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Abstract

We study how an agent learns from endogenous data when their prior belief is mis-
specified. We show that only uniform Berk-Nash equilibria can be long-run outcomes,
and that all uniformly strict Berk-Nash equilibria have an arbitrarily high probability
of being the long-run outcome for some initial beliefs. When the agent believes the
outcome distribution is exogenous, every uniformly strict Berk-Nash equilibrium has
positive probability of being the long-run outcome for any initial belief. We generalize

these results to settings where the agent observes a signal before acting.
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1 Introduction

We study the joint evolution of an agent’s actions and beliefs when their action can influence
the distribution of outcomes, and their prior may be misspecified in the sense that it assigns
probability 0 to a neighborhood of the true data generating process. Given the complexity
of the real world, such misspecification is plausible in many settings, and has been studied
in a wide range of applications.

We consider a general environment with finite actions and outcomes and — unlike most
past work — do not restrict the agent’s prior belief to have a finite support or any specific
functional form. In this environment, the agent’s prior is a belief over the set of action-
contingent outcome distributions, so the agent is misspecified if they assign probability 0 to
a neighborhood of the true map from actions to distribution over outcomes. The agent’s prior
determines how they perceive the correlation between the outcome distributions induced by
different actions, which we show is a key determinant of the long-run outcome of the learning
process.

Our results characterize the possible limit points of the agent’s actions and their stability
properties. First, Theorem 1 shows that regardless of the agent’s discount factor, if play
converges to an action a, that action is a uniform Berk-Nash equilibrium. Uniform Berk-
Nash equilibrium, which we introduce in this paper, is a refinement of Berk-Nash equilibrium
(Esponda and Pouzo (2016)). Berk-Nash equilibrium requires that the action is myopically
optimal against some belief in the support of the prior that minimizes the Kullback-Leibler
(KL) divergence between the subjective and true outcome distributions given that the agent
plays a— that is, the action must be a best response to a “KL minimizer”. Uniform Berk-
Nash equilibrium strengthens this by requiring that the action is a best response to any
beliefs with support on these KL minimizers. Intuitively, limit points correspond to myopic
optimization even when the agent is not myopic because play will not converge until the
agent no longer perceives an “experimentation value” from non-myopic play; the intuition
for the uniformity requirement is that when play converges, the agent’s beliefs oscillate over
all of the KL-minimizing beliefs.

We then investigate sufficient conditions for two alternative definitions of what it means
for an action to be a long-run outcome. We say that an action is stable if play converges
to it with arbitrarily high probability for some open set of initial beliefs. Theorem 2 shows
that every wuniformly strict Berk-Nash equilibrium is stable, regardless of the agent’s dis-
count factor, where “strict” indicates that the action is the strict myopic best response to

the agent’s beliefs, and “uniformly” requires that this is true for all of the KL-minimizing



outcome distributions (as opposed to being true for at least one of them).

We say that an action is positively attractive if there is positive probability that it is
the limit outcome under every optimal policy for every full-support prior belief. When the
agent believes (either rightly or wrongly) that the distribution of outcomes is the same for
all actions, or in a “subjective bandit problem” where the agent believes that the outcomes
observed when playing one action are uninformative about the outcome distributions induced
by other actions, we obtain partial converses to Theorem 1: All uniformly strict Berk-Nash
equilibria are positively attractive. Moreover, in subjective bandit problems that are weakly
identified (Esponda and Pouzo (2016)) we can relax uniformly strict to strict.

To prove these results, we first establish in Appendix A.3 that with probability one beliefs
concentrate exponentially fast around the KL minimizers.! We use this concentration result
to guarantee that the agent starts to play the equilibrium action with positive probability.
We then use the stability result from Theorem 2 to show that, with positive probability, the
agent uses the action forever. We also observe that in a supermodular decision problem,
extreme uniformly strict equilibria are positively attractive. In this setting, the additional
structure of the problem lets us dispense with the first step of the proof.

We also generalize our results to a setting in which the agent observes a (potentially)
payoff relevant signal before taking an action. Here too a limit action must be a uniform
Berk-Nash equilibrium. Moreover, if the agents ignore the predictive value of the signals,
i.e., the signals are subjectively uninformative, every uniformly strict Berk-Nash equilibrium
is positively attractive.

We illustrate our findings in three economic examples: a monopolist that is misspecified
about the demand function, a central bank choosing an exchange-rate policy, and a seller

that observes a signal and then decides whether to make an investment.

Related Work

Given an objective data generating process, a model is a KL-minimizer if it maximizes the
expected likelihood assigned to a randomly drawn outcome over the support of the agent’s
prior. Berk (1966) shows that the beliefs of an agent asymptotically concentrate on the set
of KL minimizers when the data generating process is exogenous. In many economic appli-
cations, actions and associated signal distributions are not fixed, but change endogenously

over time depending on an action taken by the agent, so the agent’s misspecification has

IThis result is in the spirit of Diaconis and Freedman (1990), which assumes a full-support prior and thus
rules out misspecification.



implications for what they observe and thus for their long-run beliefs. Arrow and Green
(1973) gives the first general framework for this problem, and Nyarko (1991) points out that
the combination of misspecification and endogenous observations can lead to cycles.

There has been a surge of theoretical work on misspecified learning since the seminal work
of Esponda and Pouzo (2016), which defines Berk—Nash equilibrium. This is a relaxation of
Nash equilibrium (for games as as well as decision problems) that replaces the requirement
that players’ beliefs are correct with the requirement that each player’s belief minimizes
the KL divergence between their belief and their observations over the support of their
prior. Esponda and Pouzo (2016) shows that Berk-Nash equilibrium is a necessary property
for limit points when the payoff function is subject to small i.i.d. random shocks as in
Fudenberg and Kreps (1993), and that it is sufficient if in addition the agent is willing to
incur asymptotically negligible optimization losses. Esponda and Pouzo (2019) generalizes
Berk-Nash equilibrium to Markov decision problems.

Fudenberg, Romanyuk, and Strack (2017) and Bohren and Hauser (2020) provide nec-
essary and sufficient conditions for actions to converge when the support of the agent’s
prior contains only two points.? Heidhues, Készegi, and Strack (2018) and He (2019) pro-
vide conditions for global convergence of play of a non-myopic agent in a environments with
additively separable payoffs that satisfy strong supermodularity restrictions, where the Berk-
Nash equilibrium is unique. Heidhues, K&szegi, and Strack (2021) establishes convergence
to a Berk-Nash equilibrium in environments with a normal prior and normal signals. Molavi
(2019) studies misspecification in a temporary equilibrium model of macroeconomics; his
leading example is where agents mistakenly think that some variables have no impact.

The most closely related papers are Esponda, Pouzo, and Yamamoto (2019) (henceforth
EPY) and Frick, lijima, and Ishii (2020) (henceforth FII). EPY uses stochastic approximation
to determine when the agent’s action frequency converges in an environment with finitely
many actions and fairly general priors. We provide a sharper characterization of when play
converges to a single action in the long run, but our results do not characterize the long-run
distribution when this convergence does not occur. Corollary 2 in the Appendix combines our
results with theirs to derive new results about the limiting action frequencies. FII provides
conditions for local and global convergence of the agent’s beliefs without explicitly modelling

the agent’s actions when the agent’s prior has finite support.?

2Bohren and Hauser (2020) considers myopic agents in discrete time; Fudenberg, Romanyuk, and Strack
(2017) analyzes a continuous time model with Brownian noise without assuming myopia.

3Neither model nests the other. FII assumes finite priors, and impose a continuity assumption that our
model can but need not satisfy. Conversely, we rule out the continuum of actions assumed by FII.



Our paper complements the literature on long-run behavior in misspecified models in
three ways: First, we establish that without the asymptotically vanishing payoff pertur-
bations of Esponda and Pouzo (2016), play never converges to a non-uniform Berk-Nash
equilibrium. This uniformity refinement has no analog in FII because it is with respect to
the optimality of actions. Second, we introduce conditions under which an action has pos-
itive probability of being the long-run outcome from any initial belief. Finally, we provide
the first necessary and sufficient conditions for the choices of forward-looking misspecified
agents to converge to a myopic best reply to their beliefs.*

Misspecified agents are featured in work in a wide range of fields. There are many ex-
amples in behavioral economics, such as the “law of small numbers,” the “hot-hand fallacy,”

> Macroeconomists

the winner’s curse, and the link between overconfidence and prejudice.
have been interested in misspecified learning both in the form of misspecified least-squares
predictions as well as more sophisticated models of updating and inference.® In organiza-
tional economics, misspecification has been used to explain e.g. the role of corporate culture
and the low rate and low number of minority inventors. In public economics, misspecifi-
cation helps explain over or under reaction to changes in tax schedules. And in political
economy, misspecification has been used to explain the recurrence of populism and political
polarization.” There is also a related literature on misspecified social learning.®

In addition to papers that consider misspecified Bayesian agents, there is a literature that
studies the long-run outcomes under learning heuristics that might be used when people are
unable to formulate a probabilistic assessment of the data generating process. Many of these
heuristics feature a form of neglect of the relevant elements of the environment, similar to
the ones we consider in our Section 4, e.g. Tversky and Kahneman (1973), Rabin and Schrag
(1999), and Jehiel (2018). More recently, Gagnon-Bartsch, Rabin, and Schwartzstein (2018),
Fudenberg and Lanzani (2020), and He and Libgober (2020) analyze various processes that

can lead agents to change or expand the set of models they consider possible.

4Theorem 4 of Esponda and Pouzo (2016) shows that Berk-Nash is necessary under weak identification and
payoff perturbations. Other work either assumes myopia or don’t obtain convergence to myopic best reply.

°See Kagel and Levin (1986), Rabin and Vayanos (2010), Heidhues, K6észegi, and Strack (2019).

6Bray (1982), Bray and Savin (1986), Cho and Kasa (2015), Cho and Kasa (2017), Molavi (2019).

"See Gibbons, LiCalzi, and Warglien (2019) and Bell et al. (2019) for organizational economics, Rees-Jones
and Taubinsky (2020) and Morrison and Taubinsky (2019) for public economics, and Levy, Razin, and
Young (2020) and Eliaz and Spiegler (2018) for political economy.

8See Bohren (2016), Bohren and Hauser (2020), Frick, lijima, and Ishii (2019), Gagnon-Bartsch (2016), and
Mailath and Samuelson (2020).



2 The Model

2.1 Setup

Actions, Utilities and Objective Outcome Distributions We study a sequence of
choices made by a single agent. In each period ¢ € {1,2,3,...} the agent chooses an action
from the finite set A. This choice has two effects. First, each action a € A induces an
objective probability distribution p¥ € A(Y) = RY over the finite set of possible outcomes
Y.? Second, the action, paired with the realized outcome, determines the flow payoff of the

agent via the utility function u: A x Y — R.

Subjective Beliefs of the Agent The agent correctly believes that the map from actions
to probability distributions over outcomes is fixed and depends only on their current action,
but they are uncertain about the distribution each action induces. Let P = X _, A(Y) <
RY*4 be the space of all action-dependent outcome distributions, and let p, € A(Y') denote
the a-th component of p € P. We endow P with the sup-norm topology, and denote by B.(p)
the ball of radius ¢ around p € P.1°

The agent’s uncertainty is captured by a prior belief pg € A(P), where A(P) denotes
the metric space of Borel probability measures on P endowed with the topology of weak

convergence of measures.

Definition 1. The conceivable outcome distributions are the elements of © = supp . The

agent is correctly specified if p* € ©, i.e. the objective distribution is conceivable.
Throughout the paper, we will maintain the following assumption:

Assumption 1 (Regularity).
(i) Forallpe ©,a€ A, and y € Y, p,(y) > 0 if and only if p*(y) > 0.
(ii) The prior pg has suberponential decay: there is ¥ : R, — R, such that for every
p € O and € > 0 we have py(B:(p)) = V(e) with lim,, ., V(K /n)exp(n) = oo for all
K > 0.

Assumption 1(i) requires that the outcomes that the agent thinks are possible are the

same as those that objectively have positive probability. This assumption guarantees that

9We denote objective distributions with a superscript *.
OFor every finite dimensional vector v, we let ||v|| = max; v; denote the supremum norm.



