, and Lopez-Salido (2005), that
corresponding to the furthest right point in the figure, is noticeably away from this segment. This hap-
pens to be the estimate that these authors trust the least for independent, econometric, reasons. We
conclude that, when the theory is disciplined by the evidence in CG, it generates distortions broadly in
line with existing estimates of the Hybrid NKPC. More succinctly, the informational friction implicit in

the expectations data may alone account for all the observed inertia in inflation.

6.4 A Decomposition

The quantitative implications of the theory are further illustrated in Figure 3. This figure compares the
impulse response function of inflation under three scenarios. The solid line corresponds to frictionless
benchmark. The dashed line corresponds to the frictional case, calibrated to the mean estimate of Kcg
reported above. The circled dotted line is explained shortly.

As evident in the figure, the quantitative bite of the informational friction is significant: the impact
effect on inflation is about 60% lower than its complete-information counterpart, and the peak of the
inflation response is attained 5 quarters after impact rather than on impact. But what drives this quanti-
tative bite? The lack of information about the real marginal cost (the PE component), or the beliefs about
inflation (the GE component)?

The answer to this question is provided by the circled dotted line in Figure 3. This line represents
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a counterfactual that shuts down the effect of the informational friction on the expectations of the be-
havior of others (inflation) and isolates its effect on the the expectations of the fundamental (the real
marginal cost). As evident in the figure, this counterfactual is very close to the complete-information
benchmark and far away from the incomplete-information case. It follows that most of documented

quantitative bite is due to the GE channel, or the anchoring of the expectations of inflation.?!

6.5 Cross-Sectional Moments

Thus far we have disregarded the individual-level evidence of Bordalo et al. (2020) and Broer and Kohlhas
(2019). For the reasons explained in Section 5, this evidence can be matched by letting agents be over-
or under-confident, without influencing any of the preceding findings. This, however, does not mean
that such evidence has no bite on the quantitative performance of the model. If we use the CG moment
in combination with the individual-level counterpart estimated in the aforementioned papers, we can
jointly identify 6 and &, the perceived and the actual level of noise. We can then further test the model
by looking at its predictions for other, non-targeted moments, such as the cross-sectional dispersion of
the individual forecast errors or that of the individual forecast revisions.

We implement this test in Table 1. We continue to denote with K¢ the coefficient of regression (23),
and we denote with Kpgms sk the individual-level counterpart. We then consider three sets of estimates
for these coefficients. The first corresponds to Coibion and Gorodnichenko (2015) and to the exercise
conducted above. The second and the third sets are from Bordalo et al. (2020) and Broer and Kohlhas
(2019), respectively.>’ For each set, we report the identified belief parameters, the implied degrees of
myopia and anchoring, and the model’s predictions about the aforementioned cross-sectional moments.
We finally compare the latter to their empirical counterparts.

As explained in the legend of the table, we consider two possible normalizations of the cross-sectional
moments. Some normalization is needed because the analysis so far has been silent about the scale
of the fluctuations in inflation. In one, we normalize by the unconditional volatility of the quarter-to-
quarter change in inflation. In the other, we normalize by the unconditional volatility of the level of
inflation. We a priori prefer the first normalization, because our model is not supposed to capture low-
frequency phenomena (e.g., great moderation) that may be “polluting” the second measure. But the

model does a good job in both cases.

21The decomposition offered in Figure 3 mirrors the decomposition of PE and GE effects introduced in Section 3.1. See
Appendix D.2 for the detailed construction.

22Though both papers confirm that the original CG findings that Kcg is positive, they disagree on the sign of Kggms. This
reflects differences in the treatment of outliers and other implementation details.
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Table 1: Moments on Average and Individual Inflation Forecasts

Kce Kpcms/Bk o o wr wp
CG 1.19 0.00 1.76 1.76 0.52 0.43
BGMS 1.41 0.18 2.04 1.61 0.48 0.46
BK 1.27 -0.19 1.86 2.61 0.51 0.44
Forecast error dispersion Forecast revision dispersion
data®’ model’ data? model? data®’ model’ data? model?
CG 2.08 2.03 0.40 0.24 1.97 1.63 0.38 0.19
BGMS 2.08 1.80 0.40 0.20 1.97 1.32 0.38 0.14
BK 2.08 2.98 0.40 0.34 1.97 2.31 0.38 0.26

Note: The three rows correspond to different estimates for Kcg, the coefficient of regression (23), and Kggms/sx, the individual-level counter-
part. In the first row, K¢ is taken form Panel B, Table 1 of Coibion and Gorodnichenko (2015), and Kggms/ Bk is fixed to zero. In the second row,
both K¢ and Kggms/Bk are taken from Table 3 of Bordalo et al. (2020). And in the third row, they are taken from Table 1 of Broer and Kohlhas
(2019). The columns under forecast error dispersion correspond to the standard deviation of the cross-sectional forecast errors normalized by
the standard deviation of either the quarter-to-quarter change in inflation (columns with superscript 1) or the level of inflation (with super-
script 2). The columns under forecast revision dispersion correspond to the standard deviation of the cross-sectional forecast revisions with the

same normalizations.

6.6 Food for Thought

We wrap up our application to inflation with a few additional insights about the possible determinants
of the Hybrid NKPC implied by our analysis.

We start by studying the role of market concentration.?® To this goal, we modify the micro-foundations
as follows. There is now a continuum of markets, in each of which there is a finite number, N = 2, of
competitors. We index the markets by m € [0,1] and the firms in a given market by i € {1,..., N}. We let
consumers have nested-CES preferences, so that the demand faced by firm i in market m is given by

Y _(Pi,m,t)_w(Pm,t)_EY
i,m,t Pmyt Pt I

where P; , ; is the price of that firm, P, ; is the price index of the market that firm operates in, P; is the
aggregate price level, Y; is aggregate income, ¥ > 1 is the within-market elasticity of substitution and
€ € (0,v) is the cross-market counterpart. We finally assume that each firm has complete information

about its own market but incomplete information about the entire economy.>*

23We thank a referee for suggesting this direction.

24The logic for the offered result requires only that information is more correlated within a market than across markets, or
that firms face less higher-order uncertainty about their immediate links in the market network than about their remote links.
The sharper assumption that firms face no higher-order uncertainty about their immediate links only simplifies the exposition.
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Proposition 8. In the economy described above, Corollary 2 continues to hold, modulo the following mod-

ification: both distortions decrease with market concentration (i.e., they increase with N).

The intuition behind this result is that a higher degree of market concentration increases the strategic
complementarity within markets and decreases it across markets. To the extent that firms know more
about their own market than about the entire economy, this amounts to a lower bite of higher-order
uncertainty, and therefore less myopia and less anchoring in the aggregate inflation dynamics.

This result links two empirical trends: the increase in market concentration (De Loecker, Eeckhout,
and Unger, 2020; Autor et al., 2020) and the reduction in inflation persistence (Cogley, Primiceri, and
Sargent, 2010; Fuhrer, 2010). Of course, this correlation does not establish causality. Still, the result
illustrates how our analysis sheds new light on the possible determinants of inflation persistence.

We conclude with two additional ideas along these lines. The first one regards the conduct of mone-
tary policy. Under the lens of our approach, a more hawkish monetary policy, such as that followed in the
post-Volker era, is predicted to contribute to lower inflation persistence by reducing the effective degree
of strategic complementarity in the firms’ pricing decisions.

The second idea regards the economy’s input-output structure. Rubbo (2020) has recently argued,
in a setting abstracting from informational frictions, that changes in the input-output structure help
explain the flattening of the NKPC. Our own analysis suggests that, in the presence of informational fric-
tions, such changes may have also influenced the endogenous persistence in inflation, or the backward-
looking component of the Hybrid NKPC.?

The exploration of these ideas is left for future work. But Section 8 paves the way for them by extend-

ing our tools to multi-variate systems and networks.

7 Application to Consumption and Bridge to HANK

Now we turn to the effects of incomplete information on aggregate demand. As already shown in Corol-
lary 3, the Euler equation is modified as if there is additional discounting together with habit persistence.
In this section, we illustrate the quantitative potential of this idea. We also build a bridge to the HANK
literature by showing that the habit-like sluggishness generated by the informational friction is amplified
when the agents with the highest MPC are also the ones with the most cyclical income (Patterson, 2019;

Flynn, Patterson, and Sturm, 2019).

25La’0 and Tahbaz-Salehi (2020) make a similar point as Rubbo (2020) in a setting where nominal rigidity originates in in-
complete information, but abstract from forward-looking behavior and learning, which are the forces highlighted here.
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7.1 A HANK-like Extension

We consider a perpetual-youth, overlapping-generations version of the New Keynesian model, along the
lines of Piergallini (2007), Del Negro, Giannoni, and Patterson (2015), and Farhi and Werning (2019).
As in those papers, finite horizons (mortality risk) serve as convenient proxies for liquidity constraints,
self-control problems, and other micro-level frictions that help explain why most estimates of the MPC
in microeconomic data are almost an order of magnitude larger than that predicted by the textbook
infinite-horizon model. We take this basic insight a step further by letting heterogeneity in mortality risk
capture heterogeneity in the MPC. We couple this with heterogeneity in cyclical exposure. And, crucially,
we let information be incomplete.

There are n types, or groups, of consumers, indexed by g € {1,..., n}, with respective mass 7¢. In each
period, a consumer in group g remains alive with probability @ € (0, 1]; with the remaining probability,
she dies and gets replaced by a new consumer of the same type. Consumers can trade actuarially fair
annuities, so the return to saving, conditional on survival, is R;/®g. This makes sure that the mortality
risk does not distort intertemporal smoothing. Still, heterogeneity in wg matters because it maps to
heterogeneity in MPCs. On top of that, different groups can have different exposures to the business
cycle: the (log) income of group g is yg : = ¢pgy:, where ¢pg = 0 is the elasticity of that group’s income with
respect to aggregate income and } o Tghg = 1.

These assumptions allow us to study how the propagation mechanism under consideration, namely
that related to incomplete information and higher-order beliefs, depends on heterogeneity in MPCs and
business-cycle exposures. But they also open the door to a separate propagation mechanism: the dy-
namics of wealth inequality and the associated role of fiscal policy. To isolate the effects of interest, to
nest the present application to the abstract analysis of Section 8, and to obtain a sharp theoretical result
(Proposition 9 below), we neutralize the second mechanism by letting appropriate fiscal transfers undo
any wealth inequality triggered by interest-rate shocks.?®

As shown in Appendix E, the group-level spending can be expressed as follows:
- k8 = k8
Cgr=Mghg Y (1—mg) E; [crex] —(1—mg) Y (1 —mg)"E; [risl, (26)
k=0 k=0

where mg = 1 — y@g, ¥ is the subjective discount rate, and Ef is the average expectation. For each g,
equation (26) follows from aggregating the consumption functions of the individuals within group g and
replacing their income in terms of aggregate consumption. The collection of these equations across
g recasts the demand block of the economy as a dynamic network among the various groups of con-
sumers. This echoes Auclert, Rognlie, and Straub (2019), which develops similar network representations

for more general HANK economies.

26An earlier draft had not clarified this assumption, without which the wealth distribution becomes a relevant state variable
for the aggregate dynamics. We thank Dmitriy Sergeyev for pointing out this. See Appendix E for details.
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Inspection of (26) reveals, first, that m, identifies the MPC of group g and, second, that the strategic
complementarity, or the Keynesian cross, depends on how the product mg¢, varies across groups, or
whether a higher MPC is positively correlated with a higher business-cycle exposure. Patterson (2019)
provides evidence of such a positive correlation and shows how it translates to a steeper Keynesian cross
in a static, complete-information context. In the light of our insight of how the as-if distortions intro-
duced by informational frictions depend on GE feedback mechanisms, one may expect such a positive
correlation to translate also to more myopia and habit-like persistence in the aggregate consumption
dynamics. We verify this intuition in part (iii) below, at least under the simplifying assumption of two

groups.

Proposition 9 (HANK). (i) Under complete information, there exists a scalar ¢ > 0 such that aggregate

consumption obeys a textbook Euler condition of the following form:
cr=—¢r+Eilcrl.

(i) Under incomplete information, there exist scalars w y <1 and wy > 0 such that aggregate consump-

tion obeys a hybrid Euler condition of the form:
¢t =—Cri+wskilcrl +wpcr,

where the scalar ¢ > 0 is the same as that under complete information and the scalars vy <1 and w, >0
are functions of o and (g, Mg, Pg)geq,...n}-

(iii) Suppose there are two groups, with my > my. An increase in ¢,, the business-cycle exposure of
high-MPC group, maps to a lower wy and a higher wy, that is, more as-if myopia and anchoring in the

aggregate dynamics.

Part (i) mirrors an irrelevance result from Werning (2015). With complete information, the DIS curve
of our HANK economy is the same as a representative agent’s Euler condition. There is neither extra
discounting of the future nor habit-like persistence. Heterogeneity matters at most for ¢, the elasticity of
aggregate consumption with respect to the real interest rate.

Part (ii) extends Corollary 3 to heterogeneity in MPC and business-cycle exposure. Once again, in-
complete information amounts to adding myopia and habit-like persistence in the DIS curve. But now
heterogeneity interacts with information in shaping the magnitude of these distortions.

Part (iii) completes the picture by showing how exactly heterogeneity matters. An increase in the
business-cycle exposure of the high-MPC group (and a corresponding reduction in the business-cycle
exposure of the low-MPC group) translates to both more myopia and more habit-like persistence.

The basic logic behind this result was anticipated above. Its proof utilizes the techniques developed

in Section 8. In the remainder of this section, we use a numerical example to illustrate our findings.
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7.2 Numerical Example

Figure 4 compares four economies. The first one corresponds to the textbook, representative-agent
benchmark. We refer to this benchmark as “Complete Information” in the figure. The second economy
is a variant of the first one that adds habit persistence, of the type and magnitude found in the DSGE
literature.?” We refer to this economy as “Complete Info + Habit.” The remaining two economies remove
habit but add incomplete information. Both of them feature an average MPC equal to 7 = .30, which is
roughly consistent with the relevant evidence. The one referred to as “Incomplete Info” in the figure, ab-
stracts from heterogeneity; this is the economy described in Corollary 3. The other one, which is referred
to as “Incomplete Info + HANK” in the figure, adds heterogeneity: there are two groups of consumers,

with m; =.55, my =.05, ¢; =2, and ¢, = 0.28

1 \ ! ‘
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Figure 4: Response of Consumption to Lower Interest Rates

Let us first compare “Incomplete Info” to “Complete Info + Habit.” This extends the lesson of the
previous section from the inflation context to the consumption context: the informational friction alone
generates a similar degree of sluggishness as that generated by habit persistence in the DSGE literature.
Importantly, whereas the degree of habit assumed in that literature is far larger than that supported by

micro-economic evidence (Havranek, Rusnak, and Sokolova, 2017), the informational friction assumed

27In particular, we assume external habit and specify the per-period utility as log(C; — bC;), where C; and C; denote, respec-
tively, own consumption and aggregate consumption. In equilibrium, C; = C; and the log-linearized Euler condition reduces
to the following low of motion of consumption:

1-b 1 b
—Esler1l+ —cp-1.

=——7r+
c 1+brt 1+b 1+b

We finally set b = .7, which is in the middle of the macro-level estimates reported in the meta-analysis by Havranek, Rusnak,
and Sokolova (2017).

28For the incomplete-information economies, we target Kcg = 0.9. This is in the middle of the range of values Angeletos,
Huo, and Sastry (2020) estimate when they repeat the CG regression on forecasts of unemployment, with the rationale being
that unemployment is a proxy for the output gap in the model.
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here is broadly consistent with survey evidence. This illustrates how our approach help merge the gap
between the micro and macro estimates of habit.

Relatedly, if we consider an extension with transitory idiosyncratic income shocks along the lines of
Appendix C, our economy can feature simultaneously two properties: a large and front-loaded response
to such shocks at the micro level, in line with the relevant microeconomic evidence; and a dampened
and sluggish response to monetary policy at the macro level, in line with the relevant macroeconomic
evidence. By contrast, if there was true habit persistence in consumption of the kind and level assumed
in the DSGE literature, the micro-level responses would also be dampened and sluggish, contradicting
the relevant microeconomic evidence. This idea is pushed further, and is more carefully quantified, in a
recent paper by Auclert, Rognlie, and Straub (2020).

Finally, let us inspect the economy “Incomplete Info + HANK.” Needless to say, this economy is not
meant to capture a realistic degree of heterogeneity: our two-group specification is only a gross ap-
proximation to the kind of heterogeneity captured in the quantitative HANK literature (e.g., Kaplan and
Violante, 2014; Kaplan, Moll, and Violante, 2018)). Nevertheless, this economy helps illustrate how such
heterogeneity, and in particular the kind of positive cross-sectional correlation between MPCs and in-
come cyclicality documented in Patterson (2019), can reinforce both the habit-like sluggishness and the

myopia-like dampening generated by incomplete information.

7.3 Informational Friction Plus Wealth Dynamics

In the preceding analysis we used appropriate fiscal transfers to make sure that the wealth distribution
is not a state variable for the aggregate dynamics and to nest the exercise into the analysis of Section 8.
We now shut down these transfers and study how the endogenous dynamics of wealth matter both in
isolation and in combination with our mechanisms.

