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Abstract

We study the problem of discovering the simplest latent variable that can make
two observed discrete variables conditionally independent. The minimum entropy
required for such a latent is known as common entropy in information theory. We
extend this notion to Rényi common entropy by minimizing the Rényi entropy of
the latent variable. To efficiently compute common entropy, we propose an iterative
algorithm that can be used to discover the trade-off between the entropy of the
latent variable and the conditional mutual information of the observed variables.
We show two applications of common entropy in causal inference: First, under the
assumption that there are no low-entropy mediators, it can be used to distinguish
causation from spurious correlation among almost all joint distributions on simple
causal graphs with two observed variables. Second, common entropy can be
used to improve constraint-based methods such as PC or FCI algorithms in the
small-sample regime, where these methods are known to struggle. We propose a
modification to these constraint-based methods to assess if a separating set found
by these algorithms are valid using common entropy. We finally evaluate our
algorithms on synthetic and real data to establish their performance.

1 Introduction

Understanding the causal workings of a system from data is essential in many fields of science and
engineering. Recently, there has been increasing interest in causal inference in the machine learning
(ML) community. While most of ML has traditionally been relying solely on correlations in the data,
it is now widely accepted that distinguishing causation from correlation is useful even for simple
predictive tasks. This is because causal relations are more robust to the changes in the dataset and
can help with generalization, while an ML system relying solely on correlations might suffer when
these correlations change in the environment the system is deployed in [12].

A causal graph is a directed acyclic graph that depicts the causal workings of the system under study
[38]. Since it indicates the causes of each variable, it can be seen as a qualitative summary of the
underlying mechanisms. Learning the causal graph is the first step for most of the causal inference
tasks, since inference algorithms rely on the causal structure. Causal graphs can be learned from
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randomized experiments [17, 14, 44, 28, 27]. In settings where performing experiments are costly or
infeasible, one needs to resort to observational methods, i.e., make best use of observational data,
potentially under assumptions about the data generating mechanisms.

There is a rich literature on learning causal graphs from observational data [47, 54, 11, 1, 35, 46, 20,
50, 9]. Score-based methods optimize a regularized likelihood function in order to discover the causal
graph. Under certain assumptions, these methods are consistent; they obtain a causal graph that is in
the correct equivalence class for the given data [34, 10]. However, score-based methods are applicable
only in the causally sufficient setting, i.e., when there are no latent confounders. A variable is called
a latent confounder if it is not observable and causes at least two observed nodes. Constraint-based
methods directly recover the equivalence class in the form of a mixed graph [1, 34, 47, 35, 55]:
They test the conditional independence (CI) constraints in the data and use them to infer as much as
possible about the causal graph. Despite being well-established for graphs with or without latents,
constraint-based methods are known to work well only with an abundance of data. Early errors in CI
statements might lead to drastically different graphs due to the sequential nature of these algorithms.
A third class of algorithms can be described as those imposing assumptions in order to identify the
graphs which are otherwise not identifiable [20, 46, 39, 21, 26]. Most of this literature focuses on the
cornerstone case of two variables X,Y where constraint and score-based approaches are unable to
identify if X causes Y or Y causes X , simply because they are indistinguishable without additional
assumptions. This literature contains a wide range of assumptions that we summarize in Section 7.2.

Information theory has been shown to provide tools that can be useful for causal discovery [8, 42, 30,
15, 52, 26, 48]. In this work, we explore the uses of common entropy for learning causal graphs from
observational data. To define common entropy, first consider the following problem: Given the joint
probability distribution of two discrete random variables X,Y , we want to construct a third random
variable Z such that X and Y are independent conditioned on Z. Without any constraints this can be
trivially achieved: Simply picking Z = X or Z = Y ensures that X ⊥⊥ Y |Z . However, this trivial
solution requires Z to be as complex as X or Y . We then ask the following question: is there a simple
Z that makes X,Y conditionally independent? In this work, we use Rényi entropy of the variable as
a notion of its complexity. Then the problem becomes identifying Z with the smallest Rényi entropy
such that X ⊥⊥ Y |Z . Shannon entropy of this Z is called the common entropy of X and Y [31].

