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Abstract

We study how an agent learns from endogenous data when their prior belief is mis-

specified. We show that only uniform Berk-Nash equilibria can be long-run outcomes,

and that all uniformly strict Berk-Nash equilibria have an arbitrarily high probability

of being the long-run outcome for some initial beliefs. When the agent believes the

outcome distribution is exogenous, every uniformly strict Berk-Nash equilibrium has

positive probability of being the long-run outcome for any initial belief. We generalize

these results to settings where the agent observes a signal before acting.
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1 Introduction

We study the joint evolution of an agent’s actions and beliefs when their action can influence

the distribution of outcomes, and their prior may be misspecified in the sense that it assigns

probability 0 to a neighborhood of the true data generating process. Given the complexity

of the real world, such misspecification is plausible in many settings, and has been studied

in a wide range of applications.

We consider a general environment with finite actions and outcomes and – unlike most

past work – do not restrict the agent’s prior belief to have a finite support or any specific

functional form. In this environment, the agent’s prior is a belief over the set of action-

contingent outcome distributions, so the agent is misspecified if they assign probability 0 to

a neighborhood of the true map from actions to distribution over outcomes. The agent’s prior

determines how they perceive the correlation between the outcome distributions induced by

di↵erent actions, which we show is a key determinant of the long-run outcome of the learning

process.

Our results characterize the possible limit points of the agent’s actions and their stability

properties. First, Theorem 1 shows that regardless of the agent’s discount factor, if play

converges to an action a, that action is a uniform Berk-Nash equilibrium. Uniform Berk-

Nash equilibrium, which we introduce in this paper, is a refinement of Berk-Nash equilibrium

(Esponda and Pouzo (2016)). Berk-Nash equilibrium requires that the action is myopically

optimal against some belief in the support of the prior that minimizes the Kullback-Leibler

(KL) divergence between the subjective and true outcome distributions given that the agent

plays a— that is, the action must be a best response to a “KL minimizer”. Uniform Berk-

Nash equilibrium strengthens this by requiring that the action is a best response to any

beliefs with support on these KL minimizers. Intuitively, limit points correspond to myopic

optimization even when the agent is not myopic because play will not converge until the

agent no longer perceives an “experimentation value” from non-myopic play; the intuition

for the uniformity requirement is that when play converges, the agent’s beliefs oscillate over

all of the KL-minimizing beliefs.

We then investigate su�cient conditions for two alternative definitions of what it means

for an action to be a long-run outcome. We say that an action is stable if play converges

to it with arbitrarily high probability for some open set of initial beliefs. Theorem 2 shows

that every uniformly strict Berk-Nash equilibrium is stable, regardless of the agent’s dis-

count factor, where “strict” indicates that the action is the strict myopic best response to

the agent’s beliefs, and “uniformly” requires that this is true for all of the KL-minimizing
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outcome distributions (as opposed to being true for at least one of them).

We say that an action is positively attractive if there is positive probability that it is

the limit outcome under every optimal policy for every full-support prior belief. When the

agent believes (either rightly or wrongly) that the distribution of outcomes is the same for

all actions, or in a “subjective bandit problem” where the agent believes that the outcomes

observed when playing one action are uninformative about the outcome distributions induced

by other actions, we obtain partial converses to Theorem 1: All uniformly strict Berk-Nash

equilibria are positively attractive. Moreover, in subjective bandit problems that are weakly

identified (Esponda and Pouzo (2016)) we can relax uniformly strict to strict.

To prove these results, we first establish in Appendix A.3 that with probability one beliefs

concentrate exponentially fast around the KL minimizers.1 We use this concentration result

to guarantee that the agent starts to play the equilibrium action with positive probability.

We then use the stability result from Theorem 2 to show that, with positive probability, the

agent uses the action forever. We also observe that in a supermodular decision problem,

extreme uniformly strict equilibria are positively attractive. In this setting, the additional

structure of the problem lets us dispense with the first step of the proof.

We also generalize our results to a setting in which the agent observes a (potentially)

payo↵ relevant signal before taking an action. Here too a limit action must be a uniform

Berk-Nash equilibrium. Moreover, if the agents ignore the predictive value of the signals,

i.e., the signals are subjectively uninformative, every uniformly strict Berk-Nash equilibrium

is positively attractive.

We illustrate our findings in three economic examples: a monopolist that is misspecified

about the demand function, a central bank choosing an exchange-rate policy, and a seller

that observes a signal and then decides whether to make an investment.

Related Work

Given an objective data generating process, a model is a KL-minimizer if it maximizes the

expected likelihood assigned to a randomly drawn outcome over the support of the agent’s

prior. Berk (1966) shows that the beliefs of an agent asymptotically concentrate on the set

of KL minimizers when the data generating process is exogenous. In many economic appli-

cations, actions and associated signal distributions are not fixed, but change endogenously

over time depending on an action taken by the agent, so the agent’s misspecification has

1This result is in the spirit of Diaconis and Freedman (1990), which assumes a full-support prior and thus
rules out misspecification.
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implications for what they observe and thus for their long-run beliefs. Arrow and Green

(1973) gives the first general framework for this problem, and Nyarko (1991) points out that

the combination of misspecification and endogenous observations can lead to cycles.

There has been a surge of theoretical work on misspecified learning since the seminal work

of Esponda and Pouzo (2016), which defines Berk–Nash equilibrium. This is a relaxation of

Nash equilibrium (for games as as well as decision problems) that replaces the requirement

that players’ beliefs are correct with the requirement that each player’s belief minimizes

the KL divergence between their belief and their observations over the support of their

prior. Esponda and Pouzo (2016) shows that Berk-Nash equilibrium is a necessary property

for limit points when the payo↵ function is subject to small i.i.d. random shocks as in

Fudenberg and Kreps (1993), and that it is su�cient if in addition the agent is willing to

incur asymptotically negligible optimization losses. Esponda and Pouzo (2019) generalizes

Berk-Nash equilibrium to Markov decision problems.

Fudenberg, Romanyuk, and Strack (2017) and Bohren and Hauser (2020) provide nec-

essary and su�cient conditions for actions to converge when the support of the agent’s

prior contains only two points.2 Heidhues, Kőszegi, and Strack (2018) and He (2019) pro-

vide conditions for global convergence of play of a non-myopic agent in a environments with

additively separable payo↵s that satisfy strong supermodularity restrictions, where the Berk-

Nash equilibrium is unique. Heidhues, Kőszegi, and Strack (2021) establishes convergence

to a Berk-Nash equilibrium in environments with a normal prior and normal signals. Molavi

(2019) studies misspecification in a temporary equilibrium model of macroeconomics; his

leading example is where agents mistakenly think that some variables have no impact.

The most closely related papers are Esponda, Pouzo, and Yamamoto (2019) (henceforth

EPY) and Frick, Iijima, and Ishii (2020) (henceforth FII). EPY uses stochastic approximation

to determine when the agent’s action frequency converges in an environment with finitely

many actions and fairly general priors. We provide a sharper characterization of when play

converges to a single action in the long run, but our results do not characterize the long-run

distribution when this convergence does not occur. Corollary 2 in the Appendix combines our

results with theirs to derive new results about the limiting action frequencies. FII provides

conditions for local and global convergence of the agent’s beliefs without explicitly modelling

the agent’s actions when the agent’s prior has finite support.3

2Bohren and Hauser (2020) considers myopic agents in discrete time; Fudenberg, Romanyuk, and Strack
(2017) analyzes a continuous time model with Brownian noise without assuming myopia.

3Neither model nests the other. FII assumes finite priors, and impose a continuity assumption that our
model can but need not satisfy. Conversely, we rule out the continuum of actions assumed by FII.
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Our paper complements the literature on long-run behavior in misspecified models in

three ways: First, we establish that without the asymptotically vanishing payo↵ pertur-

bations of Esponda and Pouzo (2016), play never converges to a non-uniform Berk-Nash

equilibrium. This uniformity refinement has no analog in FII because it is with respect to

the optimality of actions. Second, we introduce conditions under which an action has pos-

itive probability of being the long-run outcome from any initial belief. Finally, we provide

the first necessary and su�cient conditions for the choices of forward-looking misspecified

agents to converge to a myopic best reply to their beliefs.4

Misspecified agents are featured in work in a wide range of fields. There are many ex-

amples in behavioral economics, such as the “law of small numbers,” the “hot-hand fallacy,”

the winner’s curse, and the link between overconfidence and prejudice.5 Macroeconomists

have been interested in misspecified learning both in the form of misspecified least-squares

predictions as well as more sophisticated models of updating and inference.6 In organiza-

tional economics, misspecification has been used to explain e.g. the role of corporate culture

and the low rate and low number of minority inventors. In public economics, misspecifi-

cation helps explain over or under reaction to changes in tax schedules. And in political

economy, misspecification has been used to explain the recurrence of populism and political

polarization.7 There is also a related literature on misspecified social learning.8

In addition to papers that consider misspecified Bayesian agents, there is a literature that

studies the long-run outcomes under learning heuristics that might be used when people are

unable to formulate a probabilistic assessment of the data generating process. Many of these

heuristics feature a form of neglect of the relevant elements of the environment, similar to

the ones we consider in our Section 4, e.g. Tversky and Kahneman (1973), Rabin and Schrag

(1999), and Jehiel (2018). More recently, Gagnon-Bartsch, Rabin, and Schwartzstein (2018),

Fudenberg and Lanzani (2020), and He and Libgober (2020) analyze various processes that

can lead agents to change or expand the set of models they consider possible.

4Theorem 4 of Esponda and Pouzo (2016) shows that Berk-Nash is necessary under weak identification and
payo↵ perturbations. Other work either assumes myopia or don’t obtain convergence to myopic best reply.

5See Kagel and Levin (1986), Rabin and Vayanos (2010), Heidhues, Kőszegi, and Strack (2019).
6Bray (1982), Bray and Savin (1986), Cho and Kasa (2015), Cho and Kasa (2017), Molavi (2019).
7See Gibbons, LiCalzi, and Warglien (2019) and Bell et al. (2019) for organizational economics, Rees-Jones
and Taubinsky (2020) and Morrison and Taubinsky (2019) for public economics, and Levy, Razin, and
Young (2020) and Eliaz and Spiegler (2018) for political economy.

8See Bohren (2016), Bohren and Hauser (2020), Frick, Iijima, and Ishii (2019), Gagnon-Bartsch (2016), and
Mailath and Samuelson (2020).
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2 The Model

2.1 Setup

Actions, Utilities and Objective Outcome Distributions We study a sequence of

choices made by a single agent. In each period t P t1, 2, 3, . . .u the agent chooses an action

from the finite set A. This choice has two e↵ects. First, each action a P A induces an

objective probability distribution p
˚
a

P �pY q Ä RY over the finite set of possible outcomes

Y .9 Second, the action, paired with the realized outcome, determines the flow payo↵ of the

agent via the utility function u : A ˆ Y Ñ R.

Subjective Beliefs of the Agent The agent correctly believes that the map from actions

to probability distributions over outcomes is fixed and depends only on their current action,

but they are uncertain about the distribution each action induces. Let P “
ë

aPA�pY q Ä

RY ˆA be the space of all action-dependent outcome distributions, and let pa P �pY q denote

the a-th component of p P P. We endow P with the sup-norm topology, and denote by B"ppq

the ball of radius " around p P P .10

The agent’s uncertainty is captured by a prior belief µ0 P �
`
P

˘
, where �

`
P

˘
denotes

the metric space of Borel probability measures on P endowed with the topology of weak

convergence of measures.

Definition 1. The conceivable outcome distributions are the elements of ⇥ “ suppµ0. The

agent is correctly specified if p˚
P ⇥, i.e. the objective distribution is conceivable.

Throughout the paper, we will maintain the following assumption:

Assumption 1 (Regularity).

(i) For all p P ⇥, a P A, and y P Y , papyq ° 0 if and only if p˚
a
pyq ° 0.

(ii) The prior µ0 has subexponential decay : there is  : R` Ñ R`` such that for every

p P ⇥ and " ° 0 we have µ0pB"ppqq •  p"q with limnÑ8 pK{nq exppnq “ 8 for all

K ° 0.

Assumption 1(i) requires that the outcomes that the agent thinks are possible are the

same as those that objectively have positive probability. This assumption guarantees that

9We denote objective distributions with a superscript ˚.
10For every finite dimensional vector v, we let ||v|| “ maxi vi denote the supremum norm.
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Bayes rule is always well defined.11 Assumption 1(ii) extends Diaconis and Freedman (1990)’s

notion of �-positivity to the misspecified case, and adds the requirement that the bounding

 vanishes at a subexponential rate around 0. It is always satisfied by priors with a density

that is bounded away from 0 on their support, and by priors with finite support.12

Our specification allows the agent’s subjective uncertainty to be correlated across actions.

