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Abstract. When searching over a large parameter space for anomalies such as events, peaks,
objects, or particles, there is a large probability that spurious signals with seemingly high sig-
nificance will be found. This is known as the look-elsewhere effect and is prevalent throughout
cosmology, (astro)particle physics, and beyond. To avoid making false claims of detection,
one must account for this effect when assigning the statistical significance of an anomaly.
This is typically accomplished by considering the trials factor, which is generally computed
numerically via potentially expensive simulations. In this paper we develop a continuous gen-
eralization of the Bonferroni and Šidák corrections by applying the Laplace approximation
to evaluate the Bayes factor, and in turn relating the trials factor to the prior-to-posterior
volume ratio. We use this to define a test statistic whose frequentist properties have a simple
interpretation in terms of the global p-value, or statistical significance. We apply this method
to various physics-based examples and show it to work well for the full range of p-values,
i.e. in both the asymptotic and non-asymptotic regimes. We also show that this method
naturally accounts for other model complexities such as additional degrees of freedom, gen-
eralizing Wilks’ theorem. This provides a fast way to quantify statistical significance in light
of the look-elsewhere effect, without resorting to expensive simulations.
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1 Introduction

A common problem in statistical analysis is to find evidence for a physical signal in a large,
continuous parameter space, where the true position of the signal is not known a priori. By
searching over a wide parameter space one increases the probability of finding large signals
caused by random statistical fluctuations, as opposed to a physical source. This is known as
the look-elsewhere effect — or sometimes the “problem of multiple comparisons” in discrete
cases — and must be accounted for when performing a hypothesis test [1, 2]. Ignoring
this effect would lead to an overestimation of the statistical significance, sometimes by a
considerable amount, and thus incorrectly concluding the detection of a physical signal.

The look-elsewhere effect is prominent throughout (astro)particle physics and cosmol-
ogy. One of the most commonly known occurrences is in collider searches for new particles,
for example it was a key consideration in the Higgs boson discovery [3, 4]. In this example,
one searches a large range of masses for a resonance, without a priori knowledge of the true
mass of the particle. Similarly, in astrophysical searches for particles one seeks resonances
in the energy flux of various astrophysical spectra, where the true energy signature of the
particle is unknown. Examples include: constraining the dark matter self-annihilation cross-
section via gamma ray emission from galaxy clusters [5], searching for WIMPs via charged
cosmic rays [6], searching for non-baryonic dark matter via X-ray emission from the Milky
Way [7], and explaining the source of high energy astrophysical neutrinos [8, 9]. In terms
of cosmology, the look-elsewhere effect occurs in searches for gravitational wave signals from
black hole or neutron star mergers [10–12]. Here one searches large time series for a signal,
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where the time and shape of the event are unknown. A further cosmological example is
searching for signatures of inflation in the primordial power spectrum [13–15].

The look-elsewhere effect is also prevalent in other areas of physics and beyond, for
example: in astronomy it occurs when detecting exoplanets via stellar photometry, where
the period and phase of the planets’ transits are unknown (e.g. [16]); in biology it occurs
when considering large DNA sequences to study genetic association [17, 18]; in medicine
it occurs when testing the effectiveness of drugs in clinical trials [19]; and in theology it
occurs when attempting to find hidden prophecies in religious texts [20]. Therefore, given
the apparent ubiquity of the look-elsewhere effect, there is much motivation for a fast method
to account for it.

Many simple general methods exist to mitigate for the look-elsewhere effect in the case
of discrete problems, for example if one is testing multiple drugs for their effectiveness at
treating a disease [19]. The number of drugs tested, more generally known as the trials factor,
quantifies the extent of the look-elsewhere effect. The larger the trials factor, i.e. the more
drugs tested, the larger the chance of a false positive arising due to a statistical fluctuation.
Methods such as the Bonferroni correction [21] and Šidák correction [22] use the trials factor
to correct the conclusions of a hypothesis test in light of this effect. There is however no
unique definition of the trials factor when searching a continuous parameter space for a signal,
making it unclear how to implement these corrections in such cases. Therefore, a common,
brute-force approach to account for the look-elsewhere effect in continuous problems is to
perform many simulations of an experiment assuming there is no signal. One can then
estimate the p-value of a chosen test statistic, usually related to the maximum likelihood,
and in turn define a relation between the significance of a signal and the test statistic.
This means that to conclude a detection at the 5-sigma level, corresponding to a p-value of
order 10−7, one would need to simulate more than ∼ 107 realizations of the experimental
data, which is computationally expensive. A faster method, developed in the context of high
energy physics, is to approximate the asymptotic form of the p-value by counting upcrossings,
requiring fewer simulations [23]. In both of these cases new simulations are required each
time a new model is considered, and the simulations may not be an accurate representation
of the data. In this paper we seek an approach that can be directly applied to experimental
data, without the need for simulations.

Our approach applies Bayesian logic to tackle the look-elsewhere effect. The Bayesian
evidence is equal to the prior-weighted average of the likelihood over the parameter space,
which can be considerably lower than the maximum likelihood if the prior is broad. This
integration over the prior accounts for the look-elsewhere effect by penalizing large prior
volumes. When considering large prior volumes, the likelihood is typically multimodal, with
most of the peaks corresponding to noise fluctuations rather than physical sources. In order
to estimate the location of a physical signal, and its associated statistical significance, one
typically considers a point estimator, such as the maximum a posteriori (MAP) estimator
which maximizes the posterior density. By applying the Laplace approximation, we introduce
a Bayesian generalization of the MAP estimator, referred to as the maximum posterior mass
(MPM) estimator, which corrects the MAP estimator by the prior-to-posterior volume ratio.
Then, by drawing an analogy between Bayesian and frequentist methodology, we present a
hybrid of the MAP and MPM estimators, called the maximum posterior significance (MPS)
estimator, which determines the most significant peak in light of the look-elsewhere effect.
The frequentist properties of the MPS estimator are shown to be independent of the look-
elsewhere effect, providing a universal way to quantify the p-value, or statistical significance,
without the need for expensive simulations.
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The outline of this paper is as follows. In section 2 we review Bayesian posterior
inference and hypothesis testing for a multimodal posterior, by discussing MAP estimation
and then introducing MPM estimation. We then draw an analogy between Bayesian and
frequentist philosophy in section 3 to motivate MPS estimation as the appropriate technique
to tackle the look-elsewhere effect. The following three sections then apply this method to
various examples: section 4 considers a resonance search, which can be thought of as a toy
example of a collider or astrophysical particle search; section 5 considers a white noise time
series, which can be thought of as a toy example of a gravitational wave search; and section 6
considers a search for non-Gaussian models of cosmological inflation using Planck data [24].
Note that section 4 is the main example, as it illustrates the key advantages of MPS, with
the other examples complementary. Finally, we summarize and conclude in section 7.

2 Bayesian posterior inference and hypothesis testing

Two of the main tasks of Bayesian statistical analysis are posterior inference and hypothesis
testing. Consider a model with parameters z = {zj}Mj=1, and data x = {xi}Nd

i=1 that depends
on z. The inference of z is given by its posterior

p(z|x) =
p(x, z)

p(x)
=
p(x|z)p(z)

p(x)
, (2.1)

where p(x|z) is the likelihood of the data, p(z) is the prior of z, and p(x) =
∫
dz p(x|z)p(z)

is the Bayesian evidence, also known as the normalization, marginal likelihood, or partition
function.1 Typically, one can evaluate the joint probability p(x, z), but not the evidence,
which makes the posterior inference analytically intractable. This is usually handled using
simple approximations or Monte Carlo Markov Chain methods [25].

