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Abstract

Deep neural networks have shown the ability to
extract universal feature representations from data
such as images and text that have been useful
for a variety of learning tasks. However, the
fruits of representation learning have yet to be
fully-realized in federated settings. Although data
in federated settings is often non-i.i.d. across
clients, the success of centralized deep learning
suggests that data often shares a global feature
representation, while the statistical heterogene-
ity across clients or tasks is concentrated in the
labels. Based on this intuition, we propose a
novel federated learning framework and algorithm
for learning a shared data representation across
clients and unique local heads for each client.
Our algorithm harnesses the distributed compu-
tational power across clients to perform many
local-updates with respect to the low-dimensional
local parameters for every update of the represen-
tation. We prove that this method obtains linear
convergence to the ground-truth representation
with near-optimal sample complexity in a linear
setting, demonstrating that it can efficiently re-
duce the problem dimension for each client. Fur-
ther, we provide extensive experimental results
demonstrating the improvement of our method
over alternative personalized federated learning
approaches in heterogeneous settings.

1. Introduction

Many of the most heralded successes of modern machine
learning have come in centralized settings, wherein a single
model is trained on a large amount of centrally-stored data.
The growing number of data-gathering devices, however,
calls for a distributed architecture to train models. Feder-
ated learning aims at addressing this issue by providing a
platform in which a group of clients collaborate to learn
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effective models for each client by leveraging the local com-
putational power, memory, and data of all clients (McMahan
et al., 2017). The task of coordinating between the clients
is fulfilled by a central server that combines the models
received from the clients at each round and broadcasts the
updated information to them. Importantly, the server and
clients are restricted to methods that satisfy communica-
tion and privacy constraints, preventing them from directly
applying centralized techniques.

However, one of the most important challenges in federated
learning is the issue of data heterogeneity, where the under-
lying data distribution of client tasks could be substantially
different from each other. In such settings, if the server
and clients learn a single shared model (e.g., by minimizing
average loss), the resulting model could perform poorly for
many of the clients in the network (and also not generalize
well across diverse data (Jiang et al., 2019)). In fact, for
some clients, it might be better to simply use their own
local data (even if it is small) to train a local model; see
Figure 1. Finally, the (federated) trained model may not
generalize well to unseen clients that have not participated
in the training process. These issues raise this question:

“How can we exploit the data and computational
power of all clients in data heterogeneous settings
to learn a personalized model for each client?”

We address this question by taking advantage of the com-
mon representation among clients. Specifically, we view
the data heterogeneous federated learning problem as n par-
allel learning tasks that they possibly have some common
structure, and our goal is to learn and exploit this com-
mon representation to improve the quality of each client’s
model. Indeed, this would be in line with our understanding
from centralized learning, where we have witnessed success
in training multiple tasks simultaneously by leveraging a
common (low-dimensional) representation in popular ma-
chine learning tasks (e.g., image classification, next-word
prediction) (Bengio et al., 2013; LeCun et al., 2015).

Main Contributions. We introduce a novel federated learn-
ing framework and an associated algorithm for data hetero-
geneous settings. Next, we present our main contributions.

(i) FedRep Algorithm. Federated Representation Learn-
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Figure 1. Local only training suffers in small-training data regimes,
whereas training a single global model (FedAvg) cannot overcome
client heterogeneity even when the number of training samples is
large. FedRep exploits a common representation of the clients to
achieve small error in all cases.

ing (FedRep) leverages the full quantity of data stored
across clients to learn a global low-dimensional rep-
resentation using gradient-based updates. Further, it
enables each client to compute a personalized, low-
dimensional classifier, which we term as the client’s
local head, that accounts for the unique labeling of
each client’s local data.

(ii) Convergence Rate. We show that FedRep converges
to the optimal representation at a exponentially fast rate
with near-optimal sample complexity in the case that
each client aims to solve a linear regression problem
with a two-layer linear neural network. Our analysis
further implies that we only need O(2

k
3(log(n) +

2kd
n )) samples per client, where n is the number of

clients, d is the dimension of the data, k is the repre-
sentation dimension and  is the condition number of
the ground-truth client-representation matrix.

(iii) Empirical Results. Through a combination of syn-
thetic and real datasets (CIFAR10, CIFAR100, FEM-
NIST, Sent140) we show the benefits of FedRep in:
(a) leveraging many local updates, (b) robustness to
different levels of heterogeneity, and (c) generalization
to new clients. We consider several important baselines
including FedAvg (McMahan et al., 2017), Fed-MTL
(Smith et al., 2017), LG-FedAvg (Liang et al., 2020),
and Per-FedAvg (Fallah et al., 2020). Our experiments
indicate that FedRep outpeforms these baselines in het-
erogeneous settings that share a global representation.

Benefits of FedRep. Next, we list benefits of FedRep over
standard federated learning (that learns a single model).