Bayes rule is always well defined.! Assumption 1(ii) extends Diaconis and Freedman (1990)’s
notion of ¢-positivity to the misspecified case, and adds the requirement that the bounding
U vanishes at a subexponential rate around 0. It is always satisfied by priors with a density
that is bounded away from 0 on their support, and by priors with finite support.'?

Our specification allows the agent’s subjective uncertainty to be correlated across actions.
For example, if the agent is certain that every action generates the same outcome distribution,

then they believe the outcome distributions are perfectly correlated across actions.

Updating Subjective Beliefs We assume throughout that the agent updates their beliefs

using Bayes rule. Denote by u(- | (a*, y')) the subjective belief the agent obtains using Bayes

t

. t
rule after action sequence a’ = (a,),_, and outcome sequence y' = (ys),_;,

§cc TTozy Pa. (y-)dpio(p)
§,cp Loy Pa, (ur)dpo(p)

1 (C | (a'y")) = (Bayes Rule)

Since the agent’s prior has support O, their posterior belief does as well. We sometimes

suppress the dependence of the posterior belief on the realized sequence and just write fu.

Behavior of the Agent A (pure) policy 7 : | J/2, A" x Y' — A specifies an action for
every history. We assume that the agent’s objective is to maximize the expected discounted
value of per-period utility with discount factor 5 € [0,1), and restrict to optimal policies.
Throughout, we let a;,1 = 7w(a’,y") denote the action taken in period t. The objective
action-contingent probability distribution p* and a policy 7 induce a probability measure
P, on (aT,yT):Ozl.l?’ Standard results guarantee that there is an optimal policy 7 that is
Markovian and depends on the history only through the agent’s beliefs; we restrict attention
to such policies.

Given a belief v € A(©) we denote by v, the belief over outcome distributions associated
with action a, L.e. 1,(C) = (1,.ccdv(p) for all Borel sets C = A(Y). We denote by

Ep, [f(9)] = Xyey f(¥)Pa(y) the expectation of f : Y — R under the outcome distribution

1 Assumption 1(i) is satisfied in most applications but it is stronger than necessary. The “if” part is enough
for all our results except the non-myopic version of Theorem 1. In the Supplemental Material, B.2 we
show how this result can be extended to the case where the “only if” part is not satisfied.

2Dirichlet priors also satisfy Assumption 1(ii), even though they do vanish at the edge of their support.
Fudenberg, He, and Imhof (2017) shows by example that even correctly specified Bayesian updating can
behave oddly when the prior vanishes exponentially quickly.

13We spell out the details of this measure at the start of the Appendix.



Pa- A™ (v) denotes the set of myopically optimal actions given belief v, i.e.,

A™ (1) = argmax f E,, [u(a,y)] dve(pa).
acA A(Y)

2.2 Forms of Misspecification

Our model encompasses many sorts of misspecified learning, including the following;:

Subjectively Exogenous Problems We say that there are subjectively exogenous out-

comes when the agent believes that the realized outcome is not affected by the chosen action.

Definition 2. Outcomes are subjectively exogenous if for every a,a’ € A and every p € O,

we have p, = pu.

Note that the agent can believe in exogenous outcomes independent of whether or not
the action really does influence the distribution; if the action does influence the outcome
and the agent ignores this we say the agent exhibits causation neglect. An agent who
thinks the outcome distribution is exogenous updates their beliefs as if they faced an i.i.d.
environment. We will establish that the beliefs in this setting concentrate on the conceivable
outcome distributions closest to the empirical average. We use this result to show that if a

is a uniformly strict Berk-Nash equilibrium, it is positively attractive.

Subjective Bandit Problems The other extreme case encompassed by our setup is where
the agent thinks that they face a bandit problem, i.e. they believe that the distributions
over outcomes induced by different actions are independent. This corresponds to the case

where the agent’s prior pg is a product measure.
Definition 3. An agent faces a subjective bandit problem if py = X .4 po.a € (A (A (Y)N™.

We show that uniformly strict Berk-Nash equilibria are positively attractive in this setting

as well, provided that the agent is sufficiently patient.

One Dimensional Problems In one-dimensional problems, the agent’s uncertainty is
summarized by a parameter v € R. The parameter determines the distribution over outcomes
through a function ¢ which maps parameters to action-dependent outcome distributions.

Formally, the support of the agent’s prior is contained in the image of this function ¢.



Definition 4. The problem is one-dimensional if there exists I' € R and a function ¢ : I' —
P such that © < {¢(7y): v € I'}. A one-dimensional problem is supermodular if A can be
ordered such that (v,a) — Eg),[u(a,y)] is supermodular.

EPY provides a sufficient condition for actions to converge in one-dimensional problems
that are supermodular. Heidhues, Ké&szegi, and Strack (2018) shows that a unique Berk-
Nash equilibrium is globally attracting in supermodular problems where the outcomes are
real numbers and ¢ is an additive shift. Our Example 9 shows that their result does not
hold in our more general setting: a unique (and uniformly strict) Berk-Nash equilibrium
may not be positively attractive. Under a stronger version of supermodularity, our positive

attractiveness results do extend to extremal uniformly strict Berk-Nash equilibria.

Finite Support Another common assumption is that the support of the prior is finite.
With a finite-support prior, if behavior converges to an action a, a is a best reply to all
outcome distributions that minimize the Kullback-Leibler divergence from p¥, so it is a
uniform Berk-Nash equilibrium. However, Example 6 shows that non-uniform Berk-Nash
equilibria can be limit points when the support of the prior is infinite if Assumption 1(ii) is

not satisfied.

Signals Here we suppose that each period the agent observes a signal s € S before taking
an action a € A. The signal may convey information about the outcome distribution, and it
may also directly enter the payoff function.

We allow the agent to be uncertain about the outcome distributions induced by various
signals and actions. Let P = (A(Y))?*S < RY*4*5 be the space of all signal and action
dependent outcome distributions. The agent’s belief is a probability measure u over P,
where p;,(y) denotes the probability under p € P of outcome y after observing signal s
playing action a. Extending the model to signals lets us incorporate the stochastic payoff
perturbations assumed in Esponda and Pouzo (2016). It also lets us model cases where the

agent mistakenly thinks that some information they observe is uninformative.

3 Limit Points and Berk-Nash Equilibria

We are interested in when the agent’s actions converge, and their possible limit points. Note

that these are different questions than whether the agent’s beliefs converge: Beliefs can



oscillate when actions are fixed, as in Berk’s example where the agent doesn’t have an action
choice, and conversely actions can oscillate with fixed beliefs if the agent is indifferent.!*

We say that the action process converges to action a if there exists a time period T € N
such that a; = a for all time periods ¢t > T'. Action a is a limit action if the action process
converges to a with positive probability under some optimal policy 7.'> Note that there may
be several optimal policies for a given prior; which policy is used can influence whether the
action process converges and if so to which points.

The concept of Berk-Nash Equilibria (Esponda and Pouzo (2016)) will play a key role
in our analysis. Intuitively, a Berk-Nash equilibrium is an action a such that there exists a
belief for which a is myopically optimal, and which assigns positive probability only to the
conceivable outcome distributions that best match the objective outcome distribution p;.

Formally, given two distributions over outcomes ¢, ¢ € A(Y') we define

H(q,q") = = a(y)logq (y).

yeyY

Note that —H(q, ¢) is the expected log likelihood of an outcome under subjective distribution
¢ when the true distribution is ¢, so ¢ with smaller H(q,¢') is a better explanation for the
outcome frequency ¢q. The Kullback-Leibler (KL) divergence between p} and p, is given by
H(pk,pa) — H(pk, p*), so any p, that minimizes H (p*, p) also minimizes the KL divergence
between p? and p,.

Recall that p, denotes the outcome distribution p assigns to action a. For each a, let

O(a) = argmin H (p¥,p,) < O (1)
peO

denote the set of conceivable action-contingent outcome distributions that minimize the KL
divergence relative to the true distribution p} given that the agent plays a. Note that the
elements of ©(a) specify an outcome distribution for each action o’ € A, even though ©(a)
only depends on the distributions corresponding to a. We call @(a) the set of KL minimizers
for action a.1®
Berk (1966) established that the agent’s beliefs concentrate on @(a) if they always play

a. This motivates Esponda and Pouzo (2016)’s notion of a Berk-Nash equilibrium. We

14The fact that beliefs can oscillate under a fixed action is the driving force behind the uniformity requirement
in several of our results, such as Theorem 1.

5Formally, there exists a measurable set C € A® x Y® with P, [C] > 0 such that a; converges to a in C.

6Note that if p* € © then each minimizing p explains the observed outcome distribution perfectly, p, = p.
In particular this is true if ug has full support.



introduce variations of this concept to capture different senses in which an action is or is not

a long-run outcome of the agent’s learning process.

Definition 5. Two action-contingent outcome distributions p and p’ are observationally
equivalent under action a if p, = p,. We denote by &,(p) € O the set of action-contingent

outcome distributions in © that are observationally equivalent to p under a.

Definition 6.
(i) Action a € A is a Berk-Nash equilibrium (BN-E) if for some belief v € A(O(a)), a is
myopically optimal given v, i.e. a € A™(v).
(ii) Action a is a strict BN-E if for some belief in v € A(6(a)), a is the unique myopically
optimal action, i.e. {a} = A™(v).
(iii) Action a is a uniform BN-E if for all KL minimizers p € ©(a) there exists a belief
ve A(E(p)) such that a € A™(v).
(iv) Action a is a uniformly strict BN-E if for every belief v € A(O(a)), a is the unique
myopically optimal action, i.e., {a} = A™(v).

Uniformity requires that for each class of observationally equivalent KL minimizers for
action a, there is a belief concentrated on that class for which a is the myopically optimal
choice.!” The difference between BN-E and uniform BN-E disappears in the correctly spec-
ified case, where both concepts coincide with self-confirming equilibrium. In settings where
the KL minimizer is unique, the uniformity requirement has no bite. However, in frameworks
with additional structure, such as symmetry or parametric restrictions, multiple KL mini-
mizers can arise naturally. For example, suppose that agent’s payoff depends on the color y
of a ball drawn from an urn, and the agent’s action is to bet on the color of the drawn ball.
The agent correctly believes their action has no impact on the distribution of outcomes. The
urn has 6 balls: 4 of them white, 1 red, 1 blue. Here there is a finite number of possible
outcome distributions corresponding to the possible urn composition. If the agent wrongly
believes that at most half of the balls share the same color, i.e., p(y) < 1/2 for y € {white,
red, blue}, the two KL minimizers are (3 white, 2 blue, 1 red) and (3 white, 1 blue, 2 red).

The following result motivates our definition of uniform BN-E. It holds regardless of the

171f p is a KL minimizer, i.e. p € @(a)7 then all observationally equivalent actions are as well, i.e. £,(p) S
é(a). When &,(p) contains more than one element for some KL minimizer p, uniformity does not require
that the equilibrium action is a best reply to every KL minimizer in @(a). The only other equilibrium
refinement we know of that, like uniform BN-E, tests for optimality against all beliefs in a non-singleton
set is Fudenberg and He (2020), which studies non-equilibrium learning in a steady-state model where the

agents are correctly specified Bayesians. They do not study the dynamics away from the steady state.
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agent’s discount factor, and for all optimal strategies. The same is true for all subsequent

results except those where the dependence on the discount factor is made explicit.
Theorem 1. FEvery limit action is a uniform BN-E.

One implication of Theorem 1 is that limit actions must be BN-E. In outline, this follows
from the fact that if actions converge to an action then eventually the agent always plays that
action, and Berk (1966)’s result that the agent’s beliefs converge to the set of KL minimizers
when their observations are a sequence of i.i.d. signals.