A related problem is that of a hypothesis testing. In this case there are two different
hypotheses, H and H0, each with their own, potentially different, set of model parameters.
In Bayesian methodology, hypothesis testing is performed using the Bayesian evidence ratio
of the two hypotheses, which gives the Bayes factor

B ≡ p(x|H)

p(x|H0)
, (2.2)

where the Bayesian evidence, or marginal likelihood, for hypothesis H is given by

p(x|H) =

∫
dz p(x|z, H)p(z|H). (2.3)

If the prior on each hypothesis is equal, i.e. p(H) = p(H0) = 0.5, then the Bayes factor is
equal to the posterior odds ratio, B = p(H|x)/p(H0|x).

The Bayesian evidence and Bayes factor are also analytically intractable and harder
to evaluate than posteriors, especially for high dimensional z, although recent numerical
methods such as Gaussianized Bridge Sampling [26] have made the problem easier. For the
sake of exposition we will not consider such methods in this work, but instead use analytical
approximations that give the Bayes factor an intuitive meaning. It is worth keeping in mind
however that the full Bayes factor calculation can always be performed numerically, without
any approximations.

1Note that throughout this paper we use the letter p to refer to likelihood, prior, posterior, and evidence,
even though they each refer to different functions. This notation has the advantage of making the probabilistic
nature of each function clear, while the identity of the function should be clear from its argument.
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2.1 Maximum a Posteriori (MAP) estimation

Given the analytical intractability of posterior inference and hypothesis testing, one often
chooses an estimator to extract useful information from the posterior. A common estimator is
the maximum a posteriori (MAP) point estimator, which corresponds to the global maximum
of the posterior. If the prior is flat, as it will always be in this paper, this equals the
maximum likelihood estimator (MLE), which maximizes the likelihood. Mathematically,
MAP is defined via

MAP : arg max
z

p(z|x), (2.4)

i.e. the MAP is located at the argument, z, that maximizes the posterior. For the purpose
of comparing data to a null hypothesis, a useful quantity to define is

qL(z) ≡ 2 ln
p(x|z)

p(x|zn)
, (2.5)

where zn represents the values of the parameters under the null hypothesis, and a subscript
of L is used because the argument of the logarithm is the Likelihood ratio. To assess the
significance of a result one considers the maximum value of qL, which in the case of a flat
prior is equal to qL evaluated at the MAP: q̂L = qL(zMAP). For a Gaussian likelihood, this is
equal to the chi-squared (χ2), and in the absence of the look-elsewhere effect

√
q̂L typically

gives the statistical significance. However, we will see that this test statistic greatly suffers
from the look-elsewhere effect. This is because qL effectively assumes the prior on z to be
a delta function located at the best fit value. Such a prior is unreasonable because it has
been determined a posteriori (after seeing the data), and ignores the fact that when looking
elsewhere in parameter space the prior will be broad and in turn penalize the significance.
We will now explore this in more depth, and later discuss what a reasonable prior means.

2.2 Maximum Posterior Mass (MPM) estimation

MAP is often a good point estimator in low dimensions if there is a single mode in the
posterior. However, if the posterior has several modes, a more reasonable point estimator
associates with the highest posterior mass. We refer to this as the maximum posterior mass
(MPM) estimator.

For the purposes of this work, we will consider the example of a multimodal posterior
consisting of a sum of multivariate Gaussian distributions; this has been shown to be a good
approximation in many practical cases [27]. We thus consider a posterior of the following
Gaussian mixture form,

p(z|x) =
∑

l

wlN(z;µl,Σl), (2.6)

where N(z;µ,Σ) is a multivariate normal distribution with mean µ and covariance matrix
Σ.Note that working with a posterior of this form is equivalent to applying the Laplace
approximation to a general multimodal posterior in the upcoming derivations. In this model,
the mass of mode l is proportional to the weight wl, which is normalized such that

∑
l w

l = 1.

Assuming that only one component contributes at each peak, the weight of mode l is
given by evaluating the posterior at the location of the mode, z = µl,

lnwl = ln p(µl|x)− lnN(µl;µl,Σl) = ln p(µl|x) +
1

2

[
ln det Σl +M ln(2π)

]
. (2.7)
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z|
x
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MAP

MPM

Figure 1. Plot of a bimodal Gaussian posterior for a 1d example in which 90% of the posterior mass
is assigned to the right peak and 10% to the left. MPM yields the mode that maximizes the posterior
mass and is close to the true mean, whereas MAP maximizes the posterior density and can be distant
from the mean and represent only a small fraction of posterior mass.

Given the aforementioned analytical intractability of the posterior, we multiply each weight
by the normalization p(x) to give a quantity that can be readily computed. We call this
quantity the mass ml, and it is defined by

lnml ≡ lnwl + ln p(x) = ln p(x|µl) + ln p(µl) +
1

2

[
ln det Σl +M ln(2π)

]
. (2.8)

Thus the mass of each mode is equal to the likelihood multiplied by the product of the prior
density and the posterior volume at the peak, where the posterior volume is defined as

Vposterior ≡ (2π)M/2
√

det Σ. (2.9)

The MPM estimator corresponds to the mode with the highest mass, thus

MPM : arg max
z

[
p(x|z)p(z)

√
det Σ(z)

]
. (2.10)

To determine the MPM mode one would compute the lnml by first finding the positions of
all local posterior maxima µl, and then computing Σl using the inverse of the Hessian at each
peak. Qualitatively, MPM corresponds to maximizing the posterior density multiplied by the
posterior volume ∼

√
det Σ, whereas MAP only maximizes the former. It is apparent that if

there are multiple modes in the posterior, the one that has the largest posterior mass does
not necessarily have the largest posterior density, as shown in figure 1. In some situations
the MPM mode will dominate the posterior mass such that the MPM mode alone gives a
useful way to summarize the posterior.

2.3 Hypothesis testing with MPM

Consider a model with parameters z1, z2, . . . , zM , with z1 corresponding to the amplitude of
a feature, and z2, . . . , zM corresponding to the properties of the feature. For example, z1

might correspond to the amplitude of a signal detected in a time series at time z2. We will
use the notation z ≡ (z1, . . . , zM )T as the vector of all parameters, and z>1 ≡ (z2, . . . , zM )T

as the subvector of non-amplitude parameters, i.e. excluding z1. A typical analysis would
scan over z>1, finding the best fit value for the amplitude z1 at each point, giving rise to a
multimodal posterior.

– 5 –
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In this work we wish to determine whether or not a dataset contains a true anomaly.
In the language of hypothesis testing, we wish to compare the hypothesis that there is an
anomaly H, corresponding to z1 > 0, to the null hypothesis that there is no anomaly H0,
corresponding to z1 = 0. We assume the common case that the parameters of H0 are a subset
of the parameters of H, with H reducing to H0 when z1 = 0. There may also be parameters
other than z that are common to both models, but these are of secondary importance when
considering the look-elsewhere effect and we drop these from the notation.

