HODGE FILTRATION, MINIMAL EXPONENT, AND LOCAL
VANISHING

MIRCEA MUSTATA AND MIHNEA POPA

ABSTRACT. We bound the generation level of the Hodge filtration on the localization
along a hypersurface in terms of its minimal exponent. As a consequence, we obtain
a local vanishing theorem for sheaves of forms with log poles. These results are
extended to Q-divisors, and are derived from a result of independent interest on the
generation level of the Hodge filtration on nearby and vanishing cycles.

A. INTRODUCTION

Let X be a smooth complex variety of dimension n, and Zx the sheaf of differential
operators on X. An important invariant of a filtered Zx-module (M, F') of geometric
origin is the complexity of its filtration, namely how many steps are required to fully
determine it. Concretely, the filtration F' is generated at level q if

F9x - FoM = F M forall ¢2>0.
Here FoZx denotes the standard filtration by the order of differential operators.

In this paper we give a bound for the generation level of the Hodge filtration on Zx-
modules naturally associated to rational multiples of a reduced effective divisor D on
X, in terms of data provided by the Bernstein-Sato polynomial of D. This study was
initiated by Saito [Sai09], who provided such bounds for special types of singularities.
Some general results were later found in [MP16], [MP19]. We improve them here,
using the main result of [MP18], and also exploit the fact that they are, somewhat
surprisingly, related to local vanishing theorems for sheaves of forms with log poles in
birational geometry.

Reduced divisors. To highlight the main points with a minimum amount of techni-
calities, we first restrict our discussion to the case when we simply deal with a reduced
effective divisor D. The corresponding Zx-module is the localization Ox (xD), that
is, the sheaf of functions with poles of arbitrary order along D. It is well known that
Ox (xD) is regular holonomic, and underlies a mixed Hodge module on X; therefore it
comes endowed with a Hodge filtration F,0x(xD), with p > 0. See e.g. [MP16] for
an in-depth study of this filtration. If D is smooth, then the filtration is generated at
level 0, hence from now on we focus on the case when D is singular. We prove:

Theorem A. For every singular divisor D, the Hodge filtration on Ox(xD) is gener-
ated at leveln — 1 — [ap].
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Here ap is the minimal exponent of D, a positive rational number which is defined
as the negative of the largest root of the reduced Bernstein-Sato polynomial bp(s); see
e.g. [Sai93]. It is a refined version of the log canonical threshold of the pair (X, D),
which is equal to min{ap,1}. See §1 for further details and references. It was Saito
who first pointed out in [Sai09] the relevance of the invariant n —1 — [ap], proving the
bound in Theorem A for isolated semi-quasihomogeneous singularities (when ap can
be computed explicitly).

Since ap > 0, Theorem A recovers in particular the fact that FeOx (xD) is always
generated at level n — 2, proved in [MP16, Theorem B]. Note also that it is possible
to do better than Theorem A: as an extreme case, if D is a singular simple normal
crossing divisor, then FoOx (D) is generated at level 0, but ap = 1. The bound is
nevertheless sometimes optimal; for instance, this is the case when D has an isolated
quasihomogeneous singularity by [Sai09, Theorem 0.7].

Moreover, Saito [Sai93, Theorem 0.4] showed that ap > 1 is equivalent to D having
rational singularities, and therefore:

Corollary B. If n > 3 and the divisor D has rational singularities, then the Hodge
filtration on Ox(xD) is generated at level n — 3.1

This was proved when D has isolated singularities, and conjectured to be true in
general, in [MOP17]. The general conjecture was already verified recently by Kebekus-
Schnell [KS18, §1.3], as a consequence of a local vanishing conjecture; more on this
below. Note that ap could however be much larger than 1, and is in fact optimally
bounded above by n/2 in [Sai94] (see also [MP18, Theorem E}).

It turns out that the generation level of the Hodge filtration on Ox (xD) is intimately
linked to a result in birational geometry, namely to local vanishing for pushforwards
of bundles of forms with log poles. Consider a log resolution p: Y — X of the pair
(X, D), which is an isomorphism over U = X ~\ D, and denote £ = (u*D)yeq. We
showed in [MP16, Theorem 17.1] that FeOx (xD) is generated at level ¢ if and only if
Riu*Q’;,_i(log E) =0 for i > g, so consequently we obtain:

Corollary C. With the above notation, we have
R QY "(logE) =0 for i>n—1-[ap].