We demonstrate two uses of common entropy for causal discovery. The first is in the setting of two
observed variables. Suppose we observe two correlated variables X,Y . Figure 1 shows some causal
graphs that can induce correlation between X,Y . Note that Latent Graph differs from the others in
that X does not have any causal effect on Y . Then distinguishing the latent graph from the others is
important to understand whether an intervention on one of the variables will cause a change in the
other. We show that if the latent confounder is simple, i.e., has small entropy then one can distinguish
the latent graph from the triangle and direct graphs using common entropy. To identify the latent
graph, we assume that the correlation is not induced only by a simple mediator, which eliminates the
mediator graph. We show that this is a realistic assumption using simulated and real data.

Second, we show that common entropy can be used to improve constraint-based causal discovery
algorithms in the small sample regime. For such algorithms, correctly identifying separating sets, i.e.,
sets of variables that can make each pair conditionally independent, is crucial. Our key observation is
that, for a given pair of variables common entropy provides us with an information-theoretic lower
bound on the entropy of any separating set. Therefore, it can be used to reject incorrect separating
sets. We present our modification on the PC algorithm, which is called the EntropicPC algorithm.

To the best of our knowledge, the only result for finding common entropy is given in [31], where they
identify its analytical expression for binary variables. They also note that the problem is difficult in
the general case. To address this gap, in Section 2 we propose an iterative algorithm to approximate
common entropy. We also generalize the notion of common entropy to Rényi common entropy.

Our contributions can be summarized as follows:

• In Section 2, we introduce the notion of Rényi common entropy. We propose a practical
algorithm for finding common entropy and prove certain guarantees. Readers interested
only in the applications of common entropy to causal inference can skip this section.

• In Section 3, under certain assumptions, we show that Rényi0 common entropy can be used
to distinguish latent graph from the triangle and direct graphs in Figure 1. We also show
this identifiability result via Rényi1 common entropy for binary variables, and propose a
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Figure 1: Different graphs that explain correlation between the observed X,Y . Z,M are unobserved.

conjecture for the general case. In Section 5.2, we validate one of our key assumptions in
real and synthetic data. In Section 5.3, we validate our conjecture via real and synthetic data.
• In Section 4, we propose EntropicPC, a modified version of the PC algorithm that uses

common entropy to improve sample efficiency. In Section 5.5, we demonstrate significant
performance improvement for EntropicPC compared to the baseline PC algorithm. We also
illustrate that EntropicPC discovers some of the edges missed by PC in ADULT data [13].
• In Section 5, in addition to the above, we provide experiments on the performance of our

algorithm for finding common entropy, as well as its performance on distinguishing the
latent graph from the triangle graph on synthetic data.

Notation: Support of a discrete random variable X is shown as X . p(.) and q(.) are reserved for
discrete probability distribution functions (pmfs). [n] := {1, 2, . . . , n}. p(Y |x) is shorthand for
the conditional distribution of Y given X = x. Shannon entropy, or entropy in short, is H(X) =
−
∑
x p(x) log(p(x)). Rényi entropy of order r is Hr(X) = 1

1−r log (
∑
x p

r(x)). It can be shown
that Rényi entropy of order 1 is identical to Shannon entropy. D=(V , E) is a directed acyclic graph
with vertex set V and edge set E ⊂ V ×V . Pai represents the set of parents of vertex Xi in the graph
and pai a specific realization. If D is a causal graph, the joint distribution between the variables
(vertices of the graph) factorizes relative to the graph as p(x1, x2, . . . , )=

∏
i p(xi|pai).

2 Rényi Common Entropy

We introduce the notion of Rényi common entropy, which generalizes the common entropy of [31].
Definition 1. Rényi common entropy of order r or Rényir common entropy of two random variables
X,Y with probability distribution p(x, y) is shown by Gr(X,Y ) and is defined as follows:

Gr(X,Y ) := min
q(x,y,z)

Hr(Z)

s.t. I(X;Y |Z) = 0;
∑
z

q(x, y, z) = p(x, y), ∀x, y;
∑

q(.) = 1; q(.) ≥ 0
(1)

Rényi common entropy lower bounds the Rényi entropy of any variable that makes the observed
variables conditionally independent. We focus on two special cases: Rényi0 and Rényi1 common
entropies. Among all variables Z such that X ⊥⊥ Y |Z , Rényi0 common entropy is the logarithm of
the minimum number of states of Z and Rényi1 common entropy is its minimum entropy.