(I) More local updates. By reducing the problem dimension,
each client can make many local updates at each communica-
tion round, which is beneficial in learning its own individual
head. This is unlike standard federated learning where mul-
tiple local updates in a heterogeneous setting moves each

client away from the best averaged representation, and thus
hurts performance.

(II) Gains of cooperation. Denote d to be the data dimension
and n the number of clients. From our sample complexity
bounds, it follows that with FedRep, the sample complexity
per client scales as ⇥(log(n) + d/n). On the other hand,
local learning (without any collaboration) has a sample com-
plexity that scale as ⇥(d). Thus, if 1 ⌧ n ⌧ e

⇥(d) (see
Section 4.2 for details), we expect benefits of collabora-
tion through federation. When d is large (as is typical in
practice), e⇥(d) is exponentially larger, and federation helps
each client. To the best of our knowledge, this is the first
sample-complexity-based result for heterogeneous federated
learning that demonstrates the benefit of cooperation.

(III) Generalization to new clients. For a new client, since a
ready-made representation is available, the client only needs
to learn a head with a low-dimensional representation of
dimension k. Thus, its sample complexity scales only as
⇥(k log(1/✏)) to have no more than ✏ error in accuracy.

Related Work. A variety of recent works have studied
personalization in federated learning using, for example,
local fine-tuning (Wang et al., 2019; Yu et al., 2020), meta-
learning (Chen et al., 2018; Khodak et al., 2019; Jiang et al.,
2019; Fallah et al., 2020), additive mixtures of local and
global models (Hanzely & Richtárik, 2020; Deng et al.,
2020; Mansour et al., 2020), and multi-task learning (Smith
et al., 2017). In all of these methods, each client’s subprob-
lem is still full-dimensional - there is no notion of learning
a dimensionality-reduced set of local parameters. More re-
cently, Liang et al. (2020) also proposed a representation
learning method for federated learning, but their method
attempts to learn many local representations and a single
global head as opposed to a single global representation
and many local heads. Earlier, Arivazhagan et al. (2019)
presented an algorithm to learn local heads and a global net-
work body, but their local procedure jointly updates the head
and body (using the same number of updates), and they did
not provide any theoretical justification for their proposed
method. Meanwhile, another line of work has studied feder-
ated learning in heterogeneous settings (Karimireddy et al.,
2020; Wang et al., 2020; Pathak & Wainwright, 2020; Had-
dadpour et al., 2020; Reddi et al., 2020; Reisizadeh et al.,
2020; Mitra et al., 2021), and the optimization-based in-
sights from these works may be used to supplement our
formulation and algorithm.

2. Problem Formulation

The generic form of federated learning with n clients is

min
(q1,...,qn)2Qn

1

n

nX

i=1

fi(qi), (1)



Exploiting Shared Representations for Personalized Federated Learning

where fi and qi are the error function and learning model for
the i-th client, respectively, and Qn is the space of feasible
sets of n models. We consider a supervised setting in which
the data for the i-th client is generated by a distribution
(xi, yi) ⇠ Di. The learning model qi : Rd ! Y maps
inputs xi 2 Rd to predicted labels qi(xi) 2 Y , which we
would like to resemble the true labels yi. The error fi is
in the form of an expected risk over Di, namely fi(qi) :=
E(xi,yi)⇠Di

[`(qi(xi), yi)], where ` : Y ⇥ Y ! R is a loss
function that penalizes the distance of qi(xi) from yi.

In order to minimize fi, the i-th client accesses a dataset
of Mi labelled samples {(xj

i , y
j
i )}

Mi
j=1 from Di for training.

Federated learning addresses settings in which the Mi’s
are typically small relative to the problem dimension while
the number of clients n is large. Thus, clients may not
be able to obtain solutions qi with small expected risk by
training completely locally on only theirMi local samples.
Instead, federated learning enables the clients to cooperate,
by exchanging messages with a central server, in order to
learn models using the cumulative data of all the clients.

Standard approaches to federated learning aim at learning a
single shared model q = q1 = · · · = qn that performs well
on average across the clients (McMahan et al., 2017; Li et al.,
2018). In this way, the clients aim to solve a special version
of Problem (1), which is to minimize (1/n)

P
i fi(q) over

the choice of the shared model q. However, this approach
may yield a solution that performs poorly in heterogeneous
settings where the data distributions Di vary across the
clients. Indeed, in the presence of data heterogeneity, the
error functions fi will have different forms and their mini-
mizers are not the same. Hence, learning a shared model q
may not provide good solution to Problem (1). This neces-
sities the search for more personalized solutions {qi} that
can be learned in a federated manner using the clients’ data.