When ¢ > n — 1 this is shown by elementary methods in [MP16, Theorem B|,
leading to the coarse bound n — 2 for the generation level of the Hodge filtration
mentioned above. When D has rational singularities and ¢ = n — 2, it is proved
in [MOP17] in the isolated singularities case, and can be deduced in general from a
vanishing statement obtained by Kebekus-Schnell [KS18, Theorem 1.9], which answers
[MOP17, Conjecture A]. Using Corollary C, we can in fact obtain a strengthening of this
conjecture/statement in the absolute case of a reduced singular hypersurface: by this
here we mean a singular complex scheme D, reduced but not necessarily irreducible,
that can be embedded as a hypersurface in a smooth variety. In this case D has an
associated minimal exponent ap, independent of the embedding (since this is the case
already for the Bernstein-Sato polynomial). We consider a resolution of singularities
7% D — D, given by the disjoint union of resolutions of the irreducible components of

L As mentioned above, for n = 2 the filtration is always generated at level 0.
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D. We further assume that p is an isomorphism over the smooth locus of D and the
reduced inverse image of the singular locus of D is a simple normal crossing divisor £
on D. We then have 2

Theorem D. With the above notation, if dim(D) =n — 1, then
Riu*Q%_l_i(log E)=0 foral i>n—-1-[ap].

We emphasize that here the overall strategy is reversed: we first show the generation
bound in Theorem A using methods from the theory of (Hodge) Z-modules, and then
deduce the birational Corollary C, which in turn is used to prove Theorem D. At the
moment we do not know how to approach the latter vanishing results via more standard
methods in birational geometry.

Rational multiples. Following [MP19], [MP18], we also consider a multiple aD,
where « is a positive rational number and D is a reduced effective divisor on X, as
above. The set-up is local: assuming that D is defined by a regular function f, the
natural replacement for the localization Ox[1/f] is the Zx-module

M%) = Ox[1/flF,

the free rank 1 module over 0'x[1/f] generated by the formal symbol f~%; see §1. This
is a direct summand of a mixed Hodge module, and so analogously it comes endowed
with a Hodge filtration F), M(f~®), with p > 0. Again, if D is smooth, then this
filtration is generated at level 0, hence from now on we focus on the case when f
defines a singular hypersurface.

Theorem A and Corollary C above are then special cases (when a = 1) of the
following two statements that will be the focus of the paper.

Theorem E. If f defines a singular reduced hypersurface, then the Hodge filtration on
M(f™%) is generated at level n — [af + .

In the special case when D has an isolated quasihomogeneous singularity, by analogy
with the reduced case in [Sai09], this result was conjectured in [Pop18] and proved in
[Zhal8]. Note also that Theorem E recovers the second statement of [MP19, Theo-
rem 10.1], namely that the filtration on M(f~%) is always generated at level n — 1.

Consider now a log resolution p: Y — X of the pair (X, D) as above, and E =
(1£*D)yed. According to [MP19, Theorem 10.1], the statement of Theorem E is equiva-
lent to the following general form of local vanishing:

Corollary F. With the above notation, we have
Rip. (" (log E) @, Oy (—[p*aD])) =0 for i>n—[d;+al.
Recall for completeness that it is always the case that
Rip. (. (log E) ®, Oy (—[u*aD])) =0 for i+j>n.

This is proved in [MP19, Corollary C], still using methods from the theory of mixed
Hodge modules, but of a different flavor.

2Note that D has rational singularities if and only if ap > 1, so the case i = n — 2 corresponds to
the statements in loc. cit.
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Hodge ideals. The Hodge filtration on M(f~%) is best expressed and studied in
terms of the Hodge ideals of aD. According to [MP19, §4], for each p > 0 there is a
coherent sheaf of ideals I),(aD) on X such that

FpM(f7%) = Ip(aD) © Ox (pD)f ™.

Therefore Theorem E provides an effective bound describing which higher Hodge ideals
of aD are fully determined by lower ones. This type of result is very useful for concrete
calculations of Hodge ideals, see [MP16] and [MP19].

Corollary G. For every nonnegative integers £ and p, with p > n — [af + o], we have

FyPx - (Ip(aD) ® Ox(pD)f~*) = Iyso(aD) ® Ox ((p+ D) f~.