For example, if the agent is certain that every action generates the same outcome distribution,

then they believe the outcome distributions are perfectly correlated across actions.

Updating Subjective Beliefs We assume throughout that the agent updates their beliefs

using Bayes rule. Denote by µtp¨ | pa
t
, y

t
qq the subjective belief the agent obtains using Bayes

rule after action sequence a
t

“ pasq
t

s“1 and outcome sequence y
t

“ pysq
t

s“1,

µtpC | pa
t
, y

t
qq “

≥
pPC

±
t

⌧“1 pa⌧ py⌧ qdµ0ppq

≥
pPP

±
t

⌧“1 pa⌧ py⌧ qdµ0ppq
. (Bayes Rule)

Since the agent’s prior has support ⇥, their posterior belief does as well. We sometimes

suppress the dependence of the posterior belief on the realized sequence and just write µt.

Behavior of the Agent A (pure) policy ⇡ :
î8

t“0 A
t

ˆ Y
t

Ñ A specifies an action for

every history. We assume that the agent’s objective is to maximize the expected discounted

value of per-period utility with discount factor � P r0, 1q, and restrict to optimal policies.

Throughout, we let at`1 “ ⇡pa
t
, y

t
q denote the action taken in period t. The objective

action-contingent probability distribution p
˚ and a policy ⇡ induce a probability measure

P⇡ on pa⌧ , y⌧ q
8
⌧“1.

13 Standard results guarantee that there is an optimal policy ⇡ that is

Markovian and depends on the history only through the agent’s beliefs; we restrict attention

to such policies.

Given a belief ⌫ P �p⇥q we denote by ⌫a the belief over outcome distributions associated

with action a, i.e. ⌫apCq “
≥
1paPCd⌫ppq for all Borel sets C Ñ �pY q. We denote by

Epa
rfpyqs “

∞
yPY fpyqpapyq the expectation of f : Y Ñ R under the outcome distribution

11Assumption 1(i) is satisfied in most applications but it is stronger than necessary. The “if” part is enough
for all our results except the non-myopic version of Theorem 1. In the Supplemental Material, B.2 we
show how this result can be extended to the case where the “only if” part is not satisfied.

12Dirichlet priors also satisfy Assumption 1(ii), even though they do vanish at the edge of their support.
Fudenberg, He, and Imhof (2017) shows by example that even correctly specified Bayesian updating can
behave oddly when the prior vanishes exponentially quickly.

13We spell out the details of this measure at the start of the Appendix.
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pa. Am
p⌫q denotes the set of myopically optimal actions given belief ⌫, i.e.,

A
m

p⌫q “ argmax
aPA

ª

�pY q
Epa

rupa, yqs d⌫appaq.

2.2 Forms of Misspecification

Our model encompasses many sorts of misspecified learning, including the following:

Subjectively Exogenous Problems We say that there are subjectively exogenous out-

comes when the agent believes that the realized outcome is not a↵ected by the chosen action.

Definition 2. Outcomes are subjectively exogenous if for every a, a
1

P A and every p P ⇥,

we have pa “ pa1 .

Note that the agent can believe in exogenous outcomes independent of whether or not

the action really does influence the distribution; if the action does influence the outcome

and the agent ignores this we say the agent exhibits causation neglect. An agent who

thinks the outcome distribution is exogenous updates their beliefs as if they faced an i.i.d.

environment. We will establish that the beliefs in this setting concentrate on the conceivable

outcome distributions closest to the empirical average. We use this result to show that if a

is a uniformly strict Berk-Nash equilibrium, it is positively attractive.

Subjective Bandit Problems The other extreme case encompassed by our setup is where

the agent thinks that they face a bandit problem, i.e. they believe that the distributions

over outcomes induced by di↵erent actions are independent. This corresponds to the case

where the agent’s prior µ0 is a product measure.

Definition 3. An agent faces a subjective bandit problem if µ0 “
ë

aPA µ0,a P p� p� pY qqq
A.

We show that uniformly strict Berk-Nash equilibria are positively attractive in this setting

as well, provided that the agent is su�ciently patient.

One Dimensional Problems In one-dimensional problems, the agent’s uncertainty is

summarized by a parameter � P R. The parameter determines the distribution over outcomes

through a function � which maps parameters to action-dependent outcome distributions.

Formally, the support of the agent’s prior is contained in the image of this function �.
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Definition 4. The problem is one-dimensional if there exists � Ñ R and a function � : � Ñ

P such that ⇥ Ñ t�p�q : � P �u. A one-dimensional problem is supermodular if A can be

ordered such that p�, aq fiÑ E�p�qarupa, yqs is supermodular.

EPY provides a su�cient condition for actions to converge in one-dimensional problems

that are supermodular. Heidhues, Kőszegi, and Strack (2018) shows that a unique Berk-

Nash equilibrium is globally attracting in supermodular problems where the outcomes are

real numbers and � is an additive shift. Our Example 9 shows that their result does not

hold in our more general setting: a unique (and uniformly strict) Berk-Nash equilibrium

may not be positively attractive. Under a stronger version of supermodularity, our positive

attractiveness results do extend to extremal uniformly strict Berk-Nash equilibria.

Finite Support Another common assumption is that the support of the prior is finite.

With a finite-support prior, if behavior converges to an action a, a is a best reply to all

outcome distributions that minimize the Kullback-Leibler divergence from p
˚
a
, so it is a

uniform Berk-Nash equilibrium. However, Example 6 shows that non-uniform Berk-Nash

equilibria can be limit points when the support of the prior is infinite if Assumption 1(ii) is

not satisfied.

Signals Here we suppose that each period the agent observes a signal s P S before taking

an action a P A. The signal may convey information about the outcome distribution, and it

may also directly enter the payo↵ function.

We allow the agent to be uncertain about the outcome distributions induced by various

signals and actions. Let P “ p�pY qq
AˆS

Ä RY ˆAˆS be the space of all signal and action

dependent outcome distributions. The agent’s belief is a probability measure µ over P ,

where ps,apyq denotes the probability under p P P of outcome y after observing signal s

playing action a. Extending the model to signals lets us incorporate the stochastic payo↵

perturbations assumed in Esponda and Pouzo (2016). It also lets us model cases where the

agent mistakenly thinks that some information they observe is uninformative.

3 Limit Points and Berk-Nash Equilibria

We are interested in when the agent’s actions converge, and their possible limit points. Note

that these are di↵erent questions than whether the agent’s beliefs converge: Beliefs can
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oscillate when actions are fixed, as in Berk’s example where the agent doesn’t have an action

choice, and conversely actions can oscillate with fixed beliefs if the agent is indi↵erent.14

We say that the action process converges to action a if there exists a time period T P N
such that at “ a for all time periods t ° T . Action a is a limit action if the action process

converges to a with positive probability under some optimal policy ⇡.15 Note that there may

be several optimal policies for a given prior; which policy is used can influence whether the

action process converges and if so to which points.

The concept of Berk-Nash Equilibria (Esponda and Pouzo (2016)) will play a key role

in our analysis. Intuitively, a Berk-Nash equilibrium is an action a such that there exists a

belief for which a is myopically optimal, and which assigns positive probability only to the

conceivable outcome distributions that best match the objective outcome distribution p
˚
a
.

Formally, given two distributions over outcomes q, q1
P �pY q we define

H pq, q
1
q “ ´

ÿ

yPY
qpyq log q1

pyq.

Note that ´Hpq, q
1
q is the expected log likelihood of an outcome under subjective distribution

q
1 when the true distribution is q, so q

1 with smaller Hpq, q
1
q is a better explanation for the

outcome frequency q. The Kullback-Leibler (KL) divergence between p
˚
a
and pa is given by

Hpp
˚
a
, paq ´ Hpp

˚
a
, p

˚
a
q, so any pa that minimizes H pp

˚
a
, pq also minimizes the KL divergence

between p
˚
a
and pa.

Recall that pa denotes the outcome distribution p assigns to action a. For each a, let

⇥̂paq “ argmin
pP⇥

H pp
˚
a
, paq Ñ ⇥ (1)

denote the set of conceivable action-contingent outcome distributions that minimize the KL

divergence relative to the true distribution p
˚
a
given that the agent plays a. Note that the

elements of ⇥̂paq specify an outcome distribution for each action a
1

P A, even though ⇥̂paq

only depends on the distributions corresponding to a. We call ⇥̂paq the set of KL minimizers

for action a.16

Berk (1966) established that the agent’s beliefs concentrate on ⇥̂paq if they always play

a. This motivates Esponda and Pouzo (2016)’s notion of a Berk-Nash equilibrium. We

14The fact that beliefs can oscillate under a fixed action is the driving force behind the uniformity requirement
in several of our results, such as Theorem 1.

15Formally, there exists a measurable set C Ñ A8 ˆ Y 8 with P⇡rCs ° 0 such that at converges to a in C.
16Note that if p˚ P ⇥ then each minimizing p explains the observed outcome distribution perfectly, pa “ p˚

a .
In particular this is true if µ0 has full support.

9



introduce variations of this concept to capture di↵erent senses in which an action is or is not

a long-run outcome of the agent’s learning process.

Definition 5. Two action-contingent outcome distributions p and p
1 are observationally

equivalent under action a if pa “ p
1
a
. We denote by Eappq Ñ ⇥ the set of action-contingent

outcome distributions in ⇥ that are observationally equivalent to p under a.

Definition 6.

(i) Action a P A is a Berk-Nash equilibrium (BN-E) if for some belief ⌫ P �p⇥̂paqq, a is

myopically optimal given ⌫, i.e. a P A
m

p⌫q.

(ii) Action a is a strict BN-E if for some belief in ⌫ P �p⇥̂paqq, a is the unique myopically

optimal action, i.e. tau “ A
m

p⌫q.

(iii) Action a is a uniform BN-E if for all KL minimizers p P ⇥̂paq there exists a belief

⌫ P � pEappqq such that a P A
m

p⌫q.

(iv) Action a is a uniformly strict BN-E if for every belief ⌫ P �p⇥̂paqq, a is the unique

myopically optimal action, i.e., tau “ A
m

p⌫q.

Uniformity requires that for each class of observationally equivalent KL minimizers for

action a, there is a belief concentrated on that class for which a is the myopically optimal

choice.17 The di↵erence between BN-E and uniform BN-E disappears in the correctly spec-

ified case, where both concepts coincide with self-confirming equilibrium. In settings where

the KL minimizer is unique, the uniformity requirement has no bite. However, in frameworks

with additional structure, such as symmetry or parametric restrictions, multiple KL mini-

mizers can arise naturally. For example, suppose that agent’s payo↵ depends on the color y

of a ball drawn from an urn, and the agent’s action is to bet on the color of the drawn ball.

The agent correctly believes their action has no impact on the distribution of outcomes. The

urn has 6 balls: 4 of them white, 1 red, 1 blue. Here there is a finite number of possible

outcome distributions corresponding to the possible urn composition. If the agent wrongly

believes that at most half of the balls share the same color, i.e., ppyq § 1{2 for y P twhite,

red, blueu, the two KL minimizers are (3 white, 2 blue, 1 red) and (3 white, 1 blue, 2 red).

The following result motivates our definition of uniform BN-E. It holds regardless of the

17If p is a KL minimizer, i.e. p P ⇥̂paq, then all observationally equivalent actions are as well, i.e. Eappq Ñ
⇥̂paq. When Eappq contains more than one element for some KL minimizer p, uniformity does not require
that the equilibrium action is a best reply to every KL minimizer in ⇥̂paq. The only other equilibrium
refinement we know of that, like uniform BN-E, tests for optimality against all beliefs in a non-singleton
set is Fudenberg and He (2020), which studies non-equilibrium learning in a steady-state model where the
agents are correctly specified Bayesians. They do not study the dynamics away from the steady state.
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agent’s discount factor, and for all optimal strategies. The same is true for all subsequent

results except those where the dependence on the discount factor is made explicit.

Theorem 1. Every limit action is a uniform BN-E.

One implication of Theorem 1 is that limit actions must be BN-E. In outline, this follows

from the fact that if actions converge to an action then eventually the agent always plays that

action, and Berk (1966)’s result that the agent’s beliefs converge to the set of KL minimizers

when their observations are a sequence of i.i.d. signals.