Consider first the case with complete information and suppose again that there are two groups, with
only the high-MPC group being exposed to the business cycle (w; < w, and ¢1 > 0 = ¢p2), and consider a
negative innovation in i7,. This causes, in equilibrium, an expansion. But because only the first group’s
income is exposed to it, and because the income increase is less than permanent, this group will try to
save some of this increase, while the second group has no such incentive. Along with the fact that the
total saving of the two groups has to be zero, this explains why the first group responds to the shock by
saving and accumulating wealth, whereas the second group responds by borrowing and accumulating
debt. But since the first group has a larger MPC, the accumulation of wealth by this group helps in-
crease aggregate spending in the future. This suggests that, even with complete information, the wealth
dynamics add persistence to the response of aggregate demand to interest-rate shocks.

We verify this intuition in Figure 5 and proceed to show how this source of persistence extends to the
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Figure 5: Shutting Down the Fiscal Transfers

case of incomplete information, without however upsetting, and indeed only reinforcing, our own mes-
sage. This figure compares the response of consumption to a negative (expansionary) interest rate shock
under four scenarios. Two of them replicate the complete-information and the incomplete-information
HANK cases from Figure 4. The remaining two show how the results change when fiscal transfers are
switched off and, equivalently, the aforementioned wealth channel is switched on. Regardless of the
information structure, this channel adds persistence.29 The effect of the informational friction, which
is our own focal point, is qualitatively the same whether the wealth channel is present or not. Perhaps
more interestingly, the two mechanisms reinforce each other, yielding a much more pronounced hump-

shaped response than each mechanism alone.

8 Multivariate Systems, or Networks

We close the paper with the extension of our analytical results to multi-variate systems, or networks. We
already made implicit use of this extension in our HANK application. Here, we fill in the details and
develop tools that could aid analytical and quantitative evaluations of how informational frictions and
network structures interact in a variety of applications.

The economy consists of n groups, each containing a continuum of agents. Groups are indexed by
gefl,..., n}, agents by (i, g) where i € [0,1] is an agent’s name and g her group affiliation (e.g., consumer
or firm). The best response of agent i in group g is specified as follows:

n
aigt = Pglig ISl + Pgliglaig+1]+ .ZE)ng[Ei,g,t[aj,H.l]- 27
j=
The parameter ¢ captures the direct, contemporaneous exposure of an agent in group g to the exoge-

nous shock, holding constant her expectations of both her own future actions and the actions of others.

29This channel also adds amplification. To focus on the persistence effects, in the figure we renormalize the magnitude of the
shock as we change the fiscal rule so that the complete-information response of consumption on impact remains 1.
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The parameter {f¢} captures the additional, forward-looking, PE effect that obtains because of the con-
sideration of own future actions. Finally, the parameter {y ;} captures the dependence of the optimal
action of an agent in group g to her expectation of the average action of group j. This allows for rich
strategic of GE interactions both within groups (when j = g) and across groups (when j # g).>°

Turning now to the information structure, this is specified as a collection of private Gaussian signals,

one per agent and per period. The period-t signal received by agent i in group ¢ is given by
Xigo=ErtUig Uig:~N0,0%). (28)

where o = 0 parameterizes the noise of group g. Notice that, by allowing o to differ across g, we can
accommodate information heterogeneity in addition to payoff and strategic heterogeneity. For instance,
firms could be more informed than consumers on average, and “sophisticated” consumers could be
more informed than “unsophisticated” ones.

Let a; = (ag,;) be a column vector collecting the aggregate actions of all the groups (e.g., the vector of
aggregate consumption and aggregate inflation). Let ¢ = (¢g) be a column vector containing the value
of ¢g across the groups. Let p = diag{f,} be a n x n diagonal matrix whose off-diagonal elements are
zero and whose diagonal elements are the values of §g across groups. Finally, let y = (ygx) bean nx n
matrix collecting the interaction parameters, y¢;, and let & = g+y. Similarly to Section 2, we impose that
B¢ € (0,1) and the spectral radius of (I - B) 1y is less than 1. The following extensions of Propositions 2

and 3 are then possible.

Proposition 10 (Solution). There exists a unique equilibrium, and the aggregate outcome ag,; of each
group g is given by

LY

n
)
“gvt:ZU/g,j —& (29)
= 1-9;L

where {y g ;} are fixed scalars, characterized in Appendix A, and {0g4} are the inverse of the outside roots of

the following polynomial:

1 1 1
C(z) = det ((6 -y —1z) diag{z2 - (p +—+ —2) z+ 1} -z diag{—z}y) . (30)
P poyg poyg
Proposition 11 (Observational Equivalence). There exist matrices wy and wy, such that the incomplete-

information economy is observationally equivalent to the following complete-information economy:

a; =@+ wdEla] +wpa;-,. (31)

30Like our baseline framework, the extension considered here rules out the dependence of an agent’s best response on the
concurrent choices of others. This, however, is without serious loss of generality for two reasons. First, in all applications of
interest, this dependence vanishes as the length of the time period goes to zero. Second, if we incorporate a general form of
such dependence by adding the term ¥ ; ag ;E; j ¢[a;,j ] in equation (27), the results stated below, namely Propositions 10 and
11, continue to hold, modulo a minor adjustment in the cubic that appears in condition (29).
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One subtlety with representation (31) is that it is not unique: there are multiple values of the ma-
trices wy and wy, that replicate the incomplete-information equilibrium. Intuitively, it is possible to
make agents myopic vis-a-vis the future by letting them discount enough either only their own group’s
future actions, or the future actions of other groups too.?! This complicates the interpretation and the
comparative statics of the provided representation but is of little substantial consequence: although the
representation in terms of condition (31) is not unique, the equilibrium itself is determinate, and so are
its observable properties, which can be directly obtained from Proposition 10.

Proposition 10 is indeed quite telling. It shows that the equilibrium outcome can now be expressed
as a linear combination of n terms, each of which is an AR(2) process that has a similar structure as in
our baseline analysis. The one root of these processes is the same across g and is given, naturally, by that
of the fundamental. The other root, denoted above by 9, encodes how the information friction faced by
group g interacts with the network structure of the economy.

In the knife-edge case in which y is diagonal, meaning that the behavior of each group is indepen-
dent of that of other groups, each 9, is pinned down by the characteristics of group g alone and the
outcome of that group is given by the corresponding AR(2) process alone (g, ; = 0 for j # g). For generic
Y., instead, each J; depends on the entire § and y matrices, that is, on all the PE and GE parameters, as
well as on all the information parameters. Furthermore, the outcome of a group depends on all the n
different AR(2) processes.

To illustate how the network structure matters, let § =0 and o4 = o for all g. In this case, we show in
Appendix A that the polynomial given in condition (30) reduces to the product of n quadratics, one for
each ;. Furthermore, each 9, is determined in the same manner as in our baseline analysis, namely as
the reciprocal of the largest solution of cubic (17), with the g-th eigenvalue of the matrix y in place of the
scalar y. Because the eigenvalues of y encode the GE feedback both within and across groups, we have
that an increase in either kind of feedback maps to a higher 9, and, thereby, to both less amplitude and
more volatility. The essence of our baseline analysis is thus fully preserved.

Finally, note that the results presented here not only offer a robustness of our main insights to multi-
variate systems and networks, but also a straightforward numerical algorithm: one only needs to solve

the polynomial in condition (30).

9 Conclusion

We developed a toolbox for analyzing and quantifying the equilibrium effects of informational frictions

and of the associated higher-order uncertainty. We represented these effects as the combination of two

31Indeed, both of the following two choices are possible: let w  have unit off-diagonal elements, meaning that a distortion is
applied only to expectations of own-group future outcomes; or let the elements of each row of w ; be the same, meaning that
the same distortion is applied to all expectations. If one of these choices is made, there is no residual indeterminacy.
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behavioral distortions: a form of myopia, or extra discounting of the future; and a form of habit, or
anchoring of current behavior to past behavior. We further showed how these as-if distortions increase
with the strength of the underlying strategic interaction or GE feedback, and how they can be disciplined
with available evidence on expectations. And we used these results to argue that the friction implicit in
survey evidence of expectations is large enough to generate a comparable amount of sluggishness in the
dynamics of inflation and aggregate spending as that captured in the DGSE literature with more ad hoc
modeling devices.

While connecting the theory to the available evidence on expectations, we clarified which such ev-
idence is best suited for the purpose of quantifying the distortions of interest: it is evidence on average
forecasts, such as that provided in Coibion and Gorodnichenko (2015), as opposed to evidence on indi-
vidual forecasts, such as that provided in Bordalo et al. (2020) and Broer and Kohlhas (2019). Left outside
this paper was a more comprehensive investigation of the lessons contained in surveys of expectations
for macroeconomic theory.

We undertake this task in a follow-up paper (Angeletos, Huo, and Sastry, 2020). There, we use a vari-
ety of existing evidence along with new evidence of our own to argue that, among a large set of candidate
theories, the one that best accounts for the joint dynamics of inflation, aggregate spending and forecasts
thereof in the US is a theory that blends two frictions: incomplete information or rational inattention, as
in the present paper and the literature we have built on; and over-extrapolation, as in Greenwood and
Shleifer (2014) and Gennaioli, Ma, and Shleifer (2015). This points in the opposite direction than cogni-
tive discounting and level-k thinking, two close cousins of under-extrapolation, but leaves room for the
kinds of myopia and anchoring accommodated via our approach.

Another element of our contribution was to extend our tools to multi-variate systems and networks.
We illustrated the use of these extended tools within a HANK economy. Other possible applications in-
clude production networks, whether in the context of the NKPC (La’O and Tahbaz-Salehi, 2020; Rubbo,
2020) or in the context of the RBC framework (Acemoglu et al., 2012; Baqaee and Farhi, 2019; Nimark,
Chahrour, and Pitschner, 2019), as well as dynamic extensions of the more abstract incomplete-information

networks studied in Bergemann, Heumann, and Morris (2017).
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ONLINE APPENDIX

The materials in this online appendix are organized as follows: Section A contains the proofs of
propositions in the main text. The next two sections extend the main theoretical results in two differ-
ent environments; Section B adds public signals and Section C introduces idiosyncratic fundamentals.
Section D contains various results that complement the analysis of inflation with incomplete informa-
tion in the main text. Section E contains the model details in the HANK application with incomplete
information. Section F and Section G apply our observational equivalence result in the contexts of in-
vestment and asset prices, respectively. Section H generalizes the main insights in an environment with
more flexible fundamental and signal processes. Section I shows how the observational equivalence
result is modified when allowing the fundamental to be driven by multiple shocks. Section ] contains

proofs for additional propositions in this appendix.

A Proofs of Propositions in Main Text

Proof of Proposition 1

The proof follows from the main text.

Proof of Proposition 2

-2
n

7, = 02 as the reciprocals of the variances of, respectively, the innovation in the fundamental and the

As a preliminary step, we look for the fundamental representation of the signals. Define 7,, = 0,“ and

noise in the signal. (In the main text, we have normalized o, = 1.) The signal process can be rewritten as

o~

Xip=M(L) 1” . with M) =7,
Uit

’

1

7,2

NI—

1
1-pL

Let B(L) denote the fundamental representation of the signal process. By definition, B(L) needs to be an

invertible process that satisfies the following requirement

o 41,0 - pL)(L-p)

B(L)B(L™H=M@I)M (L = =2 . (32)
(1-pL)(L-p)
This condition implies that
By =1, PLTAL
vV Al-pL’

where A is the inside root of the numerator in the last term of equation (32)
1 T 1 7,\)\?
p+_(1+_u)_¢(p+_(1+_u)) iy

p Ty p Tn
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The forecast of a random variable

~

Nt

Uit

fi=AL)

can be obtained by using the Wiener-Hopf prediction formula:*?
E;[fi] = [AM L HBL™H™], BW) " xir
Now we proceed to solve the equilibrium. Denote agents’ equilibrium policy function as
ai,c = h(L)xi,¢

for some lag polynomial h(L). The aggregate outcome can then be expressed as follows:

h(L)
1-pL

ar=h(L)¢; = U

In the sequel, we verify that the above guess is correct and characterize h(L).

Uk,
~ )
Uit

E; (&) =Gy(L) Gy(L) ATu 1 1
; = Xi ¢t == .
i,tl6 ¢ 1 it 1 anl—p/ll—ﬂL

Consider the forecast of the fundamental. Note that

1
—|;72_1
¢t Ty =L 0]

from which it follows that

Consider the forecast of the future own and average actions. Using the guess that a;;+; = h(L)x; ;1 and

a1 = h(L)¢ 41, we have

_1 n _1 n
a1 = 1',72 L(If(_L;L) 0] ﬁi[t] y Qi+l — Are1 = [0 Tuzh(L)] ﬁitt] ,
and the forecasts are
A1y h(L) h(A)(1-pL) )
E; =Go(L)Xiy,  Go(l)= =2 - :
itlags1l 2 (L)X 2(L) pT,,((l—/lL)(L—)L) A= p A L-A(A-AL)

s e — _ . _A h(L)(L—p)_h(l)(/l—p)_gh(O))l—pL
it [al,[+1 at+1] =Gs3(D)xj s, G3(L) = p ( -1 LN T 1T

Now, turn to the fixed point problem that characterizes the equilibrium:
ait =Eitl@Se + Pai 1 +yarl

Using our guess, we can replace the left-hand side with (L) x; ;. Using the results derived above, on the

other hand, we can replace the right-hand side with [Gi (L) + (B +y)G2(L) + BGs(L)] x; ;. It follows that

32gee Whittle (1963) for more details about Wiener-Hopf prediction formula.
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our guess is correct if and only if
h(L) = G (L) + (B+7)G2(L) + BG3 (L)

Equivalently, we need to find an analytic function h(z) that solves

O L
“=9 pTypl—pAl- /lz
Aty h(z) h(M)(1 - pz) )
+('B+) ((I—AZ)(Z A (1-pAz-N)(1-12)

+ﬁ_(h(z)(z p)_h(/l)(/l p)_Bh(O))l—pz
p\ z(z-A) Alz=7N) Az J1-1z

which can be transformed as
C(2)h(z) = d(z; h(A), h(0))

where

A u
C(2) Ez(l—/lz)(z—ﬂt)—;{,B(z—p)(l—pz)+(ﬁ+y);—z}
n

&_u 1 3 Tu/l(ﬂ-i'y)
A hA RO =@ 2 T G ala— b (Tn 1-pA

—Bz= )1 - p2)h(0)

+pA- p)) z(1-pz)h(1)

Note that C(z) is a cubic equation and therefore contains with three roots. We will verify later that there
are two inside roots and one outside root. To make sure that h(z) is an analytic function, we choose h(0)
and h(A) so that the two roots of d(z; h(A), h(0)) are the same as the two inside roots of C(z). This pins
down the constants {/(0), h(1)}, and therefore the policy function k(L)

@ 1

=[-8
- p)1-p61-9L’

where 97! is the root of C(z) outside the unit circle.
Now we verify that C(z) has two inside roots and one outside root. C(z) can be rewritten as
1 17
C(z)z/l{—z3+(p+—+——+,6)z —(1+,B(p+ ) s YT”)Z+[5}.
[ p p Ty
With the assumption that § >0, ¥ > 0, and §+y < 1, it is straightforward to verify that the following

properties hold:
C0)=p>0
c = —xly——<0
Tn
el
C(1)=—+(1 Y|—+p—-2|>0
o B p-

41



Therefore, the three roots are all real, two of them are between 0 and 1, and the third one 97! is larger
than 1.

Finally, to show that 9 is less than p, it is sufficient to show that

C(l):ru(l—pﬁ—p7)>

0.
p Ty’

Since C(9~1) = 0, it has to be that 9~ is larger than p~!, or 9 < p.

Proof of Proposition 3

The equilibrium outcome in the hybrid economy is given by the following AR(2) process:

G
1-0,L

1 48!
=— [(1-,/1-4 d {((=————, 34
1 2wf5( (Swfwb) and o wp = pw o Gy

and § = B+ 7. The solution to the incomplete-information economy is

9 o 1
N P D L
a ( p)l—pél—f)Lft

él"

a

where

To match the hybrid model, we need

4
1-p6°

(1=19 and {0=(1—g) (35)

0
Combining (34) and (35), and solving for the coefficients of w f and wy, we infer that the two economies

generate the same dynamics if and only if the following two conditions hold:

= 5(p2 92’
91 -69)p?
= —p2 —52 (37)

Since § = B+ v and since 9 is a function of the primitive parameters (o, p, 8,7), the above two conditions
give the coefficients w r and wj, as as functions of the primitive parameters, too.
It is immediate to check that wy <1 and wp > 0if 9 € (0, p), which in turn is necessarily true for any

0 >0; and thatw¢ =1 and w;, = 0 if 9 = p, which in turn is the case if and only if o = 0.
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Proof of Propositions 4 and 5

To prove the comparative statics, we first show that w is decreasing in 9 and wy, is increasing in 9. This

can be verified as follows

dwr  —5(p*+9%) +26%p%0 —8(p*+0)+26p9  —6(p—9)*

= 0,
39 GP2-0)2 Op2-9)2  0pr-92)2
owp p%(p? + 9% —269p?) S p%(p? + 9% - 29p) 3 ( o )2 20
09 - (pz_gz)z (pz_ﬁz)z - p+19 :

Now to prove Proposition 5, it is sufficient to show that 9 is increasing in y. Note that

1 1-pp—- 1
()= 0EBen g g ofH)<-mTE
[y TP A Ty pA
By the continuity of C(z), it must be the case that C(z) admits a root between % and }1 Recall from the
proof of Proposition 2, 97! is the only outside root, and it follows that A < 9 < p. It also implies that C(z)
is decreasing in z in the neighborhood of z = 97!, a property that we use in the sequel to characterize
comparative statics of 9.
Next, using the definition of C(z), namely
11 1 +
Cle)=-2°+ p+—+—T—”+,B)z2—(1+,3(p+—)+uT—”)z+ﬁ,
p Py P p 1y

taking its derivative with respect to y, and evaluating that derivative at z = 9~!, we obtain

-1
WO __Tu
oy PTy

-1
Combining this with the earlier observation that % < 0, and using the Implicit Function Theorem,
we infer that 9 is an increasing function of y.