In Section 3, we show that Rényi0 common entropy can be used for distinguishing the latent graph
from the triangle or direct graphs in Figure 1. Since we expect Rényi0 common entropy to be sensitive
to finite-sample noise in practice, we focus on Rényi1 common entropy. Rényi1 common entropy,
or simply common entropy, was introduced in [31], where authors derived the analytical expression
for two binary variables. They also remark that finding common entropy for non-binary variables is
difficult. We propose an iterative update algorithm to approximate common entropy in practice, by
assuming that we have access to the joint distribution between X,Y .

LatentSearch: An Algorithm for Calculating Rényi1 Common Entropy

In this section, our objective is to solve a relaxation of the Rényi1 common entropy problem in (1).
Instead of enforcing conditional independence as a hard constraint of the optimization problem, we
introduce conditional mutual information as a regularizer to the objective function. This allows us
to discover a trade-off between two factors, the entropy H(Z) of the third variable and the residual
dependency between X,Y after conditioning on Z, measured by I(X;Y |Z). We then have the loss

L = I(X;Y |Z) + βH(Z). (2)
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Algorithm 1 LatentSearch: Iterative Update Algorithm

1: Input: Supports of x, y, z, X ,Y,Z, respectively. β ≥ 0 used in (2). Observed joint p(x, y). Initialization
q1(z|x, y). Number of iterations N .

2: Output: Joint distribution q(x, y, z)
3: for i ∈ [N ] do
4: Form the joint:

qi(x, y, z)← qi(z|x, y)p(x, y), ∀x, y, z.
5: Calculate:

qi(z|x)←
∑
y∈Y

qi(x,y,z)∑
y∈Y,z∈Z

qi(x,y,z)
, qi(z|y)←

∑
x∈X

qi(x,y,z)∑
x∈X ,z∈Z

qi(x,y,z)
, qi(z)←

∑
x∈X ,y∈Y

qi(x, y, z)

6: Update:
qi+1(z|x, y)← 1

F (x,y)
qi(z|x)qi(z|y)

qi(z)1−β
, where F (x, y) =

∑
z∈Z

qi(z|x)qi(z|y)
qi(z)1−β

.

7: return q(x, y, z) := qN+1(z|x, y)p(x, y)

Rather than searching over q(x, y, z) and enforcing the constraint
∑
z q(x, y, z) = p(x, y), ∀x, y, we

can search over q(z|x, y) and set q(x, y, z) = q(z|x, y)p(x, y). Therefore we have L = L(q(z|x, y)).
The support size of Z determines the number of optimization variables. Proposition 5 in [31] shows
that without loss of generality, we can assume |Z| ≤ |X ||Y|. In general, L is neither convex nor
concave. Although first order methods (e.g., gradient descent) can be used to find a stationary point,
as we empirically observe the convergence is slow and the performance is very sensitive to the step
size. To this end, we propose a multiplicative update algorithm LatentSearch in Algorithm 1. Given
p(x, y), LatentSearch starts from a random initialization q0(z|x, y), and at each step i iteratively
updates qi(z|x, y) to qi+1(z|x, y) to minimize the loss (2). Specifically, in the ith step it marginalizes
the joint qi(x, y, z) to get qi(z|x), qi(z|y), and qi(z), and imposing a scaled product form on these
marginals, updates the joint to return qi+1(x, y, z). This decomposition and the update rule are
motivated by the partial derivatives associated with the Lagrangian of the loss function (2) (See
Section 7.3). More formally, as we show in the following theorem, after convergence LatentSearch
outputs a stationary point of the loss function. For the proof, please see Sections 7.3, 7.4.
Theorem 1. The stationary points of LatentSearch are also stationary points of the loss in (2).
Moreover, for β = 1, LatentSearch converges to either a local minimum or a saddle point of (2),
unless it is initialized at a local maximum.