Learning a Common Representation. We are motivated
by insights from centralized machine learning that suggest
that heterogeneous data distributed across tasks may share a
common representation despite having different labels (Ben-
gio et al., 2013; LeCun et al., 2015); e.g., shared features
across many types of images, or across word-prediction
tasks. Using this common (low-dimensional) representation,
the labels for each client can be simply learned using a linear
classifier or a shallow neural network.

Formally, we consider a setting consisting of a global repre-
sentation q� : Rd ! Rk, which is a function parameterized
by � 2 � that maps data points to a lower space of di-
mension k, and client-specific heads qhi : Rk ! Y , which
are functions parameterized by hi 2 H for i 2 [n] that
map from the low-dimensional representation space to the
label space. The model for the i-th client is the composi-
tion of the client’s local parameters and the representation:
qi(x) = (qhi � q�)(x). Critically, k ⌧ d, meaning that
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Figure 2. Federated representation learning structure where clients
and the server aim at learning a global representation � together,
while each client i learns its unique head hi locally.

the number of parameters that must be learned locally by
each client may be small. Thus, we can assume that any
client’s optimal classifier for any fixed representation is easy
to compute, which motivates the following re-written global
objective:

min
�2�

1

n

nX

i=1

min
hi2H

fi(hi,�), (2)

where we have used the shorthand fi(hi,�) := fi(qhi � q�)
for ease of notation. In our proposed scheme, clients coop-
erate to learn the global model using all clients’ data, while
they use their local information to learn their personalized
head. We discuss this in detail in Section 3.

2.1. Comparison with Standard Federated Learning

To formally demonstrate the advantage of our formulation
over the standard (single-model) federated learning formula-
tion in heterogeneous settings with a shared representation,
we study a linear representation setting with quadratic loss.
As we will see below, standard federated learning cannot
recover the underlying representation in the face of hetero-
geneity, while our formulation does indeed recover it.

Consider a setting in which the functions fi are quadratic
losses, the representation q� is a projection onto a k-
dimensional subspace of Rd given by matrix B 2 Rd⇥k,
and the i-th client’s local head qhi is a vector wi 2 Rk. In
this setting, we model the local data of clients {Di}i such
that yi = w

⇤

i
>
B

⇤>
xi for some ground-truth representation

B
⇤ 2 Rd⇥k and local heads w⇤

i 2 Rk. This setting will
be described in detail in Section 4. In particular, one can
show that the expected error over the data distribution Di

has the following form: fi(wi,B) := 1
2kBwi �B

⇤
w

⇤

i k22.
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Consequently, Problem (2) becomes

min
B2Rd⇥k,wi,...,wn2Rk

1

2n

nX

i=1

kBwi �B
⇤
w

⇤

i k22. (3)

In contrast, standard federated learning methods, which aim
to learn a shared model (B,w) for all the clients, solve

min
B2Rd⇥k,w2Rk

1

2n

nX

i=1

kBw �B
⇤
w

⇤

i k22. (4)

Let (B̂, {ŵi}i) denote a global minimizer of (3). We
thus have B̂ŵi = B

⇤
w

⇤

i for all i 2 [n]. Also, it is not
hard to see that (B⇧

,w
⇧) is a global minimizer of (4) if

and only if B
⇧
w

⇧ = B
⇤( 1n

Pn
i=1 w

⇤

i ). Thus, our for-
mulation finds an exact solution with zero global error,
whereas standard federated learning has global error of
1
2n

Pn
i=1 k 1

nB
⇤
Pn

i0=1(w
⇤

i0 �w
⇤

i )k22, which grows with the
heterogeneity of thew⇤

i . Moreover, since solving our formu-
lation provides n matrix equations, we can fully recover the
column space of B⇤ as long as w⇤

i ’s span Rk. In contrast,
solving (4) yields only one matrix equation, so there is no
hope to recover the column space of B⇤ for any k > 1.

3. FedRep Algorithm

FedRep solves Problem (2) by distributing the computation
across clients. The server and clients aim to learn the pa-
rameters of the global representation together, while the i-th
client aims to learn its unique local head locally (see Fig-
ure 2). To do so, FedRep alternates between client updates
and a server update on each communication round.

Client Update. On each round, a constant fraction r 2
(0, 1] of the clients are selected to execute a client update.
In the client update, client i makes ⌧ local gradient-based
updates to solve for its optimal head given the current global
representation �t communicated by the server. Namely, for
s = 1, . . . , ⌧ , client i updates its head as follows:

h
t,s+1
i = GRD(fi(h

t,s
i ,�

t), ht,s
i ,↵),

where GRD(f, h,↵) is generic notation for an update of the
variable h using a gradient of function f with respect to h

and the step size ↵. For example, GRD(fi(ht,s
i ,�

t), ht,s
i ,↵)

can be a step of gradient descent, stochastic gradient descent
(SGD), SGD with momentum, etc. The key is that client i
makes many such local updates, i.e., ⌧ is large, to find the
optimal head based on its local data, given the most recent
representation �

t received from the server.