Similarly, taking derivative with respect to 7, we have

ocOhy 1 __, 1
=—39 O " -p-y)>—I9 " 1-6-v)>0.
ore  pry B-v oty B-y

-2

Since 7, = 07, we conclude that 9 is also increasing in .

Proof of Proposition 6

Given the law of motion of the aggregate outcome a; = % (1 - %) ﬁé t» the average forecasts of a;;

and a2 can be obtained by applying the Wiener-Hopf prediction formula:

E,(ap] = 7 (_&) 1 p+9-pI9(L+A)

PEHETI_sp U p)1-04 -9 -AL) "

— o _& 1 p+39—pI(L+A) B p9( - pIAL)
[Et[aHZ]_l—&p (1 p)1—19/1( (1-9L)(1-AL) @+p) (1-9L)(1-AL) -
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The average forecast error and the average forecast revision are defined as
Error; = a;1 —E¢las1], Revision; = E¢[apq] —Ei-1(ar1],

and it follows that
21920 -1 —pd)(p+9—Ap?)
1—5p) p*(1-A2)(9-1)2(1 - 19)5
+( )2 )L(/l—p)(p+1‘)—/1p19)(/1p+A19—p1‘)—/12p1‘))
1-6p p2(1—A2)(0— ) (1 - 19)2
) )Z(A—p)z(pw-Apa)z
1-6p) p2(1-A2)(1-79)2

Cov(Errors, Revision;) = (

Var(Revision;) = (

The moment Kcg can be computed as

Koo = Cov(Errory, Revision;) /11‘) +p—pI9A+90)-pAI(1 - 19)
T " Var(Revision)  (p—M(L-A9)(p+9—Ap?)

which is the formula given in the Proposition.

Consider next the partial derivatives of Kcg with respect to A and 9:
0*2%0 (A% (p? +1) —4Ap + p* +1) — 63 (4A3p3 + A2 (1 - 6p2) + p?),

0Kcg ( +62p (A2 (6p% —1) —4Ap — p? +1) +20p(1 - 21p) + p°
oA (1—0)%(p— V)20 + p—0Ap)?

(38)

0Kcg 62 (20(1-601) +6)
09  (1-01)2(0+p-01p)2
It is possible to verify that 0 < A <9 < p < 1 implies

(39)

0Kcg 0Kcg
N >0> 30 .

Because 9 increases in y and A is invariant in y, we immediately have that K¢g is decreasing in v, as
stated in the Proposition.

What remains is to prove that K¢ is increasing in o. This is complicated because o has opposing
effects via A and 9. The rest of the proof deals with this complication. Because the calculations involved
are highly cumbersome, we have done them with the help of the analytical tools in Mathematica.

Because A is a monotone transformation of o, we can re-express 9 as function of 1 and take the total
derivative of Kcg with respect to A instead of its total derivative with respect to o. That is, we seek to

prove dﬁ“’ > 0, where

dKcg  0Kcg N 0Kcg 09
dr oA 09 oA’

(40)

O(I;/%c and aggc are the partial derivatives obtained above, and % is the derivative of 9 with respect to 1

implied by the solution for 9. The latter derivative is obtained by re-expressing the cubic in (17) in terms

of A in place of o and applying the Implicit Function Theorem. In particular, we first re-write the cubic
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as follows:
p(1—pO)O-N)(1A-01)—y0*(p—A)(1—Ap) =0. 41)

We then apply the Implicit Function Theorem to obtain

09 p(BO—-1) (6% -201+1) +y0% (-2Ap + p* +1) )
A p(B(36241-20(A2+1)+A) =204+ A2 +1)—2y0 (A2p—A(p2+1) +p)’
Next, we solve (41) for y:
1-60)0-A1)(1-6A
y=T(O: 4, p,p) = LEPOO- A0 (43)

6%(p - )1 - Ap)
This identifies the value of y that induces as an equilibrium any given value form 9 in the admissible

range [A, p). Replacing this value for y into (42) allows us to re-express the latter as follows:

09 0(A*-1)(B0-1)(0°p-0(p* +1)+p)
A (A-p)Ap—1)(BO3A—0(BA+A2+1)+2A)

(44)
Combining the above with (38), (39), and (40), we obtain the following result:

BAS 406 + BA3 105 — 514 0305 — BA2 305 + A5 p205 + 5130265 — BA% 065 — fA2 p0°
_3BA% 105 + A2pA05 + 37303605 + fA20° + 3A4 0265 — 2512205 — 3A% 065 — 160"
_BAB 4% — 214 p%0% + 4BA3 204 — A2p%0% — 26200% + AB04 + 515304 + 3614 p30% + 813 p36*
_36A2030% — 120" — 1520 — A5 p26% — 814 20" — 2613 20" — 412 p20% + 27 026% + 20"
25004 — BA O +3A3p0% + 5150103 + 36240405 + 213 p40% — 26120103 + 1p*0° — 22363
1304 0%0% — 7230365 — 6120363 + 4BAp%0° + p20° + 150263 + BA1 02603 + 7130263 + fA2 0265
+210%0% +22%p0% + BA3p03 + 12 p0% — BAPO3 — pO3 —9IN*p*0? — 3613 p*0% — 12 p*0? + 1713 p36?
+5BA%030% + 1p30% — 612 p%0% — 2Ap?0? — 2p%0% — 21302 + 2Ap0? + 7TA3p*0 + BA%p*0 + Ap*6
dKce —~11A2030 — BAP30 — p30 + 410?60 — 212 p* + 2103

a (1—6A)(1— Ap) (BA6% — A260— PAG—0+21) (p— L2 (Ap6 — 6 — p)?

(45)

The proofis then completed by verifying that both the numerator and the denominator are positive.
Consider first the denominator and note that this is a decreasing linear function of §. It is therefore
positive if and only if g < %. Because the latter fraction is decreasing in 6, it is bounded from
below by the limit of this fraction as 9 — p — 1. Because this limit is 1, which is necessarily higher than

B, we have that the denominator is necessarily positive.

Consider next the numerator. This, too, is a decreasing linear function of 5. And it is positive if and
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only if

0'0(A°(p° + p) = A% (5p% +1) +2A%p (p* +4) = A° (8p% +3) + A2 (0® +4) + Ap” — p)
—-03 (A3 (50 +p2) + A1 (2p — 13p3) + A3 (2p1 + 702 = 2) + A2 (p — 6p3) + Ap? (p* +2) + p (0? — 1))
+02p (A3 + 23 (2—17p2) + A%p (p* +6) — A (p* +2) + 2p)

—0p? (TA3p? —=11A%p + A (p? +4) - p) +2Ap3(Ap— 1)
p<p’=

6°2p (A3 (0% + p) = A% (5% +1) + Ap (p* +5) — p* = 1) = 6*A (p* — 1) (32%p* - 32p — p* + 1)
OA —03 (A% (p* +p?) + A3 (0 —3p%) + A% (—4p* +20% — 1) +3Ap3 + 292 (p* - 1)) +
02p (A3 (3p% +p) + A2 (1-7p2) + A (0 —20%) +4p* — 1) +0p? (—31%p* +51p—2) + p*(Ap— 1)

To verify that the above is necessarily true, we return to condition (43).
Recall that this condition gives the value of y that induces a given 8 as an equilibrium. Using this, the

primitive §+7y < 1 can be re-expressed as +1I'(0; A, B, p) < 1, or equivalently

P20+ 0% (-N)p? +0*Ap - 0* A +60%p—02%p—0p + Ap

b*
h< 054p —021p? 021+ 0Ap

(46)

We thus have that 8 < b* is necessarily satisfied. If we prove that b* < " is also satisfied, we are done.
Let F(A, 9, p) denote difference ﬁ# — b* as a function of (1,9, p); this function is obtained simply by
using the definitions of these thresholds. We have used Mathematica to verify numerically that F takes
non-negative values over the entire [0, 1] set, which itself necessarily contains the admissible values of
(1,9, p). We conclude that both the numerator and the denominator in (45) are positive, which means

that K¢g is increasing in A (equivalently, in o).

Proof of Proposition 7

The proof follows from the main text.

Proof of Proposition 8

See Appendix D.4.

Proof of Proposition 9

Assume that all agents across groups share the same information structure by receiving a private signal
about the interest rate r;

2
Xigt=Tt+Uigt Ugt~N(0,0.

We proceed with a guess-and-verify approach. The conjecture is that the law of motion of the aggre-

gate consumption c; is given by the following AR(2) process for some scalars b and 9 € (-1,1),

b o )
= :b —b .
a—ena-pn" = bpett ot

Ct
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where &; = ﬁnt and {; = ﬁnt. To simplify the notation, denote ag = mg¢¢ and fg =1 - mg. Con-

sider the individual best response in group g

Cig,t = —Ei g elri] + bag (_pfﬁ[Ei,g,t[ft] __p_ﬁ[Ei,g,t[(t] + By g lCig 1]
p 1 9
= —1+ba,——|E; — b E; .
1—ﬁgp( “gp_g) i,g,t1¢¢] =50 agp_ﬂ LgtlCd]

Due to the fact that the signal structure is independent of their group identity, the average expectation

across the economy is the same as that within the group. The average forecasts of {; and (; are given by

3 1
[Et[ft]—(l—;)mn“

_ ~ A 1-pA 1
[Et[(t]—(l p) 1-9A (-0 -AD)""

where A is defined in equation (33). It follows that the average action of group g is

Cot = 1(1—/1){ ! (—1+bap)1— ! baﬂ 1}
8T 1AL p) \1-PBgp 80-9)1-pL 1-B40 Sp-91-9L e

The aggregate consumption is a weighted average of the actions across different groups

Ct:Zﬂ:gCg,t)
g
1 A 1 ) 1 1 9 1
= 1-= —|-1+bag——— | ——— b ,
1—?LL( p){gngl—ﬁgp( ’ agp—ﬁ)l—pL ;ﬂgl—ﬁgﬁ agp—l‘)l—ﬁL}m
_ 1 (1_&)A1—A2—(19A1—PA2)L
T 1-AL o (1-pLy1-9L) '
where
A Zn 1 (1+ba p )
1= T . | —a
7 S1-Pgp Ep-9
1 )
Ao=>)m ba .
% E1-Bg0 $p-9

To verify the conjecture, we need to make sure that the actual outcome follows the same AR(2) process

as the conjectured one. By matching coefficients, it has to be that

a=PTAy (47)
1_19_& 2)
b= (1 - %) (A1 —Ay). (48)

Note that without informational frictions, the aggregate outcome is given by

Zg”gl—l
c;=b*&;, with b*z——ﬁZZ.
l_zgﬂgl_ﬁgp
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The consumption under perfect information satisfies the standard Euler equation
cr=—¢ri+Eelcral,

where —¢ = (1 - p)b*.

Going back to the incomplete-information economy, it follows from (47) and(48) that the scale b is

9
=12
p

and 9 is the inside root of the following equation

given by

Xg
Cla)=1-2z0)(z—-Dp—-z1-Ap)(p—-A) ) 74 .
g 1—Pgz

Therefore, the aggregate consumption under incomplete information follows an AR(2) process, which is

the same as the baseline case. The particular form of the impact response captured by b also permits the
as-if representation, with w r and wj, now being functions of {7g, ¢g, mg}.
For the two-group case, the variable 9 is the inside root of the following condition by rewriting C(z)

as a polynomial equation
Cla)=(1-(1-m)a)1-1-mp)a)(1-2z)(z-Vp—2z(1-1p)(p-N)Q,

where
Q=m1mp1(1-(1-mp)z) +mamap(1—(1-m)z).

1_7? 19 1t follows that
2

Denote ¢; = ¢, and by construction, we have ¢, =

— =m(m —mp)(1-2).

o)
Note that

C(A) = -A1 - Ap)(p — D (m1mipy (1 — (1 = mp)A) + mamagpa(1— (1—m1)A)) <0

C(1) = mymaA(1—p)* > 0.

Therefore, 9 € (1,1) and C(z) is increasing in the neighborhood of 9. When m; > my, g_$| =9 > 0. It

follows that 9 is increasing in ¢.
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Proof of Proposition 10

We first show that if S¢ € (0, 1) and the spectral radius of (I- B)~'y isless than 1, then there exists a unique
equilibrium. Recall that the individual’s best response is

1

n /)/ L~
'ft"'z gk

L 1
aigr=PgligilStl+ Bglig ilaig 1]+ Z Ygkbigtlaj 1] = pglig Tglfl L TgL_laj,t
]:

Jj=0

The aggregate outcome for group g is then

ag,r = Pglg,s

1 L )/gkL_l
——— &+ ) ————aj|.
1—/3gL—15‘ 2 1-BgL 1"

j=0

By an abuse of notation, we have
ar=E [0-BL ) @&+ A-BL ) 'yL @],

— — — !/
where E; denotes |E;; ... Ep,|.Denote@=I- o) e and k(L) = 1— BL Y 1y L~1. The aggregate

outcome a; has the following representation
ar = @E; (&) +E¢ [K(L)PE, [E4]] +E [)(DE; [)(DPELE]] +...

The aggregate outcome has a unique solution if the power series above is a stationary process or the
variance of ag ; is bounded for all g.

Note that: (1) Var(E;[X]) = Var(E,[E,, [ X]]) for k = 0; (2) Var(aX + bY) < (av/Var(X) + bv/Var(Y))?. To

show the variance of ag ; is bounded, it is sufficient to show that Zz"zokk(l) is bounded. Since k(1) =
- ﬁ)_ly, if the spectral radius of (I - ﬁ)_ly isless than 1, Z%):o x¥(1) is bounded and a; is stationary.
Now we show that the aggregate outcomes have to be a linear combination of n different AR(2) pro-

cesses. The signal for agents in group g is

L with M= 7]

Uig,t

Xigt = M(L)

Similar to the proof of Proposition 2, let B¢ (L) denote the fundamental representation of the signal pro-

cess, which is given by
Bo(L)=74%|— ,
s =T\ A, TopL

where Ag is

1

p+%(1+Tg)—\/(p+%(l+‘t’g))2—4

Denote the policy rule of agents in group g as hg(L), and the law of motion of the aggregate outcome in

. he(L . .
group gis ag ;= lf—;L)n r- Agents need to forecast the fundamental, their own future action, the aggregate
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outcomes in each group, which are given by

AgTg 1
E; ,
t,g,t[ft] (l—p/lg) 1— AgL Xi gt
E; [61 ] _ Ang ( hk(L) _ hk()tg)(l —pL) )JC'
e L T T = A D(L=Ag) (= pAg(L—Ag)(A—AgL) | 8"
Eig[a 4 ]_k(hg(L)(L_p)_h(/lg)(/lg_p)_ﬁhg(o)) 1-pL .
i,8,t i,g,t+1 g,t+1] — P L(L—/lg) Ag(L—/lg) }Lg I 1 —/lgL i,gt-
Using the best response, the fixed point problem is
. /1ng 1 /lg hg(L)(L_p) _ hg(/lg)(/lg_p) _ P hg(o) 1—pL
hg(L)xl,g,l’ lrgrt+ g_ 1.
8 (1= pAg) 1- AgL p | LL-1y) Ag(L-Ag) Ay L J1-AgL
AgTq hy(L) hi(Ag)(1-pL)
+27g,k Xi,g,t
- p (A=2ADIL-2g) (1-pAg(L—Ag(1—AgL)
AgTg hg(L) he(Ag)(1—pL)
+:Bg Xi,g,t
p (A=2DIL-2g) (1-pAg(L—Ag(1—AgL)

The system of equation in terms of k(L) is
A(Dh(L) =d (L),

where

) . (Mg
A(L) = dlag{L(L— Ag)(1 - AgL)} .y dlag{
0
and

AgTg
dg(L) = q)gu—

SLUL=Ag) = Bg(L=Ag) (1 = pL) g (0)

- AoT AgT
p+ § 8 )+

- (ﬁghg(/lg) ( :

The solution is given by
adjA(L)

"D = Sea)

da(l).

Utilizing the identify that
Ag p pog
the matrix A(L) can be simplified to

A(L) :diag{ - AgL (L— (p + % + M%) L+ 1) }

g

+ﬁdiag{/1g (L—(p+%+F%)L+1)} dlag{’ls;o gL}y-
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The roots of detA(z) is the same as the roots of
. (. 1 1 ) 1
C(z) =det| (6 -y —Iz) dlag{z —lp+t—+—7=]z+ 1} - zdlag{—z}y .
P pog POy
Note that the degree of detA(L) is 3n. Denote the inside roots of detA(L) as {(1,...,{5,} and the out-

side roots as {67},.. .,9,;21}. Because agents cannot use future signals, the inside roots have to removed.

Note that the number of free constants in d(L) is 2n:

Ao — A A
( g~ P gTg )+ gTg

{hg(0)}g-,, and {ﬁghg(/lg) ZYg,khk(/lg)} . (49)

p(1—pAg) T g=1

With a unique solution, it has to be the case that the number of outside roots is n. Also note that by

Cramer’s rule, hg(L) is given by

det[Al(L) o A (D) d(L) Ag(D) ... An(L)]
detA(L) '

hg(L) =

The degree of the numerator is 3n—1 as the highest degree of dg (L) is 1 degree less than that of Ag ¢(L). By
choosing the constants in equation (49), the 2n inside roots will be removed. Therefore, the 27 constants

are solutions to the following system of linear equations:*>

det|A\C) ... AgaQ) dW) Al ... AWCp|=0, fori=1...n.