More strongly, Theorem 1 shows that a limit action must be a uniform BN-E. When
a is not a uniform BN-E, there is an equivalence class of K. minimizers such that a is
not a myopic best reply when beliefs concentrate on that class. The proof of Theorem 1
works by contradiction: Consider an action a which is not a uniform BN-E. If play converges
to a with positive probability there must exist a history after which it is optimal in every
future period to play a. We thus study the agent’s belief process under the assumption
that a is played in every period. As we prove in Proposition 1 in the Appendix, the agent’s
beliefs concentrate around the set of Kullback-Leibler minimizers relative to the realized
outcome frequency exponentially fast. This result allows us to determine the agent’s long
run actions from the long-run frequency of outcomes. If a is not a uniform BN-E, there
is a KL minimizer p’ under which action a is not optimal. Moreover, the number of times
each outcome is realized is a random walk, and by the Central Limit Theorem the outcome
frequency converges to objective outcome frequency p; at rate 1/4/t. This implies that the
probability with which the outcome frequency will be in a ball of radius 1/4/¢ centered around
P (1—1/+/t) +pl, (1/4/t) in a given period ¢ converges to a constant. These balls are chosen
in the direction of the outcome frequency p!, such that the action a is not optimal for large
enough ¢t when the empirical frequency is in these balls. We then apply the Kochen-Stone
Lemma which implies that the probability that the agent’s outcome frequency will be in
such a ball infinitely often is non-negative and the Hewitt-Savage zero-one law implies that
it must equal one. Thus with probability one, the outcome frequency will eventually be such
that the agent takes an action different from a. Thus, a can not be a limit action if it is not
a uniform BN-E.

The same technique can be applied to obtain a starker result in subjective bandit prob-
lems. There Corollary 1 shows that if an action performs poorly under some KL minimizer,
the agent will stop playing it in finite time with probability 1, even if the action is objectively
optimal and the agent is very patient. Example 6 in the Supplemental Material shows that

Theorem 1 can fail without Assumption 1(ii). Here the agent’s prior has countable support

11



and assigns vanishingly low probability to distributions that are close to one of the KL min-
imizers. However, Assumption 1(ii) does not ensure that a uniform BN-E exists, as shown

in the following example. As a consequence, actions need not converge.

Example 1 (Non-existence of Uniform BN-E). A monopolist is uncertain about the demand
for their product. Every period it posts a price in {3,4,5,6,7}, and then a randomly selected
consumer observes the price and decides whether to buy, y = 1, or not buy, y = 0, the good.
The monopolist’s mazximizes revenue u(a,y) = ay, and the true distribution of customer
values is uniform on [3,7]. The monopolist overestimates the variance of consumer values,
and believes that they are either uniformly distributed on [0,8] or on [2,10]. As we show in
the Supplemental Material, the unique BN-E is non-uniform and strict, with price 5. Both
distributions are KL-minimizing for this price, but price 5 is myopically optimal only if the
valuations are uniformly distributed on the high range [2,10]. Theorem 1 implies that the
monopolist’s actions do not converge, even though there is a unique and strict BN-E. This
s because when a = 5, the monopolist eventually sees a sequence of outcomes where few
consumers buy, becomes very confident in the low range of valuations [0, 8], and switches to

a lower price.

Theorem 1 implies the non-convergence theorem of Nyarko (1991) as a corollary since also
in that setting there is no uniform BN-E. Moreover, in the case of myopic agents, Corollary
2 in the Appendix combines the result with Theorem 2 of Esponda, Pouzo, and Yamamoto

(2019) to show the empirical action frequencies cannot converge to some non-uniform BN-E.

4 Sufficient Conditions for Long-Run Persistence

Theorem 1 shows that play can only converge to a given action a if that action is a uniform
BN-E. This section gives sufficient conditions for a to be a long-run outcome in two different

senses, namely stability and attractiveness.

4.1 Stability

We say that action a is stable if play converges to a with high probability starting from
every belief in a neighborhood of a KL minimizer for a. For v € A(©), let B.(v) = {V/' €
A(O)]d(V',v) < e} be the set of beliefs over conceivable distributions that are within € of v.

Define the set ©°(a) as all outcome distributions whose marginal distribution with respect
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to action a is at most ¢ away from a KL minimizer,
©°(a) = {pe O: there exists p’ € O(a) with ||p, — pa|| < e} . (2)

Definition 7.

(i) An action a is stable if for every x € (0,1), there is an ¢ > 0 and a belief v € A(O)
such that for all initial beliefs in B.(v), the action prescribed by some optimal policy
converges to a with probability larger than 1 — k.

(ii) An action a is uniformly stable if for every x € (0,1), there is an € > 0 such that for
all prior beliefs v € A(©) such that v(©°(a)) > 1 — ¢, the action prescribed by any

optimal policy converges to a € A with probability greater than 1 — .

Theorem 1 shows that stable actions must be uniform BN-E. The next theorem shows

that an action is a uniformly strict BN-E if and only if it is uniformly stable.
Theorem 2. An action is uniformly stable if and only if it is a uniformly strict BN-FE.

Theorem 2 differs from past work by providing the first if and only if characterization of
the stability of actions under misspecified learning with non-binary priors, and by allowing
the agent to be non-myopic and thus perceive an information value from experimentation.!®
Its proof has two parts, corresponding to the two directions of the if and only if statement.
To show that every uniformly strict BN-E is uniformly stable, we first show that if beliefs
assign sufficiently high probability to a neighborhood of the KL minimizers, the only optimal
action is the uniformly strict BN-E a. That such a neighborhood exists for a myopic policy
follows from the definition of uniformly strict BN-E. Under a non-myopic policy, since beliefs
are not degenerate, some actions may have an experimentation value. However, when the
beliefs are sufficiently concentrated around the minimizers, the value of any alternative action
cannot be much higher than its value against the most favorable minimizer, and since a is
a uniformly strict BN-E this value is strictly lower than that of a. Then we combine an
observation from FII with a generalization of the arguments in Fudenberg and Levine (1992)
and the Dubins’ upcrossing inequality to guarantee that if the probability initially assigned
to the neighborhood is sufficiently high, it is unlikely to drop below the threshold that makes

action a suboptimal.

8Bohren and Hauser (2020) and Fudenberg, Romanyuk, and Strack (2017) characterize stability when the
agent has a binary prior. FII’s Theorem 1 gives a sufficient condition for stability when the agent’s prior
has finite support. The statement of the theorem is for their general model, which takes the evolution of
the belief process as a primitive, and does not describe the agent’s actions, discount factor, or optimization.
The paper’s three applications all assume myopic choice.
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The proof of the converse direction is much simpler: If a is not a uniformly strict BN-E;,
there is a distribution p in é(a) that makes some other action b the best response, and if we
set v to be a point mass on p the agent always plays b.

Theorem 2 is in contrast to the non-convergence in the monopoly pricing example of
Heidhues, K6szegi, and Strack (2021), where there is a continuum of actions, and actions
that are sufficiently near the strict best response are best responses to nearby beliefs. As we
explain in Section 6, it is not clear what the right definition of uniform stability is for that
setting.

Example 1 shows that Theorem 2 does not extend to strict BN-E that are not uniformly
strict. The next example shows that in Theorem 2 we cannot replace uniformly stable with
stable.

Example 2 (A stable BN-E that is not uniformly strict). Suppose there are 2 actions, a
and b, that induce the same distribution on'Y = {0,1} and such that u(a,-) = u(b,-). The
agent has an arbitrary belief supported on {p : p, = pp}, i.e., they know the actions induce
the same distribution. Here, since the agent is always indifferent, even though action a is

not a uniformly strict BN-E, it is stable under the optimal policy that always prescribes a.

In general there is a gap between uniformly strict BN-E and stability, but in sufficiently

rich problems, this gap is absent.

Definition 8. A problem is rich if for every action a, minimizer p € @(a) and € > 0 there
exists a p' € ©\O(a) with ||p — p/|| < € such that

By, [u(a,9)] = max By, [u(b,y)] > By, [u(a,y)] = max By [u(b,y)].
In words, a problem is rich if for every KL minimizer for every action a, the support of
the agent’s prior includes a nearby distribution under which a performs relatively less well.?

This rules out the previous example and also rules out finite-support priors.

Theorem 3. If a problem is rich, the following are equivalent:
(i) a€ A is a uniformly strict BN-E.
(i) a€ A is stable.

Richness guarantees that if @ is not a uniformly strict equilibrium, there is a KL minimizer

for action a that can be approximated with a sequence of outcome distributions (p"),ey under

9Note that “relatively less well” allows the action to be a best response to all distributions near p.
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which action a is strictly suboptimal. To prove this theorem, for every v we build a sequence
of beliefs (1™),en that have have p™ has the unique KL minimizer for action a, and combine
this with Theorem 1 to show that the probability that the actions converge to a starting

from v, is 0. To summarize our stability results,
Uniformly Strict BN-E = Uniformly Stable < Stable € Uniform BN-E,

where the first inclusion is an equality if the problem is rich, and the second inclusion can

be strict as shown by Example 11 in the Supplemental Material.

4.2 Positive Attractiveness

The previous section gave sufficient conditions for an action to be played in the long-run
with high probability for some initial beliefs. Another natural notion of a being a long-run
outcome is that for every initial belief with support © there is strictly positive probability

that the agent’s action converges to a.

Definition 9. The action a € A is positively attractive if for every optimal policy m and

every initial belief v with suppr = ©,
P, [limat = a] > 0.
t—00

Below we give sufficient conditions for uniformly strict BN-E to be positively attractive.
Benaim and Hirsch (1999) obtains a similar conclusion for the linearly stable Nash equilibria
of stochastic fictitious play.?° These arguments rely on Proposition 1 in the Appendix, which
shows that beliefs about the outcome distribution concentrate around the distributions that
best fit the empirical frequency of outcomes. Importantly, our result applies pathwise and
does not require that either actions or empirical frequencies converge.

Our results on positive attractiveness cover three different cases: subjectively exogenous
outcomes, subjective bandit problems, and strongly supermodular problems. In the first two
cases we are able to identify a particular empirical distribution that is sufficient for analyzing
convergence. With subjectively exogenous outcomes, the agent only tracks a single empirical
distribution. In subjective bandit problems, the agent does consider multiple empirical

distributions, but it is sufficient to study the distribution corresponding to the action in

20The Bayesian foundation of fictitious play (Fudenberg and Kreps (1993)) assumes that the players believe
that the environment is stationary. Away from a steady state the players are misspecified, but when the
system converges to a steady state the stationarity assumption is asymptotically correct. In our setting,
“substantial” misspecification can persist even when behavior converges.
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question. In supermodular problems, we instead show that certain outcome realizations can

lead the agent to lock on to the highest or lowest action.

4.2.1 Subjectively Exogenous Problems

In subjectively exogenous problems, the agent believes that the distribution over outcomes
is the same for all actions. This is a fairly stark assumption; more typically the agent
might believe that their action influences some dimensions of the outcome but not others.
We present the case where the agent believes the action has no effect at all because the

extension to “partially exogenous” outcomes does not bring any additional insight.

Theorem 4. Suppose outcomes are subjectively exogenous. If a is a uniformly strict BN-E

then it is positively attractive.

To prove Theorem we first use Proposition 1 to show that beliefs concentrate around the
distributions that minimize the KL divergence from the empirical frequency on every path
of outcome realizations. We then use this concentration to show there is a finite sequence of
outcomes that has positive probability and leads the agent to play a. Since a is a uniformly
strict BN-E, if beliefs concentrate around the minimizers, a becomes the unique best reply.
While using a, the relative probability the agent assigns to distributions in @(a) increases
in expectation, so we can combine Dubins’ upcrossing inequality with the fact that a is
the unique myopic best reply to beliefs concentrated in @(a) to show that, with positive
probability, the agent will stick to action a forever.

Proposition 4 in EPY shows that for every uniformly strict BN-E a, there exists at least
one prior with support equal to © under which the policy converges to a with positive
probability. FII provides sufficient conditions for the system to converge with probability 1
to a specific BN-E from any initial belief. Our Theorem 4 concludes that every uniformly
strict BN-E has positive probability of being the limit behavior starting from ewvery initial

prior without imposing conditions that imply global convergence to a specific outcome.