Server Update. Once the local updates with respect to the
head hi finish, the client participates in the server update by
taking one local gradient-based update with respect to the
current representation, i.e., computing

�
t+1
i  GRD(fi(h

t,⌧
i ,�

t),�t
,↵).

Algorithm 1 FedRep
Parameters: Participation rate r, step sizes ↵, ⌘; number
of local updates ⌧ ; number of communication rounds T .
Initialize �0

, h
0
1, . . . , h

0
n

for t = 1, 2, . . . , T do

Server receives a batch of clients It of size rn
Server sends current representation �t to these clients
for each client i in It

do

Client i initializes ht
i  h

t�1,⌧
i

Client i makes ⌧ updates to its head h
t
i:

for s = 1 to ⌧ do

h
t,s
i  GRD(fi(h

t,s
i ,�

t), ht,s
i ,↵)

end for

Client i locally updates the representation as:
�
t+1
i  GRD(fi(h

t,⌧
i ,�

t),�t
,↵)

Client i sends updated representation �t+1
i to server

end for

for each client i not in It, do
Set ht,⌧

i  h
t�1,⌧
i

end for

Server computes the new representation as
�
t+1 = 1

rn

P
i2It �

t+1
i

end for

It then sends �t+1
i to the server, which averages the local

updates to compute the next representation �t+1. The entire
procedure is outlined in Algorithm 1.

4. Low-Dimensional Linear Representation

In this section, we analyze an instance of Problem (2) with
quadratic loss functions and linear models, as discussed
in Section 2.1. Here, each client’s problem is to solve a
linear regression with a two-layer linear neural network.
In particular, each client i attempts to find a shared global
projection onto a low-dimension subspace B 2 Rd⇥k and
a unique regressor wi 2 Rk that together accurately map
its samples xi 2 Rd to labels yi 2 R. The matrix B

corresponds to the representation �, and wi corresponds
to local head hi for the i-th client. We thus have (qhi �
q�)(xi) = w

>

i B
>
xi. Hence, the loss function for client i

is given by:

fi(wi,B) := 1
2E(xi,yi)⇠Di

⇥
(yi �w

>

i B
>
xi)

2
⇤

(5)

meaning that the global objective is:

min
B2Rd⇥k

W2Rn⇥k

F (B,W) :=
1

2n

nX

i=1

E(xi,yi)

⇥
(yi �w

>

i B
>
xi)

2
⇤
,

(6)
where W = [w>

1 , . . . ,w
>

n ] 2 Rn⇥k is the concatenation
of client-specific heads. To evaluate the ability of FedRep to
learn an accurate representation, we model the local datasets
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{Di}i such that, for i = 1 . . . , n

yi = w
⇤

i
>
B

⇤>
xi,

for some ground-truth representation B⇤ 2 Rd⇥k and local
heads w⇤

i 2 Rk–i.e. a standard regression setting. In other
words, all of the clients’ optimal solutions live in the same k-
dimensional subspace ofRd, where k is assumed to be small.
Moreover, we make the following standard assumption on
the samples xi.

Assumption 1 (Sub-gaussian design). The samples xi 2
Rd are i.i.d. with mean 0, covariance Id, and are Id-sub-
gaussian, i.e. E[ev>xi ]  e

kvk2
2/2 for all v 2 Rd.

4.1. FedRep

We next discuss how FedRep tries to recover the optimal
representation in this setting. First, the server and clients
execute the Method of Moments to learn an initial represen-
tation. Then, client and server updates are executed in an
alternating fashion as follows.

Client Update. As in Algorithm 1, rn clients are selected
on round t to update their current local head w

t
i and the

global representation B
t. Each selected client i samples a

fresh batch {xt,j
i , y

t,j
i }mj=1 of m samples according to its

local data distribution Di to use for updating both its head
and representation on each round t that it is selected. That
is, within the round, client i considers the batch loss

f̂
t
i (w

t
i ,B

t) :=
1

2m

mX

j=1

(yt,ji �w
t>

i B
t>
x
t,j
i )2. (7)

Since f̂ t
i is strongly convex with respect to w

t
i , the client

can find an update for a local head that is ✏-close to the
global minimizer of (7) after at most log(1/✏) local gra-
dient updates. Alternatively, since the function is also
quadratic, the client can solve for the optimal w directly
in only O(mk

2 + k
3) operations. Thus, to simplify the

analysis we assume each selected client obtains wt+1
i =

argminw f̂
t
i (w,B

t) during each round of local updates.

Server Update. After updating its head, client i updates the
global representation with one step of gradient descent using
the samem samples and sends the update to the server, as
outlined in Algorithm 2. Then, the server computes the new
representation by averaging over received representations.