After removing the inside roots in the denominator, the degree of the numerator is 7 — 1 and the degree
of the denominator is n. As a result, the solution to hg(L) takes the following form
1 S k-1 v Ik 1
he(l)= ————F—) Weil" " = W,k(l——) .
& 7 (1-9L) k; § k; & p ) 1-9;L

In the special case where =0 and o = 0, we have
a; = (PEt[ft] + YEt[at+1]-
Denote the eigenvalue decomposition of y as
r=Q'AQ
where A = diag{u;, ..., u,} is a diagonal matrix, and where 6 is the g-th eigenvalue of y. It follows that
Qa; = Q@E[¢/] + AE[Qa;1].

Denote a; = Qa,. Because A is a diagonal matrix, it follows that dg , is independent of a; ; for g # j, and

ag, satisfies Proposition 2. The degree of complementarity for dg ; is g, and the corresponding 9 is

33The set of constants that solve the system of equations for hg(L) also solves that for hj(L) where i # g. This is because
{¢ i}?=1 are the roots of the determinant of A(L), leaving the vectors in A({;) being linearly dependent.
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the reciprocal of the outside root of the following quadratic equation:

1 1 1
2
Cg(Z):—Z + p+;+ﬁ+ﬁg)z—(l+ﬁg(p+;

P

po?

Because a; is a linear transformation of a;, they share the same AR roots.

Proof of Proposition 11

Now we move to show there exists w; and wj in the complete-information model to rationalize the
incomplete-information model solution. In the incomplete-information economy, the average action in

group g, dg ¢, is given by

& Ik 1
ag ;= 1-— .
gt kX:‘il//g,k( 0 )l—ﬁkLEt
Let Oy ;= (1 - %) ﬁ&, and it follows that
n
Qg,t = Z Ve kOk,t-
k=1
Denote Q, A, and D as
3
Y1 ... Yin 01 1-3
Q= . : : , A= : , D= .
Y1 -« Ynn 19n 1_1%"
The vector that collects 0y ; can be written as
01,¢
0:=| : | =A60;1+Dg¢y,
On,t
and the vector a; that collects ag ; is
a;=Q0;=QAQ 'a;_; +QD¢;.
Define A= QAQ~! and B = QD, we have
a = Aat_] + Bf; (50)

In the perfect-information hybrid model, the law of motion of a; follows

a; =@+ wdkilar ] +wpa,.
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If (50) is a solution to the perfection-information hybrid model, it has to be that
Aat_l + Bft = (pft + (X)f(S(prt +A(Aat_1 + B(ft)) +wpar_1.
By method of undetermined coefficients, we have

wr6(pB+AB) =B -,
wp :A(I—wf6A).

Note that the dimension of B—¢ is n x 1 and the dimension of w ¢ is n x n. As aresult, w ¢ is not uniquely

determined.

B The Role of Public Information

Throughout the main analysis, we have assumed that the noise is entirely idiosyncratic. We have thus as-
sumed away, not only correlated errors in expectations, but also the coordination afforded when agents
condition their behavior on noisy but public information (Morris and Shin, 2002). In this appendix, we
accommodate these possibilities by letting agents observe a public signal in addition to their private sig-
nals. We first explain how this modifies our observational equivalence result. We then explain how this

matters for our mapping between the theory and the expectations evidence.

B.1 Solution with a Public Signal

In addition to the private signal x; ; = {; + u; ; considered so far, a public signal of the form
zZr =& +e€y, (61)

where u; ; ~ A (0,02) and €, ~ ./ (0,02) are, respectively, idiosyncratic and aggregate noises. We next let

_ZE

o 0,2 + 0,2 measure the overall precision of the available information about the fundamental and

-2
X = —7-— the fraction of it that reflects public information, or common knowledge.**

Proposition 12. [n the extension with public signals described above, the following properties are true.
(i) The equilibrium outcome is given by
ar= (ls; + Uy,

where af is the projection of a; on the history of ¢; and v; is the residual.

341t is worth emphasizing that a “public signal” in the theory represents a piece of information that is not only available in
the public domain but also common knowledge: every agent observes and acts on it, every agent knows that every other agent
observes and acts on it, and so on. Such a signal is therefore at odds with the primary motivation of our paper. It may also not
have an obvious empirical counterpart. For instance, aggregate statistics could be effectively observed with idiosyncratic noise
due to rational inattention. Nevertheless, the incorporation of a perfect, common-knowledge public signal allows us to shed
additional light on the mechanics of the theory as well as on its empirical implications.
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(ii) a‘; satisfies Propositions 2 and 3, modulo the replacement of the cubic seen in condition (17) with

the following:

= Pafpeti i )2_( - ( 1) 5%) -
Cle)=-2"+ p+p+p02+(6 y)|z"=|1+(6-7) p+p + oo z+(6-7). (52)

(iii) Provided y > 0, 9 is decreasing x and, therefore, both w¢ and wy, get closer to their frictionless
counterparts as y increases.

(iv) The residual v follows an AR(1) process with innovation €, the noise in the public signal.

Part (i) expresses the equilibrium outcome as the sum of two components: a “fundamental compo-
nent,” defined by the projection of a; on the history of {;; and a residual, itself measurable in the history
of e;, the aggregate noise.

Part (ii) verifies that all our earlier results extend to the fundamental component here. In other words,
although the aggregate outcome is now contaminated by noise, our earlier results continue to character-
ize its impulse response function (IRF) with respect to the fundamental. Part (ii) also provides the mod-
ified cubic that pins down 9 (and, thereby, the distortions w and w},). The old cubic is readily nested in
the new one by setting y = 0.

Part (iii) highlights that, holding o constant, an increase in y maps to a smaller J and, thereby, to
smaller distortions, but only if y > 0; if instead y = 0, y is irrelevant. To understand why, note that an in-
crease in y for given o means a substitution of private for public information. This maps to a smaller and
less persistent wedge between first- and higher-order beliefs holding constant the dynamics of the first-
order beliefs. By the same token, the PE effect of any given innovation remains unchanged, but its GE
effect, which is non-zero if and only if y # 0, is enhanced and gets closer to its frictionless, representative-
agent counterpart.

In a nutshell, a higher y represents an increase in the degree of common knowledge, which in turn
amounts to making GE considerations more salient. Clearly, this is a direct extension of the logic devel-
oped in our baseline analysis. But what is its empirical content? In particular, does our baseline specifi-
cation biases upwards the documented distortions by fixing y at its lowest possible value? As illustrated
next, once the theory is required to match relevant evidence on expectations, the incorporation of pub-
lic information (y > 0) may actually translate to higher distortions than those predicted by our baseline
specification (y = 0).

Part (iv) makes it clear that the residual v, is itself an AR(1) transformation of the noise in the public
signal. This means that, unlike the fundamental component, the residual does not exhibit hump-shape
dynamics.

We find this property is intriguing. If one looks at the response of inflation to either identified mon-
etary shocks (Christiano, Eichenbaum, and Evans, 2005; Romer and Romer, 2004) or to the shock that

accounts for most of the business cycle volatility in unemployment, output, or the output gap (the MBC

54



shock in Angeletos, Collard, and Dellas (2019)), one finds a hump shape. But if one looks at the residual,
which the DSGE literature captures with a markup shock, then one sees no hump shape. From this per-
spective, the introduction of public information helps the theory generate a “residual” in inflation that
is of the same type as that found in the data. And it helps reconcile why one sees a hump shape in one

dimension but not in another.

B.2 Revisiting the Mapping from Kcg to (v, wp)

Ceteris paribus, the addition of public information reduces the documented distortions by increasing
the degree of common knowledge. But it also reduces the predictability of the average forecasts errors.
The relevant question is therefore how the accommodation of public information affects the lessons we
draw in this paper under the requirement that the theory continues to match the available evidence on
expectations.

In our benchmark, which abstracts from public information, the CG coefficient uniquely identifies
the value of o, which in turn pins down the pair (w frWp), Or equivalently the equilibrium dynamics. Now
that we have added a public a signal, the CG coefficient and the equilibrium dynamics alike depend
on two unknown parameters, the precisions 7, = 0;,? and 7, = 02 of, respectively, the private and the
public information. As a result, we loose point identification but preserve set identification: only certain
pairs of 7, and 7, are consistent, under the lens of the theory, with the evidence in CG. Furthermore,
because the theoretical value of Kcg converges to zero as the public information becomes sufficiently
precise, the estimated value of Kcg puts an upper bound on 7,.%°

Figure 6 illustrates the implications of these properties for the documented distortions within the
context of our application to inflation (Section 6). On the horizontal axis, we let 7, vary between zero
(our benchmark) and the aforementioned bound. For each 7 in this range, we find the value of 7 that
matches the point estimate of K¢ provided in CG and report the implied values for w r and wy,.

For the application under consideration, the upper bound on 7, turns out to be quite low. This is
because evidence in CG points towards considerable predictability in average forecast errors, which in
turn requires a significant departure from common knowledge. What is more, the distortions increase as
we raise 7, within the admissible range. That is, once the theory is disciplined with the relevant evidence,
the incorporation of public information reinforces the documented distortions.

Similar points apply if we let for an endogenous public signal of the form z; = a, +¢€;, which in the ap-

plication under consideration can be thought of as statistic of inflation contaminated with measurement

35That is, the set of the admissible values for the pair (7, T;) can be expressed as
S(Keg) ={(rx,72): T2 = T(Kgg) and 7 = f (12, Kcg)}

where K¢ is the CG moment, T'(-) is a function that gives corresponding upper bound on 7z, and f(-) is a function that gives
the value of 7 that lets the theory match this moment for any given 7, below the aforementioned bound.
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Figure 6: The Role of Public Information

error.>® Similar to the exogenous-information case, matching the CG moment puts an upper bound on
the informativeness of this signal. Different from the exogenous-information case, this informativeness
is now endogenous to the actual inflation dynamics. This introduces an additional fixed point problem,
which can only be solved numerically. But as illustrated in Figure 7 in Appendix D.3, the main message

goes through.

C Idiosyncratic Shocks and Micro- vs Macro-level Distortions

The various adjustment costs assumed in the DSGE literature are supposed to be equally present at the
macroeconomic and the microeconomic level. But this is not true. For instance, the macroeconomic
estimates of the habit in consumption obtained in the DSGE literature are much larger than the corre-
sponding microeconomic estimates (see Havranek, Rusnak, and Sokolova, 2017, for a metanalysis).

Consider next the menu-cost literature that aims at accounting for the microeconomic data on prices
(Golosov and Lucas Jr, 2007; Midrigan, 2011; Alvarez and Lippi, 2014; Nakamura and Steinsson, 2013).
Different “details” such as the number of products that are simultaneously re-priced and the so-called
selection effect matter for how steep the effective Philips curve is, but do not help generate the requisite
sluggishness in inflation that the DSGE literature captures with the ad hoc Hybrid NKPC.

A similar point applies to the literature that aims at accounting for the lumpiness of investment at
the plant level (Caballero and Engel, 1999; Bachmann, Caballero, and Engel, 2013): this literature has not
provided support for the kind of adjustment costs to investment employed in the DSGE literature.

In sort, whether one goes “downstream” from DSGE models to their microeconomic implications or

36This specification is close to that studied in Nimark (2008). The main difference is that the theory is herein disciplined by
the evidence in Coibion and Gorodnichenko (2015).
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“upstream” from the more realistic, fixed-cost models used to account for the microeconomic data to
their macroeconomic implications, there is a pervasive gap between micro and macro.

Our result that the distortions increase with the importance of GE considerations contributes to-
wards filling this micro-to-macro gap. When an individual responds to aggregate shocks, she has to pre-
dict the responses of others and align hers with theirs. To the extent that GE considerations are strong
enough, this generates a feedback loop from sluggish expectations to sluggish outcomes and back. When
instead an individual responds to idiosyncratic shocks, this mechanism is muted. Furthermore, agents
may naturally have much more information about idiosyncratic shocks than about aggregate shocks
both because of decentralized market interactions (Lucas, 1972) and because of rational inattention
Mackowiak and Wiederholt (2009). It follows that the documented distortions may loom large at the
macroeconomic time series even if they appear to be small in the microeconomic time series.

We illustrate this point in the rest of this appendix by adding idiosyncratic shocks to our framework.

The optimal behavior of agent i now obeys the following equation:

ait =B ([9Si, e + Bai i1 +yar1l], (53)

where

Cit=¢r+ (i

and where (; ; is a purely idiosyncratic shock. We let the latter follow a similar AR(1) process as the
aggregate shock: {; ; = p{; ;-1 +€;,;, where €; ; is i.i.d. across both i and .37

We then specify the information structure as follows. First, we let each agent observe the same sig-
nal x; ; about the aggregate shock ¢; as in our baseline model. Second, we let each agent observe the

following signal about the idiosyncratic shock {; ; :
Zit =Cir+ Vi,

where v; ; is independent of {; ;, of {;, and of x; ;.
Because the signals are independent, the updating of the beliefs about the idiosyncratic and the ag-
gregate shocks are also independent. Let 1 — % be the Kalman gain in the forecasts of the aggregate

fundamental, that is,

A
Ei¢[&e] = AE; —1[8] + (1 - ;) Xi

Next, let 1 — % be the Kalman gain in the forecasts of the idiosyncratic fundamental, that is,

A

. A
Ei i = AE; ;—1[Ci) + (1 - ;) Zit-

37The restriction that the two kinds of shocks have the same persistence is only for expositional simplicity.
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It is straightforward to extend the results of Section 3.3 to the current specification. It can thus be shown
that the equilibrium action is given by the following:

AR 1 9 o 1
it=|1-—|——FCi s+ |1 —— | ——=—=C + ui,
ai,t ( P)l—Pﬁl—/chm ( p)l—p51—19L£t Uit

where 9 is determined in the same manner as in our baseline model and where u; ; is a residual that is
orthogonal to both {; ; and ¢; and that captures the combined effect of all the idiosyncratic noises in the
information of agent i. Finally, it is straightforward to check that 9 = A when y = 0; 9 > A when y > 0; and
the gap between 9 and A increases with the strength of the GE effect, as measured with .

In comparison, the full-information equilibrium action is given by

4
d;t = (i,[

1-pp

It follows that, relative to the full-information benchmark, the distortions of the micro- and the macro-

4
+
1-pd

St

level IRFs are given by, respectively,

A 1 9\ 1
1-— — and (1—— .
pl1-AL p)1-9L

The macro-level distortions is therefore higher than its micro-level counterpart if and only if 9 > A.

As already mentioned, it is natural to assume that A is lower than A, because the typical agent is likely
to be better informed about, allocate more attention to, idiosyncratic shocks relative to aggregate shocks.
This guarantees a lower distortion at the micro level than at the macro level even if we abstract from GE
interactions (equivalently, from higher-order uncertainty). But once such interactions are taken into
account, we have that 9 remains higher than A even if A = A. That is, even if the first-order uncertainty
about the two kind of shocks is the same, the distortion at the macro level may remain larger insofar as
there are positive GE feedback effects, such as the Keynesian income-spending multiplier or the dynamic
strategic complementarity in price-setting decisions of the firms.

In short, the mechanism identified in our paper is distinct from the one identified in Mackowiak
and Wiederholt (2009) and employed in subsequent works such as Carroll et al. (2020) and Zorn (2018),
but the two mechanisms complement each other towards generating more pronounced distortions at
the macro level than at the micro level. The two mechanisms are combined in recent work by Auclert,
Rognlie, and Straub (2020).
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D Application to Inflation: Micro-foundations and Additional Results

D.1 Derivation of Incomplete-Information NKPC

The original derivations of the incomplete-information versions of the Dynamic IS and New Keynesian
Philips curves seen in conditions (8) and (9) can be found in Angeletos and Lian (2018). Those derivations
are based in an extension of the New Keynesian model that incorporates a variety of idiosyncratic and
aggregate shocks so as to noise up the information that consumers and firms may extract from the perfect
observation of concurrent prices, wages, and other endogenous outcomes. Here, we offer a simplified
derivation that bypasses these “details” and, instead, focuses on the essence. To economize, we do so
only in the context of the NKPC, which is the application we push quantitatively. We also use this as an
opportunity to point out a mistake in the variant equations found in Nimark (2008) and Melosi (2016).

Apart for the introduction of incomplete information, the micro-foundations are the same as in fa-
miliar textbook treatments of the NKPC (e.g., Gali, 2008). There is a continuum of firms, each producing
a differentiated commodity. Firms set prices optimally, but can adjust them only infrequently. Each pe-
riod, a firm has the option to reset its price with probability 1 — 8, where 0 € (0, 1); otherwise, it is stuck at
the previous-period price. Technology is linear, so that the real marginal cost of a firm is invariant to its
production level.