Nearby and vanishing cycles. All the above results are consequences of a statement
of independent interest regarding the generation level of the Hodge filtration on the
graded quotients of the V-filtration associated to the regular function f € Ox(X).
Concretely, the V-filtration is defined on the the left Zxxc-module ¢4 Ox, the push-
forward of Ox via the graph embedding

X5 X xC, ze(z,f(2)),

with respect to the hypersurface {t = 0}, where ¢ is the coordinate on C. Recalling that
this is a (discrete) decreasing filtration, we consider Gr{; (14+ Ox) :== Vi Ox V=4 Ox.
These are Zx-modules that underlie Hodge modules supported on the graph embed-
ding of X; in particular they come endowed with a Hodge filtration FeGr{;(14+Ox)
induced by that on (4 Ox. The cases & = 0 and « € (0, 1] are intimately related to the
vanishing, respectively nearby, cycles of f. For details see §1 and §2. The main result
we prove is:

Theorem H. If f defines a singular, reduced hypersurface, and o € [0,1] is a rational
number, then the Hodge filtration on Gr{; (14 Ox) is generated at level n — [oy +a +1.

The proof of this theorem is the technical core of the paper. More precisely, we
describe concretely the associated graded quotients of the Hodge filtration on these
Px-modules in the range below the minimal exponent of f; see Proposition 4.5. Using
this, we apply a homological criterion for the generation level of the filtration on special
filtered Zx-modules (M, F') via the duality functor. This is proved in Proposition 3.3,
and is inspired by a duality approach to generation in [Sai94]. In order to deduce
Theorem E from Theorem H, the key tool is to reinterpret the main result of [MP18] as
a connection between the Hodge filtration on M(f~%) and the induced Hodge filtration
on V%; see Proposition 5.4.

Bounds in terms of singularity invariants in birational geometry. We conclude
by noting that the minimal exponent a; can be bounded below in terms of basic
invariants of the singularity, or in terms of discrepancies on a log resolution. This can
be translated into bounds of a somewhat different flavor in the statements above.

Consider a log resolution p: Y — X of the pair (X, D) as above, in the neighborhood

of a (singular) point z € D. Assuming in addition that the strict transform D of D is
smooth, we define integers a; and b; by the expressions

m m
wD=D+> aF; and Ky;x =Y bF,
=1

i=1
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where Fi,..., F,, are the prime exceptional divisors, and set

. {bi +1 }
v := min .
i=1,....m a;

Denote also by d > 2 the multiplicity of D at x, and by r the dimension of the singular
locus of the projectivized tangent cone P(C,D) (declaring that r = —1 if P(C,D) is
smooth). We then have the following lower bounds in a neighborhood of x:

L] afz’}/

The first is [MP18, Corollary D] and the second is [MP18, Theorem E(3)]. Note
that, unlike oy, v depends on the choice of log resolution. Finally, we also have:

o ky := |ay — a] is the k-log canonicity level of the pair (X,aD), according to
[MP18, Corollary C].

We recall that (X, aD) is 0-log canonical if it is log canonical, while being k-log
canonical for k > 1 is a refinement of the statement that D has rational singularities.
It essentially means that the Hodge filtration on M(f~%) is as simple as possible up to
level k, namely equal to the pole order filtration; the upshot of this paper is that this
condition also imposes a bound on the generation level of this Hodge filtration.

Further general properties of the minimal exponent o, and open problems, can be
found in [MP18, §6].

Acknowledgement. We thank the referee for very useful comments that helped us
improve the exposition.

B. PRELIMINARIES

1. Hodge filtration, V-filtration, and minimal exponent. Let X be a smooth
n-dimensional complex algebraic variety and f € Ox(X) a nonzero regular function.
Consider the graph embedding

1: X 5> X xC, z~ (z,f(2))

and the left Zxyc-module 14O, as well as the corresponding right Zx xc-module
tywx. A detailed discussion of the material in the paragraph below can be found for
instance in [MP18, §2]. We denote by ¢ the coordinate on C. Recall that we have

L+ Ox =~ Ox|tly1/Ox[t],

with the obvious Zx x c-module structure. Denoting by § the class of ﬁ, every element

Z Vi af 57

i>0

in ¢4 Ox can be written uniquely as

with v; € Ox, only finitely many nontrivial. We clearly have the relation td = f§.
With this description, multiplication by ¢ is given by

t(v0i0) = fvdid — iwd 1S
and the action of a derivation P € Derc(Ox) is given by
P(vdi6) = P(v)did — P(f)voi™s.
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Recall also that the (trivial) Hodge filtration on ¢x induces a Hodge filtration on ¢4 Ox
given by

(11) p+1 L+ﬁX Zﬁx@t

(see, for example, [Sai93, (1.8.6)]). We note that the shift by 1 is needed in order to
ensure compatibility when applying the convention for shifting filtrations as we pass
from left to right filtered Z-modules on X and X X C respectively; see §2.