Example 3 (Stackelberg game perceived as Cournot). The agent is a seller who every period
faces a competing seller randomly drawn from a large population. The agent first chooses
whether to produce low output, a = 1, or high output, a = 2. The competitor sets their
quantity y at 1 or 2 after observing the agent’s action: If the agent chooses low output the
competitor produces high output with probability 2/3, while if the agent chooses high output
the competitor produces a high quantity with probability 1/3.2* The agent belicves that the

2IThe randomness could arise from a distribution over production costs in the population of competitors.
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competitor chooses output without observing the agent’s action, and that they choose an high
output with some unknown probability p: © = {p € A(Y)? : pa(2) = pi(2)}. The true
distribution is p3(2) = 1/3 = pf(1).

The demand function of the consumers is linear, and the agent has no production cost;
the utility function of the agent is u(a,y) = a(4.5—a—vy). High output is objectively optimal
for the agent, and is also a uniformly strict BN-E. However, low output is also a uniformly
strict BN-E, supported by the wrong belief that the observed high level of production of the
competitor would be the same even if the agent increased output. By Theorem 4 both actions

have a positive probability of arising as limit outcomes starting from every initial prior.

Without the assumption of subjectively exogenous outcomes, uniformly strict BN-E need

not be positively attractive.

Example 4 (A uniformly strict BN-E that is not positively attractive). A central bank
decides whether to keep a flexible exchange rate, a = f, or peg the currency to the dollar,
a = c. The outcome has two binary components, y = (y°,y°), where y¢ says whether the
economy 1s in a boom, and y® whether there is a speculative attack on the currency. The
bank likes booms and dislikes speculative attacks: u(f,y) = y°,u(c,y) = %ye —y®. The bank
correctly believes that whether there is a speculative attack is independent of the state of the
economy. Furthermore, the bank knows that if they maintain a flexible exchange rate, the
probability of a currency attack is 0, and believes that the probability of a currency attack
under a fized exchange rate is either 10% (the true value) or 90%. The bank correctly
believes that pegging the currency to the dollar increases the probability of a boom by 33.3%
over a baseline probability, which the bank believes is either 33.3% or 66.6%, and the belief
is independent across the two dimensions. In truth the baseline is 50%, so the bank is
misspecified.??

Here pegging the currency to the dollar is a uniformly strict BN-FE, but it is not positively
attractive: For any discount factor, if the prior assigns sufficiently high probability to the
states where a currency attack happens with probability 90% if the currency is not pegged to
the dollar, the bank starts out choosing a flexible exchange rate, and sticks with that action
forever. To see why, note that when the currency is floating the bank does not update its

beliefs about the likelihood of a currency attack under a pegged exchange rate.

22That is, the bank believes that the probabilities of a boom with or without peg are either (100%, 66.6%)
or (66.6%, 33.3%), respectively, while in truth they are (83.3%,50%).
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4.2.2 Subjective Bandit Problems

Recall that in a subjective bandit problem (Definition 3), the agent believes that the out-
come distribution is independent across actions. An argument similar to that for subjectively
exogenous problems shows that uniformly strict BN-E are positively attractive in subjective
bandit problems if the agent is sufficiently patient. However, uniformly strict BN-E is a very
demanding concept in subjective bandit problems, as the Kullback-Leibler divergence be-
tween the true and subjective outcome distributions induced by an action does not constrain
the “off-path” beliefs about the consequences of other actions, and very optimistic off-path
beliefs can make some other action a better reply.

However, in these problems we can replace the uniformity requirement with the require-

ment that the equilibrium is weakly identified introduced in Esponda and Pouzo (2016).
Definition 10. A BN-E action a is weakly identified if for all p,p’ € é(a) we have p, = p,.

Weak identification guarantees that once behavior stabilizes on action a, there is no ad-
ditional updating about the relative likelihood of the KL-minimizing outcome distributions.
When the agent thinks the outcome distribution is exogenous, the equilibrium can only be
weakly identified if the KL minimizer is unique. Weak identification is significantly weaker in
subjective bandits, as it only requires the existence of a unique conceivable outcome distri-
bution ¢, that best matches p¥, without imposing any restrictions on what the agent believes

about the consequences of other actions.

Theorem 5. For every subjective bandit problem there is a B < 1 such that if the discount
factor 3 = B, then every weakly identified strict BN-E is positively attractive.

The proof uses the fact that patient agents experiment with actions that they believe
might give them a higher payoff. The conclusion of the theorem is false for myopic agents even
in the correctly specified case, where the BN-E correspond to the self-confirming equilibria,
and with probability 1 the agent may always play whichever action is myopically optimal
given their initial beliefs.

In subjective bandit problems, we can sharpen the conclusion of Theorem 1 for actions
that perform poorly under one of the KL minimizers. We say that action a is quasi-dominated
if there are p € ©(a) and b € A such that E;, [u(a,y)] < E,, [u(b,y)] for all p € ©. That is,
there is a KL minimizer p for action a such that the utility of a under p is lower than that
of action b under any of the p in the support of the prior. Quasi-dominated actions are not

uniform BN-E; so play cannot converge to them with positive probability.
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In a subjective bandit problem even more is true; quasi-dominated actions can be played

only a finite number of times.

Corollary 1. In a subjective bandit problem, any quasi-dominated action is almost surely

played only a finite number of times.

In particular, in two-armed subjective bandit problems where one action is quasi-dominated,
play converges to the other one. Note that this result does not depend on the discount factor,
and is true even if the quasi-dominated action is objectively optimal and the agent assigns
positive probability to it being optimal. In contrast, the probability that a correctly specified

agent locks on to an incorrect action goes to 0 as the discount factor goes to 1.

4.2.3 Strongly Supermodular Problems

Definition 11. We say that the problem is strongly supermodular if we can strictly order
the space of actions (A, >), outcomes (Y, >), and the set of conceivable distributions (0, >)
so that:
(i) w is strictly supermodular in a and y;
(i) if p,p’ € © and p > p/, then for all a € A and y € Y\g, we have p, ({v/ : v > y}) >
. ({y' : v > y}), where § denotes the highest outcome.

Theorem 6. In a strongly supermodular problem, if p} (resp. pi) has full support, and the
highest action a (resp. the lowest action a) is a uniform and strict BN-E, then a (resp. a)

15 positively attractive.

Strong supermodularity implies that the agent will use action a if they observe the highest
y’s sufficiently often. Moreover, the antisymmetric ordering of the elements of © guarantees
that every uniform and strict BN-E is uniformly strict, and so Theorem 2 guarantees that

there is positive probability that once the agent plays a they will stick to it forever.

Example 5 (Under-investment trap). Each period the agent decides how much effort a €
{0,1,2} to exert on a task. The effort can be either successful, y = 1, or unsuccessful, y = 0.
Higher effort makes success more likely: p3(1) = 9/10 > pi(1) = 1/2 > pi(1l) = 1/12.
Moreover, higher effort also increases the benefit of a success: u(a,y) = ay — a/2. Thus the
objectively optimal action is to exert high effort, a = 2.

The agent mistakenly believes that the probability of success depends on their effort and
their intrinsic skill 1, and © is consists of all p such that po(1) = 2/3+¢ > p(1) = 1/2+¢ >
po(l) = 1/3 4+ 4 for some ¢ € [—1/4,1/4].
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Here there are two BN-E: a = 0 and a = 2. In the bad equilibrium a = 0, the KL-
minimizing outcome distribution corresponds to the lowest possible skill level ¢ = —1/4,
which leads the agent to exert the low effort. Since both BN-E are uniformly strict and the
problem s strongly supermodular, Theorem 6 implies that both the Nash equilibrium and the

bad equilibrium with low effort are positively attractive.

5 Signals

Suppose each period before taking an action the agent observes a signal s from a compact
set S, equipped with its Borel sigma algebra. Thus the analog of an action in the previous
sections is now a strategy, i.e. a measurable map o : S — A from signals to actions. Signals
may be payoff relevant, so now utility is a map u : A x Y x § — R, and signals may also
be useful for predicting the outcome distributions, so now p, s € A(Y') depends both on this
period’s action and on the signal observed at the start of the period. A policy 7(a’,y", s'*1)
specifies the action in each period ¢ as a function of past actions, outcomes and signals.

To complete the model we also need to specify the objective distribution of signals. We
focus on the case where the distribution of s is fixed (iid) with distribution ¢ that is known

to the agent, as in Esponda and Pouzo (2016).%3

Subjective Beliefs The agent correctly believes that the map from actions and signals to
probability distributions over outcomes is fixed, but they are uncertain about the distribution
each signal and action pair induces. Let P = A(Y)**9 be the space of all signal and action
dependent outcome distributions. The agent’s uncertainty is captured by a prior belief

o € A(P), again with © = supp uqg.

Assumption 1’.
(i) Forallpe ©,ae A, yeY,and s€ S, pas(y) > 0 if and only if p} (y) > 0.
(ii) The prior po has subexponential decay: there is W : Ry — R, such that for every
p€ O and £ > 0 we have py(B:(p)) = V() with lim V(K /n)exp(n) = « for all K > 0.

Let (- | (s*,a',y")) € A(P) denote the agent’s subjective belief obtained using Bayes
rule after observing the sequence of signals and outcomes (s, y*) when taking the actions a’.
We say that two outcome distributions p, p’ € © are observationally equivalent under the

strategy o if po(s)s(y) = p;(s)’s(y) for all s € S and y € supppj,) ., and we let E,(p) denote

23 A continuum of signals allows payoff shocks that generate continuous best-response distributions.
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the outcome distributions that are observationally equivalent to p under o. To simplify the
analysis, we make the following assumption, which is satisfied for example if the signals are

payoft shocks, or if there are only finitely many signals.

Definition 12. The environment is finite dimensional if there is a partition = = {&;,...{y}
of S into a finite number of measurable sets such that the agent correctly believes the same
outcome distribution applies for all s in &;: p, s = pas forallp e OuU{p*},aec A,ie {1,..., N},

and s, s’ €¢;.

Under this assumption, we abuse the notation by letting p, ¢, denote the outcome distri-
bution prescribed by p after action a and an arbitrary signal in &;. With this, the relevant

set, of “closest beliefs to the truth” is now

~

O(0) = argmin Y C(&)H (Pi e Pois)e.) -

Pe®  giem

We use this modified definition of the minimizers to extend the definition of the equilibrium
concepts to this more general setting. The proofs for all of the results of this section are in

the Supplemental Material.

Definition 6'.
(i) Strategy o is a BN-E if there exists a belief v € A(é(o)) such that o is myopically
optimal given v.
(ii) Strategy o is a uniform BN-E if for all p € ©(0) there exists a belief v e A (E,(p)) such
that o is myopically optimal given v.
(111) Strategy o is a uniformly strict BN-E if o is the unique myopic best reply to any belief
inveAO()).

Theorem 1'. Suppose the agent’s beliefs are finite dimensional. If o is a limit strategy, then

o is a uniform BN-FE.

The proof of this result is very similar to the proof of Theorem 1. The main difference is
that the relevant random walk is the empirical distribution over joint realizations of signals
and outcomes.

Similarly, we can extend our result on the stability of uniformly strict BN-E. Specifically:

24Here uniqueness is up to a set of signals that have zero probability under .
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Theorem 2'. Suppose o is a uniformly strict BN-E. Then there is a belief v € A (O) such

that for every k € (0,1) there exists an € > 0 such that starting from any prior belief in
BE/ (l/) N

t
Pr | im —— > 1o@ryrstt—o(s,) =1 — K| >1—kK.

tooot + 1 =

Example 10 in the Supplemental Material illustrates the long-run biases that can be
induced when the agent mistakenly thinks that signals are uninformative. There, a seller
receives a signal about the current period’s market, and decides whether to undertake an
investment that may boost sales. The seller does not realize that when more consumers show
up, a lower fraction of them buy; we show that this can lead to persistent underinvestment
when market attendance is high.

When the agent thinks the signals are uninformative, their prior has support on distri-
butions of y given a that are independent of s. Here the only reason they might influence
the agent’s choices is that they may directly enter their payoff function. The next result
shows that all uniformly strict BN-E are positively attractive when signals are subjectively

uninformative and the true data generating process has full support.