The optimal reset price solves the following problem:

)
P, = argH}}iXgo(xe)k[Ei,t{QnHk(Pi,t Yit+kit = PrekMCrik Yi,t+k|t)}

P, )€ . .
ﬁ) Yi+k, where Qy 4k is the stochastic discount factor

between t and ¢+ k, Y;,; and P, are, respectively, aggregate income and the aggregate price level

subject to the demand equation, Y; ;1 = (

in period ¢ + k, P;, is the firm’s price, as set in period ¢, Y; ;1| is the firm’s quantity in period ¢ + k,
conditional on not having changed the price since ¢, and mc . is the real marginal cost in period ¢ + k.
Taking the first-order condition and log-linearizing around a steady state with no shocks and zero

inflation, we get the following, familiar, characterization of the optimal rest price:

pi,=1=x0) Y (X0 E; (mc vk + prekl. (54)
k=0

We next make the simplifying assumption that the firms observe that past price level but do not extract
information from it. Following Vives and Yang (2017), this assumption can be interpreted as a form of
bounded rationality or inattention. It can also be motivated on empirical grounds: in the data, inflation
contains little statistical information about real marginal costs and output gaps—it’s dominated by the
residual, or what the DSGE literature interprets as “markup shocks.” This means that, even if we were
to allow firms to extract information from past inflation, this would make little quantitative difference,

provided that we accommodate an empirically relevant source of noise. Furthermore, as we show in

59



the end of Section 6, our observational-equivalence result remains a useful approximation of the true
equilibrium in extension that allow for such endogenous information.
With this simplifying assumption, we can restate condition (54) as
S vk S vk
pi—Pi1=1=x0) Y (x0) E;sImcrpi] + ) (x0) Ei ¢l sskl, (55)
k=0 k=0
Since only a fraction 1 — 6 of the firms adjust their prices each period, the price level in period ¢ is given

by pr=(1-0) [ p; ,di+0p,_1. By the same token, inflation is given by

T=Epr—pi-1=01 —Q)f (P?_t_ Pt—l)'

Combining this with condition (55) and rearranging, we arrive at the following expression:

o0 _ (o0} _
=k Y (X0 E; [mcrpr] + x(1—0) Y WO E¢ [ psisa]. (56)
k=0 k=0
where x = w. This is the same as condition 25 in the main text.

When information is complete, we can replace E[-] with E;[-], the expectation of the representative
agent. We can then use the Law of Iterated Expectations to reduce condition (56) to the standard NKPC.
When instead information is incomplete, the Law of Iterated Expectations does not apply at the aggre-
gate level, because average forecast errors can be auto-correlated, and therefore condition (56) cannot
be reduced to the standard NKPC.

As explained in the main text, condition (56) involves extremely complex higher-order beliefs and
precludes a sharp connection to the data—and this is where the toolbox provided in this paper comes to
rescue.

Let us now explain the two reasons why the incomplete-information NKPC seen in condition (56)
is different from that found in Nimark (2008) and Melosi (2016). The first reason is that, while we let
firms observe the current-period price level, these papers let them observe only the past-period price
level. Clearly, this difference vanishes as the time length of a period gets smaller. The second, and most
important, reason is a mistake, which we explain next.

Take condition (54) and rewrite it in recursive form as follows:
p; = Q= xOE; [mc; + pd+ (YOEi (p; 1]

Aggregate this condition yields a term of the form [E;,[p},,,ldi, the average expectation of the own
reset price, in the right-hand side. And this is where the oversight occurs: the aforementioned term is
inadvertently replaced with the average expectation of the average reset price.

In more abstract terms, this is like equating ['E; ;[a; +1]1di with [E; ([as+1]di. If this were true, we
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could have readily aggregated condition (4) to obtain the following equation:
ar = QE([&) + OE 11 [ars1].

Relative to condition (5), this amounts to dropping the expectations of the aggregate outcome a horizons
k = 2, or restricting § = 0. But this is not true. Except for knife-edge cases such as that of an improper
prior, incomplete information implies that the typical agent forms a different expectation about his own

actions than the actions of others, which means that

f E; il i di # f E lar1di.

and the aforementioned simplification does not apply.

D.2 Decomposition of PE and GE in Figure 3

This appendix describes the construction of the dotted red line in Figure 3, that is, the counterfactual that
isolates the PE channel. This builds on the decomposition between PE and GE effects first introduced in
in Section 3.1.

Using condition (56), the incomplete-information inflation dynamics can be decomposed into two
components: the belief of the present discounted value of real marginal costs, ¢ 337 | B*E,[mc,4x]; and
the belief of of the present discounted value of inflation, y 3.7 | B¥E; (7 /++1]. The same decomposition

can also be applied when agents have perfect information:

[0} o0
=) BFE; mc,ylme;] +y Y BFE, (77, jpqimes] - (57)
k=0 k=0

\ J N J

~ ~~
complete-info PE component complete-info GE component

A natural question is which component contributes more to the anchoring of inflation as we move from
the complete to incomplete information.
To answer this question, we define the following auxiliary variable:

o0 o0
= @ Z ﬁk[Et [mcerxl  +y Z ,Bk[Et [77:+k+1|mct] . (58)
k=0 k=0

[\ J [\ J

incomplete-info PE component complete-info GE component

The difference between 7} and 77, measures the importance of beliefs about real marginal costs, and the
difference between 7; and 7, measures the importance of beliefs about inflation.

The dotted red line in Figure 3 corresponds to 7;. Clearly, most of the difference between complete
and incomplete information is due the anchoring of beliefs about future inflation. Or, to put it in terms
of our discussion of PE and GE effects, most of the action is through the GE channel.

The logic behind this finding can be understood by computing the GE multiplier that is hidden inside
the standard NKPC. Let u* be the ratio of the GE component to the PE component under complete

61



information, that is, the ratio of the two terms seen in condition (57). This identifies the GE multiplier;
the total effect is 1 + pu* times the PE effect. Straightforward calculation shows that
s _px1-0)
1-xp

That is, even in the familiar, complete-information benchmark, the expectations of future inflation are

6.4.

6.4 times more important than the expectations of future real marginal costs in driving actual inflation.
This in turn helps explains why most of the informational friction works through the GE channel, or the

anchoring of the expectations of inflation, as seen in Figure 3 in the main text.

D.3 Adding Public Information

In Section 6, we quantified the effects of the informational friction assuming away public information.
Here, building on the insights developed in Appendix B, we illustrate how that exercise has provided a
conservative estimate of the effects that are obtained once we add public information. We further show
that this point is reinforced if the public information is endogenous.

We thus consider two cases: an exogenous public signal of the form z; = mc; + noise, and an endoge-
nous public signal of the form z; = 7; + noise, namely a noisy statistic of inflation. The first case affords
an analytical characterization, along the lines of Appendix B; the second case requires a numerical ap-

proximation but, as shown below, only reinforces our message.38
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Figure 7: IRF of Inflation, Exogenous vs Endogenous Information

Figure 7 compares the IRF of inflation to innovations in the real marginal cost under three informa-

tion structures, all required to match the regression coefficient Kcg estimated in CG. The blue, solid line

38We thank an anonymous referee for suggesting these explorations.
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corresponds to our benchmark, which abstracts from public information. As explained in Appendix B,
once we allow for a public signal, there is a range of admissible values for its precision, each one map-
ping to a different pair (wf,wp), or a different IRE The red, dashed line in the figure gives the IRF that
is obtained when the public signal is exogenous and its precision is the maximal one consistent with
Kcg. The area between this line and the benchmark line spans all the admissible parameterizations of
the exogenous-information case. Finally, the black, dotted line gives the IRF that obtains when the pub-
lic signal is endogenous and its precision equals the appropriate upper bound. The area between this
line and the benchmark line spans all the admissible parameterizations of the endogenous-information
case.

The main takeaways are twofold. First, the exogenous-information setting provides a useful ana-
lytical tool to understand the more realistic but less tractable endogenous-information case. Second,
the accommodation of public information, exogenous or endogenous, only reinforces the quantitative

findings once the theory is disciplined by the available evidence on expectations.*”

D.4 Market Concentration

In the environment where each market consists only a finite number of firms, the (log-linearized) indi-

vidual firm’s optimal reset price is characterized as below.

Lemma 1. The optimal reset price of individual firm i in market m follows

Pipe=1=x0) Y X0 KE; i [mceeil + A= x0) Y (YO Eimilanpmi ek + (L= an)pecil,  (59)
k=0 k=0

where a  is given by

o Ny -1y -¢)
N W (N2 —1) - (N—1)y) + (N—2)ype+e2’

In condition (59), y, 8, and « are the same parameters as in the baseline NKPC setup, while ay €
(0,1) is a new scalar which summarizes how much a firm’s pricing strategy depends on the prices of its
competitors relative to the aggregate price level. It is easy to verify that ¢ > 1 and ¥ > e suffices for ay to
be decreasing in N. And in the special case in which ¥ = oo, which amounts to a Cournot-like game for
each market, we have more simply that ay = 1/(2N).

The economy-wide inflation can be obtained by aggregating the above condition across markets,

which leads to a modified version of our incomplete-information NKPC.

394 third, subtler takeaway is that the endogenous public signal contributes to more persistence than the exogenous one. We
find this intriguing and we suspect it is because inflation moves more sluggishly than the fundamental, thus slowing down the
learning. Nimark (2008) also hypothesizes that endogenous signals add persistence. The logic is, however, complicated by the
fact that, as we vary the form of the signal, we adjust its precision to make sure that theory keeps matching the CG moment.
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Lemma 2. The aggregate inflation rate follows

o) k
M=K (L) E¢lmepk] +

11-0)1-an) & ( x0
=0 1-1-0)ay

k
E . (60
1-1-0an (o 1—(1—9)aN) el kel (60)

For our purposes, the key observation is that a y is decreasing in N, or decreasing in market concen-
tration. Intuitively, as N — oo and the firm becomes infinitesimally small not only vis-a-vis the entire
economy but also vis-a-vis its own market, the firm only care to set a price in proportion to its nominal
marginal cost, which itself is driven by the aggregate price level. That is, as N — oo, @ approaches 1,
condition (60) reduces to condition (25), and we recover the case studied before. But when N is finite, a
new consideration emerges: when a firm raises its price, it depresses its market share. This effect scales
up with market concentration, explaining why higher market concentration maps to a higher ay, or a
higher consideration for local conditions relative to aggregate conditions.

Under complete information, this consideration is of no consequence for the aggregate inflation dy-
namics: when an aggregate shock to the real marginal cost occurs, a typical firm expects both its im-
mediate competitors and the rest of the economy to respond in tandem, so it makes no difference how
much firms care about the former versus the latter. But when information is incomplete, and under the
plausible assumption that firms know more about their immediate competitors than about the rest of the
economy, the aforementioned consideration amounts to reducing the extent of higher-order uncertainty
and its footprint on the inflation dynamics.

These points are evident from condition (60). Mapping this condition to our framework yields

-6 -ay)
C 1-(1-Qay

16

e

xX=Y.

That the sum § + y equals y means that, with complete information, inflation continues to obey the
standard NKPC (n; = xmc; + yE;m;4+1) and is invariant to market concentration. That y increases with
ay means that higher market concentration maps to a smaller degree of strategic complementarity and
thereby to a smaller 9 in the incomplete-information outcome. Applying our observational-equivalence

result then yields Proposition 8.

E Heterogeneity ala HANK

In this appendix we detail the micro-foundations of the HANK application considered in Section 7. As
described in the main text, households are heterogeneous in terms of mortality risk, associated MPC,
and exposure to business cycles. They can trade annuities, so as to insure against mortality risk, but
are precluded from trading more sophisticated assets such as GDP futures, so that we can bypass the
complications of endogenous information aggregation. We also let firms’ profits be taxed by the govern-

ment, and distributed to consumers in proportion to labor income and regardless of age. This makes
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sure that consumers of all types and ages hold zero financial wealth in steady state. And we shut down
the distribution effects of interest-rate shocks by appropriate fiscal transfers, as explained shortly.
Consider a consumer i, of type g, born in period 7. Taking into account the mortality risk, her ex-

pected lifetime utility at birth is given by

> (X‘Dg)t_rlog(ci,g,t:r) )
=17

where C; ¢ r;; denotes her consumption in period ¢ (conditional on survival) and y € (0,1) is the subjec-

tive discount factor. Her budget constraint, on the other hand, is given by

C +S =l
gt T 96,1t
i.g1 igT >

Si,g,T;t—l + (Y[)(pg + Tg,t, V>t

where S; ¢ 1,y denotes savings in terms of the annuity, Y; denotes aggregate income, Tg ; denotes a group-
specific lump-sum transfer, and ¢, parameterizes the elasticity of group g’s income with respect to ag-
gregate income.

We henceforth work with the log-linearized solution around a steady state in which there are no
shocks, yR; =1,and C; = Y; = Y*, where Y* is the natural rate of output.*’ We use lower-case variables

to represent log-deviations from the steady state (e.g., r; = log R, —log y 1), with the exception that s;, gt

Si,g,r;t
Y*

the optimal expenditure of a consumer in group g as follows:

. T, .
and 74 ; stand for, respectively, and 3% as their steady-state values are zero. We can then express

1 e :
Cigrt =(1—xdg) X?Si’g"[’t_l +Ei [ Tgel|— xwg > (X@g) Ej ¢[114] (61)
g =0

+(1-x@g) g Y. (X @) Ei ¢ [y1+]
j=0

where I ; = Z‘;‘;O()(a)g)j Tg,¢+j Captures the present discounted value of transfers.

The average consumption of group g in period ¢ is given by

) .
cgr=(1—wg) Y (@g) | cigi—j di.
j=0

Aggregating (61) across all consumers of any given group g, we get

1 — o -
cgr =1 - ywg) ;Sg,t—l + [Et[g_g,t]) —xwg Y (Yw) Eslrit (62)
=0

+(1- ywg)dg Y (Xwg) Erlyes j.
j=0

Similarly, by aggregating the budget constraints of all consumers in group g, and taking into account

4070 simplify the exposition, we suppress the production side of the economy and the determination of the flexible-price out-
comes. The details can be filled in the usual way; let technology be linear in labor and assume constant aggregate productivity
to get a time-invariant natural rate of output.
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how the annuities effectively redistribute wealth from deceased to surviving agents, we get the following

group-level budget constraint:

1
CgrtSg,t= Esg,t—l +PgVe—Tg

where sg ¢ is the saving of group g.

Market clearing imposes y; = ¢;, or equivalently s; = 0, where ¢; =} ¢ gCq,r and s; =} o gSg,r. We
close the model by specifying a rule for fiscal policy (more on this below) and by treating the real interest
rate as an exogenous AR(1) process, with persistence p. As mentioned in the main text, this amounts
to studying the aggregate-demand effects of a monetary policy that targets such a process for the real
interest rate. Alternatively, one can assume that prices are infinitely rigid, in which case r; coincides with
the nominal rate (the policy instrument) and its innovations can be interpreted monetary shocks.

Let us now fill in the details of fiscal policy. For the analysis in the main text, we let the transfers be

such that following condition is satisfied in every period:
Y mg(l— ywg)sg+ Y meEs[ Ty, =0, (63)
g 8

When all groups have the same MPC (i.e., wg = wg for all g, g’), this condition is trivially satisfied with
Jg =0forall g, r. When instead different groups have different MPCs, this condition requires that fiscal
policy offsets the interaction of MPC heterogeneity with wealth inequality. In particular, a sufficient
condition for (63) to hold is that E[ﬂ—g,t] = (1 - ywg)sg, for all g,z. And since sg ; is measurable in the
history of the aggregate shock alone, the transfers do not have to be conditioned on the consumers’ age
or idiosyncratic histories.

As long as condition (63) is satisfied, we can aggregate condition (62) across groups to obtain the
economy-wide aggregate consumption as follows:

o= gng{ — ywg i}(xwgﬂﬁt[m 1+ (- yog)dg i)(xwg)fﬁf[ym i} (64)
j= Jj=
Combining this with market clearing, or ¢; = y;, we infer that the equilibrium process of aggregate in-
come (and aggregate consumption) in this economy is the same as the solution of a network where the
best response of group g is given by
oo . oo .
Vg1 =—Xwg jZ_O(xwg)fEt[rH 1+ 1= xwg)dg jgoocwg)fﬁt[yﬁ jl-

and where y; =} ;g y:¢. Note that cg s, the actual consumption of group g, may differ from yg ;, the
auxiliary variable introduced above. This will indeed be the case whenever Et[ﬂjg, ] # (1 - ywg)sg,; for
some g and some ¢. Still, as long as (63) is satisfied, the economy-wide outcomes are determined in the
manner described above—and coincide with those reported in the main text.

This completes the details behind Figure 4. Consider next what happens when condition (63) is vi-
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olated and, as a result, wealth inequality can feed into the aggregate dynamics. In particular, impose
Jgr=0forall g, . If all groups had the same MPC, (63) and (64) would still hold; but then the hetero-
geneity in business-cycle exposure would also not matter. The interesting case is when fiscal policy is
inactive and, in addition, there is joint heterogeneity in the business-cycle exposure and the MPC. This

case is studied in Figure 5 in the main text.

F Application to Investment

Along tradition in macroeconomics that goes back to Hayashi (1982) and Abel and Blanchard (1983) has
studied representative-agent models in which the firms face a cost in adjusting their capital stock. In this

literature, the adjustment cost is specified as follows:

Cost —(D( i ) (65)
7K

t-1
where I; denotes the rate of investment, K;_; denotes the capital stock inherited from the previous pe-
riod, and @ is a convex function. This specification gives the level of investment as a decreasing function
of Tobin’s Q. It also generates aggregate investment responses that are broadly in line with those pre-
dicted by more realistic, heterogeneous-agent models that account for the dynamics of investment at
the firm or plant level (Caballero and Engel, 1999; Bachmann, Caballero, and Engel, 2013; Khan and
Thomas, 2008).*!

By contrast, the DSGE literature that follows Christiano, Eichenbaum, and Evans (2005) and Smets
and Wouters (2007) assumes that the firms face a cost in adjusting, not their capital stock, but rather
their rate of investment. That is, this literature specifies the adjustment cost as follows:

Cost; =¥ (L) (66)
I
As with the Hybrid NKPC, this specification was adopted because it allows the theory to generate sluggish
aggregate investment responses to monetary and other shocks. But it has no obvious analogue in the
literature that accounts for the dynamics of investment at the firm or plant level.