4.2. Analysis

As mentioned earlier, in FedRep, each client i perform
an alternating minimization-descent method to solve its
nonconvex objective in (7). This means the global loss over

Algorithm 2 FedRep for linear regression
Input: Step size ⌘; number of rounds T , participation
rate r.
Initialization: Each client i 2 [n] sends Zi :=
1
m

Pm
j=1(y

0,j
i )2x0,j

i (x0,j
i )> to server, server computes

UDU
> rank-k SVD( 1n

Pn
i=1 Zi)

Server initializes B0  U

for t = 1, 2, . . . , T do

Server receives a subset It of clients of size rn
Server sends current representationBt to these clients
for i 2 It

do

Client update:

Client i samples a fresh batch ofm samples
Client i updates wi:

w
t+1
i  argminw f̂

t
i (w,B

t)

Client i updates representation:
B

t+1
i  B

t � ⌘rBf̂
t
i (w

t+1
i ,B

t)

Client i sends Bt+1
i to the server

end for

Server update: B
t+1  1

rn

P
i2It B

t+1
i

end for

all clients at round t is given by

1

n

nX

i=1

f̂
t
i (w

t
i ,B

t) :=
1

2mn

nX

i=1

mX

j=1

(yt,ji �w
t>

i B
t>
x
t,j
i )2.

(8)
This objective has many global minima, including all pairs
of matrices (Q�1

W
⇤
,B

⇤
Q

>) whereQ 2 Rk⇥k is invert-
ible, eliminating the possibility of exactly recovering the
ground-truth factors (W⇤

,B
⇤). Instead, the ultimate goal

of the server is to recover the ground-truth representation,
i.e., the column space of B⇤. To evaluate how closely the
column space is recovered, we define the distance between
subspaces as follows.
Definition 1. The principal angle distance between the
column spaces of B1,B2 2 Rd⇥k is given by

dist(B1,B2) := kB̂>

1,?B̂2k2, (9)

where B̂1,? and B̂2 are orthonormal matrices satisfying
span(B̂1,?) = span(B1)? and span(B̂2) = span(B2).

The principal angle distance is a standard metric for measur-
ing the distance between subspaces (e.g. (Jain et al., 2013)).
Next, we make two regularity assumptions.
Assumption 2 (Client diversity). Let �̄min,⇤ be the mini-
mum singular value of any matrix W 2 Rrn⇥k with rows
being an rn-sized subset of ground-truth client-specific pa-
rameters {w⇤

1, . . . ,w
⇤

n}. Then �̄min,⇤ > 0.

Assumption 2 states that if we select any rn clients, their
optimal solutions span Rk. Indeed, this assumption is weak
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as we expect the number of participating clients rn to be
substantially larger than k. Note that if we do not have
client solutions that span Rk, recovering B

⇤ would be im-
possible because the samples (xj

i , y
j
i ) may never contain

any information about one or more features of B⇤.
Assumption 3 (Client normalization). The ground-truth
client-specific parameters satisfy kw⇤

i k2 =
p
k for all i 2

[n], and B
⇤ has orthonormal columns.

Assumption 2 ensures that the ground-truth matrixW⇤
B

⇤>

is row-wise incoherent, i.e. its row norms have similar
magnitudes. We define this formally in Appendix B. In-
coherence of the ground-truth matrices is a key property
required for efficient matrix completion and other sensing
problems with sparse measurements (Chi et al., 2019). Since
our measurement matrices are row-wise sparse, we require
the row-wise incoherence of the ground truth. Note that
Assumption 3 can be relaxed to allow kw⇤

i k2  O(
p
k), as

the exact normalization is only for simplicity of analysis.

Our main result shows that the iterates {Bt}t generated
by FedRep in this setting linearly converge to the optimal
representation B⇤ in principal angle distance.
Theorem 1. Define E0 := 1 � dist2(B̂0

, B̂
⇤) and

�̄max,⇤ := maxI2[n],|I|=rn �max(
1

p
rn

W
⇤

I
) and �̄min,⇤ :=

minI2[n],|I|=rn �min(
1

p
rn

W
⇤

I
), i.e. the maximum and min-

imum singular values of any matrix that can be obtained
by taking rn rows of 1

p
rn

W
⇤. Let  := �̄max,⇤/�̄max,⇤.

Suppose that m � c(4
k
3 log(rn)/E2

0 + 
4
k
2
d/(E2

0rn))
for some absolute constant c. Then for any t and any
⌘  1/(4�̄2

max,⇤), we have

dist(B̂T
, B̂

⇤) 
�
1� ⌘E0�̄

2
min,⇤/2

�T/2
dist(B̂0

, B̂
⇤),
(10)

with probability at least 1� Te
�100min(k2 log(rn),d).