We next consider the rational V-filtration on ¢; Ox with respect to t. Recall that
this is an exhaustive, decreasing, discrete, and left continuous filtration (V%14 0x)acq-
It is defined uniquely by a number of properties listed for instance in [MP18, §2]. The
Hodge filtration on ¢y Ox induces a filtration on each V%, &0x and thus the Hodge
filtration on Gr{ (14 0x) =V, Ox /V>, Ox.

As is standard, we denote by bs(s) the Bernstein-Sato polynomial of f. Assuming
that D := div(f) # 0, the polynomial (s 4 1) divides b(s), and l;f(s) =bs(s)/(s+1)
is the reduced Bernstein-Sato polynomial of f. Following [Sail6], we denote by ay the
negative of the largest root of Bf(s). This is a positive rational number, and we use the
convention that &y = oo if by(s) = s + 1, which happens precisely when D is smooth.
This invariant is called the minimal exponent of f, see [Sai93], and is a refined version
of the log canonical threshold of f, which is equal to min{ay, 1}. See [MP18, §6] for a
detailed discussion.

A crucial point is the following link between the minimal exponent and the V-
filtration, combining the statements of [MP18, Lemma 5.3] and [MP18, Corollary 6.1].
Lemma 1.2. For an integer p > 0 and o € (0, 1], we have

N6 eV Ox < a5 >p+ .

For a Q-divisor E on C, we denote by Z(FE) its multiplier ideal; see [Laz04, Chap-
ter 9]. If D = div(f), v > 0 is a rational number, and F = vD, we will also use the
notation Z(f7) for Z(E). The main result of [BS05] states that for every o > 0, we
have

(1.3) I(fafe) =V*, 0x for 0 <e<x1.

In order to define and study Hodge ideals for Q-divisors, in [MP19] and [MP18] we
considered for each a > 0 the twisted localization Zx-module
M(f7%) = Ox (D) [,

with D = div(f), i.e. the free Ox(xD)-module of rank 1 with generator the symbol
f~%, with the action of derivations of Ox given by

Pl ) i= (Plw) - ™) oo

The Zx-module M(f™%) is a filtered direct summand of a Zx-module underlying
a mixed Hodge module; see [MP19, §2]. In particular, it is regular holonomic, with
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quasi-unipotent monodromy, and admits a Hodge filtration Fy M(f~%), with p > 0. It
is shown in [MP19, §4] that if Z is the support of D, then we can write

FpM(f™%) = I(aD) @ Ox(pZ) [,
for an ideal I,,(aeD), the p-th Hodge ideal of aD.

For every a € Q, we have an isomorphism of Zx-modules
(1.4) M) = M(F), wf~ e (wf)f7

which preserves the Hodge filtration; see [MP19, §2]. As a special case, we naturally
identify M (f~!) with the usual localization &y (D). In particular, when D is reduced
and o = 1, this gives the Hodge ideals considered in [MP16].

An important input for this paper is the main result of [MP18], comparing the Hodge

ideals and the V-filtration. We only state the case when D = div(f) is reduced. We
use the notation Q;(z) = H;;%(x + 7), with the convention that Qy = 1.

Theorem 1.5 ([MP18, Theorem A']). If f defines a reduced divisor D and « is a
positive rational number, then for every p > 0 we have

P p ‘
I,(aD) = ZQj(a)fp*jvj \ Zvjdfé eV, Ox
=0

=0

2. Nearby and vanishing cycles. Later on we will need bounds for the generation
level of the Hodge filtration on nearby and vanishing cycles. To this end we will make
use of the duality functor D on filtered Z-modules [Sai88, §2.4]. In order to apply
duality, we will pass to the corresponding right Zx-modules.

We recall that there is an equivalence of categories between filtered left and right
Px-modules. Given a filtered left Zx-modules (M, F'), we denote by (M", F) the
corresponding filtered right Zx-module. At the level of &'x-modules we have M"™ =
wx ®g, M, while the filtration on M" is given by

FpoiM' =wx ®¢, FM forall pelZ,
where n = dim(X).