In the sequel, we set up a model of aggregate investment with two key features: first, the adjustment
cost takes the form seen in condition (65); and second, the investments of different firms are strategic
complements because of an aggregate demand externality. We then augment this model with incom-
plete information and show that it becomes observationally equivalent to a model in which the adjust-
ment cost takes the form seen in condition (66). This illustrates how incomplete information can merge

the gap between the different strands of the literature and help reconcile the dominant DSGE practice

41These works differ on the importance they attribute to heterogeneity, lumpiness, and non-linearities, but appear to share
the prediction that the impulse response of aggregate investment is peaked on impact. They therefore do not provide a micro-
foundation of the kind of sluggish investment dynamics featured in the DSGE literature.
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with the relevant microeconomic evidence on investment.

Let us fill in the details. We consider an AK model with costs to adjusting the capital stock. There is
a continuum of monopolistic competitive firms, indexed by i and producing different varieties of inter-
mediate investment goods. The final investment good is a CES aggregator of intermediate investment
goods. Letting X; ; denote the investment good produced by firm i, we have that the aggregate invest-

ment is given by

If:[ it

And letting Q; ; denote the price faced by firm i, we have that the investment price index is given by

[ate

A representative final goods producer has perfect information and purchases investment goods to max-

1
1-0

Q=

imize its discounted profit

I
exp(&;) AK; — Qtlt—q)(—“) K[] ,
K;

(e, 0)
t
max Ey
K L X

subject to

Kt+1 = K[+ I[.

Here, the fundamental shock, ¢;, is an exogenous productivity shock to the final goods production, and

P (II(—Z) K; represents the quadratic capital-adjustment cost. The following functional form is assumed:

oft)-tol]
K, =3 K:)

Let Z; = II<_tt denote the investment-to-capital ratio. On a balanced growth path, this ratio and the price
for the investment goods remain constant, i.e., Z; = Z and Q; = Q. The log-linearized version of the final

goods producer’s optimal condition around the balanced growth path can be written as
Qqr+wZz; = YE | AS 141+ QG +WZ (1 + Z) 2441 |- (67)

When the producers of the intermediate investment goods choose their production scale, they may
not observe the underlying fundamental ¢; perfectly. As a result, they have to make their decision based

on their expectations about fundamentals and others’ decisions. Letting
max Ei; [Qi, Xiye — cXiye],
it

subject to
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Define Z; ; = XK—‘T’ as the firm-specific investment-to-capital ratio, and the log-linearized version of the
optimal choice of X; ; is

zit=Ei|ze+0q.].

In steady state, the price Q simply equals the markup over marginal cost c,

Q=-=

¢

o—-1

and the investment-to-capital ratio Z solves the quadratic equation
Q+vZ=y A+Q+1//Z+1//Zz—%1//Z2 :
Frictionless Benchmark. If all intermediate firms observe ¢; perfectly, then we have
Zijt=2Zr+0q;
Aggregation implies that z; ; = z; and g; = 0. It follows that z; obeys the following Euler condition:

2t = @&+ 0 [2441]

where

A
(pzﬁ and 6=yx(1+2).

vZ
Incomplete Information. Suppose now that firms receive a noisy signal about the fundamental ¢; as
in Section 2. Here, we make the same simplifying assumption as in the NKPC application. We assume
that firms observe current z;, but preclude them from extracting information from it. Together with the
pricing equation (67), the aggregate investment dynamics follow
- oxl Of, XVElE k) + X2 i X Eilzrika]
vZ o k=0

The investment dynamics can be understood as the solution to the dynamic beauty contest studied in

2t

Section 2 by letting
p=—", P=yx and y=xZ

It is then immediate that when information is incomplete, there exist wy < 1 and wp, > 0 such that the

equilibrium process for investment solves the following equation:
Z2t =S+ WOk [2441] + Wpzs-1.

Finally, it straightforward to show that the above equation is of the same type as the one that governs

investment in a complete-information model where the adjustment cost is in terms of the investment
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rate, namely a model in which the final good producer’s problem is modified as follows:

© 1
¢ t
max Eo |exp(é )AK—QI—\I’(—~ )I],
el ? X Lo PGt t tly T t

where T; is the aggregate investment.

G Application to Asset Prices

Consider alog-linearized version of the standard asset-pricing condition in an infinite horizon, representative-

agent model:

pr=Eldra] + xEc[praal,

where p; is the price of the asset in period ¢, d;+ is its dividend in the next period, E; is the expectation of
the representative agent, and y is his discount factor. Iterating the above condition gives the equilibrium
price as the expected present discounted value of the future dividends.

By assuming a representative agent, the above condition conceals the importance of higher-order
beliefs. Anumber of works have sought to unearth that role by considering variants with heterogeneously
informed, short-term traders, in the tradition of Singleton (1987); see, for example, Allen, Morris, and
Shin (2006), Kasa, Walker, and Whiteman (2014), and Nimark (2017). We can capture these works in our

setting by modifying the equilibrium pricing condition as follows:

Pt :Et[dt+l] +XEt[Pt+1] + €y,

where [, is the average expectation of the traders in period  and ¢, is an i.i.d shock interpreted as the
price effect of noisy traders. The key idea embedded in the above condition is that, as long as the traders
have different information and there are limits to arbitrage, asset markets are likely to behave like (dy-
namic) beauty contests.

Let us now assume that the dividend is given by d;+1 = &; + u41, where &; follows an AR(1) process
and u;4 isi.i.d. over time, and that the information of the typical trader can be represented by a series

of private signals as in condition (13).%?

Applying our results, and using the fact that &; = E¢[ds11], we
then have that the component of the equilibrium asset price that is driven by ¢; obeys the following law

of motion, for some wy <1 and wy > 0:

pr=Eldil + o xEpral +0pp-1, (68)

42Here, we are abstracting from the complications of the endogenous revelation of information and we think of the signals
in (13) as convenient proxies for all the information of the typical trader. One can also interpret this as a setting in which the
dividend is observable (and hence so is the price, which is measurable in the dividend) and the assumed signals are the repre-
sentation of a form of rational inattention. Last but not least, we have verified that the solution with endogenous information
can be approximated very well by the solution obtained with exogenous information.
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where E;[-] is the fully-information, rational expectations. We thus have that asset prices can display
both myopia, in the form of w <1 and momentum, or predictability, in the form of wj, > 0.

Although they do not contain such an observational-equivalence result, Kasa, Walker, and Whiteman
(2014) have already pointed out that incomplete information and higher-order uncertainty can help ex-
plain momentum and predictability in asset prices. Our result offers a sharp illustration of this insight
and blends it with the insight regarding myopia.

In the present context, the latter insight seems to challenge the asset-price literature that emphasizes
long-run risks: news about the long-run fundamentals may be heavily discounted when there is higher-
order uncertainty. Finally, our result suggests that both kinds of distortions are likely to be greater at
the level of the entire stock market than at the level of the stock of a particular firm insofar as financial
frictions and GE effects cause the trades to be strategic complements at the macro level even if they are
strategic substitutes at the micro level, which in turn may help rationalize Samuelson’s dictum (Jung and
Shiller, 2005). We leave the exploration of these—admittedly speculative—ideas open for future research.

We conclude by iterating that the exact form of condition (68) relies on assuming away the role of
the equilibrium price as an endogenous public signal. This may be an important omission for certain
counterfactuals. But as indicated by the exercise conducted at the end of Section 6, the quantitative
implications may be similar provided that the theory is disciplined with the relevant evidence on expec-

tations.

H Robustness of Main Insights

Although our observational-equivalence result depends on stringent assumptions about the process of
the fundamental and the available signals, it encapsulates a few broader insights, which in turn justify
the perspective put forward in our paper.

The broader insights concerning the role of incomplete information and especially that of higher-
order uncertainty can be traced in various previous works, including Angeletos and Lian (2018), Morris
and Shin (2006), Nimark (2008), and Woodford (2003). But like our paper, these earlier work rely on
strong assumptions about the underlying process of the fundamental, as well as about the information
structure.

In this appendix, we relax completely the restrictions on the stochastic process for the fundamental.
We then use a different, flexible but not entirely free, specification of the information structure to obtain a
close-form characterization of the dynamics of the equilibrium outcome and the entire belief hierarchy:.
Our exact observational equivalence result is lost, but a generalization of the insights about myopia,

anchoring and higher-order beliefs obtains.
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Setup. We henceforth let the fundamental ¢, follow a flexible, possibly infinite-order, MA process:
(o]
§e=) PKN -k (69)
k=0

where the sequence {p(}3 , is non-negative and square summable. Clearly, the AR(1) process assumed
earlier on is nested as a special case where py = p* for all k = 0. The present specification allows for
richer, possibly hump-shaped, dynamics in the fundamental, as well as for “news shocks,” that is, for
innovations that shift the fundamental only after a delay.

Next, for every i and ¢, we let the incremental information received by agent i in period ¢ be given by
the series {x; ¢,;—k}{~, Where

Xit, -k =Ni-k +€ir, -k VK,

where €; ;; ~ A (0,(T;)72) is i.i.d. across i and t, uncorrelated across k, and orthogonal to the past,
current, and future innovations in the fundamental, and where the sequence {7,}}., is non-negative
and non-decreasing. In plain words, whereas our baseline specification has the agents observe a signal
about the concurrent fundamental in each period, the new specification lets them observe a series of
signals about the entire history of the underlying past and current innovations.

Although this specification may look exotic at first glance, it actually nest sticky information as a
special case. We will verify this momentarily. It also preserves two key features of our baseline setting:
it allows information to be incomplete at any given point of time; it lets more precise information and
higher levels of common knowledge to be obtained as time passes.

Still, the present specification differs from our baseline one in two respects. First, it “orthogonalizes”
the information structure in the sense that, for every z, every k, and every k' # k, the signals received at
or prior to date t about the shock n;_; are independent of the signals received about the shock n;_j.
Second, it allows for more flexible learning dynamics in the sense that the precision 7 does not have to
be flat in k: the quality of the incremental information received in any given period about a past shock
may either increase or decrease with the lag since the shock has occurred.

The first property is essential for tractability. The pertinent literature has struggled to solve for, or ac-
curately approximate, the complex fixed point between the equilibrium dynamics and the Kalman filter-
ing that obtains in dynamic models with incomplete information, especially in the presence of endoge-
nous signals; see, for example, Nimark (2017). By adopting the aforementioned orthogonalization, we
cut the Gordian knot and facilitate a closed-form solution of the entire dynamic structure of the higher-

order beliefs and of the equilibrium outcome.”® The second property then permits us, not only to ac-

43Such an orthogonalization may not square well with rational inattention or endogenous learning;: in these contexts, the
available signals may naturally confound information about current and past innovations, or even about entirely different
kinds of fundamentals. The approach taken here is therefore, not a panacea, but rather a sharp instrument for understanding
the specific friction we are after in this paper, namely the inertia of first- and higher-order beliefs. The possible confusion of
different shocks is a conceptual distinct matter, outside the scope of this paper.
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commodate a more flexible learning dynamics, but also to disentangle the speed of learning from level
of noise—a disentangling that was not possible in Section 3 because a single parameter, o, controlled
both objects at once.
Dynamics of Higher-Order Beliefs. The information regarding n,_ that an agent has accumulated
up to, and including, period ¢ can be represented by a sufficient statistic, given by
T

Xie= Z —Xi,—j,r—k
j=07k

where 1y =) ?:0 7. That is, the sufficient statistic is constructed by taking a weighted average of all the

available signals, with the weight of each signal being proportional to its precision; and the precision

of the statistic is the sum of the precisions of the signals. Letting 14 = U,Z—J’;”k, we have that E; ([, =
n

A k%,k, o which in turn implies Et [s—x] = Axn;—i and therefore

E/ 4] =E;

[0} (00}
> Pkﬂr—k} =Y AN With  fi g =Aepk. (70)
k=0 k=0

The sequence F; = { fl,k}%ozo = {Axp k}%o:o identifies the IRF of the average first-order forecast to an
innovation. By comparison, the IRF of the fundamental itself is given by the sequence {p k}ZO:O . It follows
that the relation of the two IRFs is pinned down by the sequence {Ak}z"zo, which describes the dynamics
of learning. In particular, the smaller Ay is (i.e., the less precise the initial information is), the larger the
initial initial gap between the two IRFs (i.e., alarger the initial forecast error). And the slower Ay increases
with k (i.e., the slower the learning over time), the longer it takes for that gap (and the average forecast)
to disappear.

These properties are intuitive and are shared by the specification studied in the rest of the paper. In
the information structure specified in Section 3, the initial precision is tied with the subsequent speed of
learning. By contrast, the present specification disentangles the two. As shown next, it also allows for a
simple characterization of the IRFs of the higher-order beliefs, which is what we are after.

Consider first the forward-looking higher-order beliefs. Applying condition (70) to period ¢+ 1 and

taking the period- ¢t average expectation, we get

o0
= > AMAks1 P17 -k
k=0

o0
Y AkPiT 1k
k=0

F? [€r41] =E¢ [Ere1 [E141]] =E;

Notice here, agents in period ¢ understand that in period ¢+ 1 the average forecast will be improved, and
this is why A1 shows up in the expression. By induction, for all & = 2, the h-th order, forward-looking

belief is given by
—h s}
Fil€een-11= Y fuke—k»  With  fi g = AeAks1- Akt ho1Pk+h-1- (71)
k=0
The increasing components in the product Ay A, 1...Ax+ -1 Seen above capture the anticipation of learn-
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ing. We revisit this point at the end of this section.

The set of sequences Fj, = { fj, k}72, for h = 2, provides a complete characterization of the IRFs of the

alE[thWt—k] —
ok

measures the effect of an innovation on the relevant s-th order belief relative to its effect on the

relevant, forward-looking, higher-order beliefs. Note that

Sk
Pk+h-1

fundamental. When information is complete, this ratio is identically 1 for all k and /. When, instead,

Pk+nh-1. It follows that the ratio

information is incomplete, this ratio is given by

Tnk
Pk+h-1

= M kst Akrn-1-

The following result is thus immediate.

Sk

Pk+n-1’
order forward-looking belief relative to its effect on the fundamental.

Proposition 13. Consider the ratio which measures the effect at lag k of an innovation on the h-th
(i) For all k and all h, this ratio is strictly between 0 and 1.

(ii) For any k, this is decreasing in h.

(iii) For any h, this ratio is increasing in k.

(iv) As k — oo, this ratio converges to 1 for any h = 2 if and only if it converges for h = 1, and this in

turn is true if and only if A — 1.

These properties shed light on the dynamic structure of higher-order beliefs. Part (i) states that,
for any belief order i and any lag k, the impact of a shock on the h-th order belief is lower than that
on the fundamental itself. Part (ii) states that higher-order beliefs move less than lower-order beliefs
both on impact and at any lag. Part (iii) states that that the gap between the belief of any order and
the fundamental decreases as the lag increases; this captures the effect of learning. Part (iv) states that,
regardless of h, the gap vanishes in the limit as k — oo if and only if A — 1, that is, if and only if the
learning is bounded away from zero.

Sticky information. We now verify the claim made in the main text that the assumed information
structure nests sticky information Ad la Mankiw and Reis (2002).

Each agent updates her information set with probability 1 — g € (0,1) in each period. When she up-
dates, she gets to see the entire state of Nature. Otherwise, her information remains the same as in the
previous period.

Consider now an arbitrary innovation 7, in some period ¢. A fraction 1— g of the population becomes
aware of it immediately and hence E;[n;] = (1 — q)n;. A period later, an additional (1 — g)q fraction be-
comes aware of it and hence E;,, N =(010- qz)nt. And so on. It follows that sticky information Aa la
Mankiw and Reis (2002) is nested in the present setting under the following restriction on the sequence
{Ak}:

Ak = 1—-qk.
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Furthermore, under this interpretation, endogenizing the frequency 1 — g with which agents update
their information maps merely to endogenizing the sequence {1;}22 . Conditional on it, all the results
presented in the sequel remain intact. This hints to the possible robustness of our insights to endogenous

o0
7=0 as

information acquisition, an issue that we however abstract from: in what follows, we treat {A1;}
€X0genous.
Myopia and Anchoring. To see how these properties drive the equilibrium behavior, we henceforth
restrict f = 0 and normalize ¢ = 1. As noted earlier, the law of motion for the equilibrium outcome is then
. = = L. . . =h .
given by a; = E;[&;]+YE;[as+1], which in turn implies that a; = 20:1 yh‘l[Ft [¢¢t+n-1]. From the preceding

characterization of the higher-order beliefs F? [és4pn-1], it follows that

o0 o0 oo
ar=Y gk, with ge=Y y" ' fir= { Y A1 Akt o1 Pks e } (72)
k=0 h=1 h=1

This makes clear how the IRF of the equilibrium outcome is connected to the IRFs of the first- and higher-
order beliefs. Importantly, the higher vy is, the more the dynamics of the equilibrium outcome tracks the

dynamics higher-order beliefs relative to the dynamics of lower-order beliefs. On the other hand, when

the growth rate of the IRF of the fundamental 2 ;;1 is higher, it also increases the relative importance of
higher-order beliefs.**

We are now ready to explain our result regarding myopia. For this purpose, it is best to abstract from
learning and focus on how the mere presence of higher-order uncertainty affects the beliefs about the
future. In the absence of learning, A, = A for all k and for some A € (0,1). The aforementioned formula

for the IRF coefficients then reduces to the following:

8k= { > (Y/l)h_lpk+h—1}/1~
h=1

Clearly, this the same IRF as that of a complete-information, representative-economy economy in which
the equilibrium dynamics satisfy

ar =& +y'Eelagl, (73)

where ¢ = ¢, and y’ = yA. Itis therefore as if the fundamental is less volatile and, in addition, the agents
are less forward-looking. The first effect stems from first-order uncertainty: it is present simply because
the forecast of the fundamental move less than one-to-one with the true fundamental. The second effect
originates in higher-order uncertainty: it is present because the forecasts of the actions of others move

even less than the forecast of the fundamental.