More strongly, Theorem 1 shows that a limit action must be a uniform BN-E. When

a is not a uniform BN-E, there is an equivalence class of KL minimizers such that a is

not a myopic best reply when beliefs concentrate on that class. The proof of Theorem 1

works by contradiction: Consider an action a which is not a uniform BN-E. If play converges

to a with positive probability there must exist a history after which it is optimal in every

future period to play a. We thus study the agent’s belief process under the assumption

that a is played in every period. As we prove in Proposition 1 in the Appendix, the agent’s

beliefs concentrate around the set of Kullback-Leibler minimizers relative to the realized

outcome frequency exponentially fast. This result allows us to determine the agent’s long

run actions from the long-run frequency of outcomes. If a is not a uniform BN-E, there

is a KL minimizer p1 under which action a is not optimal. Moreover, the number of times

each outcome is realized is a random walk, and by the Central Limit Theorem the outcome

frequency converges to objective outcome frequency p
˚
a
at rate 1{

?
t. This implies that the

probability with which the outcome frequency will be in a ball of radius 1{
?
t centered around

p
˚
a

p1´ 1{
?
tq ` p

1
a

p1{
?
tq in a given period t converges to a constant. These balls are chosen

in the direction of the outcome frequency p
1
a
such that the action a is not optimal for large

enough t when the empirical frequency is in these balls. We then apply the Kochen-Stone

Lemma which implies that the probability that the agent’s outcome frequency will be in

such a ball infinitely often is non-negative and the Hewitt-Savage zero-one law implies that

it must equal one. Thus with probability one, the outcome frequency will eventually be such

that the agent takes an action di↵erent from a. Thus, a can not be a limit action if it is not

a uniform BN-E.

The same technique can be applied to obtain a starker result in subjective bandit prob-

lems. There Corollary 1 shows that if an action performs poorly under some KL minimizer,

the agent will stop playing it in finite time with probability 1, even if the action is objectively

optimal and the agent is very patient. Example 6 in the Supplemental Material shows that

Theorem 1 can fail without Assumption 1(ii). Here the agent’s prior has countable support
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and assigns vanishingly low probability to distributions that are close to one of the KL min-

imizers. However, Assumption 1(ii) does not ensure that a uniform BN-E exists, as shown

in the following example. As a consequence, actions need not converge.

Example 1 (Non-existence of Uniform BN-E). A monopolist is uncertain about the demand

for their product. Every period it posts a price in t3, 4, 5, 6, 7u, and then a randomly selected

consumer observes the price and decides whether to buy, y “ 1, or not buy, y “ 0, the good.

The monopolist’s maximizes revenue upa, yq “ ay, and the true distribution of customer

values is uniform on r3, 7s. The monopolist overestimates the variance of consumer values,

and believes that they are either uniformly distributed on r0, 8s or on r2, 10s. As we show in

the Supplemental Material, the unique BN-E is non-uniform and strict, with price 5. Both

distributions are KL-minimizing for this price, but price 5 is myopically optimal only if the

valuations are uniformly distributed on the high range r2, 10s. Theorem 1 implies that the

monopolist’s actions do not converge, even though there is a unique and strict BN-E. This

is because when a “ 5, the monopolist eventually sees a sequence of outcomes where few

consumers buy, becomes very confident in the low range of valuations r0, 8s, and switches to

a lower price.

Theorem 1 implies the non-convergence theorem of Nyarko (1991) as a corollary since also

in that setting there is no uniform BN-E. Moreover, in the case of myopic agents, Corollary

2 in the Appendix combines the result with Theorem 2 of Esponda, Pouzo, and Yamamoto

(2019) to show the empirical action frequencies cannot converge to some non-uniform BN-E.

4 Su�cient Conditions for Long-Run Persistence

Theorem 1 shows that play can only converge to a given action a if that action is a uniform

BN-E. This section gives su�cient conditions for a to be a long-run outcome in two di↵erent

senses, namely stability and attractiveness.

4.1 Stability

We say that action a is stable if play converges to a with high probability starting from

every belief in a neighborhood of a KL minimizer for a. For ⌫ P �p⇥q, let B"p⌫q “ t⌫
1

P

�p⇥q|dp⌫
1
, ⌫q § "u be the set of beliefs over conceivable distributions that are within " of ⌫.

Define the set ⇥̂"
paq as all outcome distributions whose marginal distribution with respect

12



to action a is at most " away from a KL minimizer,

⇥̂"
paq “ tp P ⇥ : there exists p1

P ⇥̂paq with ||p
1
a

´ pa|| § "u . (2)

Definition 7.

(i) An action a is stable if for every  P p0, 1q, there is an " ° 0 and a belief ⌫ P �p⇥q

such that for all initial beliefs in B"p⌫q, the action prescribed by some optimal policy

converges to a with probability larger than 1 ´ .

(ii) An action a is uniformly stable if for every  P p0, 1q, there is an " ° 0 such that for

all prior beliefs ⌫ P �p⇥q such that ⌫p⇥̂"
paqq ° 1 ´ ", the action prescribed by any

optimal policy converges to a P A with probability greater than 1 ´ .

Theorem 1 shows that stable actions must be uniform BN-E. The next theorem shows

that an action is a uniformly strict BN-E if and only if it is uniformly stable.

Theorem 2. An action is uniformly stable if and only if it is a uniformly strict BN-E.

Theorem 2 di↵ers from past work by providing the first if and only if characterization of

the stability of actions under misspecified learning with non-binary priors, and by allowing

the agent to be non-myopic and thus perceive an information value from experimentation.18

Its proof has two parts, corresponding to the two directions of the if and only if statement.

To show that every uniformly strict BN-E is uniformly stable, we first show that if beliefs

assign su�ciently high probability to a neighborhood of the KL minimizers, the only optimal

action is the uniformly strict BN-E a. That such a neighborhood exists for a myopic policy

follows from the definition of uniformly strict BN-E. Under a non-myopic policy, since beliefs

are not degenerate, some actions may have an experimentation value. However, when the

beliefs are su�ciently concentrated around the minimizers, the value of any alternative action

cannot be much higher than its value against the most favorable minimizer, and since a is

a uniformly strict BN-E this value is strictly lower than that of a. Then we combine an

observation from FII with a generalization of the arguments in Fudenberg and Levine (1992)

and the Dubins’ upcrossing inequality to guarantee that if the probability initially assigned

to the neighborhood is su�ciently high, it is unlikely to drop below the threshold that makes

action a suboptimal.

18Bohren and Hauser (2020) and Fudenberg, Romanyuk, and Strack (2017) characterize stability when the
agent has a binary prior. FII’s Theorem 1 gives a su�cient condition for stability when the agent’s prior
has finite support. The statement of the theorem is for their general model, which takes the evolution of
the belief process as a primitive, and does not describe the agent’s actions, discount factor, or optimization.
The paper’s three applications all assume myopic choice.
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The proof of the converse direction is much simpler: If a is not a uniformly strict BN-E,

there is a distribution p in ⇥̂paq that makes some other action b the best response, and if we

set ⌫ to be a point mass on p the agent always plays b.

Theorem 2 is in contrast to the non-convergence in the monopoly pricing example of

Heidhues, Kőszegi, and Strack (2021), where there is a continuum of actions, and actions

that are su�ciently near the strict best response are best responses to nearby beliefs. As we

explain in Section 6, it is not clear what the right definition of uniform stability is for that

setting.

Example 1 shows that Theorem 2 does not extend to strict BN-E that are not uniformly

strict. The next example shows that in Theorem 2 we cannot replace uniformly stable with

stable.

Example 2 (A stable BN-E that is not uniformly strict). Suppose there are 2 actions, a

and b, that induce the same distribution on Y “ t0, 1u and such that upa, ¨q “ upb, ¨q. The

agent has an arbitrary belief supported on tp : pa “ pbu, i.e., they know the actions induce

the same distribution. Here, since the agent is always indi↵erent, even though action a is

not a uniformly strict BN-E, it is stable under the optimal policy that always prescribes a.

In general there is a gap between uniformly strict BN-E and stability, but in su�ciently

rich problems, this gap is absent.

Definition 8. A problem is rich if for every action a, minimizer p P ⇥̂paq and " ° 0 there

exists a p
1

P ⇥z⇥̂paq with ||p ´ p
1
|| § " such that

Epa
rupa, yqs ´ max

bPAztau
Epb

rupb, yqs ° Ep1
a

rupa, yqs ´ max
bPAztau

Ep
1
b

rupb, yqs .

In words, a problem is rich if for every KL minimizer for every action a, the support of

the agent’s prior includes a nearby distribution under which a performs relatively less well.19

This rules out the previous example and also rules out finite-support priors.

Theorem 3. If a problem is rich, the following are equivalent:

(i) a P A is a uniformly strict BN-E.

(ii) a P A is stable.

Richness guarantees that if a is not a uniformly strict equilibrium, there is a KL minimizer

for action a that can be approximated with a sequence of outcome distributions pp
n
qnPN under

19Note that “relatively less well” allows the action to be a best response to all distributions near p.
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which action a is strictly suboptimal. To prove this theorem, for every ⌫ we build a sequence

of beliefs p⌫
n
qnPN that have have p

n has the unique KL minimizer for action a, and combine

this with Theorem 1 to show that the probability that the actions converge to a starting

from ⌫n is 0. To summarize our stability results,

Uniformly Strict BN-E “ Uniformly Stable Ñ Stable Ñ Uniform BN-E,

where the first inclusion is an equality if the problem is rich, and the second inclusion can

be strict as shown by Example 11 in the Supplemental Material.

4.2 Positive Attractiveness

The previous section gave su�cient conditions for an action to be played in the long-run

with high probability for some initial beliefs. Another natural notion of a being a long-run

outcome is that for every initial belief with support ⇥ there is strictly positive probability

that the agent’s action converges to a.

Definition 9. The action a P A is positively attractive if for every optimal policy ⇡ and

every initial belief ⌫ with supp ⌫ “ ⇥,

P⇡

”
lim
tÑ8

at “ a

ı
° 0 .

Below we give su�cient conditions for uniformly strict BN-E to be positively attractive.

Benäım and Hirsch (1999) obtains a similar conclusion for the linearly stable Nash equilibria

of stochastic fictitious play.20 These arguments rely on Proposition 1 in the Appendix, which

shows that beliefs about the outcome distribution concentrate around the distributions that

best fit the empirical frequency of outcomes. Importantly, our result applies pathwise and

does not require that either actions or empirical frequencies converge.

Our results on positive attractiveness cover three di↵erent cases: subjectively exogenous

outcomes, subjective bandit problems, and strongly supermodular problems. In the first two

cases we are able to identify a particular empirical distribution that is su�cient for analyzing

convergence. With subjectively exogenous outcomes, the agent only tracks a single empirical

distribution. In subjective bandit problems, the agent does consider multiple empirical

distributions, but it is su�cient to study the distribution corresponding to the action in

20The Bayesian foundation of fictitious play (Fudenberg and Kreps (1993)) assumes that the players believe
that the environment is stationary. Away from a steady state the players are misspecified, but when the
system converges to a steady state the stationarity assumption is asymptotically correct. In our setting,
“substantial” misspecification can persist even when behavior converges.

15



question. In supermodular problems, we instead show that certain outcome realizations can

lead the agent to lock on to the highest or lowest action.

4.2.1 Subjectively Exogenous Problems

In subjectively exogenous problems, the agent believes that the distribution over outcomes

is the same for all actions. This is a fairly stark assumption; more typically the agent

might believe that their action influences some dimensions of the outcome but not others.

We present the case where the agent believes the action has no e↵ect at all because the

extension to “partially exogenous” outcomes does not bring any additional insight.

Theorem 4. Suppose outcomes are subjectively exogenous. If a is a uniformly strict BN-E

then it is positively attractive.

To prove Theorem we first use Proposition 1 to show that beliefs concentrate around the

distributions that minimize the KL divergence from the empirical frequency on every path

of outcome realizations. We then use this concentration to show there is a finite sequence of

outcomes that has positive probability and leads the agent to play a. Since a is a uniformly

strict BN-E, if beliefs concentrate around the minimizers, a becomes the unique best reply.

While using a, the relative probability the agent assigns to distributions in ⇥̂paq increases

in expectation, so we can combine Dubins’ upcrossing inequality with the fact that a is

the unique myopic best reply to beliefs concentrated in ⇥̂paq to show that, with positive

probability, the agent will stick to action a forever.

Proposition 4 in EPY shows that for every uniformly strict BN-E a, there exists at least

one prior with support equal to ⇥ under which the policy converges to a with positive

probability. FII provides su�cient conditions for the system to converge with probability 1

to a specific BN-E from any initial belief. Our Theorem 4 concludes that every uniformly

strict BN-E has positive probability of being the limit behavior starting from every initial

prior without imposing conditions that imply global convergence to a specific outcome.