Using equation (2.8) with
∑
wl = 1 implies that the Bayesian evidence for hypothesis

H is given by

p(x|H) =

∫
dz p(x|z, H)p(z|H) =

∑

l

ml, (2.11)

where the ml correspond to the masses under hypothesis H. Hence, each mode contributes
its mass to the evidence. It follows that the mass of mode l corresponds to the Laplace
approximation of the evidence integral in equation (2.11), integrated over the region of the
mode. Because the null hypothesis does not depend on z>1, the evidence for the null hypoth-
esis is given by the likelihood evaluated at z1 = 0, that is p(x|H0) = p(x|z1 = 0) ≡ p0(x).
Together with equation (2.11) this gives the Bayes factor

B ≡ p(x|H)

p(x|H0)
=

1

p0(x)

∑

l

ml ≡
∑

l

bl, (2.12)

where bl is defined as the contribution of mode l to the Bayes factor. Using equation (2.8)
gives

bl =
p(x|µl)
p0(x)

p(µl)(2π)M/2
√

det Σl =
p(x|µl)
p0(x)

Vposterior(µ
l)

Vprior(µl)
, (2.13)

where we have introduced the effective volume of the prior at µl as,

V −1
prior(µ

l) ≡ p(µl), (2.14)

appropriate for the case of a narrow posterior relative to the prior. In the remainder of this
paper we will drop the µl dependence of the prior volume, as appropriate for a flat prior
on z.

Intuitively, one can think of each bl as the Bayes factor one would get if mode l were
the only mode in the posterior. If the maximum bl is sufficiently large, it alone can provide
a useful approximation to the Bayes factor, meaning the MPM mode dominates the Bayes
factor. The first ratio on the right hand side of equation (2.13) corresponds to the likelihood
ratio of the signal hypothesis to the null hypothesis, evaluated at the location of the peak,
z = µl. This is greater than or equal to 1 since adding parameters to the null hypothesis can
only improve the fit. The second ratio gives the ratio of the posterior volume to the prior
volume at the peak, which is always less than 1. This acts as a penalty to the likelihood
ratio, often referred to as the Occam’s razor penalty [28], or model complexity penalty,
and compensates for the look-elsewhere effect in the case of a multimodal posterior. The
higher the prior-to-posterior volume ratio, the higher the chance that peaks with a high
likelihood will occur because of statistical fluctuations, thus the larger the penalty required
to compensate.
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Just as qL is the estimator associated with MAP, we can define qb ≡ 2 ln b as the
estimator associated with MPM, such that

qb = qL − 2 ln
Vprior

Vposterior
. (2.15)

The MPM mode corresponds to the mode with maximum qb. This illustrates how the MAP
estimator ignores the look-elsewhere penalty by effectively considering the posterior and prior
to be overlapping delta functions, which presumes a priori knowledge of the parameters and
gives a prior-to-posterior volume ratio of unity.

An interesting question to consider is whether one can relate qb to the look-elsewhere
corrected statistical significance in a frequentist sense. In the absence of the look-elsewhere
effect, the significance is given by

√
qL, but simply taking

√
qb as the look-elsewhere corrected

significance would not be correct. In the next section we turn to a frequentist description of
the look-elsewhere effect to motivate a new estimator which applies a small modification to
qb and has a simple interpretation in terms of the significance, or p-value.

Before ending this section we discuss the choice of priors appropriate for a look-elsewhere
analysis. If one has no prior knowledge regarding the location of an anomaly, then a uniform
prior for the z>1 parameters is appropriate. If the prior is wide and posterior narrow this
induces a large look-elsewhere effect. This choice of prior is not controversial. On the other
hand, the choice of prior for the amplitude parameter z1 is less clear. If one has no prior
knowledge of the signal amplitude, then one should be open to a signal of any size, however one
does not want the amplitude prior to induce a look-elsewhere penalty. In Bayesian hypothesis
testing the amplitude parameter is treated analogously to the other parameters, thus if
one uses too broad an amplitude prior it will induce an unwanted look-elsewhere penalty,
whereas if one chooses too narrow an amplitude prior one risks discounting a large signal.
Based on this we rewrite b in the following form, explicitly separating the marginalization
over z>1 and z1,

b = eqL/2
V>1,posterior

V>1,prior

V1,posterior

V1,prior
. (2.16)

The posterior volume terms are given by the covariance matrix, as in equation (2.9), and
V>1,prior is given by the choice of prior on z>1. It thus remains to justify a choice of V1,prior,
which we will do by turning to a frequentist description of the look-elsewhere effect in the
next section.

3 From Bayesian to frequentist hypothesis testing

Standard statistics literature states that Bayesian and frequentist hypothesis testing follow
different methodologies and may give very different results. One famous illustration of this
is the Jeffreys-Lindley “paradox” [29], however, there is much debate as to whether this
is indeed a paradox and how relevant it is for scientific discourse (see [30] for a review
in the context of high energy physics). While Bayesian statistics uses the Bayes factor for
hypothesis testing, frequentist statistics uses the maximum likelihood ratio, or q̂L. One of the
most important aspects of frequentist methodology is the computation of the false positive
rate using the p-value, which quantifies how often a test statistic, for example q̂L, will take
a specific value or larger under the assumptions of the null hypothesis. This has an intuitive
interpretation as it directly relates to the false positive rate of the test statistic. On the other
hand, Bayesian methodology rejects the p-value. The basis for this rejection is the likelihood

– 7 –



J
C
A
P
1
0
(
2
0
2
0
)
0
0
9

principle, which states that any inference about the parameters z from the data x can only
be made via the likelihood p(x|z). When the likelihood principle is applied to testing a
hypothesis with parameters z one must use the marginal likelihood by integrating out these
parameters — as in the Bayesian evidence of equation (2.3) — thus Bayesian methodology
explicitly satisfies the likelihood principle. It is commonly argued that p-values violate the
likelihood principle, because they rely on the frequentist properties of a distribution that
go beyond the likelihood principle. However, the Bayes factor provides a less reliable tool
for model comparison, as it is often interpreted in terms of arbitrary, model-independent
scales [31], unlike the p-value which directly relates to the false positive rate.

We seek to elucidate how the answers of the two schools of statistics relate to one
and other when it comes to the hypothesis testing. Both schools of statistics should give a
similar, or at least related answer, when the question is phrased similarly. For uncertainty
quantification it is often argued that the two schools do not answer the same question,
since the Bayesian school treats data as fixed and varies the models, while the frequentist
school varies the data at a fixed model. However, when it comes to hypothesis testing the
distinction is less prominent: for example, when comparing two discrete hypotheses without
any marginalizations, the answer in both cases gives the likelihood ratio as the optimal
statistic (assuming equal prior for the two hypotheses). For continuous hypotheses it is often
argued this is not possible. Here we will show that the two answers, the p-value and the
Bayes factor, can be related with a specific choice of prior. It is important to emphasize
that we are not claiming to equate the Bayesian and frequentist methodologies, but rather
motivate a connection.