For right Zx-modules it is customary to use the increasing V-filtration. This is
related to the V-filtration on the corresponding left Zx-module as follows. If M is a
left Zx«c-module and we consider the V-filtrations with respect to the coordinate ¢
on C, then

VoM™ = wxxc Rbxwc V™M = wx Koy V™M,
where we identify in the obvious way wxxc with the pull-back of wx.
It is also customary, for a filtered Zx-module (M, F') and an integer ¢, to denote

(M, F)(q) = (M, F[q]), with
FlglpM = Fp_¢M forall pe Z.

Let now (M, F') be the filtered right Zx«c-module underlying a pure polarizable
Hodge module of weight d. Recall that the polarization induces an isomorphism
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D(M, F) ~ (M, F)(d). The nearby and vanishing cycles of (M, F') with respect to ¢
are given, respectively, by
V(M F)= € (Grf(M),F)(1) and &.1(M,F) = (Gry (M), F).
—1<6<0
We also use the notation W;g(M, F) for (Gr‘ﬁ/(M),F)(l), when g € (—1,0), but
i1 (M, F) for (Gr¥q (M), F)(1).
It is a general fact that the duality functor commutes with nearby and vanishing

cycles. The results that follow can be found in [Sai89, Theorem 1.6]. Concretely, we
have canonical isomorphisms

DUy (M, F)(1) ~ 9,D(M,F) and D®,1(M,F) ~ &, D(M, F).
Using the fact that D(M, F)) ~ (M, F)(d), we obtain isomorphisms
D\Ijt(M,F) Z\I’t(M,F)(d—].) and D‘Pt,l(M,F) E(I)t71(M,F)(d)

We can in fact be more precise about the first of these isomorphisms; there is a canonical
isomorphism

(2.1) D\I/tl(./\/l,F) Z\I/tl(./\/l,F)(d—l)
and for every 8 € (—1,0), there is a canonical isomorphism
(2.2) DU, 5(M, F) = W s (M, F)(d— 1)

In what follows, we will only be interested in the case when (M, F') is the filtered
right Zx xc-module (1;wx, F') corresponding to (.4 Ox, F'). Note that in this case we
have d = n, hence the isomorphism (2.1) gives

(2.3) DG, (14wx) = Gr¥ (ywx) (1 + )
while the isomorphism (2.2) gives
(2.4) DGr‘ﬁ/(LerX) o~ Grylfﬁ(mrwx)(l +n) forevery pe(—1,0).
Similarly, we have
(2.5) DCr} (trwy) =~ Gry (tywx)(n).
Finally, we note that since the Hodge filtration on Grg(urwx) is induced by that

on tqwyx, which is the filtered right Zx «c-module corresponding to ¢y Ox, using the
convention above on upper and lower indexed V-filtrations we have

(2.6) Fp_n_lGrg(L+wX) =wx Ry FpGr‘_/B(mrﬁX).

3. Generation level. Let (M, F) be a right Zx-module with a good filtration. The
filtration F' is generated at level ¢ if

FM-Fy9Dx = FyyyM  forall £2>0,
or equivalently
Fp./\/l : F1@X = Fp+1./\/l for all p > q.

A similar definition holds for left Zx-modules, as in the introduction. Note that such
q always exists by the definition of a good filtration. Another interpretation is that the
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filtration is generated at level ¢ if and only if Grl’ M is generated in degrees < ¢ as a
graded module over

Ax =Gl 9y ~ Symy, Ix,
where Jx is the tangent sheaf of X.
A generation criterion using the duality functor is given by the following result; see
[Sai94, Lemma 2.5] and its proof.

Proposition 3.1. If (M, F) is a filtered right Px-module underlying a mized Hodge
module such that F_,_1D(M) = 0, then the filtration on M is generated at level q.

We will also need a refinement of this criterion for (essentially) self-dual (M, F'), and
for this we formulate more precisely the setup provided by duality. The 0-section of
the cotangent bundle corresponds to a surjective morphism Ax — Ox. We denote by
K* the corresponding Koszul complex

0K "o ... 5K 'S5 K'=0x -0

placed in degrees —n,...,0, where K~ = A'Ix ®4, Ax(i). Note that we use the
opposite of the standard convention for degree-shift, namely P(i),, = Pp—;. This
is a complex of graded free Ax-modules, which gives a free resolution of Ox as an
Ax-module.