Example 3 (Stackelberg game perceived as Cournot). The agent is a seller who every period

faces a competing seller randomly drawn from a large population. The agent first chooses

whether to produce low output, a “ 1, or high output, a “ 2. The competitor sets their

quantity y at 1 or 2 after observing the agent’s action: If the agent chooses low output the

competitor produces high output with probability 2{3, while if the agent chooses high output

the competitor produces a high quantity with probability 1{3.21 The agent believes that the

21The randomness could arise from a distribution over production costs in the population of competitors.
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competitor chooses output without observing the agent’s action, and that they choose an high

output with some unknown probability p: ⇥ “ tp P �pY q
A : p2p2q “ p1p2qu. The true

distribution is p
˚
2p2q “ 1{3 “ p

˚
1p1q.

The demand function of the consumers is linear, and the agent has no production cost;

the utility function of the agent is upa, yq “ ap4.5´a´yq. High output is objectively optimal

for the agent, and is also a uniformly strict BN-E. However, low output is also a uniformly

strict BN-E, supported by the wrong belief that the observed high level of production of the

competitor would be the same even if the agent increased output. By Theorem 4 both actions

have a positive probability of arising as limit outcomes starting from every initial prior.

Without the assumption of subjectively exogenous outcomes, uniformly strict BN-E need

not be positively attractive.

Example 4 (A uniformly strict BN-E that is not positively attractive). A central bank

decides whether to keep a flexible exchange rate, a “ f , or peg the currency to the dollar,

a “ c. The outcome has two binary components, y “ py
e
, y

s
q, where y

e says whether the

economy is in a boom, and y
s whether there is a speculative attack on the currency. The

bank likes booms and dislikes speculative attacks: u pf, yq “ y
e
, u pc, yq “

3
2y

e
´ y

s
. The bank

correctly believes that whether there is a speculative attack is independent of the state of the

economy. Furthermore, the bank knows that if they maintain a flexible exchange rate, the

probability of a currency attack is 0, and believes that the probability of a currency attack

under a fixed exchange rate is either 10% (the true value) or 90%. The bank correctly

believes that pegging the currency to the dollar increases the probability of a boom by 33.3̄%

over a baseline probability, which the bank believes is either 33.3̄% or 66.6̄%, and the belief

is independent across the two dimensions. In truth the baseline is 50%, so the bank is

misspecified.22

Here pegging the currency to the dollar is a uniformly strict BN-E, but it is not positively

attractive: For any discount factor, if the prior assigns su�ciently high probability to the

states where a currency attack happens with probability 90% if the currency is not pegged to

the dollar, the bank starts out choosing a flexible exchange rate, and sticks with that action

forever. To see why, note that when the currency is floating the bank does not update its

beliefs about the likelihood of a currency attack under a pegged exchange rate.
22That is, the bank believes that the probabilities of a boom with or without peg are either p100%, 66.6̄%q
or p66.6̄%, 33.3̄%q, respectively, while in truth they are p83.3̄%, 50%q.
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4.2.2 Subjective Bandit Problems

Recall that in a subjective bandit problem (Definition 3), the agent believes that the out-

come distribution is independent across actions. An argument similar to that for subjectively

exogenous problems shows that uniformly strict BN-E are positively attractive in subjective

bandit problems if the agent is su�ciently patient. However, uniformly strict BN-E is a very

demanding concept in subjective bandit problems, as the Kullback-Leibler divergence be-

tween the true and subjective outcome distributions induced by an action does not constrain

the “o↵-path” beliefs about the consequences of other actions, and very optimistic o↵-path

beliefs can make some other action a better reply.

However, in these problems we can replace the uniformity requirement with the require-

ment that the equilibrium is weakly identified introduced in Esponda and Pouzo (2016).

Definition 10. A BN-E action a is weakly identified if for all p, p1
P ⇥̂paq we have pa “ p

1
a
.

Weak identification guarantees that once behavior stabilizes on action a, there is no ad-

ditional updating about the relative likelihood of the KL-minimizing outcome distributions.

When the agent thinks the outcome distribution is exogenous, the equilibrium can only be

weakly identified if the KL minimizer is unique. Weak identification is significantly weaker in

subjective bandits, as it only requires the existence of a unique conceivable outcome distri-

bution qa that best matches p˚
a
, without imposing any restrictions on what the agent believes

about the consequences of other actions.

Theorem 5. For every subjective bandit problem there is a �̄ † 1 such that if the discount

factor � • �̄, then every weakly identified strict BN-E is positively attractive.

The proof uses the fact that patient agents experiment with actions that they believe

might give them a higher payo↵. The conclusion of the theorem is false for myopic agents even

in the correctly specified case, where the BN-E correspond to the self-confirming equilibria,

and with probability 1 the agent may always play whichever action is myopically optimal

given their initial beliefs.

In subjective bandit problems, we can sharpen the conclusion of Theorem 1 for actions

that perform poorly under one of the KL minimizers. We say that action a is quasi-dominated

if there are p̂ P ⇥̂paq and b P A such that Ep̂a
rupa, yqs † Epb

rupb, yqs for all p P ⇥. That is,

there is a KL minimizer p̂ for action a such that the utility of a under p̂ is lower than that

of action b under any of the p in the support of the prior. Quasi-dominated actions are not

uniform BN-E, so play cannot converge to them with positive probability.
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In a subjective bandit problem even more is true; quasi-dominated actions can be played

only a finite number of times.

Corollary 1. In a subjective bandit problem, any quasi-dominated action is almost surely

played only a finite number of times.

In particular, in two-armed subjective bandit problems where one action is quasi-dominated,

play converges to the other one. Note that this result does not depend on the discount factor,

and is true even if the quasi-dominated action is objectively optimal and the agent assigns

positive probability to it being optimal. In contrast, the probability that a correctly specified

agent locks on to an incorrect action goes to 0 as the discount factor goes to 1.

4.2.3 Strongly Supermodular Problems

Definition 11. We say that the problem is strongly supermodular if we can strictly order

the space of actions pA,°q, outcomes pY,°q, and the set of conceivable distributions p⇥,°q

so that:

(i) u is strictly supermodular in a and y;

(ii) if p, p1
P ⇥ and p ° p

1, then for all a P A and y P Y zȳ, we have pa pty
1 : y1

° yuq °

p
1
a

pty
1 : y1

° yuq, where ȳ denotes the highest outcome.

Theorem 6. In a strongly supermodular problem, if p˚
a
(resp. p

˚
ā
) has full support, and the

highest action ā (resp. the lowest action a) is a uniform and strict BN-E, then ā (resp. a)

is positively attractive.

Strong supermodularity implies that the agent will use action ā if they observe the highest

y’s su�ciently often. Moreover, the antisymmetric ordering of the elements of ⇥ guarantees

that every uniform and strict BN-E is uniformly strict, and so Theorem 2 guarantees that

there is positive probability that once the agent plays ā they will stick to it forever.

Example 5 (Under-investment trap). Each period the agent decides how much e↵ort a P

t0, 1, 2u to exert on a task. The e↵ort can be either successful, y “ 1, or unsuccessful, y “ 0.

Higher e↵ort makes success more likely: p
˚
2p1q “ 9{10 ° p

˚
1p1q “ 1{2 ° p

˚
0p1q “ 1{12.

Moreover, higher e↵ort also increases the benefit of a success: upa, yq “ ay ´ a{2. Thus the

objectively optimal action is to exert high e↵ort, a “ 2.

The agent mistakenly believes that the probability of success depends on their e↵ort and

their intrinsic skill  , and ⇥ is consists of all p such that p2p1q “ 2{3` ° p1p1q “ 1{2` °

p0p1q “ 1{3 `  for some  P r´1{4, 1{4s.
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Here there are two BN-E: a “ 0 and a “ 2. In the bad equilibrium a “ 0, the KL-

minimizing outcome distribution corresponds to the lowest possible skill level  “ ´1{4,

which leads the agent to exert the low e↵ort. Since both BN-E are uniformly strict and the

problem is strongly supermodular, Theorem 6 implies that both the Nash equilibrium and the

bad equilibrium with low e↵ort are positively attractive.

5 Signals

Suppose each period before taking an action the agent observes a signal s from a compact

set S, equipped with its Borel sigma algebra. Thus the analog of an action in the previous

sections is now a strategy, i.e. a measurable map � : S Ñ A from signals to actions. Signals

may be payo↵ relevant, so now utility is a map u : A ˆ Y ˆ S Ñ R, and signals may also

be useful for predicting the outcome distributions, so now pa,s P �pY q depends both on this

period’s action and on the signal observed at the start of the period. A policy ⇡pa
t
, y

t
, s

t`1
q

specifies the action in each period t as a function of past actions, outcomes and signals.

To complete the model we also need to specify the objective distribution of signals. We

focus on the case where the distribution of s is fixed (iid) with distribution ⇣ that is known

to the agent, as in Esponda and Pouzo (2016).23

Subjective Beliefs The agent correctly believes that the map from actions and signals to

probability distributions over outcomes is fixed, but they are uncertain about the distribution

each signal and action pair induces. Let P “ �pY q
AˆS be the space of all signal and action

dependent outcome distributions. The agent’s uncertainty is captured by a prior belief

µ0 P �
`
P

˘
, again with ⇥ “ suppµ0.

Assumption 1
1
.

(i) For all p P ⇥, a P A, y P Y , and s P S, pa,spyq ° 0 if and only if p˚
a,s

pyq ° 0.

(ii) The prior µ0 has subexponential decay : there is  : R` Ñ R`` such that for every

p P ⇥ and " ° 0 we have µ0pB"ppqq •  p"q with lim pK{nq exppnq “ 8 for all K ° 0.

Let µtp¨ | ps
t
, a

t
, y

t
qq P �pP q denote the agent’s subjective belief obtained using Bayes

rule after observing the sequence of signals and outcomes ps
t
, y

t
q when taking the actions at.

We say that two outcome distributions p, p1
P ⇥ are observationally equivalent under the

strategy � if p�psq,spyq “ p
1
�psq,spyq for all s P S and y P supp p˚

�psq,s, and we let E�ppq denote

23A continuum of signals allows payo↵ shocks that generate continuous best-response distributions.
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the outcome distributions that are observationally equivalent to p under �. To simplify the

analysis, we make the following assumption, which is satisfied for example if the signals are

payo↵ shocks, or if there are only finitely many signals.

Definition 12. The environment is finite dimensional if there is a partition ⌅ “ t⇠1, ...⇠Nu

of S into a finite number of measurable sets such that the agent correctly believes the same

outcome distribution applies for all s in ⇠i: pa,s “ pa,s1 for all p P ⇥Ytp
˚
u, a P A, i P t1, ..., Nu,

and s, s
1

P ⇠i.

Under this assumption, we abuse the notation by letting pa,⇠i denote the outcome distri-

bution prescribed by p after action a and an arbitrary signal in ⇠i. With this, the relevant

set of “closest beliefs to the truth” is now

⇥̂p�q “ argmin
pP⇥

ÿ

⇠iP⌅
⇣p⇠iqH

`
p

˚
�psq,⇠i , p�psq,⇠i

˘
.

We use this modified definition of the minimizers to extend the definition of the equilibrium

concepts to this more general setting. The proofs for all of the results of this section are in

the Supplemental Material.

Definition 6
1
.

(i) Strategy � is a BN-E if there exists a belief ⌫ P �p⇥̂p�qq such that � is myopically

optimal given ⌫.

(ii) Strategy � is a uniform BN-E if for all p P ⇥̂p�q there exists a belief ⌫ P � pE�ppqq such

that � is myopically optimal given ⌫.

(iii) Strategy � is a uniformly strict BN-E if � is the unique myopic best reply to any belief

in ⌫ P �p⇥̂p�qq.24

Theorem 1
1
. Suppose the agent’s beliefs are finite dimensional. If � is a limit strategy, then

� is a uniform BN-E.

The proof of this result is very similar to the proof of Theorem 1. The main di↵erence is

that the relevant random walk is the empirical distribution over joint realizations of signals

and outcomes.

Similarly, we can extend our result on the stability of uniformly strict BN-E. Specifically:

24Here uniqueness is up to a set of signals that have zero probability under ⇣.
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Theorem 2
1
. Suppose � is a uniformly strict BN-E. Then there is a belief ⌫ P � p⇥q such

that for every  P p0, 1q there exists an "
1

° 0 such that starting from any prior belief in

B"1 p⌫q:

P⇡

«
lim
tÑ8

1

t ` 1

tÿ

r“0

1⇡par,yr,sr`1q“�psr`1q • 1 ´ 

�
° 1 ´  .

Example 10 in the Supplemental Material illustrates the long-run biases that can be

induced when the agent mistakenly thinks that signals are uninformative. There, a seller

receives a signal about the current period’s market, and decides whether to undertake an

investment that may boost sales. The seller does not realize that when more consumers show

up, a lower fraction of them buy; we show that this can lead to persistent underinvestment

when market attendance is high.