In this work we define the p-value as the probability under the null hypothesis, H0, of
a random variable, Q, to be observed to have a value equal to or more extreme than the
value observed, q. We thus use the notation P (Q ≥ q) for the p-value. To compute the p-
value of a test statistic, one must consider how the test statistic is distributed under the null
hypothesis. For the example of q̂L this distribution is not universal: scanning over continuous
variables, as in the look-elsewhere effect, will modify this distribution in a model dependent
manner. Moreover, increasing the model complexity in other ways, for example by including
extra degrees of freedom, will further modify the distribution. To account for extra degrees
of freedom, Wilks’ theorem [32] provides the asymptotic distribution of q̂L for a hypothesis
test where H has ν more degrees of freedom than H0. However, Wilks’ theorem relies on
technical conditions, such as the observed value not being at the edge of the interval, and
does not consider the look-elsewhere effect. Generalization of Wilks’ theorem for the look-
elsewhere effect have been considered in [33, 34] and have been translated into a practical
procedure in [23]. As a result, a frequentist approach consists of a series of considerations to
determine the change in the distribution of q̂L due to different sources of model complexity.
This is unlike the Bayesian methodology where all forms of model complexity are accounted
for in the same way, as they are encoded into the Bayes factor. By connecting the two
methodologies, we will present a test statistic whose distribution is universal, regardless of
the model complexity and look-elsewhere effect.

3.1 Maximum Posterior Significance (MPS) estimation

We start by considering the typical case of one degree of freedom, corresponding to a single
signal with amplitude z1 and features described by z>1. We denote qL maximized over
the amplitude parameter only as q̌L(z>1) ≡ maxz1 qL(z), not to be confused with q̂L ≡
maxz qL(z) which is qL maximized over all parameters. For a t-tailed test (where t is equal
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1 or 2), Wilks’ theorem gives the asymptotic p-value of q̌L, at any position z>1, as

P (Q̌L ≥ q̌L) =
t

2
F̃1(q̌L)

q̌L→∞−−−−→ t√
2πq̌L

e−q̌L/2, (3.1)

where F̃ν is the complementary cumulative distribution function (CCDF) of a chi-squared
random variable with ν degrees of freedom. This maximization over z1 at a fixed choice of
z>1 corresponds to the p-value in the absence of the look-elsewhere effect, referred to as the
local p-value. Further maximizing over z>1 introduces the look-elsewhere effect, which can
be parameterized by multiplying by the trials factor N such that

P (Q̂L ≥ q̂L) = N
t√

2πq̂L
e−q̂L/2. (3.2)

This is referred to as the global p-value. It is this form that encapsulates the Bonferroni
correction [21] which effectively multiplies the local p-value by N to account for the look-
elsewhere effect. For discrete problems the trials factor equals the number of trials performed.
However, in the continuous case it is ill-defined, but it quantifies how the probability of finding
a spurious peak increases as one looks elsewhere in the space spanned by z>1. Accounting
for the look-elsewhere effect thus requires an expression for the trials factor.

It follows from equation (3.2) that one can define a test statistic,

qS = qL − 2 lnN + ln 2πqL − 2 ln t (3.3)

such that the global p-value tends to

P (Q̂S ≥ q̂S)→ e−q̂S/2, (3.4)

as either N →∞ or q̂S →∞, so this also applies for N = 1. See appendix A for a derivation.
Unlike q̂L, q̂S has a distribution that is independent of N — the look-elsewhere effect has
been absorbed into the test statistic. Intuitively one can think of the 2 lnN term as a penalty
to qL to correct for the look-elsewhere effect, while the ln 2πqL term removes qL dependent
bias, ensuring the p-value depends on q̂S alone in the asymptotic limit. Thus to account for
the look-elsewhere effect one need only compute q̂S and use this equation to compute the
p-value. Because the p-value is a monotonically decreasing function of q̂S , one can think of
selecting the peak with maximum qS as selecting the peak with minimum p-value or maximum
statistical significance. We refer to the mode with maximum qS as the MPS mode, deferring
an explanation for this nomenclature until the end of the subsection. The similarity of qS to
qb from equation (2.15) suggests a connection between the frequentist and Bayesian pictures,
and we now invoke this connection to find an expression for N and in turn generalize the
Bonferroni correction to continuous parameters.

Heuristically, the Bayes factor describes the probability of the alternative hypothesis
relative to the null, determined by the likelihood (as measured by q̂L), while the p-value
averages its inverse over all values larger than q̂L and will be smaller than the likelihood.
We expect that for higher q̂L the effect is larger because we are further into the tail of the
distribution. There is no unique relation between the two, but one simple option is that
the p-value scales as B−1/q̂L ≈ b̂−1/q̂L, where hats now indicate quantities associated with
the MPS mode. Because we have the freedom to choose the prior on z1, we can define the
relation between the Bayes factor and p-value as

b̂−1

q̂L
≡ P (Q̂L ≥ q̂L). (3.5)

– 9 –



J
C
A
P
1
0
(
2
0
2
0
)
0
0
9

Comparing equation (2.16) with equation (3.2) then gives

V>1,prior

V̂>1,posterior

V1,prior

V̂1,posterior

e−q̂L/2

q̂L
= N

t√
2πq̂L

e−q̂L/2. (3.6)

By requiring that this relation holds in the absence of the look-elsewhere effect, the trials
factor can be identified as

N =
V>1,prior

V̂>1,posterior

, (3.7)

and the amplitude prior volume is given by

V1,prior = t
√
q̂L
V̂1,posterior√

2π
= t
√
q̂Lσ̂1 ≈ tµ̂1. (3.8)

In the final steps we used V̂1,posterior =
√

2πσ̂1, where σ̂1 is the error on the amplitude parame-
ter, µ̂1, and that the signal-to-noise ratio obeys

√
q̂L ≈ µ̂1/σ̂1. Since the look-elsewhere effect

leads to large q̂L, this prior volume will be larger than the posterior volume. This choice of
amplitude prior volume ensures that there is no trials factor associated with the amplitude,
as intuition would dictate. Substituting equations (3.7) and (3.8) into equation (3.3) yields

qS = qb + 2 ln qL. (3.9)

Hence, we have effectively applied a modification to the MPM estimator to give a combination
of the MPM and MAP estimators, so that the asymptotic p-value is neatly given by e−q̂S/2.
In the context of the look-elsewhere effect, the mode with maximum qb will typically also be
the mode with maximum qL, and thus maximum qS . However, this equivalence of MAP and
MPM may not always be the case, as shown in figure 1.

A pure Bayesian might argue that equation (3.8) is not a valid prior, since it depends
on the a posteriori amplitude parameter µ̂1; however, this prior does have an intuitive jus-
tification. If a scientist is willing to consider a signal of any amplitude, the prior cannot be
zero at µ̂1, as it would not make sense to discard the signal. On the other hand, making
the prior significantly broader than µ̂1 implies the scientist has some additional information
on the nature of the amplitude. When there is no justification for broadening the prior, the
narrowest possible prior still consistent with the measured value can be more reasonable than
arbitrarily fixing the size of the prior a priori. This choice of amplitude prior is simply de-
signed to allow for a signal with any amplitude, without inducing an unwanted look-elsewhere
penalty.