Theorem 4'. If signals are finite, subjectively uninformative, outcomes are subjectively ex-
ogenous, and that the true outcome distribution p* has full support, then any uniformly strict

BN equilibrium o is positively attractive.

The proof of this result is similar to that of Theorem 4, because when signals are subjec-

tively uninformative we can apply Proposition 1 to the uncontingent empirical distribution.

6 Concluding Remarks

Learning in Large Population Games The biases we consider are relevant in non-
equilibrium models of learning about the prevailing distribution of strategies. Consider a
finite I player game, and suppose there is a continuum of agents in each player role ¢ € [
who are matched every period to play the game, and observe the actions played in their
matches but nothing else. In a steady state,?® the problem faced by an agent in population
1 is equivalent to the one we considered in the previous sections: the agent correctly believes

they are facing a stationary environment, and they realize that they do not affect the next

25These models do have steady states when there is a steady outflow of agents balanced by an inflow of new
ones; see e.g. Proposition 3 in Fudenberg and He (2018).
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period’s distribution of opponents’ strategies. Causation neglect corresponds to the bias
of an agent who thinks they are playing a simultaneous-move game, when in reality their
opponents observe the agent’s choice before moving. Subjective bandit problems arise when
the agent has independent beliefs about the responses to different strategies. In games of
incomplete information, the agent may have signal neglect, and incorrectly believe that the
game has independent private values.

Our results help characterize the possible limit actions in these situations. Of course,
extensive-form games may not have strict equilibria, so some of our results will not apply,
but it may be possible to extend some of our conclusions to equilibria that are on-path
strict in the sense of Fudenberg and He (2020). Also, games need not have pure-strategy
equilibria, but it may be possible to apply our methods to setting where each agent plays

deterministically, and different agents in the same player role chose different actions.?6

Infinitely Many Actions When the agent has a finite number of possible actions or stage-
game strategies, as we have assumed in this paper, an equivalent definition of uniformly strict
BN-E is an action a that is the unique best response to every belief in a neighborhood of
the KL minimizers for a. With infinitely many actions and continuous payoff functions,
actions that are sufficiently near the strict best response incur arbitrarily small losses and
are best responses to nearby beliefs. Here the two definitions of uniformly strict BN-E are
not equivalent. Indeed, as shown by an example in Heidhues, Ké&szegi, and Strack (2021),
some BN-E that are uniformly strict BN in the sense of Definition 6 may not be positively
attractive. However, we conjecture that the positive attractiveness result continues to hold

under the alternative definition.

Summary and Discussion In many economically relevant settings it seems plausible
that agents misunderstand some aspects of the world. For this reason it is important to
understand what beliefs these agents will develop and how they will behave. This paper
provides sharp characterizations of what actions arise as the long-run outcomes of misspec-
ified learning. We show that all uniformly strict BN-E are stable, and that under a mild
condition only uniform BN-E can be stable. Moreover we show that play can only converge
to uniform BN-E. Our work thus suggests uniformity should be imposed as a refinement of

BN-E. We then provide the first sufficient conditions for an action to be positively attractive

26 Alternatively we could consider a model with one agent per player role and payoff perturbations, as in
Fudenberg and Kreps (1993) and Esponda and Pouzo (2016).
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under misspecified learning. Here we highlight the role played by the correlation that the

agent perceives between the outcome distributions associated with different actions.

A Appendix

Section A.1 formally describes the space where our stochastic processes are defined, Sec-
tion A.2 states some preliminary technical lemmas, Section A.3 proves that beliefs concen-
trate around the KL minimizers at and exponential rate, and Section A.4 contains the results

of the main text for the models that do not have signals.

A.1 Sample Space

We work with the probability space (€2, F,P). The sample space Q = (Y*)4 consists of
infinite sequences of action dependent outcome realizations (zq1,Zq2,.-.)aca, Where T,y
determines the outcome when the agent takes the action a for the k-th time. JF is the
product sigma algebra and the probability measure P is the product measure induced by
independent draws from the relevant component of p*. The outcome observed by the agent
in period t after action a; is y; = x4, x, where k = |{T < t: a, = a;}| is the number of times
the agent has taken action a;, up to and including period t.2” The probability measure P,

over (a, yT)iO:1 induced by the policy 7 is defined as follows: For every t € N and cylinder

t
(CLT, y7)7—=17

i i ! o t'—1
P [(GT,yT)tT:l] _ 0, if there exists t' € {1,....t} : ay # 7((ar,Yr)-_1)
Ht7=1 Pa.(y-) otherwise.

A.2 Preliminary Lemmas and Definitions

Denote the set of conceivable outcome distributions for action a that best match p} by

@a(a) = argmin H (p¥, p,) < A(Y).

Da:pEO

Lemma 1. For every a € A and e > 0, ©(a) defined in equation (1), O,(a), ©°(a) defined

~

in equation (2), and A(O(a)) are compact.

27 An alternative specification has sample space (Ta1,%a2s - - -)aca, With 4, denoting the outcome realization
if the agent takes action a in period k. An argument similar to that of Lemma 5 of Fudenberg and He
(2017) shows that this would not change our results.
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The proof of Lemma 1 is routine and relegated to the Supplemental Material.
For every p € P and every policy 7 let [, . denote the expectation operator over action
and outcome sequences that is induced by policy m under outcome distribution p. We work

with the agent’s normalized value throughout, which is

Virv)=(1- f [Z 5t tulay, v ]] dv(p).

t=

The set of policy functions is IT = AUzo A",

Lemma 2. II is compact in the product topology, and for allv € A(©), V (-,v) is continuous

with respect to the product topology.

Lemma 2 is a consequence of the more general Lemma 11 which covers cases where each
period the agent observes a signal before choosing their action. This lemma is proved in the
Supplemental Material.

Next we bound the difference between the value of using action a and the value of any
other action in terms of their expected utility given that beliefs are concentrated around
the outcome distributions é)(a). Denote the set of beliefs over conceivable distributions that

assign at least probability 1 — & to ©°(a) by
M., ={reA®): v(©°a)) = 1—¢}.

The following lemma shows that if the agent’s beliefs are sufficiently concentrated on the set
of KL minimizers associated with a uniformly strict BN-E a, the agent will play a, even if

the agent is not myopic.

Lemma 3. If ac A is a uniformly strict BN-E, then for every optimal policy w, there exists

an € > 0 such that for alle <é,ve M., — 7(v)=a.

Proof. Let 7 denote the policy that prescribes to always play a. By Lemma 2, the space of
the policy functions endowed with the product topology is compact. Since the subset of policy
functions that do not prescribe a at the initial history is closed, this subset is compact as
well, and because € [0, 1), the value function is continuous at infinity, so V' (7%, v) =V (-, v)
is a continuous function of the policy. Moreover since E,, - [>,2, [ 'u(ay, y;)]] is continuous
inp, V(r% -) =V (7,) is continuous in v.

Define G(g) as the minimal gain from playing a forever instead of using some best policy 7

that does not play a at a belief v in M, ,: G(g) = minzz(,)2e Minyers, , (V (7%, v) =V (7, v)) .
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Given that e — M, , is an upper hemicontinuous and compact valued correspondence, G is
continuous in €.

Note that My, = ©(a) which is the set of KL minimizers given action a. For every belief
supported on this set a is the unique maximizer as it is a uniformly strict BN-E. If the prior
belief is supported on é)(a) so is the posterior after every history, which implies that the
action a is strictly optimal after every history. Consequently, V (7% v) -V (7,v) > 0 for
every v € A(@(a)) and every strategy 7 that does not prescribe action a in every period
with probability 1. Since G(0) = minz.z(,)xe Min,cp @@y (V (7%, v) =V (T, 7)), this implies
that G(0) > 0. By the continuity of G there is an € such that if ¢ < &, G (¢) > 0. This

implies that for any ¢ < €, any optimal policy prescribes the action a for all v € M, ,. ]

The next Lemma extends an argument of Fudenberg and Levine (1992) to take into
account misspecification. It establishes that if the expectation of the [-th power of the
likelihood ratio between two subjective outcome distributions is greater 1 then the [-th
power of the likelihood ratio of the subjective probability assigned to small environments of

these outcome distributions is a sub-martingale.

Lemma 4. Let p,p',p* € A(Y), and [ € (0,1) be such that

S (52 ) <1 ()

= P'(y)

Then there is €' > 0 such that for allv e A(A(Y)), if we let v(C' | y) = M%, then
qeA(Y)

Proof. The lemma is trivially true if v(B. (p')) = 0 for some . Therefore, without loss of
generality, we can assume that v(B. (p’)) > 0 for all €. Let € be such that ||¢—p|| < € implies
that g(y) = 0 only if p'(y) = 0. Let C. = A(B. (p)) x A(B. (p')) and define G : [0,5] > R
by

(V,V/)ECg

a5 () \ !
G(e) = max *( )<SSBE(p)q z) ((qq))> :

By the Maximum Theorem, the compactness of A (B. (p')) and A (B- (p)) and the fact that
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G(0) < 1 by equation (3), there is &’ > 0 such that for all v/ € A (B (p)), 7 € A (B (p))

S (g q(y)dV(q))> . n

= q(y)dv' (g

l

_ v(@)
)
q

v(q)
er (y)d u(Bf(ﬂ))

- ( (Bsf p)

where the inequality follows from equation (4). [ ]

The next lemma shows that if for every initial belief supported on ©, always playing b
almost surely leads to a belief at which action b is not prescribed by any optimal policy, then

b is not a limit action.

Lemma 5. Suppose that for any prior belief vy supported on © and any optimal policy 7
Po[b = 7(v;) for all T = 0] =0, then b is not a limit action.

Proof. Suppose by way of contradiction that there is an optimal policy 7 and a history
(a,y") with Pz[(a’,y")] > 0 such that with positive probability 7 prescribes b after (af, y*) in
every future period. Define vy = pu(-|(a’, ")), and notice that supp vy = supp po = ©. Define
v; to be the belief if the agent uses the policy 7, i.e. plays b in every period. As the evolution
of beliefs under 7 is the same as under 7 for every history where the agent continues to play
b, we have that Pz[b = 7(u,) for all 7 > ¢] > 0if and only if Ps[b = 7(v,) for all 7 = 0] > 0.
However, the later equals zero by the assumption of the lemma, which establishes that b can

not be a limit action. ]

The next lemma extends Lemma 3 of FII to show that there exists a uniform [ such that
all KL minimizers dominate all the distributions that are ¢ away from the minimizers in the

sense that the expectation of the [-th power of the likelihood ratio is lower than 1.
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Lemma 6. Fiz an action a and € > 0. There exists | > 0 such that for all | <1, for every

KL minimizer q € ©(a), and every outcome distribution p' ¢ ©°(a)

fila,p) = Y piy) (M)l <1.

er qa (y)

Proof. As noted by FII in their Lemma 3, (i) for each KL minimizer ¢ € O(a) and every
outcome distribution p’ ¢ é)(a) there exists an [ (¢, p') such that f;(¢,p") < 1foralll <1(q,p’)
and (ii) for all ¢,¢’ € ©, if [ > and filg,¢') = 1, then fi(¢q,q") = 1. We will now prove that
there exists a uniform [ that works for every ¢ € ©(a) and p' ¢ ©°(a).

Suppose by way of contradiction that there was no [ > 0 such that for all [ <, fi(¢,p’) < 1
for all ¢ € ©(a) and p’ ¢ ©°(a). Then define a sequence (gn,77,), . € (©(a), ©\O(a))N such
that f1(gn,p,,) = 1. Sequential compactness of O(a) x cl{p € A(O): p, ¢ ©°(a))} guarantees
that tﬁis sequence has an accumulation point (g, p’) with ¢ € @(a) and p ¢ @(a).28 However,

1

for n > -, f%(qn,pg) > 1 implies fiqp(qn,p),) = 1, and the continuity of fi4 ) at (g,p")

leads to a contradiction with fyq,) (¢,p') < 1. [

A.3 Exponential Concentration of Beliefs

We show next that repeated use of action a implies that the beliefs about the outcome
distribution induced by a concentrate at an exponential rate around the distributions that
“best fit” the empirical frequency of observed outcomes. Importantly, this result does not
require that either actions or empirical frequencies converge. It will be important in what
follows that these results apply pathwise, as they do in the correctly specified case studied by
Diaconis and Freedman (1990), although unlike their result ours only applies for empirical
distributions that are near the true distribution p*. For brevity, we limit our analysis to
this set of distribution, since this is enough for our results. In a separate note, Fudenberg,
Lanzani, and Strack (2021), we provide a result that resembles more closely the original
result in Diaconis and Freedman (1990).