When the agent thinks the signals are uninformative, their prior has support on distri-

butions of y given a that are independent of s. Here the only reason they might influence

the agent’s choices is that they may directly enter their payo↵ function. The next result

shows that all uniformly strict BN-E are positively attractive when signals are subjectively

uninformative and the true data generating process has full support.

Theorem 4
1
. If signals are finite, subjectively uninformative, outcomes are subjectively ex-

ogenous, and that the true outcome distribution p
˚ has full support, then any uniformly strict

BN equilibrium � is positively attractive.

The proof of this result is similar to that of Theorem 4, because when signals are subjec-

tively uninformative we can apply Proposition 1 to the uncontingent empirical distribution.

6 Concluding Remarks

Learning in Large Population Games The biases we consider are relevant in non-

equilibrium models of learning about the prevailing distribution of strategies. Consider a

finite I player game, and suppose there is a continuum of agents in each player role i P I

who are matched every period to play the game, and observe the actions played in their

matches but nothing else. In a steady state,25 the problem faced by an agent in population

i is equivalent to the one we considered in the previous sections: the agent correctly believes

they are facing a stationary environment, and they realize that they do not a↵ect the next

25These models do have steady states when there is a steady outflow of agents balanced by an inflow of new
ones; see e.g. Proposition 3 in Fudenberg and He (2018).
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period’s distribution of opponents’ strategies. Causation neglect corresponds to the bias

of an agent who thinks they are playing a simultaneous-move game, when in reality their

opponents observe the agent’s choice before moving. Subjective bandit problems arise when

the agent has independent beliefs about the responses to di↵erent strategies. In games of

incomplete information, the agent may have signal neglect, and incorrectly believe that the

game has independent private values.

Our results help characterize the possible limit actions in these situations. Of course,

extensive-form games may not have strict equilibria, so some of our results will not apply,

but it may be possible to extend some of our conclusions to equilibria that are on-path

strict in the sense of Fudenberg and He (2020). Also, games need not have pure-strategy

equilibria, but it may be possible to apply our methods to setting where each agent plays

deterministically, and di↵erent agents in the same player role chose di↵erent actions.26

Infinitely Many Actions When the agent has a finite number of possible actions or stage-

game strategies, as we have assumed in this paper, an equivalent definition of uniformly strict

BN-E is an action a that is the unique best response to every belief in a neighborhood of

the KL minimizers for a. With infinitely many actions and continuous payo↵ functions,

actions that are su�ciently near the strict best response incur arbitrarily small losses and

are best responses to nearby beliefs. Here the two definitions of uniformly strict BN-E are

not equivalent. Indeed, as shown by an example in Heidhues, Kőszegi, and Strack (2021),

some BN-E that are uniformly strict BN in the sense of Definition 6 may not be positively

attractive. However, we conjecture that the positive attractiveness result continues to hold

under the alternative definition.

Summary and Discussion In many economically relevant settings it seems plausible

that agents misunderstand some aspects of the world. For this reason it is important to

understand what beliefs these agents will develop and how they will behave. This paper

provides sharp characterizations of what actions arise as the long-run outcomes of misspec-

ified learning. We show that all uniformly strict BN-E are stable, and that under a mild

condition only uniform BN-E can be stable. Moreover we show that play can only converge

to uniform BN-E. Our work thus suggests uniformity should be imposed as a refinement of

BN-E. We then provide the first su�cient conditions for an action to be positively attractive

26Alternatively we could consider a model with one agent per player role and payo↵ perturbations, as in
Fudenberg and Kreps (1993) and Esponda and Pouzo (2016).
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under misspecified learning. Here we highlight the role played by the correlation that the

agent perceives between the outcome distributions associated with di↵erent actions.

A Appendix

Section A.1 formally describes the space where our stochastic processes are defined, Sec-

tion A.2 states some preliminary technical lemmas, Section A.3 proves that beliefs concen-

trate around the KL minimizers at and exponential rate, and Section A.4 contains the results

of the main text for the models that do not have signals.

A.1 Sample Space

We work with the probability space p⌦,F ,Pq. The sample space ⌦ “ pY
8

q
A consists of

infinite sequences of action dependent outcome realizations pxa,1, xa,2, . . .qaPA, where xa,k

determines the outcome when the agent takes the action a for the k-th time. F is the

product sigma algebra and the probability measure P is the product measure induced by

independent draws from the relevant component of p˚. The outcome observed by the agent

in period t after action at is yt “ xat,k
, where k “ |t⌧ § t : a⌧ “ atu| is the number of times

the agent has taken action at up to and including period t.27 The probability measure P⇡

over pa⌧ , y⌧ q
8
⌧“1 induced by the policy ⇡ is defined as follows: For every t P N and cylinder

pa⌧ , y⌧ q
t

⌧“1,

P⇡

“
pa⌧ , y⌧ q

t

⌧“1

‰
“

$
&

%
0, if there exists t1

P t1, ..., tu : at1 ‰ ⇡ppa⌧ , y⌧ q
t

1´1
⌧“1 q

±
t

⌧“1 pa⌧ py⌧ q otherwise.

A.2 Preliminary Lemmas and Definitions

Denote the set of conceivable outcome distributions for action a that best match p
˚
a
by

⇥̂apaq “ argmin
pa:pP⇥

H pp
˚
a
, paq Ä �pY q.

Lemma 1. For every a P A and " ° 0, ⇥̂paq defined in equation (1), ⇥̂apaq, ⇥̂"
paq defined

in equation (2), and �p⇥̂paqq are compact.

27An alternative specification has sample space pxa,1, xa,2, . . .qaPA, with xa,k denoting the outcome realization
if the agent takes action a in period k. An argument similar to that of Lemma 5 of Fudenberg and He
(2017) shows that this would not change our results.
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The proof of Lemma 1 is routine and relegated to the Supplemental Material.

For every p P P and every policy ⇡ let Ep,⇡ denote the expectation operator over action

and outcome sequences that is induced by policy ⇡ under outcome distribution p. We work

with the agent’s normalized value throughout, which is

V p⇡, ⌫q “ p1 ´ �q

ª

P

Ep,⇡

« 8ÿ

t“1

“
�
t´1

upat, ytq
‰
�
d⌫ppq.

The set of policy functions is ⇧ “ A

î8
t“0 A

tˆY
t

.

Lemma 2. ⇧ is compact in the product topology, and for all ⌫ P � p⇥q, V p¨, ⌫q is continuous

with respect to the product topology.

Lemma 2 is a consequence of the more general Lemma 11 which covers cases where each

period the agent observes a signal before choosing their action. This lemma is proved in the

Supplemental Material.

Next we bound the di↵erence between the value of using action a and the value of any

other action in terms of their expected utility given that beliefs are concentrated around

the outcome distributions ⇥̂paq. Denote the set of beliefs over conceivable distributions that

assign at least probability 1 ´ " to ⇥̂"
paq by

M",a “ t⌫ P �p⇥q : ⌫p⇥̂"
paqq • 1 ´ "u.

The following lemma shows that if the agent’s beliefs are su�ciently concentrated on the set

of KL minimizers associated with a uniformly strict BN-E a, the agent will play a, even if

the agent is not myopic.

Lemma 3. If a P A is a uniformly strict BN-E, then for every optimal policy ⇡, there exists

an "̂ ° 0 such that for all " † "̂, ⌫ P M",a ùñ ⇡ p⌫q “ a.

Proof. Let ⇡a denote the policy that prescribes to always play a. By Lemma 2, the space of

the policy functions endowed with the product topology is compact. Since the subset of policy

functions that do not prescribe a at the initial history is closed, this subset is compact as

well, and because � P r0, 1q, the value function is continuous at infinity, so V p⇡
a
, ⌫q ´V p¨, ⌫q

is a continuous function of the policy. Moreover since Ep,⇡

“∞8
t“1 r�

t´1
upat, ytqs

‰
is continuous

in p, V p⇡
a
, ¨q ´V p⇡̃, ¨q is continuous in ⌫.

Define Gp"q as the minimal gain from playing a forever instead of using some best policy ⇡̃

that does not play a at a belief ⌫ in M",a: Gp"q “ min⇡̃:⇡̃p⌫q‰a min⌫PM",a
pV p⇡

a
, ⌫q ´V p⇡̃, ⌫qq .
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Given that " Ñ M",a is an upper hemicontinuous and compact valued correspondence, G is

continuous in ".

Note that M0,a “ ⇥̂paq which is the set of KL minimizers given action a. For every belief

supported on this set a is the unique maximizer as it is a uniformly strict BN-E. If the prior

belief is supported on ⇥̂paq so is the posterior after every history, which implies that the

action a is strictly optimal after every history. Consequently, V p⇡
a
, ⌫q ´V p⇡̃, ⌫q ° 0 for

every ⌫ P �p⇥̂paqq and every strategy ⇡̃ that does not prescribe action a in every period

with probability 1. Since Gp0q “ min⇡̃:⇡̃p⌫q‰a min
⌫P�p⇥̂paqq pV p⇡

a
, ⌫q ´V p⇡̃, ⌫qq, this implies

that Gp0q ° 0. By the continuity of G there is an "̂ such that if " § "̂, G p"q ° 0. This

implies that for any " § "̂, any optimal policy prescribes the action a for all ⌫ P M",a.

The next Lemma extends an argument of Fudenberg and Levine (1992) to take into

account misspecification. It establishes that if the expectation of the l-th power of the

likelihood ratio between two subjective outcome distributions is greater 1 then the l-th

power of the likelihood ratio of the subjective probability assigned to small environments of

these outcome distributions is a sub-martingale.

Lemma 4. Let p, p1
, p

˚
P � pY q, and l P p0, 1q be such that

ÿ

yPY
p

˚
pyq

ˆ
ppyq

p1pyq

˙
l

† 1. (3)

Then there is "1
° 0 such that for all ⌫ P � p� pY qq, if we let ⌫pC | yq “

≥
qPC qpyqd⌫pqq

≥
qP�pY q qpyqd⌫pqq , then

ÿ

yPY
p

˚
pyq

«ˆ
⌫pB"1 ppq | yq

⌫pB"1 pp1q | yq

˙
l
�

§

ˆ
⌫pB"1 ppqq

⌫pB"1 pp1qq

˙
l

.

Proof. The lemma is trivially true if ⌫pB" pp
1
qq “ 0 for some ". Therefore, without loss of

generality, we can assume that ⌫pB" pp
1
qq ° 0 for all ". Let "̂ be such that ||q´p

1
|| § "̂ implies

that qpyq “ 0 only if p1
pyq “ 0. Let C" “ �pB" ppqq ˆ�pB" pp

1
qq and define G : r0, "̂

2s Ñ R
by

Gp"q “ max
p⌫̄,⌫1qPC"

ÿ

yPY
p

˚
pyq

˜ ≥
B"ppq q̄pyqd⌫̄ pq̄q

≥
B"pp1q qpyqd⌫ 1 pqq

¸
l

.

By the Maximum Theorem, the compactness of � pB" pp
1
qq and � pB" ppqq and the fact that
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Gp0q † 1 by equation (3), there is "1
° 0 such that for all ⌫ 1

P � pB"1 pp
1
qq, ⌫̄ P � pB"1 ppqq

ÿ

yPY
p

˚
pyq

˜ ≥
B

"1 ppq q̄pyqd⌫̄ pq̄q
≥
B

"1 pp1q qpyqd⌫ 1 pqq

¸
l

§ 1. (4)

Then

ÿ

yPY
p

˚
pyq

ˆ
⌫pB"1 ppq | yq

⌫pB"1 pp1q | yq

˙
l

“

ÿ

yPY
p

˚
pyq

˜ ≥
B

"1 ppq ⌫pB"1 ppqqq̄pyqd
⌫pq̄q

⌫pB
"1 ppqq≥

B
"1 pp1q ⌫ pB"1 pp1qq qpyqd

⌫pqq
⌫pB

"1 pp1qq

¸l

“

ÿ

yPY
p

˚
pyq

˜ ≥
B

"1 ppq q̄pyqd
⌫pq̄q

⌫pB
"1 ppqq≥

B
"1 pp1q qpyqd

⌫pqq
⌫pB

"1 pp1qq

¸l ˆ
⌫pB"1 ppqq

⌫ pB"1 pp1qq

˙
l

§

ˆ
⌫pB"1 ppqq

⌫ pB"1 pp1qq

˙
l

where the inequality follows from equation (4).

The next lemma shows that if for every initial belief supported on ⇥, always playing b

almost surely leads to a belief at which action b is not prescribed by any optimal policy, then

b is not a limit action.

Lemma 5. Suppose that for any prior belief ⌫0 supported on ⇥ and any optimal policy ⇡̃

P⇡brb “ ⇡̃p⌫⌧ q for all ⌧ • 0s “ 0 , then b is not a limit action.