Note that the explicit dependence on q̂L and the marginal likelihood, via b̂, in equa-
tion (3.5) is what makes the p-value inconsistent with the likelihood principle. One could
instead consider equating b̂−1 directly with the p-value, making it consistent with the likeli-
hood principle. This would require an amplitude prior of V1,prior = tσ̂2

1/µ̂1, which we deem
unreasonable as it is smaller than the posterior volume V̂1,posterior. We emphasize that the

equality of b̂−1/q̂L to the p-value is not required for our approach to the look-elsewhere ef-
fect, but provides insight on the Bayesian-frequentist connection. At its core, our method
considers the test statistic q̂S , from equation (3.3), and replaces the trials factor N with the
prior-to-posterior volume of the non-amplitude parameters z>1. Intuitively one can think of
the number of trials as the number of posterior volumes that fit within the prior volume, and
this intuition suggests b̂−1 scales linearly with the p-value.
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Because the asymptotic p-value scales linearly with the prior volume, the non-asymptotic
form of the p-value can be derived by dividing the prior volume into K � 1 regions and
evaluating the p-value for each. Assuming independence between these regions, the product
of the p-values for each region can be used to obtain p-value of the full volume. Further
assuming that the asymptotic regime still applies, this gives

P (Q̂S ≥ q̂S) = lim
K→∞


1−

(
1− e−q̂S/2

K

)K
 = 1− exp

(
−e−q̂S/2

)
. (3.10)

Just as equation (3.4) is a generalization of the Bonferroni correction, equation (3.10) is a
generalization of the Šidák correction [22] to continuous variables. This expression generalizes
the p-value into the non-asymptotic regime.

For N � 1 every realization will have a positive peak, hence even the one-tailed p-value
will approach 1 for sufficiently low q̂L, which equation (3.10) predicts to be for q̂S < 0. In the
absence of the look-elsewhere effect (N = 1) a one-tailed test should approach a p-value of
0.5, while equation (3.10) approaches 1 as q̂S → −∞. Thus, the non-asymptotic agreement
breaks down for t = 1 and N = 1. On the other hand, if t = 2 and N = 1, substituting
qS = qL + ln 2πqL − 2 ln 2 into equation (3.10) gives

P (Q̂L ≥ q̂L)N=1,t=2 = 1− exp

[
−
(

2

π

1

q̂L

)1/2

e−q̂L/2

]
. (3.11)

The term in the square brackets can be identified as the asymptotic expansion of F̃1(q̂L).
We show the non-asymptotic agreement of this equation with F̃1(q̂L), the true two-tailed
p-value for N = 1, in figure 2. This illustrates the ability of the generalized Šidák correction
to produce correct non-asymptotic results, even in the absence of the look-elsewhere effect.
Hence, although we have applied asymptotic approximations throughout the above calcula-
tions, we have obtained a result that is valid even in the non-asymptotic limit. Inverting
equation (3.11) gives the significance, or number of sigma, S, as

S2 ≈ q̂S − ln 2πq̂S + 2 ln t, (3.12)

with corrections of order O(q̂−1
S ). In the limit of q̂S →∞, the significance can be interpreted

as
√
q̂S , in an analogous way to

√
q̂L in the absence of the look-elsewhere effect. This motivates

the name maximum posterior significance (MPS) as qS depends on the posterior via the trails
factor N , and is monotonically related to the significance S.

In summary, by considering a frequentist description of the look-elsewhere effect we
introduced q̂S as a natural test statistic to use, such that the asymptotic p-value is given
by e−q̂S/2. We derived a general expression for the p-value which also applies in the non-
asymptotic regime, and when there’s no look-elsewhere effect. Adopting the prior of equa-
tion (3.8), we showed that one can write the p-value in terms of Bayes factor as b̂−1/q̂L.
This intrinsically accounts for the look-elsewhere effect by identifying the trials factor as the
prior-to-posterior volume ratio of z>1 at the MPS mode. While one can compute the Bayes
factor using a variety of methods, we will use the Laplace approximation to evaluate the
posterior volume of each mode, as in section 2. To outline the step-by-step approach:
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1− exp
[
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1
q)

1/2e−q/2
]

Figure 2. Equation (3.11) is a good approximation to F̃1(q) over the entire range of q. This suggests
that MPS is still accurate in the absence of the look-elsewhere effect for a two-tailed test, even non-
asymptotically.

Maximum Posterior Significance (MPS) estimation:

1. Scan over the space of non-amplitude parameters, z>1, locating peaks in the
posterior with any amplitude, z1. Often only the highest few peaks are needed.

2. Compute qL and the posterior volume, using equation (2.9), for each peak.

3. Compute qb for each peak using equation (2.15) with the amplitude prior of equa-
tion (3.8).

4. Compute qS = qb + 2 ln qL for each peak.

5. Find the peak with maximum qS .

6. Compute the (global) p-value using equation (3.10) and significance using (3.12).

3.2 Multiple degrees of freedom

For models with multiple degrees of freedom, the frequentist approach is to apply Wilks’
theorem [32]. This is valid in the asymptotic limit, where, for a two-tailed test, the local
p-value is given by

Pν(Q̌L ≥ q̌L) = F̃ν(q̌L)
q̌L→∞−−−−→ 1

Γ(ν/2)

(
q̌L
2

)ν/2−1

e−q̌L/2, (3.13)
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for a model with ν degrees of freedom. Note that the limit assumes q � ν, but for ν = 2
it is exact for any q. Wilks’ theorem can address the model complexity problem of having
multiple (ν) continuous amplitude parameters. A specific example from particle physics is
a decay process with ν decay channels, each with amplitude Ai (0 ≤ i ≤ ν). In such a
case max{Ai} qL({Ai}, . . .) ∼ F̃ν . Wilks’ theorem is not sufficiently general: it fails if the
parameters are at the edge of their distribution, and it does not naturally handle the model
complexity of the look-elsewhere effect, where one scans over a wide range of values for one or
more parameters. Upon introduction of the look-elsewhere effect a frequentist would typically
consider single trials distributed as ∼ F̃ν , and then use a ν-dependent trials factor [23]. Thus
in a frequentist approach extra degrees of freedom and the look-elsewhere effect are treated
separately. On the other hand, a Bayesian approach accounts for both in the same way.

To apply the Bayesian methodology, we first reparameterize the model so that there
is only a single amplitude parameter by introducing branching ratios αi, such that each
amplitude parameter is Ai = αiz1, where z1 is the total amplitude parameter and

∑ν
i=1 α

2
i =

1. To remove the constraint we adopt rotation angles: for example, for ν = 2 we can work
with a phase angle φ, such that α1 = cosφ and α2 = sinφ. Thus, instead of working with A1

and A2 and considering maxA1,A2 qL(A1, A2, . . .) ∼ F̃2, we consider maxz1 qL(z1, φ, . . .) ∼ F̃1

with z>1 = (φ, . . .). We can then directly apply the MPS prescription for ν = 1, as in the
previous subsection, by additionally marginalizing over φ to account for the model complexity
with an additional prior-to-posterior volume penalty.

To be agnostic, one would choose a prior volume for φ of Vφ,prior = π (in practice a more
complex prior may be appropriate, but it will typically be O(1)). Furthermore, the average

error on φ is typically equal to the relative error on the amplitude, thus σφ ≈ σ1/µ1 ≈ q−1/2
L .

This gives a model complexity correction of

Vφ,prior

V̂φ,posterior

=
π√

2πσ̂φ
=
√
π

(
q̂L
2

)1/2

=
F̃2(q̂L)

F̃1(q̂L)
. (3.14)

This shows that increasing the model complexity with an extra degree of freedom is accounted
for in the Bayesian framework by marginalizing over φ. Thus, the Bayesian answer to an
increase in model complexity, whether it be due to including extra degrees of freedom, or
looking elsewhere, is identical: marginalization over the non-amplitude parameters z>1. The
ν dependence of the local p-value in equation (3.13) can be interpreted as a Bayesian model
complexity penalty: a fixed p-value corresponds to a larger q̂L as ν increases. Thus, MPS
intrinsically generalizes Wilks’ theorem by relating the trials factor to the prior-to-posterior
volume.