For every a € A, n € (0,1) and ¢ € A(Y), let ¢, = (1 —n)pk + ng, n = 272, and
D = min{(p,(y)/pa(y)) : p.p € ©,a€ A,y e Y, p;(y) > 0}.

Proposition 1. Let (a;,y;)7_, be a history with positive probability, and suppose that only
action a is played in periods (T+1,...,7+1t). For every j € ©,(a), there exist I, K, K" € R,

28We denote the closure of a set by cl.
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such that if the empirical outcome frequency f; = ZZTJF:H iy Satisfies ||qn, — fil| < ||g —
pi|[t2 /K, then

pirie ({p € ©: Yy € supp p, [pa(y) — 4(y)| < €})
1 — ey ({p € ©: Yy € supppi, |pa(y) — d(y)| < €})

. 2 A1
> D" <K52[ 1) exp <2Kt§52> .
3

To establish Proposition 1 we first prove a sequence of auxiliary results. Given two
outcome distributions ¢,¢' € A(Y'), n€ (0,1), and £ > 0, let

Us(g,q'm) = {¢" € AY) : [lng + (1 —=n)d = "l < &}

denote the ball of radius € around ng + (1 —n)q’. The next result establishes a form of local
Lipschitz continuity of the function mingec H(-,¢") — H(+,q) for suitably chosen g € A(Y)
and compact C' < A(Y).

Lemma 7. Fiz g€ A (Y) with supp ¢ < supp p¥ and a compact set C = A (Y') such that all
the elements of C' are absolutely continuous with respect to pk. Then there exists a K > 0

such that for every f' € U.(q,pk,n) with supp f’ < supp p

IrqrggH((l—n)pZ+nq,Q’)—H((l—n)pa+?7q q) — mlnH(f ¢)+H(fq)| < Ke.

The proof of Lemma 7 is in the Supplemental Material.
Let x be a Borel probability measure over probability distributions on Y, let

gesupp x

Qe (@) = {Q’ eAY):3¢"e A(Y): H(q.¢") < min H(q,q),|l¢" = ¢"[lc < 8}

be the distributions that are within € of a distribution ¢” with a lower Kullback-Leibler

divergence with the given ¢ than the minimum over supp y, and let

'.e)= min H(p ,p)— min H(p',p)>0
g(p ) PEA(Y)\Qe,x (p p) PESUPP X (p p)

be the minimal increase of the relative entropy from p’ when it is minimized over A(Y)\Q:

instead of supp y.

Lemma 8. Let xo be a Borel probability measure over A(Y') and for every t € N and
every sequence of outcomes y' € Y let x¢(:|y") denote the posterior belief after observing

the outcome sequence y' starting from the prior xo. Then for all e € R, and fi(y) =
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ISt 1, -, we have that

Xt (Qexo (f1) 1Y)
1= Xt (Qerxo (f) | 9

2R(ft.e)’

) > Yo (Q o) . (ft)) e.5tg(ft,5)

where

H —H /
R(ft,g) = sup | (ft7Q) /(ft,(])|.
4,9'€Qe x( (ft) ||q —q H
Proof. Fix ¢ € Ry, and for any € € Ry, let Q(&) = Qz, (p'). By definition of R(f;,¢),
9(fi,€)/2R(fi,€) < €, and so mingeayyoe H (0, p) — maxpeQ<$) Hpp) > 5900.5).

From the definition of y; we have that for all 4 where the empirical distribution is f;,

xt (Q(e) | yt) _ SQ(E) Her q<y>tft(y)dX0(Q> - SQ(%) exp(—tH (fi,q))dxo(q)
@ Youpo rora(e) Hyer 49) W dxolg) exp(—t minygqe) H (7', p))
- exp(t min H (p',p) —tH (f;,q))d
L(%{Ei)) p( pEQ(e) (p p) (ft Q)) Xo(Q)
g(ft7€> Stg(pl )
> — Styg(p' e
Xo <Q (QR(ft,g))>e 7
where the first inequality follows from g¢(f;,€)/2R(f;, ¢) < e. .

Lemma 9. Fore > 0 andne (0,1), if pe O(a),q = pa,suppx = {¢ € A(Y) : ¢/ = pl,p €
O} then g ((1 —n)p; + ng,e) = 2ne>.

Proof. H is linear in its first argument, so for n € (0,1), argmin,, .. ,cq H((1—n)p; +nq,p,) =
{q}. Then

g (1 =n)p; +nq,¢)

> ealin DI =)k () +ng ()] logq () = D [(1 = n)pi (v) +ng (v)]log ¢ (y)

>(1-7) min Pz (y) log (M) 0 a2 10108 <L@))

CEA)\Qeixo S q(y) TeAN)\B-(0) I q(y)

/
>0+n inf Z q(y)log (M) > 2ne?,

qeA(Y)\Be(q) = q (3/)

where the first inequality follows from the definition of g, the second from concavity of
the minimum, the third from the fact that ¢ is a KL minimizer, and the fourth is Pinsker

inequality. [
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Remark 1. Observe that after every finite time ¢, the posterior u; satisfies the Assumption 1.
That (i) is satisfied follows from the fact that supp u; S supp po. For (ii), let ¥ : R, — R,
be the function whose existence is guaranteed by the regularity assumption (ii). Bayesian
updating implies that for every p € ©, ¢ > 0, p(B:(p)) = po(B:(p))D' = V(e)D" aus.
Therefore, by defining ¥W; = D'U we have lim,, ., ¥;(K/n)e” = lim, ., V(K /n)e"D" = oo
for all K > 0, so (ii) is satisfied. A

T+t
— Zi:‘r+1 1yi:

Proof of Proposition 1. Set I = R(gy,,¢). If ¢, = ==—"=", we have

tir4t ({p € ©: Vy € supp pk, [pa(y) — 4(y)| < €})
1 — pre ({p € ©: Vy € supp p¥, pa(y) — 4(y)| < €})

% ~ g (ng . Gny »E
> U ({p € O: Yy e suppps, [pa(y) — 4(y)| < —( 27’[ )}) e5t9(‘lnt: )
. . 2 . 2 1
> i, ({p € ©: Yy e supppy, [pa(y) — 4y)| < & I }> exp (tme”) = D™V <52 Itl) exp <2t262> :

where the first inequality follows from Lemma 8, the second from Lemma 9, and the third
from Assumption 1(ii) and Remark 1.
By Lemma 7 there exists a K, K’ > 0 such that if ||G,, — fi|| < || — p*||t~2 /K’ then

prve ({p € ©: Yy € supppi [paly) —dw)l <2}) oy (f{gzl> exp (2]%75%62)
1= pirii ({p € ©: Wy € suppp, [pa(y) — 4(y)] < €}) 1

t2

A.4 Proof of Results Stated in the Text

Proof of Theorem 1. We prove the statement by contraposition. Suppose that a is a limit
action under the optimal policy 7, and let (a;,y;)]_; be a history with positive probability.
We show that if the agent plays a at every period after (a;,y;)7_; almost surely the belief y;
reaches a region where no optimal policy prescribes a. By Lemma 5 this is enough to obtain
the desired conclusion. Since a is not a uniform BN-E, then there is p' € ©(a) such that if

suppv € E,(p'), then a ¢ A™(v). We set ¢ = p/, throughout this proof.

Claim 1. There ezists € > 0 such that if v € A(©) is such that

v({pe©: Yy esuppp},|p.(y) —a(y)| <e}) Jl-c
1—v({pe©: Yy esuppps,|p.(y) — q(y)| <e}) €

Y
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then w (V) # a.

Proof. Suppose by contradiction that for every n € N there exists a v, € A(©) such that

vo ({p € ©: ¥y € supppy, paly) —aly)| <1/n}) _ 1-1/n
1— v, ({pe©: Vyesuppps, [pa(y) —aly)| < 1/n}) = 1/n

and a = 7 (1,). Because A (0) is sequentially compact, (v,), . has a converging subsequence

neN
(Vi )jen = V™

To show that this leads to a contradiction, define G' (v) = maxzV (7, v)—maxz.z()=V (T, 7).
We claim that if suppr € {p € ©: Vy € supppi, p.(y) = q(y)}, then G (v) > 0. This is be-
cause the definition of ¢ implies suppv € &,(p'), so a ¢ A™(v), and suppv € &,(p’), together
with Assumption 1(i), implies that the experimentation value of a is 0.

Next note that as shown in Lemma 2, the space of policy functions endowed with the
product topology is compact and V (-,v) =V (-,v) is a continuous function of the policy.
Since for every policy 7, V (7, ) is continuous in v, from the Maximum Theorem G is con-
tinuous. But then v* ({p € ©: Vy € supp p*, p.(v) = ¢(y)}) = 1 and G (v*) = lim,, G(v,,) = 0,

a contradiction. ]

In what follows, we fix an ¢ € R, that satisfies the conditions of Claim 1. Also, fix
an outcome 3° € suppp¥, and let f: be the empirical frequency of the other | supp p¥| — 1
outcomes in the support of p*. Denote by p the true probabilities of the same | supp pi| — 1

outcomes.

Claim 2. ft -t — p¥t is a | supppi| — 1 dimensional random walk under the distribution p,

and the covariance matrix of its increments is nonsingular.

Proof. Let y € supp pi\{y°}. The increment of the y dimension at time ¢ + 1 is equal to
Froaly) - (¢ +1) =pi(y) - (E+1) = fily) -t =pi(y) -t = Ly 1=y — P5(Y)

and has expected value 0. Therefore, ft -t — pitis a |supppi| — 1 dimensional random
walk. Moreover, the covariance matrix for the increments of f; - t — pat is given by X, =

—p¥(y)pE(y) if y # v and pk(y)(1 —p¥(y)) if y = /. To see this, observe that the covariance
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between 1, and 1,/ is given by:

P () (1= Eg (1)) (0= Ex (1)) + P (1) (0 — B (1)) (1 — Egs (1))
+ (1 =55 (v) — 05 (1) (0= Egx (1,))(0 — Egx (1))

= Pa (y) (1 =55 ) (=P, (v) + Pa (') (=57 () (1 = By (¥)
+ (=55 (v) — 52 (v) (=55 (¥) (=P (v)

= P, W) o, (W) [2-p2(v) —pa (V) = 1+5; (V) +D; W] = s () s (¥) -

)
)

By part M35 of Theorem 2.3 of Berman and Plemmons (1994), page 137, if for every row
of the covariance matrix the entry on the diagonal is larger than the sum of the off-diagonal

entries, then the matrix is diagonal dominant, and so non singular.?? And for all ¢/ € Y, we

h that . -
ave & pa(y )(1 _pa Z pa > pa > 2 pa(y)

y#y’ y#y’ y°

concluding the proof of the claim. [ ]

By the Central Limit Theorem ( fi— P5)\/t converges to a Normal random variable with
mean 0 and covariance matrix X, . Let Fy = B,/ (ﬁ; + \/Li (g — pZ)) We have that
la—pR )/’

P [ft € Ft] =P [\/E(ft — Da) € Byjg—prxr (a4 = pZ)]
Taking the limit ¢ — oo yields that

lim [P [ft € E] =P [Z € Byg—pz/x (4 —p3>]

t—00

where Z is a random variable that is normally distributed with mean 0 and covariance matrix
Yy Thus if we let E; denote the event f; € F}, it follows that Y.,” , P[E;| = co. Moreover,

t t 1\t t 1t t
PlE E =D _P|Es and E, =y _,P|E,
lim infzs:1 Z’”t:l LE ar;d ! = liminf ¢ 2811ZT001 [ a121 ] < liminf ¢ - s*tl 2,1 Pl - |
o (X PLE]) o (+ 22, PE]) T (§ X PLE)
1ot
= P|E, 1 1
= lim inf —* 2 PIEA =

g t 2_ i a % ‘
NG PIEY)T el PIEL P2 By e (0 - p2)]

It then follows from the Kochen-Stone lemma (see Kochen and Stone (1964) or Exercise

29This statement is the special case in which D is the identity.
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2.3.20 in Durrett (2008)) that
[ 0

The event (,—; s, Es is invariant under finite permutations of the increments

(L1
law (see, e.g., Theorem 8.4.6 in Dudley (2018)) implies that the probability of the event

M~ U._, Es is zero or one, and since it is strictly positive it must equal one.