Therefore, if the algorithm converges to a solution, it outputs either a local minimum, local maximum
or a saddle point. We observe in our experiments that the algorithm always converges for β ≤ 1.

For each β, LatentSearch outputs a distribution q(.) from which H(Z) can be calculated. When
using LatentSearch to approximate Rényi1 common entropy, we will run it for multiple β values and
pick the distribution q(.) with the smallest H(Z) such that I(X;Y |Z) ≤ θ for a practical threshold θ
to declare conditional independence. See Figure 3b for a sample output of LatentSearch for multiple
β values in the I −H plane. See also lines 6− 7 of Algorithm 2 for an algorithmic description.

3 Identifying Correlation without Causation via Rényi Common Entropy

Suppose we observe two discrete random variables X,Y to be statistically dependent. Reichenbach’s
common cause principle states that X and Y are either causally related, or there is a common cause
that induces the correlation.1 If the correlation is only due to a common cause, intervening on either
variable will have no effect on the other. Therefore, it is important for policy decisions to identify
this case of correlation without causation. Specifically, we want to distinguish latent graph from the
triangle or direct graphs in Figure 1. Since our goal is not to identify the causal direction between X
and Y , we use triangle, direct and mediator graphs to refer to either direction. We show that, under
certain assumptions, Rényi common entropy can be used to solve this identification problem.

Our key assumption is that the latent confounders, if they exist, have small Rényi entropy. In other
words, in Figure 1 Hr(Z) ≤ θr for some θr. We consider two cases: Rényi0 and Rényi1 entropies.
H0(Z) ≤ θ0 is equivalent to upper bounding the support size of Z. H1(Z) ≤ θ1 upper bounds the
Shannon entropy of Z. In general, H1(Z) ≤ θ can be seen as a relaxation of H0(Z) ≤ θ as the latter

1We assume no selection bias in this work, which can also induce spurious correlation.
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implies the former but not vice verse. Accordingly, we show stronger results for Rényi0, whereas we
leave the most general identifiability result of Rényi1 as a conjecture. We also quantify how small the
confounder’s Rényi entropy should be for identifiability.

Note that bounding the Rényi entropy of the latent confounder in the latent graph bounds the Rényi
common entropy of the observed variables. Therefore, in order to distinguish the latent graph from
the triangle and direct graphs, we need to obtain lower bounds on the Rényi common entropy of a
typical pair X,Y when data is generated from the triangle or direct graphs.

We first establish bounds on the Rényi0 common entropy for the triangle and direct graphs, which
hold for almost all parametrizations. To measure the fraction of causal models for which our bound
is valid, we use a natural probability measure on the set of joint distributions by sampling each
conditional uniformly randomly from the probability simplex:
Definition 2 (Uniform generative model (UGM)). For any causal graph, consider the following
generative model for the joint distribution p(x1, x2, . . .) =

∏
i p(xi|pai), where Xi ∈ Xi, ∀i: For

all i and pai, let the conditional distribution p(Xi|pai) be sampled independently and uniformly
randomly from the probability simplex in |Xi| dimensions.

The following theorem uses the measure induced by UGM to show that for almost all distributions
obtained from the triangle or direct graph, Rényi0 common entropy of the observed variables is large.
Theorem 2. Consider the random variables X,Y, Z with supports [m], [n], [k], respectively. Let
p(x, y, z) be a pmf sampled from the triangle or the direct graphs according to UGM. Then with
probability 1, G0(X,Y ) = log(min{m,n}).