44The last point is particularly clear if we set pj = pk (meaning that ¢; follows an AR(1) process). In this case, the initial
response is given by
()
go=Y. " AoA1.. . Ay,
h=1
from which it is evident that the importance of higher-order beliefs increases with both y and p. This further illustrates the
point made in Section 3.4 regarding the role of the persistence of the fundamental.
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This is the crux of the forward-looking component of our observational-equivalence result (that is,
the one regarding myopia). Note in particular that the extra discounting of the future remains present
even if when if control for the impact of the informational friction on first-order beliefs. Indeed, replacing
¢ with ¢, in the above shuts down the effect of first-order uncertainty. And yet, the extra discounting
survives, reflecting the role of higher-order uncertainty. This complements the related points we make
in Section 3.5.

So far, we shed light on the source of myopia, while shutting down the role of learning. We next
elaborate on the robustness of the above insights to the presence of learning and, most importantly,
on how the presence of learning and its interaction with higher-order uncertainty drive the backward-
looking component of our observational-equivalence result.

To this goal, and as a benchmark for comparison, we consider a variant economy in which all agents
share the same subjective belief about ¢, this belief happens to coincide with the average first-order
belief in the original economy, and these facts are common knowledge. The equilibrium outcome in this

economy is proportional to the subjective belief of ¢ ; and is given by

o0 o0
ar=Y BMit, with =Y y" "Arprin-.
=0 h=1

This resembles the complete-information benchmark in that the outcome is pined down by the first-
order belief of ¢, but allows this belief to adjust sluggishly to the underlying innovations in ;.

By construction, the variant economy preserves the effects of learning on first-order beliefs but shuts
down the interaction of learning with higher-order uncertainty. It follows that the comparison of this

economy with the original economy reveals the role of this interaction.

Proposition 14. Let {gi} and {gi} denote the Impulse Response Function of the equilibrium outcome in
the two economies described above.
(i)0< g <8 forallk=0

(ii)If% > % and py >0 forall k>0, then% > %forullkzo

Consider property (i), in particular the property that g < gi. This property means that our economy
exhibits a uniformly smaller dynamic response for the equilibrium outcome than the aforementioned
economy, in which higher-order uncertainty is shut down. But note that the two economies share the
following law of motion:

ar = QE &) +yE lar1]. (74)

Furthermore, the two economies share the same dynamic response for E,[&,]. It follows that the re-
sponse for a; in our economy is smaller than that of the variant economy because, and only because, the
response of E;[as+1] is also smaller in our economy. This verifies that the precise role of higher-order un-

certainty is to arrest the response of the expectations of the future outcome (the future actions of others)
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beyond and above how much the first-order uncertainty (the unobservability of ¢;) arrests the response
of the expectations of the future fundamental.

A complementary way of seeing this point is to note that g satisfies the following recursion:

8k = fi,k + AkY8k+1- (75)

The first term in the right-hand side of this recursion corresponds to the average expectation of the future
fundamental. The second term corresponds the average expectation of the future outcome (the actions
of others). The role of first-order uncertainty is captured by the fact that fj ; is lower than py. The role
of higher-order uncertainty is captured by the presence of 1 in the second term: it is as if the discount
factor y has been replaced by a discount factor equal to Ay, which is strictly less than y. This represents
a generalization of the form of myopia seen in condition (73). There, learning was shut down, so that
that A and the extra discounting of the future were invariant in the horizon k. Here, the additional dis-
counting varies with the horizon because of the anticipation of future learning (namely, the knowledge
that A4 will increase with k).

Consider next property (ii), namely the property that

8k 8k

This property helps explain the backward-looking component of our observational-equivalence result
(that is, the one regarding anchoring).

To start with, consider the variant economy, in which higher-order uncertainty is shut down. The

impact of a shock k + 1 periods from now relative to its impact k periods from now is given by

Birn _ At Zio V" Prenet 3o Y Prannn
8 A X, Y"0rken X920 Y"Pken

The inequality captures the effect of learning on first-order beliefs. Had information being perfect, we
~ 00 h ~ 3] h

would have had &1 = Z”;Lf“h“; now, we instead have &L > Z”;Lfk*h”
8k h=0Y"Pk+h 8k n=0Y " Pk+h

variant economy, the impact of the shock on the equilibrium outcome can build force over time because,

. This means that, in the

and only because, learning allows for a gradual build up in first-order beliefs.*
Consider now our economy, in which higher-order uncertainty is present. We now have
8k+1 > 8 Zc\+1
8k 8k

This means that higher-order uncertainty amplifies the build-up effect of learning: as time passes, the

impact of the shock on the equilibrium outcome builds force more rapidly in our economy than in the

45This is easiest to see when py = 1 (i.e., the fundamental follows a random walk), for then g, is necessarily higher than
8y for all k. In the AR(1) case where pj = pk with p <1, 8,1 can be either higher or lower than g, depending on the balance
between two opposing forces: the build-up effect of learning and the mean-reversion in the fundamental.
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variant economy. But since the impact is always lower in our economy,“° this means that the IRF of the
equilibrium outcome is likely to display a more pronounced hump shape in our economy than in the

variant economy. Indeed, the following is a directly corollary of the above property.

Corollary 5. Let the variant economy display a hump-shaped response: {g}} is single peaked at k = k?
for some kP = 1. Then, the equilibrium outcome also displays a hump-shaped response: {gi} is also sin-
gle peaked at k = k&. Furthermore, the peak of the equilibrium response is after the peak of the variant

economy: k8 = kP necessarily, and k& > k” for an open set of {1} sequences.

To interpret this result, think of k as a continuous variable and, similarly, think of Ay, gk, and g as
differentiable functions of k. If gj. is hump-shaped with a peak at k = k;, > 0, it must be that g is weakly
increasing prior to kj and locally flat at k. But since we have proved that the growth rate of gy is strictly
higher than that of gj, this means that g; attains its maximum at a point kg that is strictly above kb, In
the result stated above, the logic is the same. The only twist is that, because k is discrete, we must either
relax kg > kj to kg = kj, or put restrictions on {1} so as to guarantee that kg > kj, + 1.

Summing up, learning by itself contributes towards a gradual build up of the impact of any given
shock on the equilibrium outcome; but its interaction with higher-order uncertainty makes this build up
even more pronounced. It is precisely these properties that are encapsulated in the backward-looking
component of our observational equivalence result: the coefficient wj, which captures the endogenous
build up in the equilibrium dynamics, is positive because of learning and it is higher the higher the
importance of higher-order uncertainty.

Multiple Fundamental Shocks. So far, we have focused on the case where there is a single funda-
mental shock. Now we extend the analysis to a case where multiple fundamental shocks are present.
On one hand, we will show that relative to the frictionless benchmark, when these shocks cannot be
perfectly separated, agents may overact to some of these shocks and underact to the others when we fo-
cus on the PE effects, as in Lucas (1976). On the other hand, we will show that higher-order uncertainty,
which exclusively related to the GE effects, still results in distortions in the form of myopia and anchoring
relative to its complete-information counterpart.

Suppose that the best response is

i =i [p1E) + G221 +¥E; clag1),

where the two fundamental shocks are driven by two different innovations n! and n?

o0 o0
f}=kZ_0p1kn1_k, and €?=I;Opin2t_k-

We assume that agents do not observe separate signals about the innovations to the two fundamental

46Recall, this is by property (i) of Proposition 14.
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shocks, but only a sum of them, i.e.,
; =n! 2 ; vk
xl,t,t—k—nt_k+77t_k+€l,t,t—k .

This signal structure is the same as before if agents only care about the sum 7, = n} + 7?2, and it follows
that
Ecln,-k] = Ak

where the sequence of 1 is defined in a similar way as before. The average expectations on each of the

aggregate innovations is given by
Ednl_J=@1Ak, and  Edlr’_]=d2A,

where the weights ¢1 and ¢, depend on the relative volatility of n} versus n?, satisfying @1 + @ = 1.
First consider the case where y = 0, that is, only the PE consideration is at work. The average expec-
tations about the fundamental are given by

o0 o o0
E[pr1é] =101 Y Akpine—k =101 Y Akpins_p+ 101 Y Akpints o
k=0 k=0 =0

[e.°] [e.°] [e.°]
= 1 2 2.1 2.2
E; [¢28;] = po202 Z APtk = P22 Z APy _ + P02 Z APini_g
k=0 k=0 k=0
In the absence of GE consideration and higher-order expectation, we can see that agents may overact to
some of the fundamental. Consider the response to innovation of the first fundamental, n}. In the fric-
tionless case, E; [wlf H =w Z’ZOZO plkni_ e The average expectation of ¢ } under incomplete information
is modified in two ways: on one hand, it is attenuated by the terms {A;¢;}; on the other hand, it also
responds to 777 due to informational frictions. The total effects could well be a higher response overall.
Now we turn to the effects of the GE consideration and higher-order uncertainty with y > 0. The

average higher-order expectations are given by

=h 1 2 = 1 2

Fr 1€y + @285 1= fukle—r With  fiu k= Adkst o Aksno1 (@110 4 g +©2020%, p_y)-
k=0

Here, we utilize the property that agents cannot separate n} from 7% and the expectations can be effec-
tively written as functions of n;.

Similar to the single-shock economy, the aggregate outcome can be written as

o0

o0 (e,0)
ar=Y &Mk With ge=Y " fix= { Y A A ki1 As o1 (@191 Py g + @220 4 1) }
k=0 h=1 h=1
(76)

In contrast, with complete but imperfect information that shares the same first-order belief, the aggre-
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gate outcome is

ar= ) 8Mi-r Wwith gr= { Y Aoy +w2¢zpi+h-1)}- (77)
k=0 =1

Define E ¢ as

oo
&= ) (11pg + ©2002000N -

By replacing &; by &;, the analysis on myopia and anchoring in Proposition 14 extends to the current
setting. Therefore, relative to the complete-information counterpart, the effects of additional myopia
and anchoring remain the same when there exist multiple fundamental shocks.

Two Forms of Bounded Rationality. We now shed light on two additional points, which were antici-
pated earlier on: the role played by the anticipation that others will learn in the future; and the possible
interaction of incomplete information with Level-k Thinking.

To illustrate the first point, we consider a behavioral variant where agents fail to anticipate that others
will learn in the future. To simplify, we also set § = 0. Recall from equation (71), when agents are rational,
the forward higher-order beliefs are

—h oo
Fi[Sten—1]= kz_o/1k/1k+1~~/1k+h—1pk+h—177t—k.
In the variant economy, by shutting down the anticipation of learning, the nature of higher-order beliefs

changes, asE; ; [EHk [fr+q]] =E;; [E [qu]] for k, g = 0, and the counterpart ofFIZ [éz4+n-1] becomes

—h - - — &
E; [Cron—1] =B [Ecl o Ef[[Erenal..]] = Z AZPHh—lnt—k-
k=0

Learning implies A1 > A, and the anticipation of learning implies AgAgi1... Agsp-1 > )LZ. As a result,
higher-order beliefs in the behavioral variant under consideration vary less than those under rational

expectations. By the same token, the aggregate outcome in this economy, which is given

a = i h-1
t= Y
h=1

behaves as if the myopia and anchoring are stronger than in the rational-expectations counterpart. In

E [ ranil,

line with these observations, it can be shown that, if we go back to our baseline specification and impose
that agents fail to anticipate that others will learn in the future, Proposition 3 continues to hold with the
following modification: w f is smaller and wy, is higher.

To illustrate the second point, we consider a variant that lets agents have limited depth of reasoning
in the sense of Level-k Thinking. With level-0 thinking, agents believe that the aggregate outcome is fixed
at zero for all ¢, but still form rational beliefs about the fundamental. Therefore, a?} ; = Ei¢[¢¢], and the

implied aggregate outcome for level-0 thinking is a? = E([E,].
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With level-1 thinking, agent i’s action changes to

a;t =E;([¢4] +Y[Ei,t[d(t)+1] =E; (&) +YEi s [Etﬂ[ftﬂ]] )

where the second-order higher-order belief shows up. By induction, the level- k outcome is given by

k+1

_1=h
a]tc = hz: Yh I[Ft [€t+h—1] .
=1

In a nutshell, Level-k Thinking truncates the hierarchy of beliefs at a finite order.

Compared with the rational-expectations economy that has been the focus of our analysis, the GE
feedback effects in both of the aforementioned two variants are attenuated, and the resulting as-if my-
opia is strengthened. Furthermore, by selecting the depth of thinking, we can make sure that the second
variant produces a similar degree of myopia as the first one.?’ That said, the source of the additional
myopia is different. In the first, the relevant forward-looking higher-order beliefs have been replaced by
myopic counterparts, which move less. In the second, the right, forward-looking higher-order beliefs are

still at work, but they have been truncated at a finite point.

I Multiple Shocks

Our baseline specification has assumed that there is a single shock that drives the fundamental. In this
section, we extend our analysis in the direction of Kohlhas and Walther (2019) to include both procyclical
and countercyclical components, and show that a modified version of our main result holds.

Consider the following best response, which is similar to our baseline specification:

Vit = QB[]+ BEi (Vi) + YEir[Yea1l. (78)

But now allow the fundamental {; to be driven by N different components:
N
(l‘:zdjﬁ with djt:'Kj(ft‘f'ej,t.
j=1

The common shock among different components, ¢, follows an AR(1) process:

$r=pSr-1+1;.

The component-specific shocks €; ; ~ JV(O,T]_.I) are i.i.d. across both j and ¢. The loading of compo-
nent j on ¢, is x j, which could be both positive or negative, capturing for procyclical or counter-cyclical
components. Finally, ) jKkj=1

In terms of the information structure, assume that each agent receives N private signals, one per

4TThis follows directly from the fact that impact of effect of an innovation in the first variant is bounded between those of the
level-0 and the level-oco outcome in the second variant.
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component:
-1
Xijjoe =dje+Uijo Wije~N0,07).
This is the same structure considered in Kohlhas and Walther (2019), which leads to asymmetric atten-
tion by allowing heterogeneity in .
To see how this structure connects with our equivalence result, we turn to the following auxiliary best

response in which only the persistent shock ¢, is pay-off relevant:

air = Qi [$ )+ PLirlairs1] + YEirlars]. (79)

This best response is exactly the same as our model. The aggregate outcome y; from condition (78) is

related to the aggregate outcome a; from condition (79) in the following way:

Y= (pZﬁ [Et[Ct+k +YZ:6 [EI[J’t+Ic+1]
k=0

N

= Z tl€j, t]+Zﬁ E[€ k] +YZﬁ EelYisks]
j=1 k=0
N

=9 t[ej,t]+at’
J

where the last equality is due to that only the persistent shock ¢; matters for y;, in the future, and the

forecasts of the transitory shocks € ; are zero. We conclude that
Ye=ar+uy,

where u; = (PZ?[:lEt[Gj,t]-
Consider how u; is determined. To this goal, let us first compute the forecast of the persistent shock

¢+ Since this object only involves the first-order belief, it is more convenient to consolidate the N differ-

ent signals into a single one
+ + + e~ N(0,77!
Xit =S¢ K](T (€],t Uij ) ECe+ Ui, Uiy 0,777,

where T = Zj.\’: ) K? (r]‘.1 + w]‘.l)‘l. That is, it is as if each agent observes a single signal, which however
contains both idiosyncratic and aggregate noise—a hybrid of the private and public signals considered

in Appendix B. Using this observation, we can compute the average forecast as follows:

2+—1 —-1y-1
1 N k5(T5 +w>")
[Et[m—(l—g)l gl L - —@&+xe)0),

or equivalently

— 1
AN (1 - 5) (& +ep), (80)
1Y gL

1-
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2
where g = 3 p+%(1+‘r) - \/(p+%(l+‘r)) -4 <pande, = %Z?’:lkj(rj‘.l +w]‘.1)‘lej,t. Next, denote

with A; = Tﬁ:—’w] € (0,1) the signal-to-noise ratio applied when inferring € ; ; from u; j ;. The average fore-

cast of the sum of component-specific shocks is given by
N _ N _ N _ N
Y Eilejd =Y Ajkjér+ej—kGEAED) = D A€ —EEDN+ Y Ajejs. (81)
j=1 j=1 j=1 j=1

It follows that the determination of u; boils down to a pure forecasting problem spelled out by equations
(80) and (81).

Consider next the determination of a;. As already mentioned, this obtains from the same best re-
sponses as our model, with ¢; been the sole fundamental. The information structure about it is more
complicated that in our baseline analysis, as agents observed signals contaminated with both idiosyn-

cratic and common noise. But a result similar to Proposition 12 in Appendix B applies. That is,
ar = di +Vy,

where af, the fundamental component, obeys our observational equivalence result and vy, the residual,
is an AR(1) driven by the “noise” (here, the combination of the €;;’s). The only subtle difference is in the
precise cubic that pins down 9 (and thereby w r and wp).