IIDS

[ZE Bjjgptyyxr (@ — pa)] > 0.

_Jsuppp¥—1 — P4 ) with different time indices, so the Hewitt—Savage zero—one
yt=y @

This implies that f, € F; infinitely often with probability 1. So, by Proposition 1 the

agent will eventually take an action different from a. ]

Proof of Theorem 2. [f. Consider a uniformly strict BN-E a, an optimal policy 7 and
€ (0,1). By Lemma 3, there exists an ¢ such that if ¥(0°(a)) = 1 — ¢, then 7 (v) = a.
Recall that for every [ € (0,1), the function f; : P x P — R is defined by

i) = 3 p) (W”)l.

= Pa(y)

By Lemma 6, since ©°(a) is compact by Lemma 1, and since f; is lower semicontinuous
in its first argument, there exists ¢’ € (0,¢) such that p € 6% (a) implies that f;(p,p’) < 1 for
all p/ with p’ ¢ (:)5( ). Let K = ( ) Then

1—v (@E(a)> l l-v (ég(a)) £
v (@5'(61)) v (G)E(a)) 1—¢
— y(éf(a)) >1l—-¢ = 7(v) =a.

Let & be such that v <(:)5(a)> > 1 — & implies that

l

l—V((:)E(a)) K(l—/{)'

v (@s@)) ST

Then if the agent starts with a belief vy with 15(0°(a)) > &, A (1y) = {a}. Moreover, by

Lemma 4, Dubins’ upcrossing inequality, the compactness of @a(a) guaranteed by Lemma

1, and the union bound, there is a probability (1 — k) that the positive supermartingale
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(1_1/;(@6((1)) !

(o7 @) ) never rises above K, so the action played is always a, and & satisfies the
t

requirement of the statement.

Only if. If a is not a uniformly strict BN-E, there exists p € é(a) and b # a such that
{b} € A™ (6,). But then if we let v = 6, we have that v (@(a)) = 1. Moreover, there exists
a policy 7 that prescribes b at belief v, so that the agent will never update their belief and

will play b forever. n

Proof of Theorem 3. (i) = (ii) Immediately follows by Theorem 2.
(17) = (i) We prove the statement by contraposition. Suppose that a is not a uniformly
strict BN-E, and let v € A (©), € > 0. We construct an initial belief v, that is ¢ close to v
but such that the actions do not converge to a.
Since @ is not a uniformly strict BN-E, there exists p € O(a) with {a} # A™ (

n

dp). By
Lemma 1, we can pick a finite collection of open balls (C.;);_, of radius € in A (P) that
covers O(a) and such that for each C.; n ©(a) # &. For every C.,, choose ¢.; € C-;\O(a)
whose existence follows from the assumption of the theorem.

Define @, : © — 2° as

{¢:;i:pe C.;} ifpe C,; for some i
P, (p) = .

{p} otherwise

The correspondence @, is Borel measurable, nonempty, and closed valued, so it has a mea-
surable selection ¢. by the Kuratowski Selection Theorem (see, e.g., Theorem 18.13 in
Aliprantis and Border (2013)). Define v. (C) = v (¢-* (C))). Because the problem is rich,
there is p’ € © n B.(p) such that H(p),p’) < minyesupps. H (P, pl) and a ¢ A™(6y). Set
ve = €0y + (1 =€) .. Then v, — v, but argmin H (p%,p)) = {p}, so by Theorem 1, the

p’Esupp ve
probability of converging to a starting from belief v, is 0. [ ]

Proof of Theorem 4. By the hypothesis of the theorem p,(y) = p(y), and p*(y) > 0
if and only if p,(y) > 0 for all p € © by Assumption 1(i). Thus p}(y) > 0 if and only if
pi(y) > 0 for all a,a’ € A, i.e. p¥, p¥ are mutually absolutely continuous. Since the agent
believes that actions do not change the outcome distribution, every p € © can be identified
with an element of A(Y'), and every belief v € A(©) can be identified with an element of
A(A(Y)). )

Consider a uniformly strict BN-E a. By Lemma 1, A(©(a)) is compact. For every € > 0
and g € A(Y) let Qz(q) = Qz 0. (¢). By Theorem 2, there exists €’ > 0 such that if &’ > ¢
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and v (cl (Q: (p¥))) > 1 —¢ implies A™ (v) = {a} the probability of playing a forever starting
from belief v is larger than 1/2. By the Maximum Theorem, the correspondence Q). is
upper-hemicontinuous, so there is a sequence of outcomes y* with corresponding empirical

frequency p;(y) = %2;1 1,,—, sufficiently close to p} to have

G€Qep2(Pr),q€ Qep(py) = lg—dll <e/2.

This implies Q.2 (pr) S Qo (p}) from the triangle inequality. Thus by Lemma 8 there is a
time 7" such that for all ¢ > T, if the empirical frequency is py = p;, the agent assigns a

relative probability higher than K to an ¢’ ball around p;:

pe(@e (7))  pe(Qep () K
1= (Qo (p2) ~ 1— Qo (pr)) ~— 27

Replicating y' sufficiently many times yields a sequence y* with empirical frequency py = py
and ¢’ > T. Since p} is absolutely continuous with respect to p¥ for all a’ € A, this sequence

of outcomes has positive probability, and after it occurs the agent plays a. By Lemma 4 and

!
11 (Qe (p* . ..
—ut/ﬁébfzgn)f) is a positive
supermartingale. Then by Dubins’ upcrossing inequality, there is positive probability that

the law of iterated expectations, conditional on a being played (

this positive supermartingale never rises above 1/K', so a is played forever. [

A

Proof of Theorem 5. Let b be a weakly identified strict BN-E. Then there is v € A(©(b))
with {b} = A™(v). Since b is a strict BN-E, and the agent believes the outcome distributions
are independent across actions, we can let v = §, where p, = argmaxy.co Ey [u(b,y)],
and p, = argming, .o By [u(a,y)] for a € A\{b}. Let {y (b),};-, be a sequence of outcomes
such that the empirical frequency %2?21 1,(),—y is converging to p,. By Lemma 8, for every
e € (0,1), there exists K. such that for all t > K., uoy (B=(py) | y (b)") > 1 —e.

Because {b} = A™ (v), there is 3 € (0, 1) such that for all 8 > j, there is (g,) ., € R% such
that if the belief 7 is such that 7, € {pop (- | y (b),) : 0 <t < K} U{v, : v (B:(pp)) > 1 — €},
and for all @’ # b, vy (Baa/ (pa/)) > 1 — g4, then b has the highest Gittins index. For each
B> B, let e5 < & be such that if 7, (B, (p(b))) > (1 — 3) then the probability of converging
to play action a is larger than % under any optimal policy given the discount factor 3, whose
existence is guaranteed by Lemma 14 and the fact that b is weakly identified.

For every a # b, let n, > n, and {y(a);};*, be a sequence of outcomes such that the
empirical frequency p,, (a) converges to p,. By Lemma 8, for every a # b there is a finite

ng such that after n, observations v, (B, (pa) | Pn,) > 1 — . Finally, let n, = K.,. Then
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the array ({y (a) i}zl)ae , has positive probability, so the agent starts to play a after at most

D ues T Periods, and with probability % continues to play a forever. [

Proof of Corollary 1. Let 7 be an optimal policy. If a is quasi-dominated, with p € é(a)
as in the definition, there exists € € (0, 1) such that if v,({q : ||¢ — Pa|| < €}) > 1 — € implies
m(v) # a. Suppose by way of contradiction that a is played infinitely many times. Then
by the last part of the proof of Theorem 1, since the problem is a subjective bandit there
is ¢ such that p.({q : |l¢ — pal| < €}|(a’,y")) > 1 — &, so the agent switches to another
action b. Since while playing an action different from a the agent does not update i,
ta({q : 1lqg — pal| < e}l(a™,y™)) > 1 —¢ for all 7 > ¢, so they will not switch to a anymore, a

contradiction. ]

Proof of Theorem 6. We prove the statement for a, the proof for a is analogous. Denote
the optimal policy used by the agent as 7. Since the environment is strongly supermodular,
every class of observationally equivalent outcome distributions under action a is a singleton,
so a is a uniformly strict BN-E. Theorem 2 and the strong supermodularity of the environ-
ment then imply there is p € © and K € (0,1) such that if v ({p:p > p}) > K, then the
probability that a is used forever is larger than % Denote the highest outcome as . Since

the environment is strongly supermodular, for every action b € A,

prer (P2 p > (@), (0.9) _ pmlp:p>p|(dy))
L=y ({p:p>p}l(aty"), (b,9) = 1—p({p:p>ptla,y))

Therefore, there exists a finite number n (b) such that if a;, = b and y, = g for all ¢t < n (b),
then pi, ({p: p > p}| (a',y")) = K.

Consider the event E that for all b e A and t < n(b), ;, = y. This event has strictly
positive probability P, [E]. Moreover, if E realizes, after some T’ < Dpza (m(b) —1)+1, the
policy of the agent prescribes action @. Therefore, after T + n (@), for all 7 < T+n (a),
and for all y € Y,P[x, 5 = y|E] = P|2.4 = y|. Therefore, by Theorem 2 the probability of

Pr[E]

converging to a is at least —5~. [

A.5 Action Frequencies and Mixed Equilibria

By Theorem 1, if action a is not a uniform BN-E, the agent will use a different action b
infinitely often. We can the use a result from of Esponda, Pouzo, and Yamamoto (2019) to
show that if action b’s outcome distribution does not induce a as a myopic best reply, the

agent will spend a nontrivial fraction of time using actions different from a. For every a € A,
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let © (a) = {p €O(a):ag¢ A" (5p)} . Let C, < A(O) be the largest convex set such that (i)
it contains all v with supprv = ©(a)\© (a), and (ii) a € A™(v) for all v € C,. That is, C,
contains all the beliefs supported on the “good” KL minimizers for action a that induce a as

a best reply, as well as the beliefs around them that still support a as a myopic best reply.
Also, let A, = {b: v e C,be A™(v)}.

Corollary 2. Let B = 0, and suppose a € A is a non-uniform BN-E. If there is p € O (a)
such that H (pg,py) < H (pi,p) for allbe A, and p € O\ {p}, then liminf 1”7:“ # 1 a.s.

Proof of Corollary 2. Let ¢ > 0 be such that if |[p — p|| < ¢, then a ¢ A™ (6,). By
assumption, there exists &' > 0 such that © (o) < {pe O : ||p — p|| < &} for alla € A (A) such
that || —al| < €', suppa = A, | J{a}. Suppose by way of contradiction that lim inf 1‘”7:“ = 1.
Let W, (o) € A(A)l"*) be the set of all differentiable functions 7 : [, %0) — A (A) such that

Fea(rr(a(600)) -
and 7y = a. Define the random variable &; to be the empirical frequency of actions up to
time ¢, i.e., &; (b) = # for all b e A. For every 7 € [t,t+ 1] let &, (b) = & (b) (T —t) +
Gey1 (b) (t+ 1 —1t). From the convergence result (Theorem 2) of Esponda, Pouzo, and Ya-
mamoto (2019), for all T > 0 limy— inf,cw, (a,) SUPo<s<r ||Gtts (@) — Yits (@) || = 0 a.s. By
Theorem 1, for all # € N almost surely there is a ¢ > ¢’ such that p; ¢ C,. But then, since

the frequency of action a decreases in a ball of size € outside C,, for all v € W; (&;), we have

|Viiei (@) = 1|] > €’ and limy_, &4, , = a, a contradiction. -

There are two reasons that multiple actions can be played with positive probability
in a BN-E: Either every action played can be justified with the same belief over the KL
minimizers, or different beliefs are needed to justify some of them. The first case requires the
agent to be indifferent between the different actions, so here the BN-E cannot be uniformly
strict. However, signals that take the form of payoff perturbations can allow us to obtain
such equilibria as the limit of uniformly strict Berk-Nash equilibria, and the associated
purification can be uniformly stable and positively attractive.