From Assumption 2, we have that �̄2
min,⇤ > 0, so the RHS

of (10) strictly decreases with T for appropriate step size.
Considering the complexity of m and the fact that the al-
gorithm converges exponentially fast, the total number of
samples required per client to reach an ✏-accurate solution
in principal angle distance is ⇥ (m log (1/✏)), which is

⇥
�⇥

4
k
3
�
log(rn) + 4kd/rn

�⇤
log (1/✏)

�
. (11)

Next, a few remarks about this sample complexity follow.

When and whom does federation help? Observe that
for a single client with no collaboration, the sample com-
plexity scales as ⇥(d).With FedRep, however, the sample
complexity scales as ⇥(log(n) + d/n). Thus, so long as
log(n) + d/n ⌧ d, federation helps. This holds in several
settings, for instance when 1 ⌧ n ⌧ e

⇥(d)
. In practical

scenarios, d (the data dimension) is large, and thus e⇥(d) is

exponentially larger; thus collaboration helps each individ-
ual client. Furthermore, from the point of view of a new
client who enters the system later, it has a representation
available for free, and this new client’s sample complexity
for adapting to its task is only k log(1/✏). Thus, both the
overall system benefits (a representation has been learned,
which is useful for the new client because it now only needs
to learn a head), and each individual client that did take part
in the federated training also benefits.

Connection to matrix sensing. The problem in (6) is an
instance of matrix sensing; see the proof in Appendix B for
more details. Considering this connection, our theoretical
results also contribute to the theoretical study of matrix sens-
ing. Although matrix sensing is a well-studied problem, our
setting presents two new analytical challenges: (i) due to
row-wise sparsity in the measurements, the sensing operator
does not satisfy the commonly-used Restricted Isometry
Property (RIP) within an efficient number of samples, i.e., it
does not efficiently concentrate to an identity operation on
all rank-k matrices, and (ii) FedRep executes a novel non-
symmetric procedure. We further discuss these challenges
in Appendix B.5. To the best of our knowledge, Theo-
rem 1 provides the first convergence result for an alternating
minimization-descent procedure to solve a matrix sensing
problem. It is also the first result to show sample-efficient
linear convergence of any solution to a matrix sensing with
rank-one, row-wise sparse measurements. The state-of-the-
art result for the closest matrix sensing setting to ours is
given by Zhong et al. (2015) for rank-1, independent Gaus-
sian measurements, which our result matches up to anO(2)
factor. However, our setting is more challenging as we have
rank-1 and row-wise sparse measurements, and dependence
on 

4 has been previously observed in settings with sparse
measurements, e.g. matrix completion (Jain et al., 2013).

New users and dimensionality reduction. Theorem 1 is
related to works studying representation learning in the con-
text of multi-task learning. Tripuraneni et al. (2020) and Du
et al. (2020) provided upper bounds on the generalization er-
ror resulting from learning a low-dimensional representation
of tasks assumed to share a common representation. They
show that, if the common representation is learned, then
excess risk bound on a new task is O(C(�)

nm + k
mnew

), where
C(�) is the complexity of the representation class � and
mnew is the number of labelled samples from the new task
that the learner can use for fine-tuning. Since the number of
test samples must exceed only O(k), where k is assumed to
small, these works demonstrate the dimensionality-reducing
benefits of representation learning. Our work complements
these results by showing how to provably and efficiently
learn the representation in the linear case.

Remark on initialization. Theorem 1 requires that the
initial principal angle distance dist(B̂0

, B̂
⇤) is larger than
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Figure 3. Comparison of (principal angle) distances between the
ground-truth and estimated representations by FedRep and alter-
nating gradient descent algorithms for different numbers of clients
n. In all plots, d = 10, k = 2,m = 5, and r = 0.1.

a constant c > 0. This can be achieved by the Method
of Moments without increasing the sample complexity for
each client up to log factors (Tripuraneni et al., 2020). In
turn, each user must send the server a polynomial of their
data, namely

Pm
j=1(y

j
i )

2
x
j
i (x

j
i )

> at the start of the learning
procedure, which does not compromise privacy. We discuss
the details of this in Appendix B.

5. Experiments

We focus on three points in our experiments: (i) the effect
of many local updates for the local head in FedRep (ii) the
quality of the global representation learned by FedRep and
(iii) the applicability of FedRep to a wide range of datasets.
Full experimental details are provided in Appendix A.

5.1. Synthetic Data

We start by experimenting with an instance of the multi-
linear regression problem analyzed in Section 4. Consis-
tent with this formulation, we generate synthetic samples
x
j
i ⇠ N (0, Id) and labels y

j
i ⇠ N (w⇤

>

i B̂
⇤
>
x
j
i , 10

�3)
(here we include an additive Gaussian noise). The ground-
truth headsw⇤

i 2 Rk for clients i 2 [n] and the ground-truth
representation B̂⇤ 2 Rd⇥k are generated randomly by sam-
pling and normalizing Gaussian matrices.