Proof. Suppose by way of contradiction that there is an optimal policy ⇡̃ and a history

pa
t
, y

t
q with P⇡̃rpa

t
, y

t
qs ° 0 such that with positive probability ⇡̃ prescribes b after pa

t
, y

t
q in

every future period. Define ⌫0 “ µp¨|pa
t
, y

t
qq, and notice that supp ⌫0 “ suppµ0 “ ⇥. Define

⌫t to be the belief if the agent uses the policy ⇡b, i.e. plays b in every period. As the evolution

of beliefs under ⇡b is the same as under ⇡̃ for every history where the agent continues to play

b, we have that P⇡̃rb “ ⇡̃pµ⌧ q for all ⌧ • ts ° 0 if and only if P⇡brb “ ⇡̃p⌫⌧ q for all ⌧ • 0s ° 0 .

However, the later equals zero by the assumption of the lemma, which establishes that b can

not be a limit action.

The next lemma extends Lemma 3 of FII to show that there exists a uniform l such that

all KL minimizers dominate all the distributions that are " away from the minimizers in the

sense that the expectation of the l-th power of the likelihood ratio is lower than 1.
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Lemma 6. Fix an action a and " ° 0. There exists l ° 0 such that for all l § l, for every

KL minimizer q P ⇥̂paq, and every outcome distribution p
1

R ⇥̂"
paq

fl pq, p
1
q :“

ÿ

yPY
p

˚
a
pyq

ˆ
p

1
a
pyq

qapyq

˙
l

† 1 .

Proof. As noted by FII in their Lemma 3, (i) for each KL minimizer q P ⇥̂paq and every

outcome distribution p
1

R ⇥̂paq there exists an l pq, p
1
q such that flpq, p1

q † 1 for all l § l pq, p
1
q

and (ii) for all q, q1
P ⇥, if l̂ ° l and flpq, q

1
q • 1, then f

l̂
pq, q

1
q • 1. We will now prove that

there exists a uniform l that works for every q P ⇥̂paq and p
1

R ⇥̂"
paq.

Suppose by way of contradiction that there was no l ° 0 such that for all l § l, flpq, p1
q † 1

for all q P ⇥̂paq and p
1

R ⇥̂"
paq. Then define a sequence pqn, p

1
n
q
nPN P p⇥̂paq,⇥z⇥̂"

paqq
N such

that f 1
n

pqn, p
1
n
q • 1. Sequential compactness of ⇥̂paq ˆ cltp P �p⇥q : pa R ⇥̂"

paqqu guarantees

that this sequence has an accumulation point pq, p
1
q with q P ⇥̂paq and p

1
R ⇥̂paq.28 However,

for n °
1

lpq,p1q , f 1
n

pqn, p
1
n
q • 1 implies flpq,p1qpqn, p1

n
q • 1, and the continuity of flpq,p1q at pq, p

1
q

leads to a contradiction with flpq,p1q pq, p
1
q † 1.

A.3 Exponential Concentration of Beliefs

We show next that repeated use of action a implies that the beliefs about the outcome

distribution induced by a concentrate at an exponential rate around the distributions that

“best fit” the empirical frequency of observed outcomes. Importantly, this result does not

require that either actions or empirical frequencies converge. It will be important in what

follows that these results apply pathwise, as they do in the correctly specified case studied by

Diaconis and Freedman (1990), although unlike their result ours only applies for empirical

distributions that are near the true distribution p
˚. For brevity, we limit our analysis to

this set of distribution, since this is enough for our results. In a separate note, Fudenberg,

Lanzani, and Strack (2021), we provide a result that resembles more closely the original

result in Diaconis and Freedman (1990).

For every a P A, ⌘ P p0, 1q and q P �pY q, let q⌘ “ p1 ´ ⌘qp
˚
a

` ⌘q, ⌘t “ 2t´ 1
2 , and

D “ min tpp
1
a
pyq{papyqq : p, p1

P ⇥, a P A, y P Y, p
˚
a
pyq ° 0u .

Proposition 1. Let pai, yiq
⌧

i“1 be a history with positive probability, and suppose that only

action a is played in periods p⌧ `1, ..., ⌧ ` tq. For every q̂ P ⇥̂apaq, there exist I, K̂,K
1

P R``

28We denote the closure of a set by cl.
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such that if the empirical outcome frequency ft “
1
t

∞
⌧`t

i“⌧`1 1yi“y satisfies ||q̂⌘t ´ ft|| † ||q̂ ´

p
˚
a
||t

´ 1
2 {K

1, then

µ⌧`t ptp P ⇥ : @y P supp p˚
a
, |papyq ´ q̂pyq| † "uq

1 ´ µ⌧`t ptp P ⇥ : @y P supp p
å
, |papyq ´ q̂pyq| † "uq

• D
⌧ 

ˆ
K̂"

2 2

It
1
2

˙
exp

´
2K̂t

1
2 "

2
¯
.

To establish Proposition 1 we first prove a sequence of auxiliary results. Given two

outcome distributions q, q1
P �pY q, ⌘ P p0, 1q, and " ° 0, let

U"pq, q
1
, ⌘q “ tq

2
P �pY q : ||⌘q ` p1 ´ ⌘qq

1
´ q

2
|| § "u

denote the ball of radius " around ⌘q ` p1 ´ ⌘qq
1. The next result establishes a form of local

Lipschitz continuity of the function minq1PC Hp¨, q
1
q ´ Hp¨, qq for suitably chosen q P �pY q

and compact C Ñ �pY q.

Lemma 7. Fix q P � pY q with supp q Ñ supp p˚
a
and a compact set C Ñ � pY q such that all

the elements of C are absolutely continuous with respect to p
˚
a
. Then there exists a K ° 0

such that for every f
1

P U"pq, p
˚
a
, ⌘q with supp f 1

Ñ supp p˚
a

|min
q1PC

H pp1 ´ ⌘qp
˚
a

` ⌘q, q
1
q ´ H pp1 ´ ⌘qp

˚
a

` ⌘q, qq ´ min
q1PC

H pf
1
, q

1
q ` H pf

1
, qq | § K" .

The proof of Lemma 7 is in the Supplemental Material.

Let � be a Borel probability measure over probability distributions on Y , let

Q",�pq̄q “

"
q

1
P �pY q : Dq

2
P �pY q : H pq̄, q

2
q § min

qPsupp�

H pq̄, qq , ||q
1
´ q

2
||8 † "

*

be the distributions that are within " of a distribution q
2 with a lower Kullback-Leibler

divergence with the given q̄ than the minimum over supp�, and let

g pp
1
, "q “ min

pP�pY qzQ",�

H pp
1
, pq ´ min

pPsupp�

H pp
1
, pq ° 0

be the minimal increase of the relative entropy from p
1 when it is minimized over �pY qzQ",�

instead of supp�.

Lemma 8. Let �0 be a Borel probability measure over �pY q and for every t P N and

every sequence of outcomes y
t

P Y
t let �tp¨|y

t
q denote the posterior belief after observing

the outcome sequence y
t starting from the prior �0. Then for all " P R`` and ftpyq “
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1
t

∞
t

⌧“1 1y⌧“y we have that

�t pQ",�0 pftq | y
t
q

1 ´ �t pQ",�0 pftq | ytq
• �0

ˆ
Q gpft,"q

2Rpft,"q ,�0
pftq

˙
e
.5tgpft,"q

where

Rpft, "q “ sup
q,q1PQ",�0 pftq

|Hpft, qq ´ Hpft, q
1
q|

||q ´ q1||
.

Proof. Fix " P R`` and for any "̄ P R``, let Qp"̄q “ Q"̄,�0 pp
1
q. By definition of Rpft, "q,

gpft, "q{2Rpft, "q § ", and so minpP�pY qzQp"q H pp
1
, pq ´ max

pPQ
´

gpft,"q
2Rpft,"q

¯ H pp
1
, pq • .5g pp

1
, "q .

From the definition of �t we have that for all yt where the empirical distribution is ft,

�t pQp"q | y
t
q

1 ´ �t pQp"q | ytq
“

≥
Qp"q

±
yPY qpyq

tftpyq
d�0pqq

≥
supp�0zQp"q

±
yPY qpyqtftpyqd�0pqq

•

≥
Q

´
gpft,"q
2Rpft,"q

¯ expp´tH pft, qqqd�0pqq

expp´tminpRQp"q H pp1, pqq

“

ª

Q

´
gpft,"q
2Rpft,"q

¯ exppt min
pRQp"q

H pp
1
, pq ´ tH pft, qqqd�0pqq

• �0

ˆ
Q

ˆ
gpft, "q

2Rpft, "q

˙˙
e
.5tgpp1

,"q,

where the first inequality follows from gpft, "q{2Rpft, "q § ".

Lemma 9. For " ° 0 and ⌘ P p0, 1q, if p P ⇥̂paq, q “ pa, supp� “ tq
1

P �pY q : q1
“ p

1
a
, p

1
P

⇥u then g pp1 ´ ⌘qp
˚
a

` ⌘q, "q • 2⌘"2.

Proof. H is linear in its first argument, so for ⌘ P p0, 1q, argmin
p1
a:p

1P⇥ Hpp1´⌘qp
˚
a

`⌘q, p
1
a
q “

tqu . Then

g pp1 ´ ⌘qp
˚
a

` ⌘q, "q

• min
q1P�pY qzQ",�0

ÿ

yPY
rp1 ´ ⌘qp

˚
a

pyq ` ⌘q pyqs log q1
pyq ´

ÿ

yPY
rp1 ´ ⌘qp

˚
a

pyq ` ⌘q pyqs log q pyq

• p1 ´ ⌘q min
q1P�pY qzQ",�0

ÿ

yPY
p

˚
a

pyq log

ˆ
q

1
pyq

q pyq

˙
` ⌘ inf

q1P�pY qzB"pqq

ÿ

yPY
q pyq log

ˆ
q

1
pyq

q pyq

˙

• 0 ` ⌘ inf
q1P�pY qzB"pqq

ÿ

yPY
q pyq log

ˆ
q

1
pyq

q pyq

˙
• 2⌘"2,

where the first inequality follows from the definition of g, the second from concavity of

the minimum, the third from the fact that q is a KL minimizer, and the fourth is Pinsker

inequality.
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Remark 1. Observe that after every finite time t, the posterior µt satisfies the Assumption 1.

That (i) is satisfied follows from the fact that suppµt Ñ suppµ0. For (ii), let  : R` Ñ R``
be the function whose existence is guaranteed by the regularity assumption (ii). Bayesian

updating implies that for every p P ⇥, " ° 0, µtpB"ppqq • µ0pB"ppqqD
t

•  p"qD
t a.s.

Therefore, by defining  t “ D
t we have limnÑ8 tpK{nqe

n
“ limnÑ8 pK{nqe

n
D

t
“ 8

for all K ° 0, so (ii) is satisfied. N

Proof of Proposition 1. Set I “ Rpq̂⌘t , "q. If q̂⌘t “

∞
⌧`t

i“⌧`1 1yi“y

t
, we have

µ⌧`t ptp P ⇥ : @y P supp p˚
a
, |papyq ´ q̂pyq| † "uq

1 ´ µ⌧`t ptp P ⇥ : @y P supp p
å
, |papyq ´ q̂pyq| † "uq

• µ⌧

ˆ
tp P ⇥ : @y P supp p˚

a
, |papyq ´ q̂pyq| †

gpq̂⌘t , "q

2I
u

˙
e
.5tgpq̂⌘t ,"q

• µ⌧

ˆ
tp P ⇥ : @y P supp p˚

a
, |papyq ´ q̂pyq| † "

2 2

It
1
2

u

˙
exp

`
t⌘t"

2
˘

• D
⌧ 

ˆ
"
2 2

It
1
2

˙
exp

´
2t

1
2 "

2
¯
,

where the first inequality follows from Lemma 8, the second from Lemma 9, and the third

from Assumption 1(ii) and Remark 1.

By Lemma 7 there exists a K̂,K
1

° 0 such that if ||q̂⌘t ´ ft|| † ||q̂ ´ p
˚
a
||t

´ 1
2 {K

1 then

µ⌧`t ptp P ⇥ : @y P supp p˚
a
, |papyq ´ q̂pyq| † "uq

1 ´ µ⌧`t ptp P ⇥ : @y P supp p
å
, |papyq ´ q̂pyq| † "uq

• D
⌧ 

ˆ
K̂"

2 2

It
1
2

˙
exp

´
2K̂t

1
2 "

2
¯
.

A.4 Proof of Results Stated in the Text

Proof of Theorem 1. We prove the statement by contraposition. Suppose that a is a limit

action under the optimal policy ⇡, and let pai, yiq
⌧

i“1 be a history with positive probability.