4 Example I: resonance searches

To test the theory of section 3 we first consider a resonance search example. These appear in
many different areas of physics, including astroparticle and high energy physics. We consider
a search for a new particle whose mass and cross-section are unknown. The data x could
correspond to measurements of the invariant mass in the case of collider searches, or the
energy flux in astroparticle searches. The probability density for a single measurement, xi,
is given by

p(xi|f, x∗, σ∗) = fps(x
i|x∗, σ∗) + (1− f)pb(x

i), (4.1)

where ps and pb are the normalized signal and background distributions respectively, and
f is the fraction of events belonging to the signal. We assume that the form of the signal
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Figure 3. The local chi-squared (left axis) and local p-value (right axis) for an example data real-
ization with true amplitude f = 5 × 10−3, position x∗ = 500, and width σ∗ = 0.5. While there is a
peak with q̌L ≈ 10 at the correct position, the look-elsewhere effect leads to other, sometimes larger,
peaks at random positions.

and background are known; we take the signal to be a normal distribution ps(x
i|x∗, σ∗) =

N(xi|x∗, σ∗), and the background to be a power law. Thus the resonance has position x∗ and
width σ∗. Given data x = {xi}Nd

i=1, the likelihood is given by the product of the individual
probability densities over the data. Using equation (4.1) this gives the likelihood as

p(x|f, x∗, σ∗) =

Nd∏

i=1

[
fps(x

i|x∗, σ∗) + (1− f)pb(x
i)
]
. (4.2)

Note that the Bayesian evidence under the null hypothesis is independent of the parameters,
namely

p0(x) ≡ p(x|f = 0) =

Nd∏

i=1

pb(x
i). (4.3)

While the likelihood depends on the number of data Nd, quantities such as the p-value will
have converged provided Nd is sufficiently large to resolve the resonance. Throughout this
section we fix Nd = 10Vx∗,prior/σ∗ to ensure sufficient convergence. We note that more
complex models might consider drawing Nd from a Poisson distribution, however this is
unnecessary for our proof of concept.

We first consider a uniform prior on x∗, with range (0, 103), i.e. a prior volume of
Vx∗,prior = 103. We do not fit for σ∗ and fix it to σ∗ = 0.5 a priori, corresponding to
the narrow-width approximation. In this case the posterior is only multimodal in the x∗
dimension, thus to find peaks we split the parameter space along the x∗ dimension into
narrow bins of size ∆x∗ and compute the maximum likelihood of equation (4.2) within
each bin. Ensuring ∆x∗ is sufficiently small, we determine the location of all peaks in the
posterior, µl, by comparing adjacent bins. The Hessian at each peak is then computed using
finite differencing, and inverted to give Σl. Note, in this example we have an analytical form
for the likelihood, enabling verification of the numerical computation with analytical results.
The value of qb at each peak is then computed using equation (2.15), in turn giving q̂S .

Figure 3 shows the local chi-squared and local p-value as a function of x∗ for an ex-
ample data realization. We use true parameters f = 5 × 10−3 and x∗ = 500. Recall from
equation (3.1) that the local chi-squared and p-value correspond to the values obtained by
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maximizing over f at fixed x∗, i.e. they correspond to the values obtained without having
corrected for the look-elsewhere effect. The local chi-squared q̌L can also be thought of as the
projection of qL onto the x∗ axis. It can be seen that although there is a peak with qL ≈ 10 at
the correct position, there are also multiple spurious peaks throughout the parameter space,
with q̂L ≈ 14 in this example. This illustrates the look-elsewhere effect: peaks with a local
p-value of ∼ 10−4 are produced by noise, meaning a signal with such a local p-value should
not be considered as significant as its local p-value naively suggests.

We now consider 105 different data realizations without a signal (f = 0) to study the
distributions of q̂L and q̂S under the null hypothesis. The plots in figure 4 show the global
p-value in terms of q̂L and q̂S for a variety of scenarios. One can think of the vertical axes as
corresponding to the false positive rate (FPR) of a hypothesis test using threshold q.

We first compare three different prior volumes on x∗, Vx∗,prior = 103, 102, 101, to show the
effectiveness of our method for large and small N . The top left plot of figure 4 shows that the
p-value of q̂L has a considerable prior volume dependence. This is the look-elsewhere effect: a
larger prior volume leads to a larger trials factor and thus an increased probability of finding
a higher maximum likelihood. On the other hand we see that q̂S shows no prior dependence
and is in good agreement with equation (3.10), even in the non-asymptotic regime.

We also investigate the variation of the p-value with the value of the width of the signal
σ∗. This is shown in the top right plot of figure 4 where we consider σ∗ = 0.1, 0.5, 1.0. Smaller
σ∗ leads to a smaller posterior volume and thus a larger trials factor. Much like the discussion
above for prior volume variation, q̂L has a large σ∗ dependence, unlike q̂S .

Next, we investigate the variation of the p-value with the dimensionality of the look-
elsewhere effect. To do this we extended the model to consider a signal at vector position x∗.
Each data point now corresponds to a vector xi, and we extend the signal and background
in a symmetric fashion across each dimension, keeping the total prior volume fixed. Within
the context of collider searches, the components of x∗ might correspond to a collection of
invariant mass and jet properties. For astroparticle searches, the multiple dimensions might
correspond to different directions in the sky. The bottom left plot of figure 4 shows the
variation of the test statistics for dimensionality of 1, 2, and 3, for a constant prior volume
of 100. It can be seen that, while the p-value of q̂L is dependent on the dimensionality, the
p-value of q̂S is not. This justifies the naturally arising (2π)M/2 prefactor in the posterior
volume in equation (2.9). We also plot the 0d case, corresponding to only fitting for A with
fixed x∗. Even though there is no look-elsewhere effect in this case, asymptotic agreement
with equation (3.10) is still achieved. This shows our approach is still reliable in the N → 1
limit, justifying its applicability for arbitrary N . As discussed in section 3.1, non-asymptotic
agreement is not expected for a one-tailed test in the absence of the look-elsewhere effect,
as the p-value tends to 0.5 as q̂L → 0; on the other hand, a two-tailed test would give
non-asymptotic agreement as shown in figure 2.

The above discussion concerns an un-binned model, parameterized by the signal fraction
f . Often in particle physics, one performs a binned analysis with the number of events in each
bin modelled as a Poisson distribution [35]. We find similar results when using this Poisson
parameterization, as pictured in the bottom right of figure 4. The Poisson line agrees with
the black line slightly better than the f line does, likely because the Laplace approximation
is more accurate in the Poisson case.