Now consider the latent graph where Z is the true confounder. We clearly have that G0(X,Y ) ≤
H0(Z) since Z indeed makes X,Y conditionally independent. In other words, G0(X,Y ) is upper
bounded in the latent graph whereas it is lower bounded in the triangle and the direct graphs by
Theorem 2. Therefore, as long as the correlation cannot be explained by the mediator graph,G0(X,Y )
can be used as a parameter to identify the latent graph. In order to formalize this identifiability
statement, we need two assumptions with parameters (r, θ):
Assumption 1 (r, θ). Consider any causal model with observed variables X,Y . Let Z represent the
variable that captures all latent confounders between X,Y . Then Hr(Z) < θ.
Assumption 2 (r, θ). Consider a causal model where X causes Y . If X causes Y only through a
latent mediator Z, i.e., X → Z → Y , then Hr(Z) ≥ θ.

Assumption 1 states that the collection of latent confounders, represented by Z, has to be "simple",
which is quantified by its Rényi entropy. This assumption can also be interpreted as relaxing the causal
sufficiency assumption by allowing weak confounding. Assumption 2 states that if the correlation
is induced only due to a mediator, this mediator cannot have low Rényi entropy. Even though this
assumption might seem restrictive, we provide evidence on both real and synthetic data in Section
5.2 to show it indeed often holds in practice. We have the following corollary:
Corollary 1. Consider the random variables X,Y with supports [m], [n], respectively. For θ =
log(min{m,n}), latent graph can be identified with probability 1 under UGM, Assumption 1,2(0, θ).

Corollary 1 indicates that, when the latent confounder has less than min{m,n} number of states, we
can infer that the true causal graph is the latent graph from observational data under Assumptions 1
and 2. However, using common entropy, we cannot distinguish triangle graph from the direct graph.
Also note that the identifiability result holds for almost all parametrizations of these graphs, i.e., the
set of parameters where it does not hold has Lebesgue measure zero.

Next, we investigate if Rényi1 common entropy can be used for the same goal. Finding Rényi1
common entropy in general is challenging. For binary X,Y we can use the analytical expression of
[31] to show that G1(X,Y ) is almost always larger than H(Z) asymptotically for the triangle graph:
Theorem 3. Consider the random variables X,Y, Z with supports [2], [2], [k], respectively. Let
p(x, y, z) be a pmf sampled from the triangle graph according to UGM except p(z), which can be
arbitrary. Then lim

H(Z)→0
P(G1(X,Y )>H(Z))=1, where P is the probability measure induced by UGM.

In Section 7.8, we provide simulations for binary and ternary Z to demonstrate the behavior for small
non-zero H(Z). Then, we have the following asymptotic identifiability result using common entropy:
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Algorithm 2 InferGraph: Identifying the Latent Graph

1: Input: k : Support size of Z, p(x, y), T : I(X;Y |Z) threshold, {βi}i∈[N ], θ : H(Z) threshold.
2: Randomly initialize N distributions q(i)0 (z|x, y), i ∈ [N ].
3: for i ∈ [N ] do
4: q(i)(x, y, z)← LatentSearch(q(i)0 (z|x, y), βi).
5: Calculate I(i)(X;Y |Z) and H(i)(Z) from q(i)(x, y, z).
6: S = {i : I(i)(X;Y |Z) ≤ T}.
7: if min({H(i)(Z) : i ∈ S}) > θ or S = ∅ then
8: return Triangle or Direct Graph
9: else

10: return Latent Graph

Algorithm 3 EntropicPC (for F = False) and EntropicPC-C (for F = True)

1: Input: CI Oracle C for V = {X1, . . . Xn}. Common entropy oracle B. Entropy oracle H . Flag F .
2: Form the complete undirected graph D = (V, E) on node set V .
3: l← −1. maysep(Xi, Xj)← True, ∀i, j.
4: while ∃i, j s.t. (Xi, Xj) ∈ E and |adjD(Xi)\{Xj}| > l and maysep(Xi, Xj) = True. do
5: l← l + 1
6: for All i, j s.t. (Xi, Xj) ∈ E and |adjD(Xi)\{Xj}| ≥ l do
7: while (Xi, Xj) ∈ E and ∃S ⊆ adjD(Xi)\{Xj} s.t. |S| = l and maysep(Xi, Xj) = True. do
8: Pick a new S ⊆ adjD(Xi)\{Xj} s.t. |S| = l.
9: if C(X,Y |Z) = True then

10: if H(S) ≥ B(Xi, Xj) then
11: E ← E − {(Xi, Xj)}.
12: sepset(Xi, Xj)← S.
13: else if F = True then
14: maysep(Xi, Xj)← False
15: else
16: if B(Xi, Xj) ≥ 0.8min{H(Xi), H(Xj)} then
17: maysep(Xi, Xj)← False
18: Orient unshielded colliders according to separating sets {sepset(Xi, Xj)}i,j∈[n] [11].
19: Orient as many of the remaining undirected edges as possible by repeatedly applying the Meek rules [35].
20: Return: D = (V, E).