We show that if the agent plays a at every period after pai, yiq
⌧

i“1 almost surely the belief µt

reaches a region where no optimal policy prescribes a. By Lemma 5 this is enough to obtain

the desired conclusion. Since a is not a uniform BN-E, then there is p1
P ⇥̂paq such that if

supp ⌫ Ñ Eapp
1
q, then a R A

m
p⌫q. We set q “ p

1
a
throughout this proof.

Claim 1. There exists " ° 0 such that if ⌫ P �p⇥q is such that

⌫ ptp P ⇥ : @y P supp p˚
a
, |papyq ´ qpyq| † "uq

1 ´ ⌫ ptp P ⇥ : @y P supp p
å
, |papyq ´ qpyq| † "uq

°
1 ´ "

"
,

31



then ⇡ p⌫q ‰ a.

Proof. Suppose by contradiction that for every n P N there exists a ⌫n P �p⇥q such that

⌫n ptp P ⇥ : @y P supp p˚
a
, |papyq ´ qpyq| † 1{nuq

1 ´ ⌫n ptp P ⇥ : @y P supp p
å
, |papyq ´ qpyq| † 1{nuq

•
1 ´ 1{n

1{n

and a “ ⇡ p⌫nq. Because� p⇥q is sequentially compact, p⌫nq
nPN has a converging subsequence

p⌫ni
q
iPN Ñ ⌫

˚.

To show that this leads to a contradiction, defineG p⌫q “ max⇡̃V p⇡̃, ⌫q´max⇡̃:⇡̃p⌫q“aV p⇡̃, ⌫q .

We claim that if supp ⌫ Ñ tp P ⇥ : @y P supp p˚
a
, papyq “ qpyqu, then G p⌫q ° 0. This is be-

cause the definition of q implies supp ⌫ Ñ Eapp
1
q, so a R A

m
p⌫q, and supp ⌫ Ñ Eapp

1
q, together

with Assumption 1(i), implies that the experimentation value of a is 0.

Next note that as shown in Lemma 2, the space of policy functions endowed with the

product topology is compact and V p¨, ⌫q ´V p¨, ⌫q is a continuous function of the policy.

Since for every policy ⇡̃, V p⇡̃, ¨q is continuous in ⌫, from the Maximum Theorem G is con-

tinuous. But then ⌫˚
ptp P ⇥ : @y P supp p˚

a
, papyq “ qpyquq “ 1 and G p⌫

˚
q “ limn Gp⌫nq “ 0,

a contradiction.

In what follows, we fix an " P R`` that satisfies the conditions of Claim 1. Also, fix

an outcome y
0

P supp p˚
a
, and let f̃t be the empirical frequency of the other | supp p˚

a
| ´ 1

outcomes in the support of p˚
a
. Denote by p̃

˚
a
the true probabilities of the same | supp p˚

a
| ´ 1

outcomes.

Claim 2. f̃t ¨ t ´ p̃
˚
a
t is a | supp p˚

a
| ´ 1 dimensional random walk under the distribution p̃

˚
a
,

and the covariance matrix of its increments is nonsingular.

Proof. Let y P supp p˚
a
zty

0
u. The increment of the y dimension at time t ` 1 is equal to

f̃t`1pyq ¨ pt ` 1q ´ p
˚
a
pyq ¨ pt ` 1q ´ f̃tpyq ¨ t ´ p

˚
a
pyq ¨ t “ 1yt`1“y ´ p

˚
a
pyq

and has expected value 0. Therefore, f̃t ¨ t ´ p̃
˚
a
t is a | supp p˚

a
| ´ 1 dimensional random

walk. Moreover, the covariance matrix for the increments of f̃t ¨ t ´ p̃
˚
a
t is given by ⌃y,y1 “

´p̃
˚
a
pyqp̃

˚
a
py

1
q if y ‰ y

1 and p̃
˚
a
pyqp1´ p̃

˚
a
pyqq if y “ y

1. To see this, observe that the covariance
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between 1y and 1y1 is given by:

p̃
˚
a

pyq p1 ´ Ep̃å
p1yqq

`
0 ´ Ep̃å

p1y1q
˘

` p̃
˚
a

py
1
q p0 ´ Ep̃å

p1yqqp1 ´ Ep̃å
p1y1qq

` p1 ´ p̃
˚
a

py
1
q ´ p̃

˚
a

pyqq p0 ´ Ep̃å
p1yqqp0 ´ Ep̃å

p1y1qq

“ p̃
˚
a

pyq p1 ´ p̃
˚
a

pyqq p´p̃
˚
a

py
1
qq ` p̃

˚
a

py
1
q p´p̃

˚
a

pyqq p1 ´ p̃
˚
a

py
1
qq

` p1 ´ p̃
˚
a

py
1
q ´ p̃

˚
a

pyqq p´p̃
˚
a

py
1
qq p´p̃

˚
a

pyqq

“ ´p̃
˚
a

pyq p̃
˚
a

py
1
q r2 ´ p̃

˚
a

pyq ´ p̃
˚
a

py
1
q ´ 1 ` p̃

˚
a

py
1
q ` p̃

˚
a

pyqs “ ´p̃
˚
a

pyq p̃
˚
a

py
1
q .

By part M35 of Theorem 2.3 of Berman and Plemmons (1994), page 137, if for every row

of the covariance matrix the entry on the diagonal is larger than the sum of the o↵-diagonal

entries, then the matrix is diagonal dominant, and so non singular.29 And for all y1
P Y , we

have that
p̃

˚
a
py

1
qp1 ´ p̃

˚
a
py

1
qq “ p̃

˚
a
py

1
q

ÿ

y‰y1
p̃

˚
a
pyq ° p̃

˚
a
py

1
q

ÿ

y‰y1,y0
p̃

˚
a
pyq

concluding the proof of the claim.

By the Central Limit Theorem pf̃t ´ p̃
˚
a
q
?
t converges to a Normal random variable with

mean 0 and covariance matrix ⌃y,y1 . Let Ft “ B ||q´på ||{K1?
t

´
p̃

˚
a

`
1?
t

pq ´ p
˚
a
q

¯
. We have that

P
”
f̃t P Ft

ı
“ P

”?

tpf̃t ´ p̃
˚
a
q P B||q´på ||{K1 pq ´ p

˚
a
q

ı

Taking the limit t Ñ 8 yields that

lim
tÑ8

P
”
f̃t P Ft

ı
“ P

”
Z̃ P B||q´på ||{K1 pq ´ p

˚
a
q

ı

where Z̃ is a random variable that is normally distributed with mean ~0 and covariance matrix

⌃y,y1 . Thus if we let Et denote the event ft P Ft, it follows that
∞8

t“1 P rEts “ 8. Moreover,

lim inf
tÑ8

∞
t

s“1

∞
t

r“1 P rEs and Ets`∞
t

s“1 P rEss
˘2 “ lim inf

tÑ8

1
t2

∞
t

s“1

∞
t

r“1 P rEs and Ers`
1
t

∞8
t“1 P rEts

˘2 § lim inf
tÑ8

1
t2

∞
t

s“1

∞
t

r“1 P rErs

`
1
t

∞
t

s“1 P rEss
˘2

“ lim inf
tÑ8

1
t

∞
t

r“1 P rErs

`
1
t

∞
t

s“1 P rEss
˘2 “

1

limtÑ8 P rEts
“

1

P
”
Z̃ P B||q´på ||{K1 pq ´ p

å
q

ı .

It then follows from the Kochen-Stone lemma (see Kochen and Stone (1964) or Exercise

29This statement is the special case in which D is the identity.

33



2.3.20 in Durrett (2008)) that

P
« 8£

t“1

8§

s“t

Es

�
• P

”
Z̃ P B||q´på ||{K1 pq ´ p

˚
a
q

ı
° 0 .

The event
ì8

t“1

î8
s“t

Es is invariant under finite permutations of the increments´
1yt“y1 , ...,1yt“y| supp på |´1 ´ p

˚
a

¯
with di↵erent time indices, so the Hewitt–Savage zero–one

law (see, e.g., Theorem 8.4.6 in Dudley (2018)) implies that the probability of the event
ì8

t“1

î8
s“t

Es is zero or one, and since it is strictly positive it must equal one.

This implies that ft P Ft infinitely often with probability 1. So, by Proposition 1 the

agent will eventually take an action di↵erent from a.

Proof of Theorem 2. If. Consider a uniformly strict BN-E a, an optimal policy ⇡ and

 P p0, 1q. By Lemma 3, there exists an " such that if ⌫p⇥̂"
paqq • 1 ´ ", then ⇡ p⌫q “ a.

Recall that for every l P p0, 1q, the function fl : P ˆ P Ñ R̄ is defined by

flpp̄, p
1
q “

ÿ

yPY
p

˚
a
pyq

ˆ
p̄apyq

p1
a
pyq

˙
l

.

By Lemma 6, since ⇥̂"
paq is compact by Lemma 1, and since fl is lower semicontinuous

in its first argument, there exists "1
P p0, "q such that p̄ P ⇥̂"

1
paq implies that flpp̄, p1

q † 1 for

all p1 with p
1

R ⇥̂"
paq. Let K “

`
"

1´"

˘
l

. Then

¨

˝
1 ´ ⌫

´
⇥̂"

paq

¯

⌫

´
⇥̂"1

paq

¯

˛

‚
l

† K ùñ

1 ´ ⌫

´
⇥̂"

paq

¯

⌫

´
⇥̂"paq

¯ †
"

1 ´ "

ùñ ⌫

´
⇥̂"

paq

¯
° 1 ´ " ùñ ⇡ p⌫q “ a.

Let "̄ be such that ⌫
´
⇥̂"̄

paq

¯
° 1 ´ "̄ implies that

¨

˝
1 ´ ⌫

´
⇥̂"

paq

¯

⌫

´
⇥̂"paq

¯

˛

‚
l

†
K p1 ´ q

n
.

Then if the agent starts with a belief ⌫0 with ⌫0p⇥̂"
paqq ° "̄, A p⌫0q “ tau. Moreover, by

Lemma 4, Dubins’ upcrossing inequality, the compactness of ⇥̂"
paq guaranteed by Lemma

1, and the union bound, there is a probability p1 ´ q that the positive supermartingale
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ˆ
1´⌫

1
tp⇥̂

"paqq
⌫

1
tp⇥̂

"paqq

˙
l

never rises above K, so the action played is always a, and "̄ satisfies the

requirement of the statement.

Only if. If a is not a uniformly strict BN-E, there exists p P ⇥̂paq and b ‰ a such that

tbu P A
m

p�pq. But then if we let ⌫ “ �p we have that ⌫
´
⇥̂paq

¯
“ 1. Moreover, there exists

a policy ⇡ that prescribes b at belief ⌫, so that the agent will never update their belief and

will play b forever.

Proof of Theorem 3. piq ñ piiq Immediately follows by Theorem 2.

piiq ñ piq We prove the statement by contraposition. Suppose that a is not a uniformly

strict BN-E, and let ⌫ P � p⇥q, " ° 0. We construct an initial belief ⌫" that is " close to ⌫

but such that the actions do not converge to a.

Since a is not a uniformly strict BN-E, there exists p̂ P ⇥̂paq with tau ‰ A
m

p�p̂q. By

Lemma 1, we can pick a finite collection of open balls pC",iq
n

i“1 of radius " in � pP q that

covers ⇥̂paq and such that for each C",i X ⇥̂paq ‰ H. For every C",i, choose q",i P C",iz⇥̂paq

whose existence follows from the assumption of the theorem.

Define �" : ⇥ Ñ 2⇥ as

�" ppq “

$
&

%
tq",i : p P C",iu if p P C",i for some i

tpu otherwise
.

The correspondence �" is Borel measurable, nonempty, and closed valued, so it has a mea-

surable selection �" by the Kuratowski Selection Theorem (see, e.g., Theorem 18.13 in

Aliprantis and Border (2013)). Define ⌫̄" pCq “ ⌫ p�
´1
"

pCqq. Because the problem is rich,

there is p
1

P ⇥ X B"pp̂q such that Hpp
1
a
, p

˚
a
q † minpPsupp ⌫̄"

Hppa, p
˚
a
q and a R A

m
p�p1q. Set

⌫" “ "�p1 ` p1 ´ "q ⌫̄". Then ⌫" Ñ ⌫, but argmin
p1Psupp ⌫"

H pp
˚
a
, p

1
a
q “ tp̂u, so by Theorem 1, the

probability of converging to a starting from belief ⌫" is 0.