Benefit of finding the optimal head. We first demonstrate
that the convergence of FedRep improves with larger num-
ber of clients n, making it highly applicable to federated
settings. Further, we give evidence showing that this im-
provement is augmented by the minimization step in Fe-
dRep, since methods that replace the minimization step in
FedRep with 1 and 10 steps of gradient descent (GD-GD
and 10GD-GD, respectively) do not scale properly with n.
In Figure 3, we plot convergence trajectories for FedRep,
GD-GD, and 10GD-GD for four different values of n and
fixedm, d, k and r. As we observe in Figure 3, by increas-
ing the number of nodes n, clients converge to the true
representation faster. Also, running more local updates for
finding the local head accelerates the convergence speed of
FedRep. In particular, FedRep which exactly finds the opti-
mal local head at each round has the fastest rate compared to
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Figure 4. MSE on new clients sharing the representation after fine-
tuning using various numbers of samples from the new client.

GD-GD and 10GD-GD that only run 1 and 10 local updates,
respectively, to learn the head.

Generalization to new clients. Next, we evaluate the effec-
tiveness of the representation learned by FedRep in reducing
the sample complexity for a new client which has not par-
ticipated in training. We first train FedRep and FedAvg
on a fixed set of n = 100 clients as in Figure 1, where
(d, k)=(20, 2). The new client has access to mnew labelled
local samples. It will use the representation B̂

⇤ 2 Rd⇥k

learned from the training clients, and learns a personalized
head using this representation and its local training samples.
For both FedRep and FedAvg, we solve for the optimal head
given these samples and the representation learned during
training. We compare the MSE of the resulting model on the
new client’s test data to that of a model trained by only using
the mnew labelled samples from the new client (Local Only)
in Figure 4. The large error for FedAvg demonstrates that it
does not learn the ground-truth representation. Meanwhile,
the representation learned by FedRep allows an accurate
model to be found for the new client as long as mnew � k,
which drastically improves over the complexity for Local
Only (mnew=⌦(d)).

5.2. Real Data

We next investigate whether these insights apply to nonlinear
models and real datasets.

Datasets and Models. We use four real datasets: CIFAR10
and CIFAR100 (Krizhevsky et al., 2009), FEMNIST (Cal-
das et al., 2018; Cohen et al., 2017) and Sent140 (Caldas
et al., 2018). The first three are image datasets and the
last is a text dataset for which the goal is to classify the
sentiment of a tweet as positive or negative. We control
the heterogeneity of CIFAR10 and CIFAR100 by assigning
different numbers S of classes per client, from among 10
and 100 total classes, respectively. Each client is assigned
the same number of training samples, namely 50, 000/n.
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For FEMNIST, we restrict the dataset to 10 handwritten let-
ters and assign samples to clients according to a log-normal
distribution as in (Li et al., 2019). We consider a partition
of n = 150 clients with an average of 148 samples/client.
For Sent140, we use the natural assignment of tweets to
their author, and use n = 183 clients with an average of 72
samples per client. We use 5-layer CNNs for the CIFAR
datasets, a 2-layer MLP for FEMNIST, and an RNN for
Sent140 (details provided in Appendix A).

Baselines. We compare against a variety of personalized
federated learning techniques as well as methods for learn-
ing a single global model and their fine-tuned analogues.
Among the personalized methods, FedPer (Arivazhagan
et al., 2019) is most similar to ours, as it also learns a global
representation and personalized heads, but makes simulta-
neous local updates for both sets of parameters, therefore
makes the same number of local updates for the head and
the representation on each local round. Fed-MTL (Smith
et al., 2017) learns local models and a regularizer to encode
relationships among the clients, PerFedAvg (Fallah et al.,
2020) leverages meta-learning to learn a single model that
performs well after adaptation on each task, and LG-FedAvg
(Liang et al., 2020) learns local representations and a global
head. APFL (Deng et al., 2020) interpolates between lo-
cal and global models, and L2GD (Hanzely & Richtárik,
2020) and Ditto (Li et al., 2020) learn local models that are
encouraged to be close together by global regularization.
For global FL methods, we consider FedAvg (McMahan
et al., 2017), SCAFFOLD (Karimireddy et al., 2020), and
FedProx (Li et al., 2018). To obtain fine-tuning results, we
first train the global model for the full training period, then
each client then fine-tunes only the head on its local training
data for 10 epochs of SGD before computing the final test
accuracy.

Implementation. In each experiment we sample a ratio
r = 0.1 of all the clients on every round. We initialize all
models randomly and train for T = 100 communication
rounds for the CIFAR datasets, T = 50 for Sent140, and
T = 200 for FEMNIST. In each case, FedRep executes
ten local epochs of SGD with momentum to train the local
head, followed by one or five epochs for the representation,
in each local update (depending on the dataset). All other
methods use the same number of local epochs as FedRep
does for updating the representation. Accuracies are com-
puted by taking the average local accuracies for all users
over the final 10 rounds of communication, except for the
fine-tuning methods. These accuracies are computed after
locally training the head of the fully-trained global model
for ten epochs for each client.