When it comes to hypothesis testing, the relation between the true positive rate (TPR)
and the false positive rate (FPR) determines the predictive power of a test statistic. In order
to compare the relative power of the test statistics we consider an ROC plot for a variety of
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Figure 4. CCDFs of q̂L (dotted) and q̂S (dashed), computed using 105 simulations with no signal
(f = 0). (Top Left) compares three prior volumes: 103 (red), 102 (blue), and 101 (magenta). (Top
Right) compares different values of signal width σ∗: 0.1 (red), 0.5 (blue) and 1.0 (magenta). (Bottom
Left) compares the dimensionality of x∗: 0d (red), 1d (blue), 2d (magenta), and 3d (green). (Bottom
Right) compares the un-binned f -parameterization (red) against a binned Poisson parameterization
(blue). In all cases the p-value of q̂L has large variation, whereas q̂S does not. Furthermore, q̂S closely
follows the predictions of equation (3.10) (black).

true f values, shown in figure 5. We also quote the (local) signal-to-noise ratio (SNR), which
we define as the average

√
q̂L across 104 realizations for the given f . It can be seen that

q̂S and q̂L have approximately equivalent ROC lines, suggesting MAP and MPS have equal
predictive power. This is expected as the relation between the test statistics is approximately
monotonic, as seen in equation (3.3). This agrees with the findings of [36] which considered a
different Bayesian-inspired test statistic, and showed it to have an approximately equivalent
ROC curve to the p-value of the likelihood. Also, it can be seen that the predictive power
increases with true f — as expected a larger true signal is more likely to be correctly detected.
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Figure 5. ROC curve: comparing the true positive rate (TPR), for a variety of f , with the false
positive rate (FPR) for q̂L (dotted) and q̂S (dashed). The signal-to-noise ratio (SNR) corresponds to
the average

√
q̂L over all data realizations.

5 Example II: white noise

While we could continue the discussion in the context of resonance searches, we now consider
a white noise time series example to illustrate the application of MPS to different models.
This can be thought of as a toy model of a gravitational wave search. In this section we show
how MPS handles additional model complexity as theorized in section 3.2. We consider a time
series y(x) comprising of measurements at Nd times, x = {xi}Nd

i=1, with spacing xi+1−xi = 1.
In the absence of a signal, each data point yi ≡ y(xi) is assumed to be a standard normal
random variable, i.e. we assume white noise. We consider a model with 2 degrees of freedom
(dofs), with signal given by

ps(x|A1, A2, x∗,∆, σ∗) = A1N(x|x∗, σ∗) +A2N(x|x∗ + ∆, σ∗) (5.1)

where A1,2 > 0 are the amplitudes of each dof, x∗ and x∗ + ∆ are the positions of the dofs,
and σ∗ is the common width.

As motivated in section 3.2, we reparameterize so that there’s a single amplitude param-
eter, z1 = A, and other parameters describing the properties of the single degree of freedom,
z>1. We thus transform variables using A1 = A cosφ and A2 = A sinφ, with A > 0 and
0 ≤ φ ≤ π/2 for a one-tailed test. By substituting the transformations into equation (5.1),
the signal in the new parameterization is given by

ps(x|A, φ, x∗,∆, σ∗) = A [cosφN(x|x∗, σ∗) + sinφN(x|x∗ + ∆, σ∗)] . (5.2)
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Figure 6. CCDFs of q̂L and q̂S averaged over 105 simulations with no signal (A = 0). The parameters
in the square brackets are those being maximized, with other parameters being held fixed (as discussed
in the text). The p-value of q̂L varies depending on the model complexity, whereas q̂S consistently
follows the prediction of equation (3.10) (solid black).

The corresponding chi-squared difference between the data and the null hypothesis, equal to
two times the log-likelihood-ratio, is given by

qL(x|A, φ, x∗,∆, σ∗) =

Nd∑

i=1

[
yi − ps(xi|A, φ, x∗,∆, σ∗)

]2 − [yi]2. (5.3)

We consider a uniform prior on x∗ with range (0, 100), i.e. a prior volume of Vx∗,prior = 100,
andNd = 100. We do not fit for σ∗ or ∆ and fix them to σ∗ = 0.5 and ∆ = 10. The application
of MPS is identical to the previous section, so we will not repeat the methodology here.

Considering 105 data realizations with no signal, figure 6 shows how q̂L and q̂S are
distributed for different levels of model complexity. First we maximize over A, while holding
all other parameters fixed. In this case q̂L ∼ F̃1(q̂L)/2 (red dotted line) as expected for a one-
tailed test with one degree of freedom. Additionally maximizing over φ allows for 2 dofs, and
gives q̂L ∼ F̃2(q̂L)/4 (blue dotted line). This is expected because there are 4 permutations of
each dof having positive or negative amplitude, and A1,2 > 0 considers 1 of these 4. For both
of these cases, q̂S follows the same asymptotic distribution as predicted by equation (3.10).
This verifies that the Bayesian picture of marginalizing over φ successfully reduces a model
with 2 dofs to the same scale as 1 dof, in other words Wilks’ Theorem has been replaced
by marginalizing over φ. There is some discrepancy in the non-asymptotic regime for the
maximization over A only (red dashed line), as discussed in section 3.1 for a one-tailed test.
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We now introduce the look-elsewhere effect by allowing x∗ to vary. First we maximize
over A and x∗ for fixed φ = 0, as shown by the magenta lines. This is equivalent to a model
with 1 dof because φ = 0 corresponds to A2 = 0. We see that the distribution of q̂L (magenta
dotted line) is shifted to the right compared to the red and blue dotted lines due to the
look-elsewhere effect. However, the distribution of q̂S (magenta dashed line) continues to
follow the line predicted by equation (3.10). Finally, when maximizing over A, φ and x∗,
i.e. a model with 2 dofs in the presence of the look-elsewhere effect, q̂L (green dotted line) is
further right-shifted, whereas q̂S (green dashed line) again agrees with equation (3.10). The
slight discrepancy in the A, φ, x∗ maximization case is due to using too large a prior volume:
there is a slight preference to having two well fitted peaks compared to one very well fitted
peak, thus the distribution of φ is clustered towards φ = π/4. Using a more appropriate
prior for φ would improve agreement.

In summary, while the distribution of q̂L is highly dependent on the model complexity,
via the extra degrees of freedom and look-elsewhere effect, q̂S has a universal distribution.

6 Example III: non-Gaussian models of cosmological inflation

There is much interest in detecting non-Gaussian models of inflation via the cosmological
power spectrum [37–42]. A specific type of such a feature model adds the following oscillatory
perturbation to the ΛCDM power spectrum,

P (k) = P0(k)[1 +A sin(2ωk + φ)], (6.1)

where P0(k) is the featureless (ΛCDM) power spectrum and A, ω, and φ are the amplitude,
frequency, and phase of the oscillatory perturbation. Such models are searched for using
Planck 2013 data in [14] using the frequentist look-elsewhere analysis technique of [13]. In
this section we seek to reproduce the conclusions of these papers using MPS.