Corollary 2. For binary X,Y under UGM, Assumption 1,2(1, θ) if the entropy upper bound θ is
known, the fraction of causal models for which latent graph can identified goes to 1 as θ goes to 0.

For the general case, we conjecture that when the data is sampled from the triangle or the direct
graphs, G1(X,Y ) scales with min{H(X), H(Y )}.
Conjecture 1. Consider the random variables X,Y, Z with supports [m], [n], [k], respectively. Let
p(x, y, z) be a pmf sampled from the triangle or direct graphs according to UGM except p(z), which
can be arbitrary. Then, there exists a constant α=Θ(1) such that with probability 1−(min{m,n})−c
G1(X,Y )>αmin{H(X), H(Y )} for some constant c = c(α).

According to Conjecture 1, we expect that for most of the parametrizations of the triangle and
direct graphs, common entropy of the observed variables should be lower-bounded by the entropies
of the observed variables, up to a scaling by a constant. It is easy to see that under assumptions
similar to those in Corollaries 1 and 2, Conjecture 1 implies identifiability of the latent graph. In
Section 5, we conduct experiments to support the conjecture and identify α. We conclude this section
by formalizing how LatentSearch can be used in Algorithm 2, under Assumption 1(1, θ), 2(1, θ).
Conjecture 1 suggests that, in Algorithm 2, we can set θ=αmin{H(X), H(Y )} for some α < 1.

4 Entropic Constraint-Based Causal Discovery

A causal graph imposes certain CI relations in the data. Constraint-based causal discovery methods
utilize CI statements to reverse-engineer the underlying causal graph. Consider a causal graph over a
set V of observed variables. Constraint-based methods identify a set SX,Y ⊂ V as a separating set
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for every pair X,Y if the CI statement X ⊥⊥ Y |SX,Y holds in the data. Starting with a complete
graph, edges between pairs are removed if they are separable by some set. Separating sets are later
used to orient parts of the graph, which is followed by a set of orientation rules [47, 55] .

Despite being grounded theoretically in the large sample limit, in practice these methods require a
large number of samples and are very sensitive to noise: An incorrect CI statement early on might lead
to a drastically different causal graph at the end due to their sequential nature. Another issue is that
the distribution should be faithful to the graph, i.e., any connected pair should be dependent [47, 29].

To help alleviate some of these issues, we propose a simple modification to the existing constraint-
based learning algorithms using common entropy. Our key observation is that the common entropy
of two variables provide an information-theoretic lower bound on the entropy of any separating
set. In other words, common entropy provides us with a necessary condition for a set SX,Y to be
a valid separating set: X ⊥⊥ Y |SX,Y only if H(SX,Y )≥G1(X,Y ). Accordingly, we can modify
any constraint-based method to ensure this condition. We only lay out our modifications on the PC
algorithm. It can be trivially applied to other methods such as modern variants of PC and FCI.

We propose two versions: EntropicPC and the conservative version EntropicPC-C. In both, SX,Y
is accepted only if H(SX,Y )≥G1(X,Y ). The difference is how they handle pairs X,Y that are
deemed CI despite that H(SX,Y )<G1(X,Y ). EntropicPC-C concludes that the data for X,Y is
unreliable and simply declares them non-separable by any set. EntropicPC only does this when
common entropy is large, i.e., G1(X,Y )≥0.8 min{H(X), H(Y )}; otherwise it searches for another
set that may satisfy H(SX,Y )≥G1(X,Y ). 0.8 is chosen based on our experiments in Section 5.