Benefit of more local updates. As mentioned in Section 1,
a key advantage of our formulation is that it enables clients
to run many local updates without causing divergence from
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Figure 5. CIFAR10 local test errors for different numbers of local
epochs E for FedRep (for the heads) and FedAvg.
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Figure 6. Test accuracy on handwritten digits from FEMNIST after
fine-tuning the head of models trained on FEMNIST-letters.

the global optimal solution. We demonstrate an example
of this in Figure 5. Here, there are n = 100 clients where
each has S = 2 classes of images. For FedAvg, we observe
running more local updates does not necessarily improve the
performance. In contrast, FedRep’s performance is mono-
tonically non-decreasing with E, i.e., FedRep requires less
tuning of E and is never hurt by more local computation.

Robustness to varying levels of heterogeneity, number

of clients and number of samples per client. We show
the average local test errors for all of the algorithms for
a variety of settings in Table 1. In all cases, FedRep is
either the top-performing method or is very close to the top-
performing method. Recall that for the CIFAR datasets, the
number of training samples per client is equal to 50, 000/n,
so the column with 1000 users has the smallest number of
samples per client.

Generalization to new clients. We also evaluate the
strength of the representation learned by FedRep in terms of
adaptation for new users. To do so, we first train FedRep, Fe-
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Table 1. Average test accuracies on various partitions of CIFAR10, CIFAR100, Sent140 and FEMNIST with participation rate r= 0.1.

CIFAR10 CIFAR100 Sent140 FEMNIST

(# clients n, # classes per client S) (100, 2) (100, 5) (1000, 2) (100, 5) (100, 20) (183, 2) (150, 3)

Local Only 89.79 70.68 78.30 75.29 41.29 69.88 60.86

FedAvg (McMahan et al., 2017) 42.65 51.78 44.31 23.94 31.97 52.75 51.64
FedAvg+FT 87.65 73.68 82.04 79.34 55.44 71.92 72.41
FedProx (Li et al., 2018) 39.92 50.99 21.93 20.17 28.52 52.33 18.89
FedProx+FT 85.81 72.75 75.41 78.52 55.09 71.21 53.54
SCAFFOLD (Karimireddy et al., 2020) 37.72 47.33 33.79 20.32 22.52 51.31 17.65
SCAFFOLD+FT 86.35 68.23 78.24 78.88 44.34 71.49 52.11

Fed-MTL (Smith et al., 2017) 80.46 58.31 76.53 71.47 41.25 71.20 54.11
PerFedAvg (Fallah et al., 2020) 82.27 67.20 67.36 72.05 52.49 68.45 71.51
LG-Fed (Liang et al., 2020) 84.14 63.02 77.48 72.44 38.76 70.37 62.08
L2GD (Hanzely & Richtárik, 2020) 81.04 59.98 71.96 72.13 42.84 70.67 66.18
APFL (Deng et al., 2020) 83.77 72.29 82.39 78.20 55.44 69.87 70.74
Ditto (Li et al., 2020) 85.39 70.34 80.36 78.91 56.34 71.04 68.28
FedPer (Arivazhagan et al., 2019) 87.13 73.84 81.73 76.00 55.68 72.12 76.91

FedRep (Ours) 87.70 75.68 83.27 79.15 56.10 72.41 78.56

dAvg, PerFedAvg, LG-FedAvg, APFL, L2GD and FedProx
in the usual setting on the partition of FEMNIST containing
images of 10 handwritten letters (FEMNIST-letters). Then,
we encounter clients with data from a different partition of
the FEMNIST dataset, containing images of handwritten
digits. We assume we have access to a dataset of 500 sam-
ples at this new client to fine tune the head. Using these,
with each of the algorithms, we fine tune the head over
multiple epochs while keeping the representation fixed. In
Figure 6, we repeatedly sweep over the same 500 samples
over multiple epochs to further refine the head, and plot the
corresponding local test accuracy. As is apparent, FedRep
has significantly better performance than these baselines.

6. Discussion

We have introduced a novel representation learning frame-
work and algorithm for federated learning along with both
theoretical and empirical evidence for its utility in feder-
ated settings. The FedRep framework is general and simple
enough to easily apply to a broad range of federated learning
problems, from linear regression to image classification to
sentiment analysis, as we have shown here. Still, it is pow-
erful enough to achieve significant improvement in local
accuracy over a variety of personalized federated learning
baselines. One interesting observation is that fine-tuning
global federated learning methods, especially FedAvg, also
tends to perform very well. We plan to further investigate
this phenomenon in future work. Indeed, more complex
extensions of the FedRep framework may be proposed to
improve performance relative to fine-tuning methods.
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