Formally, for every a € A (A) and p € O, let

Hy (p*,p) = > (b)p; (y) logpy (y) and © (o) = argmin He (p*,p) -
beA pe
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Definition 13. The mixed action a € A(A) is a strongly uniform mized BN-E if all actions
a € supp « are myopically optimal for all 6 € @(a).

Given a problem (A, Y, p* u, ©) without signals, a problem with signals (A, Y, S, {, p*, 4, é)
is its (g,v) perturbation, e € Ry, v: AxY x S — R, if (i) a(a,y,s) = u(a,y) + ev(a,y,s),
() 7%.(4) = pt(s) and (i) © = {5 Tp € O, pua(y) = pa(y). V(a5 5) € A x ¥ x S}

Corollary 3. If « is a strongly uniform mized BN-E in (A,Y,p*, u,©), there is a sequence
of strategies (0 )nen such that each o1y, is a uniformly stable BN-E of a (1/n)-perturbation
of (A,Y,p*,u,0) and lim,,_,, ((s : o,(s) = a) = a(a) for alla € A. If (A,Y,p*,u,O) is

subjectively exogenous and p* has full support, there are positively attractive oy y,.

The proof is in Section B.2 of the Supplemental Material.

References

Aliprantis, C. and K. Border (2013). Infinite Dimensional Analysis: A Hitchhiker’s Guide.
Berlin: Springer-Verlag.

Arrow, K. and J. Green (1973). “Notes on Expectations Equilibria in Bayesian Settings”.
Working Paper No. 33, Stanford University. URL: https://scholar . harvard . edu/
green/publications/notes-expectations-equilibria-bayesian-settings-institute-
mathematical-studies-s.

Bell, A. et al. (2019). “Do tax cuts produce more Einsteins? The impacts of financial incen-
tives versus exposure to innovation on the supply of inventors”. Journal of the Furopean
Economic Association.

Benaim, M. and M. W. Hirsch (1999). “Mixed Equilibria and Dynamical Systems Arising
from Fictitious Play in Perturbed Games”. Games and Economic Behavior 29, pp. 36-72.

Berk, R. H. (1966). “Limiting Behavior of Posterior Distributions when the Model is Incor-
rect”. The Annals of Mathematical Statistics 37, pp. 51-58.

Berman, A. and R. J. Plemmons (1994). Nonnegative Matrices in the Mathematical Sciences.
New York, New York: STAM.

Bohren, J. A. (2016). “Informational Herding with Model Misspecification”. Journal of Eco-
nomic Theory 163, pp. 222-247.

Bohren, J. A. and D. Hauser (2020). “Learning with Model Misspecification: Character-
ization and Robustness”. URL: https ://www . dropbox . com/s /f1c73d8t3mnt9Ip2 /
BohrenHauser_LearningModelMisspecification_20200821.pdf7d1=0.

39


https://scholar.harvard.edu/green/publications/notes-expectations-equilibria-bayesian-settings-institute-mathematical-studies-s
https://scholar.harvard.edu/green/publications/notes-expectations-equilibria-bayesian-settings-institute-mathematical-studies-s
https://scholar.harvard.edu/green/publications/notes-expectations-equilibria-bayesian-settings-institute-mathematical-studies-s
https://www.dropbox.com/s/f1c73d8t3mnt9p2/BohrenHauser_LearningModelMisspecification_20200821.pdf?dl=0
https://www.dropbox.com/s/f1c73d8t3mnt9p2/BohrenHauser_LearningModelMisspecification_20200821.pdf?dl=0

Bray, M. (1982). “Learning, estimation, and the stability of rational expectations”. Journal
of economic theory 26, pp. 318-3309.

Bray, M. M. and N. E. Savin (1986). “Rational expectations equilibria, learning, and model
specification”. Econometrica, pp. 1129-1160.

Cho, I.-K. and K. Kasa (2015). “Learning and model validation”. The Review of Economic
Studies 82, pp. 45-82.

— (2017). “Gresham’s Law of Model Averaging”. American Economic Review 107, pp. 3589—
3616.

Diaconis, P. and D. Freedman (1990). “On the Uniform Consistency of Bayes Estimates for
Multinomial Probabilities”. The Annals of Statistics 18, pp. 1317-1327.

Dudley, R. M. (2018). Real Analysis and Probability. Cambridge, UK: Chapman and Hall/CRC.

Durrett, R. (2008). Probability Models for DNA Sequence Evolution. New York, New York:
Springer.

Eliaz, K. and R. Spiegler (2018). “A Model of Competing Narratives”. arXiv: 1811.04232.

Esponda, I. and D. Pouzo (2016). “Berk—Nash equilibrium: A Framework for Modeling
Agents with Misspecified Models”. Econometrica 84, pp. 1093-1130.

— (2019). “Equilibrium in Misspecified Markov Decision Processes”. arXiv: 1502.06901.

Esponda, I., D. Pouzo, and Y. Yamamoto (2019). “Asymptotic Behavior of Bayesian Learners
with Misspecified Models”. arXiv: 1904.08551.

Frick, M., R. Tijima, and Y. Ishii (2019). “Misinterpreting Others and the Fragility of Social
Learning”. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3316376.

— (2020). “Stability and Robustness in Misspecified Learning Models”. URL: https: //
papers.ssrn.com/sol3/papers.cfm?abstract_id=3600633.

Fudenberg, D. and K. He (2017). “Player-compatible Equilibrium”. arXiv: 1712.08954.

— (2018). “Learning and type compatibility in signaling games”. Econometrica 86, pp. 1215—
1255.

— (2020). “Payoff information and learning in signaling games”. Games and Economic Be-
havior 120, pp. 96-120.

Fudenberg, D., K. He, and L. A. Imhof (2017). “Bayesian posteriors for arbitrarily rare
events”. Proceedings of the National Academy of Sciences 114, pp. 4925-4929.

Fudenberg, D. and D. M. Kreps (1993). “Learning Mixed Equilibria”. Games and Economic
Behavior 5, pp. 320-367.

Fudenberg, D. and G. Lanzani (2020). “Which Misperceptions Persist?” Awvailable at SSRN.
URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3709932.

40


https://arxiv.org/abs/1811.04232
https://arxiv.org/abs/1502.06901
https://arxiv.org/abs/1904.08551
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3316376
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3600633
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3600633
https://arxiv.org/abs/1712.08954
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3709932

Fudenberg, D., G. Lanzani, and P. Strack (2021). Pathwise Concentration Bounds for Mis-
specified Bayesian Beliefs. Tech. rep. Working Paper.

Fudenberg, D. and D. K. Levine (1992). “Maintaining a Reputation When Strategies are
Imperfectly Observed”. Review of Economic Studies 59, pp. 561-581.

Fudenberg, D., G. Romanyuk, and P. Strack (2017). “Active Learning with a Misspecified
Prior”. Theoretical Economics 12, pp. 1155-1189.

Gagnon-Bartsch, T. M. (2016). “Taste Projection in Models of Social Learning”. PhD thesis.
URL: https://scholar.harvard.edu/files/tasteprojectionearlydraft.pdf.

Gagnon-Bartsch, T., M. Rabin, and J. Schwartzstein (2018). Channeled Attention and Stable
Errors. Harvard Business School.

Gibbons, R., M. LiCalzi, and M. Warglien (2019). What situation is this? Coarse cognition
and behavior over a space of games. Tech. rep. Department of Management, Universita
Ca’Foscari Venezia. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
3034826.

He, K. (2019). “Mislearning from Censored Data: The Gambler’s Fallacy in Optimal-Stopping
Problems”. arXiv: 1803.08170.

He, K. and J. Libgober (2020). “Evolutionarily Stable (Mis)specifications: Theory and Ap-
plication”. In preparation.

Heidhues, P., B. Ké&szegi, and P. Strack (2018). “Unrealistic Expectations and Misguided
Learning”. Econometrica 86, pp. 1159-1214.

— (2019). “Overconfidence and Prejudice”. arXiv: 1909.08497.

— (2021). “Convergence in models of misspecified learning”. Theoretical Economics 16,
pp- 73-99.

Jehiel, P. (2018). “Investment strategy and selection bias: An equilibrium perspective on
overoptimism”. American Economic Review 108, pp. 1582-97.

Kagel, J. H. and D. Levin (1986). “The winner’s curse and public information in common
value auctions”. The American economic review, pp. 894-920.

Kochen, S. and C. Stone (1964). “A Note on the Borel-Cantelli Lemma”. Illinois Journal of
Mathematics 8, pp. 248-251.

Levy, G., R. Razin, and A. Young (2020). “Misspecified Politics and the Recurrence of Pop-
ulism”. Working Paper. URL: https://drive.google.com/file/d/1yvY-K5Zt9MANIzeES88DPq_
QpgISOK5z/view.

Mailath, G. J. and L. Samuelson (2020). “Learning under Diverse World Views: Model-Based
Inference”. American Economic Review 110, pp. 1464-1501.

41


https://scholar.harvard.edu/files/tasteprojectionearlydraft.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3034826
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3034826
https://arxiv.org/abs/1803.08170
https://arxiv.org/abs/1909.08497
https://drive.google.com/file/d/1yvY-K5Zt9M4NIzeES88DPq_QpgISOK5z/view
https://drive.google.com/file/d/1yvY-K5Zt9M4NIzeES88DPq_QpgISOK5z/view

Molavi, P. (2019). “Macroeconomics with Learning and Misspecification: A General Theory
and Applications”. URL: https://www.cemfi.es/ftp/pdf/papers/Seminar/CREE.pdf.

Morrison, W. and D. Taubinsky (2019). “Rules of Thumb and Attention Elasticities: Ev-
idence from Under-and Overreaction to Taxes”. NBER Working Paper. URL: https:
//www.nber .org/papers/w26180.

Neveu, J. (1975). Discrete-parameter martingales. Amsterdam: North-Holland.

Nyarko, Y. (1991). “Learning in Mis-specified Models and the Possibility of Cycles”. Journal
of Economic Theory 55, pp. 416-427.

Parthasarathy, K. R. (2005). Probability Measures on Metric Spaces. New York, New York:
American Mathematical Soc.

Rabin, M. and J. L. Schrag (1999). “First impressions matter: A model of confirmatory bias”.
The Quarterly Journal of Economics 114, pp. 37-82.

Rabin, M. and D. Vayanos (2010). “The gambler’s and hot-hand fallacies: Theory and ap-
plications”. The Review of Economic Studies 77, pp. 730-778.

Rees-Jones, A. and D. Taubinsky (2020). “Measuring “schmeduling””. The Review of Eco-
nomic Studies 87, pp. 2399-2438.

Tversky, A. and D. Kahneman (1973). “Availability: A heuristic for judging frequency and
probability”. Cognitive Psychology 5, pp. 207-232.

42


https://www.cemfi.es/ftp/pdf/papers/Seminar/CREE.pdf
https://www.nber.org/papers/w26180
https://www.nber.org/papers/w26180

	Introduction
	The Model
	Setup
	Forms of Misspecification

	Limit Points and Berk-Nash Equilibria
	Sufficient Conditions for Long-Run Persistence
	Stability
	Positive Attractiveness
	Subjectively Exogenous Problems
	Subjective Bandit Problems
	Strongly Supermodular Problems


	Signals
	Concluding Remarks
	Appendix
	Sample Space
	Preliminary Lemmas and Definitions
	Exponential Concentration of Beliefs
	Proof of Results Stated in the Text
	Action Frequencies and Mixed Equilibria