Equation (6.1) can be written in the form P (k) = P0(k) + ∆P (k) with

∆P (k;A,ω, φ) = AP0(k)[cosφ sin(2ωk) + sinφ cos(2ωk)]

≡ A cosφPs(k;ω) +A sinφPc(k;ω),
(6.2)

where in the last line we explicitly separate terms with A and φ, as only ω couples to k.
Assuming a linear relation, one can write C` = C`,0 + ∆C`, with

∆C`(A,ω, φ) = A cosφC`,s(ω) +A sinφC`,c(ω), (6.3)

where C`,s and C`,c are the angular power spectra corresponding to Ps and Pc respectively.
The Planck Likelihood [24] is given by

− 2 logL(Ĉ`|A,ω, φ) = [Ĉ`1 − C`1(A,ω, φ)]∆`1`2 [Ĉ`2 − C`2(A,ω, φ)], (6.4)

where Ĉ` are the PCL estimates, and ∆`1`2 = 〈∆Ĉ`1∆Ĉ`2〉 is the PCL covariance matrix. In
order to compute the likelihood for the null hypothesis, CosmoMC [43] was used to find the
best fit values for the cosmological and nuisance parameters. When computing the likelihood
for the signal hypothesis, the cosmological parameters were held fixed at these values; while
they should really be re-fitted for the signal hypothesis, this is found to have little effect
in [14]. The C` are evaluated using CAMB [44] with a sufficiently high accuracy setting to
ensure resolution of the rapid oscillations. To speed up the evaluation of the likelihood over
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Figure 7. Planck results. Top: plot of q̌L, the projection of qL onto the ω axis; this corresponds
to qL evaluated at the A and φ that maximize qL at each ω. Middle: the errors obtained for the
parameters, as well as a comparison with the determinant of the covariance matrix having removed
the amplitude parameter, Σω,φ. Bottom: a plot of qL (blue) and qS (cyan) for each peak, with the
look-elsewhere correction depicted by the vertical black lines.

parameter space, C`,s(ω) and C`,c(ω) were computed over a discrete range of ω between 0
and 4000 with step-size ∆ω = 5, with intermediate values computed via spline interpolation.
A flat prior was chosen for ω and φ. The rest of the analysis is analogous to the previous
examples: we find all the local maxima of the posterior, compute the Hessian using finite
differencing, compute the covariance matrix, and use this to find q̂S . Unlike the previous
examples, we note that ω and φ are correlated, as illustrated in the middle plot of figure 7, so
it is important to use the determinant of the full covariance matrix and not just its diagonal
components. It is also interesting to note that higher peaks have smaller errors.

The results obtained using the CAMspec component of the 2013 Planck likelihood2 are
pictured in figure 7. The maximum occurs at ω ≈ 3660 with q̂L = 15.4, giving a naive
significance of

√
q̂L ≈ 4 sigma. However, we find that q̂S = 3.0, giving a global p-value of

1− exp(1− e−3/2) = 0.20 using equation (3.10), and significance of S = 1.3 sigma. Thus the
signal is in fact far less significant in light of the look-elsewhere effect. The prescription of [14]
gives a p-value of 0.13, which is in reasonable agreement. Note that our likelihood profile
does not match [14] exactly due to our approximate approach, hence the p-value quoted here
is the value one would obtain by applying the prescription of [14] to our likelihood profile.
We applied the same analysis to the 2015 plik lite likelihood [45] and found a p-value of
approximately 1, suggesting no evidence for such models of non-Gaussianity.

2One should sum the different components of the likelihood, but this is unnecessary for our proof of concept.
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7 Conclusions

This work has employed Bayesian and frequentist thinking to provide a fast method to
account for the look-elsewhere effect when scanning over a large parameter space. We started
by considering the Bayesian approach, and explained how maximizing the posterior mass, as
in MPM, is a more appropriate choice than maximizing the posterior density, as in MAP.
Bayesian methodology naturally considers model complexity and the look-elsewhere effect by
marginalization, which penalizes the likelihood by the prior-to-posterior volume ratio. (Under
the Laplace approximation, the posterior volume is simply related to the determinant of the
covariance matrix.) We then considered the frequentist approach by writing the global p-
value as the local p-value multiplied by the trials factor. By drawing an analogy between the
two approaches we identified the trials factor as the prior-to-posterior volume ratio of the
parameters being scanned over, in turn generalizing the Bonferroni correction to continuous
problems. We introduced qS and in turn MPS, a hybrid of MPM and MAP, which considers
the mode with maximum qS . Finally, we generalized the Šidák correction to continuous
problems, providing a universal way to assign the global p-value in both the asymptotic and
non-asymptotic regimes.

We illustrated the effectiveness of MPS by considering several examples from (as-
tro)particle physics and cosmology, showing it to have equal predictive power to MAP while
naturally accounting for the look-elsewhere effect. MPS effectively shifts the hypothesis
testing threshold of the maximum likelihood ratio to a generic scale: while the maximum
likelihood ratio, or equivalently the best fit chi-squared χ2 = q̂L, depends on the model
complexity and extent of the look-elsewhere effect, q̂S does not. In other words, instead of
considering fixed q̂L thresholds, one should consider fixed q̂S thresholds.

Unlike current methods that rely on performing numerous simulations, MPS accounts for
the look-elsewhere effect by using information from the data alone, as one need only compute
the likelihood and the posterior volume to evaluate qS . This provides a more efficient way
to quantify statistical significance as it does not require expensive simulations. In a typical
situation one would focus on the most promising anomalies only, with q̂S providing a scale
that gives good guidance on what false positive rate one should expect. Subsequently, one
would obtain additional information to verify the veracity of an anomaly when possible.

For our proof of concept it was sufficient to only consider simple physical examples in
this paper, but there are many real-world applications where our methods can be employed.
Examples include searches for new particles in astroparticle and particle data, searches for
gravitational wave signals in LIGO/VIRGO data, searches for exoplanets in transit and radial
velocity data, as well as many more. In some of these cases the look-elsewhere penalty can
be considerably large, reaching beyond 6 sigma. The problem is very general, as almost
every search for unknown objects, events, new physics, or other phenomena whose existence
is unknown, has to deal with the look-elsewhere effect. We note that while this work only
explored the look-elsewhere effect from scanning over parameter space, we expect that similar
methods can be applied to other manifestations of the look-elsewhere effect, for example
scanning over models when fitting gravitational wave templates.

The goal of a data analyst searching for anomalies is to report the most promising
anomalies in terms of having a small p-value, or a high Bayes factor. By clarifying the
origins of the look-elsewhere effect and model complexity penalty for continuous parameters
we hope to open the way to refinements in anomaly searches that can improve the overall
success rate of a detection. This should be a common goal of any experimental analysis
regardless of which school of statistics one belongs to.
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A Derivation of the CCDF of q̂S

The asymptotic (large qL) CCDF of the global maximum of qL is for a one-tail test is given
in equation (3.2) as

PQL
(QL ≥ qL) = N

1

2
F̃1(qL) (A.1)

= N
1√

2πqL
e−qL/2 +Nq

−1/2
L e−qL/2O

(
q−1
L

)
, (A.2)

where here we include the leading order correction, and drop hats and take t = 1 for conve-
nience. Consider the transformation of variables to qS , defined by

qS ≡ g(qL) ≡ qL − 2 lnN + ln 2πqL. (A.3)

It can be shown that the inverse of g is given by

qL = g−1(qS) = W0

(
N2eqS

2π

)
(A.4)

= qS + ln
N2

2π
− ln

(
qS + ln

N2

2π

)
+O

(
L2

L1

)
, (A.5)

where W0(z) is the principal branch of the Lambert W function. The asymptotic expansion

has been performed in the final line, with the shorthand Li ≡ lni N
2eqS
2π . Assuming N is

constant to study the limiting behaviour, the CCDF of qS is thus

PQS
(QS ≥ qS) = PQL

[
QL ≥ g−1(qS)

]
(A.6)

= e−qS/2e−O(L2/L1)


1−

ln
(
qS + ln N2

2π

)
+O

(
L2
L1

)

qS + ln N2

2π



−1/2

+O
(

e−qS/2

qS + ln N2

2π

)
(A.7)

→ e−qS/2, (A.8)

where the limit corresponds to either N →∞ or qS →∞. This means the result still applies
asymptotically in the absence of the look-elsewhere effect (N = 1).
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