Proof of Theorem 4. By the hypothesis of the theorem papyq “ pa1pyq, and p
˚
a
pyq ° 0

if and only if papyq ° 0 for all p P ⇥ by Assumption 1(i). Thus p
˚
a
pyq ° 0 if and only if

p
˚
a1pyq ° 0 for all a, a1

P A, i.e. p
˚
a
, p

˚
a1 are mutually absolutely continuous. Since the agent

believes that actions do not change the outcome distribution, every p P ⇥ can be identified

with an element of �pY q, and every belief ⌫ P �p⇥q can be identified with an element of

�p�pY qq.

Consider a uniformly strict BN-E a. By Lemma 1, �p⇥̂paqq is compact. For every "̄ ° 0

and q P �pY q let Q"̄pqq “ Q"̄,µ0,a pqq. By Theorem 2, there exists "1
° 0 such that if "1

° "
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and ⌫ pcl pQ" pp
˚
a
qqq ° 1´ " implies Am

p⌫q “ tau the probability of playing a forever starting

from belief ⌫ is larger than 1{2. By the Maximum Theorem, the correspondence Q" is

upper-hemicontinuous, so there is a sequence of outcomes y
t with corresponding empirical

frequency p̂tpyq “
1
t

∞
t

i“1 1yi“y su�ciently close to p
˚
a
to have

q̂ P Q"1{2 pp̂tq , q P Q"1{2 pp
˚
a
q ùñ ||q̂ ´ q|| † "{2.

This implies Q"1{2 pp̂tq Ñ Q"1 pp
˚
a
q from the triangle inequality. Thus by Lemma 8 there is a

time T such that for all t1
° T , if the empirical frequency is p̂t1 “ p̂t, the agent assigns a

relative probability higher than K to an "1 ball around p
˚
a
:

µt1pQ"1 pp
˚
a
qq

1 ´ µt1pQ"1 pp
å
qq

•
µt1pQ"1{2 pp̂tqq

1 ´ µt1pQ"1 pp
å
qq

°
K

2
.

Replicating y
t su�ciently many times yields a sequence yt

1
with empirical frequency p̂t1 “ p̂t

and t
1

° T . Since p˚
a
is absolutely continuous with respect to p

˚
a1 for all a1

P A, this sequence

of outcomes has positive probability, and after it occurs the agent plays a. By Lemma 4 and

the law of iterated expectations, conditional on a being played
´

1´µ
t1 pQ"ppå qq

µ
t1 pQ

"1{2pp̂tqq

¯
l

is a positive

supermartingale. Then by Dubins’ upcrossing inequality, there is positive probability that

this positive supermartingale never rises above 1{K
l, so a is played forever.

Proof of Theorem 5. Let b be a weakly identified strict BN-E. Then there is ⌫ P �p⇥̂pbqq

with tbu “ A
m

p⌫q. Since b is a strict BN-E, and the agent believes the outcome distributions

are independent across actions, we can let ⌫ “ �p where pb “ argmax
p

1
b
:p1P⇥ Ep

1
b

rupb, yqs,

and pa “ argmin
p1
a:p

1P⇥ Ep1
a

rupa, yqs for a P Aztbu. Let ty pbq
i
u

8
i“1 be a sequence of outcomes

such that the empirical frequency 1
n

∞
n

i“1 1ypbqi“y is converging to pb. By Lemma 8, for every

" P p0, 1q, there exists K" such that for all t ° K", µ0,b

`
B"ppbq | y pbq

t
˘

° 1 ´ ".

Because tbu “ A
m

p⌫q, there is �̄ P p0, 1q such that for all � ° �̄, there is p"aq
aPA P RA

` such

that if the belief ⌫̄ is such that ⌫̄b P tµ0,b p¨ | y pbq
t
q : 0 § t § K"b

u
î

t⌫
1
b
: ⌫ 1

b
pB"ppbqq ° 1 ´ "u,

and for all a1
‰ b, ⌫a1

`
B"

a1 ppa1q
˘

° 1 ´ "a1 , then b has the highest Gittins index. For each

� ° �̄, let "� † " be such that if ⌫̄b
`
B"�

pppbqq
˘

° p1 ´ "�q then the probability of converging

to play action a is larger than 1
2 under any optimal policy given the discount factor �, whose

existence is guaranteed by Lemma 14 and the fact that b is weakly identified.

For every a ‰ b, let n̄a • na and ty paq
i
u
na

i“1 be a sequence of outcomes such that the

empirical frequency p̂na
paq converges to pa. By Lemma 8, for every a ‰ b there is a finite

na such that after na observations ⌫a pB"a
ppaq | p̂na

q ° 1 ´ "a. Finally, let nb “ K"�
. Then
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the array
`
ty paq

i
u
na

i“1

˘
aPA has positive probability, so the agent starts to play a after at most

∞
aPA na periods, and with probability 1

2 continues to play a forever.

Proof of Corollary 1. Let ⇡ be an optimal policy. If a is quasi-dominated, with p̂ P ⇥̂paq

as in the definition, there exists " P p0, 1q such that if ⌫aptq : ||q ´ p̂a|| § "uq ° 1 ´ " implies

⇡p⌫q ‰ a. Suppose by way of contradiction that a is played infinitely many times. Then

by the last part of the proof of Theorem 1, since the problem is a subjective bandit there

is t such that µaptq : ||q ´ p̂a|| § "u|pa
t
, y

t
qq ° 1 ´ ", so the agent switches to another

action b. Since while playing an action di↵erent from a the agent does not update µa,

µaptq : ||q ´ p̂a|| § "u|pa
⌧
, y

⌧
qq ° 1 ´ " for all ⌧ ° t, so they will not switch to a anymore, a

contradiction.

Proof of Theorem 6. We prove the statement for ā, the proof for a is analogous. Denote

the optimal policy used by the agent as ⇡. Since the environment is strongly supermodular,

every class of observationally equivalent outcome distributions under action ā is a singleton,

so ā is a uniformly strict BN-E. Theorem 2 and the strong supermodularity of the environ-

ment then imply there is p̄ P ⇥ and K P p0, 1q such that if ⌫ ptp : p ° p̄uq ° K, then the

probability that a is used forever is larger than 1
2 . Denote the highest outcome as ȳ. Since

the environment is strongly supermodular, for every action b P A,

µt`1 ptp : p ° p̄u | pa
t
, y

t
q , pb, ȳqq

1 ´ µt`1 ptp : p ° p̄u | pat, ytq , pb, ȳqq
°

µt ptp : p ° p̄u | pa
t
, y

t
qq

1 ´ µt ptp : p ° p̄u | pat, ytqq
.

Therefore, there exists a finite number n pbq such that if at “ b and yt “ ȳ for all t § n pbq,

then µt ptp : p ° p̄u | pa
t
, y

t
qq • K.

Consider the event E that for all b P A and t § n pbq, xt,b “ ȳ. This event has strictly

positive probability P⇡ rEs. Moreover, if E realizes, after some T̂ §
∞

b‰ā
pn pbq ´ 1q ` 1, the

policy of the agent prescribes action ā. Therefore, after T̂ ` n pāq, for all ⌧ § T̂ ` n pāq ,

and for all y P Y,P rx⌧,ā “ y|Es “ P rx⌧,ā “ ys . Therefore, by Theorem 2 the probability of

converging to ā is at least P⇡rEs
2 .

A.5 Action Frequencies and Mixed Equilibria

By Theorem 1, if action a is not a uniform BN-E, the agent will use a di↵erent action b

infinitely often. We can the use a result from of Esponda, Pouzo, and Yamamoto (2019) to

show that if action b’s outcome distribution does not induce a as a myopic best reply, the

agent will spend a nontrivial fraction of time using actions di↵erent from a. For every a P A,
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let ⇥ paq “

!
p P ⇥̂ paq : a R A

m
p�pq

)
. Let Ca Ñ �p⇥q be the largest convex set such that (i)

it contains all ⌫ with supp ⌫ “ ⇥paqz⇥ paq, and (ii) a P A
m

p⌫q for all ⌫ P Ca. That is, Ca

contains all the beliefs supported on the “good” KL minimizers for action a that induce a as

a best reply, as well as the beliefs around them that still support a as a myopic best reply.

Also, let Aa “ tb : D⌫ P Ca, b P A
m

p⌫qu.

Corollary 2. Let � “ 0, and suppose a P A is a non-uniform BN-E. If there is p̄ P ⇥ paq

such that H pp
˚
b
, p̄bq † H pp

˚
b
, p̂bq for all b P Aa and p̂ P ⇥z tp̄u, then lim inf 1at“a

t
‰ 1 a.s.

Proof of Corollary 2. Let " ° 0 be such that if ||p̄ ´ p|| § ", then a R A
m

p�pq . By

assumption, there exists "1
° 0 such that ⇥̂ p↵q Ñ tp P ⇥ : ||p̄ ´ p|| § "u for all ↵ P � pAq such

that ||↵´a|| † "
1, supp↵ “ Aa

î
tau. Suppose by way of contradiction that lim inf 1at“a

t
“ 1.

Let W⌧ p↵q Ñ �pAq
r⌧,8q be the set of all di↵erentiable functions � : r⌧,8q Ñ � pAq such that

B�t

Bt
P �

´
A

m

´
�

´
⇥̂ p�tq

¯¯¯
´ �t

and �0 “ ↵. Define the random variable ↵̂t to be the empirical frequency of actions up to

time t, i.e., ↵̂t pbq “
1at“b

t
for all b P A. For every ⌧ P rt, t ` 1s let ↵̂⌧ pbq “ ↵̂t pbq p⌧ ´ tq `

↵̂t`1 pbq pt ` 1 ´ tq. From the convergence result (Theorem 2) of Esponda, Pouzo, and Ya-

mamoto (2019), for all T ° 0 limtÑ8 inf�tPWtp↵̂tq sup0§s§T
||↵̂t`s paq ´ �t`s paq || “ 0 a.s. By

Theorem 1, for all t1
P N almost surely there is a t̂ • t

1 such that µ
t̂

R Ca. But then, since

the frequency of action a decreases in a ball of size " outside Ca, for all � P W
t̂
p↵̂

t̂
q, we have

||�
t̂`"1 t̂ paq ´ 1|| ° "

1 and limsÑ8 ↵̂t̂`s
“ a, a contradiction.

There are two reasons that multiple actions can be played with positive probability

in a BN-E: Either every action played can be justified with the same belief over the KL

minimizers, or di↵erent beliefs are needed to justify some of them. The first case requires the

agent to be indi↵erent between the di↵erent actions, so here the BN-E cannot be uniformly

strict. However, signals that take the form of payo↵ perturbations can allow us to obtain

such equilibria as the limit of uniformly strict Berk-Nash equilibria, and the associated

purification can be uniformly stable and positively attractive.

Formally, for every ↵ P � pAq and p P ⇥, let

H↵ pp
˚
, pq “

ÿ

bPA
↵ pbq p

˚
b

pyq log pb pyq and ⇥̂ p↵q “ argmin
pP⇥

H↵ pp
˚
, pq .
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Definition 13. The mixed action ↵ P �pAq is a strongly uniform mixed BN-E if all actions

a P supp↵ are myopically optimal for all ✓ P ⇥̂p↵q.

Given a problem pA, Y, p
˚
, u,⇥q without signals, a problem with signals pA, Y, S, ⇣, p̃

˚
, ũ, ⇥̃q

is its p", vq perturbation, " P R`, v : A ˆ Y ˆ S Ñ R, if (i) ũpa, y, sq “ upa, yq ` "vpa, y, sq,

(ii) p̃˚
a,s

pyq “ p
˚
a
pyq and (iii) ⇥̃ “ tp̃ : Dp P ⇥, p̃a,spyq “ papyq, @pa, y, sq P A ˆ Y ˆ Su.

Corollary 3. If ↵ is a strongly uniform mixed BN-E in pA, Y, p
˚
, u,⇥q, there is a sequence

of strategies p�nqnPN such that each �1{n is a uniformly stable BN-E of a p1{nq-perturbation

of pA, Y, p
˚
, u,⇥q and limnÑ8 ⇣ps : �npsq “ aq “ ↵paq for all a P A. If pA, Y, p

˚
, u,⇥q is

subjectively exogenous and p
˚ has full support, there are positively attractive �1{n.

The proof is in Section B.2 of the Supplemental Material.

References

Aliprantis, C. and K. Border (2013). Infinite Dimensional Analysis: A Hitchhiker’s Guide.

Berlin: Springer-Verlag.

Arrow, K. and J. Green (1973). “Notes on Expectations Equilibria in Bayesian Settings”.

Working Paper No. 33, Stanford University. url: https://scholar.harvard.edu/

green/publications/notes-expectations-equilibria-bayesian-settings-institute-

mathematical-studies-s.

Bell, A. et al. (2019). “Do tax cuts produce more Einsteins? The impacts of financial incen-

tives versus exposure to innovation on the supply of inventors”. Journal of the European

Economic Association.
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