We provide the pseudo-code in Algorithm 3. It is easy to see that both algorithms are sound in the
sample limit. The case of S=∅ in line 10 is of special interest. Setting H(∅)=0 is not reasonable
with finitely many samples since the common entropy of independent variables will not be estimated
as exactly zero. To address this, in simulations H(∅) is set to 0.1 min{H(X), H(Y )} in line 10.
This and the choice of 0.8 as the coefficient in line 16 can be seen as hyper-parameters to be tuned.

5 Experiments

5.1 Performance of LatentSearch

We evaluate how well LatentSearch performs by generating data from the latent graph and comparing
the entropy it recovers with the entropy of the true confounder Z in Figure 2a. In the generated data,
we ensure H(Z) is bounded above by 1 for all n. This makes the task harder for the algorithm for
larger n. The left axis shows the fraction of times LatentSearch recovers a latent with entropy smaller
than H(Z). The right axis shows the worst-case performance in terms of the entropy gap between
the algorithm output and true entropy. We generated 100 random distributions for each n. The same
number of iterations is used for the algorithm for all n. As expected, performance slowly degrades as
n is increased, since H(Z) < 1, ∀n. We conclude that LatentSearch performs well within the range
of n values we use in this paper. Further research is needed to make LatentSearch adapt to n.

5.2 Validating Assumption 2: No Low-Entropy Mediator

We conducted synthetic and real experiments to validate the assumption that, in practice, it is unlikely
for cause-effect pairs to only have low-entropy mediators. First, in Figure 3c we generated data
from X→Z→Y and evaluated H(Z). p(X) is sampled uniformly from the probability simplex.
p(Z|x), ∀x are sampled from Dirichlet with parameter αDir. It is observed that mediator entropy
scales with log2(n) for all cases. This supports Assumption 2 by asserting that for most causal
models, unless the mediator has a constant number of states, its entropy is close to H(X), H(Y ).

Second, in Figure 3a, we run LatentSearch on the real cause-effect pairs from Tuebingen dataset [36].
Our goal is to test if the causation can be solely due to low-entropy mediators: If it is, then common
entropy should be small since mediator can make the observed variables conditionally independent.
We used different thresholds for conditional mutual information for declaring two variables condition-
ally independent. Investigating typical I−H plots for this dataset (see (b)), we conclude that 0.001 is
a suitable CMI threshold for this dataset. From the empirical cdf of α := G1(X,Y )

min{H(X),H(Y )} across the
dataset, we identified that for most pairs G1(X,Y ) ≥ 0.8 min{H(X), H(Y )}. This indicates that if
the causation is solely due to a mediator, it must have entropy of at least 0.8 min{H(X), H(Y )}.
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Figure 2: (a) [Section 5.1] Performance of LatentSearch (Alg. 1) on synthetic data. (b) [Section 5.3]
Fraction of times Conjecture 1 holds in synthetic data for different values of α. (c) [Section 5.4]
Performance of Algorithm 2 on synthetic data for different confounder entropies.
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Figure 3: (a) [Section 5.3,5.2] Empirical cumulative distribution function for α from Conjecture
1 from Tuebingen Data for various conditional mutual information thresholds. (b) Tradeoff curve
discovered by LatentSearch for pair 7 of Tuebingen. Each point is the output of LatentSearch for
a different value of β. The sharp elbow around I(X;Y |Z) = 0 hints that the suitable conditional
mutual information threshold for this pair is ≈ 0.001. (c) Entropy of mediator in synthetic data.
y−axis shows the mean minus 5 times the st-dev. of entropy as a fraction of log2(n) as an empirical
lower bound. Results show that, for almost all models, entropy of the mediator scales with log2(n).

5.3 Validating Conjecture 1

In Figure 2b, for each n we sample 1000 distributions from the triangle graph with H(Z) ≤ 1. Even
with a 1 bit latent, we observe that G1(X,Y ) scales with min{H(X), H(Y )}. In fact the result hints
at the even stronger statement that that for any α, ∃n0(α) where the conjecture holds ∀n ≥ n0(α).