To complete the picture, consider the projection of y; on the history of ¢;. This is given by

¢

Vi = ¢

17I+at)

4
1-gL
where 7, is the innovation in {; and ¢ = cij.V: 1 AjK j%. We thus have that the IRF of y; with respect to n;
is the sum of the AR(2) corresponding to a;i and of the AR(1) given by the first term above. Clearly, this
term does not contribute to a hump-shape. Furthermore, it is likely to be quantitatively less important
than a‘; for the following reason: a‘; consists of all the PE and GE effects across all the horizons, while
%nt captures only a fraction of the total PE effects. For instance, as explained in Appendix D.2, in
our inflation applications GE effects are about 7 times as large as PE effects. This suggests that, in that
context, the a‘;t term would easily overwhelm the other term.

Let us conclude with the following comment. Kohlhas and Walther (2019) have used a model of the
type described above to show that asymmetric attention allocation to various components of the out-
come may help reconcile the form of belief over-reaction documented in their paper with the form of
belief under-reaction documented in CG. Our network extension in Section 8 allows one to consider a
multi-sector economy in which different sectors have different exposures to the aggregate shock, either
directly or indirectly via differential GE effects. This may provide a more detailed micro-foundation for
pro- and counter-cyclical components of economic activity, along the lines suggested by the aforemen-

tioned paper. And it could help study the role of asymmetries in GE feedbacks, similarly in spirit to what
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we do in our HANK application in Section 7.

J Additional Proofs

Proof of Lemma 1, Lemma 2, and Proposition 8

The demand schedule faced by an individual firm i in market m is given by

Pi,m,t)_w (Pm,t)_E
12
Pt Py

Yi,m,t:(

where ¥ and ¢ are within- and across-market elasticities of substitution, respectively. The price index in

market m and the aggregate price index are defined as

1
P, =ty pv ] p,=|[| ple w
m,t — N; jomt ’ t— m m,t .

In the absence of nominal rigidity and informational frictions, an individual firm i in market m sets its
price to maximize its profit in the current period
maxP; 1 Yimr—PrCY)Yim1
i,m,t

where C(Y;) is the marginal real cost which depends on the aggregate economic condition. Using the

following properties
Y; Y; Y; oP oP 1 _
i,m,t __ i,m,t n (w_g) i,m,t m,t ’ and m,t _ —P% [Pi Z; .
api,m,t Pi,m,t Pm,t aPi,m,t aPi,m,t N ’ T
the first-order condition is
Pim,: E-Y Pim,¢ (Pimt)l_w
1- — +yC(Y) = ——— | —— - C(Y, — =0.
-y =gy Oy = = F (S - o) | 32

We assume that C(Y;) = Cexp(mc;) where mc, follows an AR(1) process
mc; = pmc;—1 +1;.

In steady state where mc; =0 and P; ;s = Py, s = Py, it follows that
e~y
_y-l+x
= =
Y+

The log-linearized version of the first-order condition is

£_
A=) (pi,m:t— pr) +wCmc, = Tw(pi,m,t —pi—Cmc,+ (1 -C)A =) (pim,e— pm,t)),

4BThere, asymmetric GE feedbacks emerge because of heterogeneous MPCs and heterogeneous exposures of income to
business-cycle fluctuations.
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which leads to the following best response

Pim,t =@mMCr+anpm,:+ 1 —an)py,

where a is given by

Ny -1y —¢)
¥ (N2 —1) = (N-Dy) + (N -2)pe + 2

ayn=

Turn to the environment where there is nominal rigidity and incomplete information. The problem
of a firm that can reset its price becomes
Sk
max Y (X0 Eim,e [Pi,m,t Yim ek = PrakCY i) Yi 4k |
Lmt fe=Q

and the linearized first-order condition becomes

%k %k

Pl =0=x0) Y (X QE; i, ImCrii] + (1= x0) Y (X0)Ei e [ANP ok + (1= AN Prsk]-

k=0 k=0

Under the assumption that all firms share the same information within the market, all newly set prices

within a market are identical. Denote the newly set price in market m as p;, ,, and it satisfies

Pie=1=x0) Y (X0 QEm, [mc il + (1= x0) Y X0V Ep,clanPm ek + (1 — an) pral.
k=0 k=0

Denote 7,,,; as the inflation rate in market m. Subtracting p,,,;—1 from both sides of the equation above
leads to

T =(L=0) (1= x0) Y (x0) QEm,[mcpsi] + an(L—=0) Y (X0 Em, ¢ [, 141]
k=0 k=0

+A-0)1-an) Y O Ep e ikl + (1 =0)A — an) (Pr=1 = Pimi-1)-
k=0

To proceed, consider the following alternative inflation definition in market m
Sk S ok
T =(1=0)1=x0) 3 (O QEp,c[mCroi] +an1=0) Y (x0) B, [, k]
k=0 k=0

+(1-0)1-an) Y. (4O B rsk].
k=0

Since the aggregate inflation under these two models are identical (f,, 7, ¢ = [, T m,:), we can derive the

aggregate inflation dynamics from the latter. By the law of iterated expectations, we have

- 1-0)1-xOemc,+(1-0)1-an)r, Tom,t
= +(1-0)anEn, | —=l—
T, ¢t m,t 1_X9L_1 ( JanEmn,, 1—)(9171
_F 1-0)1—yemc;+(1-0)1—an)n; (1 (I—Q)aN)_l]
ot 1-y6L! 1- 0L
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1 x 0 k
=1_(L_maN§:(l_U%%naN)Emdu—exl—xw¢nmmk+ﬂ—eﬂl—awnmwl
k=0

Aggregating across markets and using the assumption that firms can observe current inflation, it follows

that the aggregate inflation satisfies

Y1-0)1-an) & ( xo

k
E :
1-0-0an (= 1—(1—9)aN) e[ 1]

oo X@ k_
= S/ S =
Ty Kkgo(l—(l—e)a]v) (mcs g ] +

where x = w. Mapping the fixed point problem above to our baseline framework, the aggregate

outcome is the result of the following forward-looking game
air = Qi (Sl + B lai 1] +YEi clal,

where
X0 nd :X(l—B)(l—aN)

Peim-oay ™ T a0y
with B+ v = x. Note that y is decreasing in a . To show that y is increasing in N, it is sufficient to show
that ay is decreasingin N. Wheny >&e>1,and N =2
day  (w-Dy-e)(y*+e*—2ye-yN(y-1))
ON  (y(N2(y—1)— (N - )y) + (N - 2)ye +2)°
-V —e) (y* -y +e® —e— N> (y? -y))
(v (N2 — 1) = (N = D) + (N - 2)we +€2)°

<

<0,

which completes the proof.

Proof of Proposition 12

The signal process can be represented as

-1/2 1
0 T, T=pL

EI\Y(L) N—_——r

=Si
where §; ; is a vector of standardized normal random variables. The auto-covariance generating function

for the signal process is

__
(L-p)(1-pL)

L [ =)L)

Ty

. L+ (L-p)(1-pL) L
MWOM (L) = .
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In order to apply the Wiener-Hopf prediction formula we need to obtain the canonical factorization. Let
A be the inside root of the determinant of M (L)M' (L)

2
L1 Te+_m1+p_\/(fe+_w+l+p) )
2\ p 1Y P P

Then the fundamental representation is given by

1-— Tep+ATy Ty(A-p)
-1 Te+T Te+T
B(Z) — eTlhu eTltu .
1- AZ Ts(/l_p) _ Tup"'/lre
Te+Ty z 1 Te+Ty Z
T p+AT
1 TeTy - Tu < A- Y
- Tep+AT, | ?
PTe+Ty) | A= ) %

which satisfies

B(L)VB' (L) =M@L)M' (L71).
Applying the Wiener-Hopf prediction formula, the forecast of ¢; is given by

/1[15 Ty
Cp(-AL)(1-pA)

Zt Zt

Eeléd=[[o o M E)] viBw

Xi,t Xi,t ‘
Suppose the policy function is h; (L) and hy (L), that is,
ai,r = h1(L)z; + ho (L) x; ¢

Let g (L) = hy (L) + hy(L), and it follows that the aggregate outcome is a; = g(L)¢; + hy(L)es. The forecast

2t
Xi,t

[((pru + AT+ Ap (AT +p7e)) L= Ap (Tu+7e) 1+ 1%)) 1 (L) Tu(A-p)(1-pA) LIy (L)]
p(Tu+t)L(L-A) (1-AL)

about a;, is given by

Eielaral = [[r720 () 0 L;—i(LL)]M’(L‘l)B’(L‘l)_lLV_IB(L)‘l

[relo-D (=P LI ) 7o =) (1-pL) L (1
p(Tutta) LIL—A)(1-AD)

[p(L—/l) (AMtu+pte) L—-@u+7)) M1 ©0) Tyu(p—A)LoL -V (0)]
pyu+t)L(L-A)(1-AL)
Zt
Xi,t .

L MO-pgw-(-pL)gW) [re }

p(1-pA)(L-1)(1-AL)
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Also, the forecast about a; ;+1 — a1 is

[Ei,t[ai,t+1—at+1]:“0 1,207 hy (L) 0]M'(L_I)B’(L_l)_ILV_lB(L)_l “

Xi,t

[Tg (A=p)(1=pA)Lha (L) ((ATy+pTe+Ap(pTu+ATe)) L= Ap (zy+7¢) (1+L2)) ha (L)
p(Tu+7e) LIL—A)(1—AL)

[rg (0=A)(1-pL)Lhy V) 7Tu(0-A)(1—pL)Lhy (JL)]
payu+1)L(L-A)(1-AL)

[rg (p=A)Lp(L=Nh2(0 pL~-A)((pTu+ATe) L~ (Tu+7e)) h2 (0)] 2
p(Tyu+1)L(L-A)(1—-AL)

Xit

These two objects are useful for agents to decide their optimal action, which should satisfy the best

response function

air = Q& ([Se] + PEi elai 1] +YEi elari1] = @i ¢ [$e] + BE; lai p41 — ara] + (v + PO tars].

Substituting the forecast formulas into the best response function, it leads to the following functional

equation
h (L
an | PN zaw,
2 (L)
where*? )
AL = 1-(y+pL™ __p(ﬁ—}//l){f—/lL) ,
1- p(L—Y/L)(Tlu—AL) _ﬁL_l
and
!/ !/
(pxl[rg ru] (1-pL) [rg Tu]
D(L) = -
p(1-AL)(1-pA) (L-A)(1-AL)
[(/lru+prg)L—(TE+Tu) Tu(p—)L)L]l [Tg (p—A)L (Ate+pty)L—(Te+Ty) /
e L= s La-AL) ’
with
(=N +Pph () + Bha (1)) Ag(A) _y+p B
p1= o (TutTy) +(ﬁ+}’)m,<ﬂ2—Tu+Tgh1(0),<P3—Tu+Tgh2(0)~

49We have used the following identities to simplify the expressions
PTu+ATe + AP (AT + pTe) + ATe(Ty +7¢) = p(1 + A3 (T +Te),

PTe ATy +Ap (AT +pTy) + ATy (Ty +7¢) = p(1 + A3 (T +Te).
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Next note that the determinant of A(L) is given by

A(—L3+(p+%+’"’%+ﬁ)L2—(1+ﬁ(p+%+’“’%)+%)L+ﬁ)@—()f+ﬂ))

L2(1-AL)(L-A)

det(A(L)) =

)

which has four roots w; to w4, with |w4| > 1 and the others being less than 1 in absolute value. We choose

1, P2, and @3 to remove the inside poles of h; (L) at w; to ws. This leads to the following policy function,

¢ 70 1 ) 1-pNp-0—-91, 1
and hy (D) =
—pB+p pl-poyi-or 4 W=y = i e 1-oL

)

hi (L) =

where 9 = w;l is the reciprocal of the outside root of the following cubic equation

Ty+Te Tu+Te

1 1
C(Z):—ZS+(p+;+ +/3)z2— 1+p p+5+ +Y;”)z+/3

2

1 1 1 o—vx
3 2
=-z°+ p+—+—+5—)/)z —(1+(5—y)(p+— + )z+6— .
( o po? o po 4

2

where the last line using the definition 072 = 0,2 + 0 2. The aggregate outcome, a; = (h; (L) + ha(L))¢, +

hi(D)ey, is

) 1 0] T 0] 1

ar 1—19L1—p(,6+y)6t+p(1—p19)1—p(ﬁ+y)1—1‘)L£

( 9

l1-— t
o

a +v

T
¢
t+ te

In terms of comparative statics, note that

acwO™h  x

=—>0.
oy po? g

By the same logic in the proof of Proposition 5, it follows that 9 is decreasing in y.

Proof of Proposition 13

This follows directly from the analysis in the main text.

Proof of Proposition 14

First, let us prove g < gk. Recall that {g} is given by
> L h
8k= 2V McAks1-AeshPk+h
h=0
Clearly,

o0
0<ge< Y Y"Akprsn =8
h=0
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which proves the first property. If limy o, Ax =1 and 77 Y" o141 exists for all k, then it follows that

B imeoo X5y oren
k—oo 8k limg_oo X537 )Y "0ksn

Next, let us prove that % > %. By definition,

8k+1 Ak Z(;zo:o?’h.ok+h+1
8 M IoYoren
8k+1 _ Ak+1 5 o0V Akse- Akt he1 Prshet
g A X2 Y"1 AkenPken

Since {1} is strictly increasing and py > 0, we have

8k+1 / 8r+1 >ZZioYhﬂk+1---/1k+th+h+1/Z‘,’f:o}’hpkmﬂ
8k Y0 oY AksrAksnfren T X5 oY Oken

It is sufficient to show that the term on the right-hand side is greater than 1. To proceed, we start with

the following observation. If 8, = 6, >0, and 7 )fy z - + o then
%101+ X202 _ 3101 + 202
xi+tx2 ity
Note that
Pk+ 2 P+
% Y Akt AesnPicsnat _ Pin1 L+ Y A1 g +Y Akrri sz s+
Y0 oY Akt Ak nPrrn Pk 1+yAki pk“ + Y2 A1 A ka2 p;kz +.
and
h Prs2 | 12 Plss
ZZO:OY Plk+h+1 _ Pk+1 1+ ka 1 tY Pk+1
ZZOZOYthm Ok 1+ka+1 ,)/Zpk+2
In what follows, we will show by induction that
Ly Ak gy BE2 4y Agerr Apan B2 ot _ 1 +75i+f +7° 5];:? +
1+yAks1 p"“ +y2/1k+1lk+2p§k2 +... 1+)fpk+1 ngm
We first establish the following inequality
Pk+2 Pk+2
1+Y1k+1 Pk+1 1 +ka+1
Pk+1 - Pk+1*
1+ YAk +Y or
This inequality is obtained by labeling 6, = 1,0, = 25052 x; = 31 =1, xp = y A1 & p = ylkad S”

k+1

applying inequality (82). By assumption, % < 1, which implies 6, = 6, > 0. Meanwhile,

k+1

pk+1

X YAk+1
X1+ X2

Pk+1
Y/lk+1 0k )

Aks1 + YA ks p;; nty:
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Now suppose that

Pk+2 n—1 Pk+n Pk+2 n—1 Pk+n
L+ydeapg s+ Y™ A A1 50 > 1+ka1 S
1"‘)’/1k+1pk+1 oY " A r1 e Ak 1p";: : 1+yp"“ sy 1p’“" L
and we need to show
Pk -1 Pk Pk
1"'7’7L1c+1 2 YT Ak Ak lpk+T "'7’n7tk+1---/1k+npz—zl+1
Pk - Pk Pk
1+YA k+1 - +Yn 1Ak+1---/1k+n 1 ;n L +Yn/1k+1 Ak+n p;n
pk+2 n—1 pk+n n Pk+n+1
1+y 4 o +vy o
Pk+1 n— lpk+n 1 n Pk+n *
1 +y +...ty +vy o
1+yplc7+2+ +},n—l Pk+n
: _ Pk+1 Pk+1 _ PkPk+n+1 _ Pk+1 n-1
Again, to apply (82), let6; = Tyl izt 02 = Deapen X1 = 1+}//1k+1 ooty kg1 -
X :Yn/lk+1 /1k+n p n y1= 1+ka+l '+Yn ].pk+n 1, V2 Yn Pk+n . We have

Pk ! Lk Pk
1+Y/1k+1 " +o YT A1 Akrn— p;:n +Ynﬂk+1.../1k+n—p;zl+1
Pk _ oF pk
1+)fﬂk+1 +1 oty 1Ak+1 A1 ;n 1 +Yn/1k+1 Ay B
1+y Ak ﬁ::? +~~-+Yn71/1k+1---1k+n—1 ii:’; . 0
. X
My m;;l +...+y"*1/1k+1...lk+n71’”c$7271 202
- X1+ X2
X101 + x.0
S ZIIL T 272
X1+ X2
and
Pk+2 n-1 pk+" n Pk+n+1
1+Y Y Ok+1 Y Pk+1 y191 +y292
1+ka+1 -+Yn 1pk+n 1 ansm Vit .
To establish (83), it remains to show that 6, = 6, and < _Note that

X1 +x2 n +y

Pk+1 Pk+2Pk n—1Pk+n-1 _ Pk+nPk

ﬁ _ o Pk piﬂ Y Pk Pk+1Pk+n-1
6> 02+ 7EEL0, +.. 4Nl EELg,
By assumption, 6, < 1 and 6, < % when i < n, which leads to 6; = 6,. Also note that
X2
X1+ X2

pk+n

Yn/lk+1 /1k+n

_ Pk Pk
LY T A k1 A T Y Ak e A

Pk Pk
e
Afes1 ---Ak+n+yﬁk+1---/1k+np§;1 + "+Yn_lﬂk+1---/1k+npk;:71 +Ynﬂk+1---/1k+npll;;n
__ )
yit)ye2
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Ak+n 1,

pk+n 1
Pk
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This completes the proof that

8k+1
8k >

§k+1

g °
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