Experiments with the Tuebingen data, as explained in Section 5.2 and Figure 3a, similarly supports
Conjecture 1: If a pair is causally related, common entropy typically scales with min{H(X), H(Y )}.

5.4 Identifiability via Algorithm 2

In Figure 2c we uniformly mixed data from triangle and latent graphs with different entropy
bounds on the confounder. Since in a practical problem, true H(Z) will not be available, we
used 0.8 min{H(X), H(Y )} as the entropy threshold θ in Algorithm 2. The results indicate that
even if the true H(Z) scales with n (e.g., 0.5 log2(n)), we can still distinguish latent from triangle
graph. ≤ can be interpreted as ≈ due to our sampling method of p(z), as detailed in Section 7.10.

5.5 Evaluating EntropicPC

In this section, to illustrate the performance improvement provided by using common entropy,
we compare the order-independent version of PC algorithm [11] with our proposed modification
EntropicPC and its conservative version EntropicPC-C as described in Algorithm 3 on both synthetic
graphs and data generated from them and on ADULT dataset. We use pcalg package in R [24, 18]

Synthetic Graphs/Data: In Figure 4 we randomly sampled joint distributions from 100 Erdös-Rényi
graphs on 10 nodes (see Section 7.12 for 3-node graphs) each with 8 states, and obtained datasets with
1k, 5k, 80k samples. 80k is chosen to mimic the infinite-sample regime where we expect identical
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Figure 4: [Section 5.5] Performance of EntropicPC, EntropicPC-C and PC in synthetic data.

performance with PC. (a), (b), (c) shows the empirical cumulative distribution function (CDF) of F1
score for identifying edges in either direction correctly (skeleton). Since F1 =1 is ideal, the best-case
CDF is a step function at 1. Accordingly, lower the CDF curve the better. (d), (e), (f) shows the
empirical CDF of Structural Hamming Distance (SHD) [49] between the true essential graphs, and
the output of each algorithm using the same synthetic data. Since SHD=0 is ideal, the best-case
CDF is a step function at 0, Accordingly, higher the CDF curve the better. EntropicPC provides
very significant improvements to skeleton discovery as indicated by the F1 score and moderate
improvement to identifying the true essential graph as indicated by SHD in the small-sample regime.

On ADULT Dataset: We compare the performance of EntropicPC with the baseline PC algorithm
that we used for our modifications. Entropic PC identifies the following additional edges that are
missed by the PC algorithm: It discovers that Marital Status, Relationship, Education, Occupation
causes Salary. Even though there is no ground truth, at the very least, we expect Education and
Occupation to be causes of Salary, whereas PC outputs Salary as an isolated node, implying it is
not caused by any of the variables. We believe the reason it that for every neighbor, there is some
conditioning set and a configuration with very few number of samples. This can easily be interpreted
as conditional independence by a CI tester. EntropicPC alleviates this problem by concluding that
there is significant dependence between these variables by checking their common entropy. From
both real and synthetic simulations, we conclude that common entropy is more robust to small number
of samples than CI testing. For space restriction, causal graphs are shown in Figure 8 in Appendix.

6 Conclusions

In this paper, we showed that common entropy, an information-theoretic quantity, can be used for
causal discovery. We introduced the notion of Rényi common entropy and proposed a practical
algorithm for approximately calculating Rényi1 common entropy. Next, we showed theoretically
that common entropy can be used to identify if the observed variables are causally related under
certain assumptions. Finally, we showed that common entropy can be used to improve the existing
constraint-based causal discovery algorithms. We evaluated our results on synthetic and real data.
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Broader Impact

This work lays the foundations for using the information-theoretic notion of common entropy within
the context of discovering causal relations from data.

Problems that require discovering causal relations from observational data are prominent across many
different fields. Causality is also central to the development of AI. Therefore, we expect this work to
have a positive impact by providing a new methodology and identifying settings in which causality
can be inferred using this framework.

In terms of the negative effects, we do not foresee an immediate negative effect that may arise because
of this work. The only risks would be due to the risks associated with having stronger machine
learning models, and better AI that could be misused or exploited.
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