Suppose now that (M, F) is a filtered right Zx-module that underlies a mixed
Hodge module. In this case we have that Gri’ M is a Cohen-Macaulay Ax-module
by [Sai88, Lemme 5.1.13] (and, more generally, one can consider filtered Zx-modules

with this property). Recall from [Sai88, §2.2] that DR(M, F) is the filtered differential
complex

0> Mo, N"Ix =+ > MR®p, Ix - M =0,
placed in degrees —n,...,0, such that the level p part is given by
0= Fp iM®g, N"TIx =+ = Fp_iM®p, Ix = F,M = 0.

The maps are not Ox-linear, but by taking the associated graded objects, we obtain
complexes of Ox-modules. More precisely, we have

GrIDR(M, F) =~ (P ®.a, K*),,

L
where P = Grf’ M. Note that P® 4, K*® represents the object P® 4, Ox in the derived
category of graded O'x-modules.

An important feature of the duality functor is the following isomorphism in the
derived category of filtered differential complexes of &x-modules:

D(DR(M, F)) =~ DR(D(M, F)),
having the property:
GrgD(ﬁﬁ(M,F)) ~ Riomeg, (Grljpﬁ(/\/l,F),wX[n]) for all peZ.

See [Sai88, §2.4], and also [Sai94, Remark 2.6].

Suppose now that (M, F') satisfies D(M, F') >~ (M, F')(d) for some d € Z; this is for
instance the case for the nearby and vanishing cycle modules in the previous section.
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By combining the above facts, we see that for every p € Z we have an isomorphism in
the derived category of @x-modules:

(3.2) (P®uay K*)p—a ~RHome, (P Ray K*)—p,wx)[n].

Denoting A® := P ® 4, K*, using the discussion at the beginning of the section we
see that the filtration on M is generated at level ¢ if and only if H°(A®), = 0 for every
p > q. The isomorphism (3.2) gives

HO(A%), = Eatl (A%, 4.0x).
On the other hand, we have the first-quadrant spectral sequence

B = @@»”UtjﬁX(A_;—deX) = gxt?;(A:p_d,WX)'

Recall also that by definition, we have
A:;'Fd =Grl,_ g Mg, NIx.
Thus for such filtered Zx-modules we obtain the following refinement of the criterion

in Proposition 3.1:

Proposition 3.3. If (M, F) underlies a mized Hodge module and D(M, F) ~ (M, F)(d),
then the filtration on M is generated at level q if

é”mt‘fﬁx (Grljpfdfnﬂ-/\/l ®oy N Tx,wx) =0 foral 0<j<n,

for every p > q.

C. MAIN RESULTS

We continue to work on a smooth complex variety X, endowed with a nonzero regular
function f € Ox(X). We use the notation of the previous section.

4. Generation level for Gr{/ (14 Ox). We start by proving the key Theorem H; this
is split here into Propositions 4.1, 4.2 and 4.7, the last being the most involved. We
begin with a generation bound for Gr{; (14 0x) with o € (0,1). This case only needs
the criterion in Proposition 3.1.

Proposition 4.1. For a € (0,1) and ¢ > 1, the Hodge filtration on Gr{;(14+Ox) is
generated at level q if Fn_qGr%/_o‘(L+ﬁX) = 0. In particular, if f defines a singular
hypersurface, then the Hodge filtration on Gri;(14Ox) is generated at level n — [ay +
al +1.

Proof. 1t follows from (2.6) that the filtration on Gr{;(:4+Ox) is generated at level ¢
if and only if the filtration on GrY (1ywx) is generated at level ¢ — n — 1. Using the
isomorphism (2.4), we deduce in turn from Proposition 3.1 that this is the case if

By Gr¥_y(ywox) (0 + 1) = Py 1Gr¥_ (1swx)
is 0. The latter condition is equivalent with Fj,_,Gr{*(¢t40x) = 0 by another appli-
cation of (2.6), giving the first assertion in the proposition.

For the second assertion, note that by Lemma 1.2, for every j > 0 and every 8 € (0, 1)
we have the equivalence

95 e VP = a;>j+8.
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In particular, if this holds for j > 1, it also holds for j — 1. If ¢ = n — [ay + a] + 1,
then ¢ > n — ay — a, and we conclude that there is 8 with 1 —a < 8 < 1, such that
8,?_‘1_15 € VP, Ox. In this case we have F, VP, Ox = F,_4.0x, hence clearly
Fn_qGr%/_o‘(LjL@’X) =0. O

A similar proof works for a = 0; we include it for completeness, even though this is
not relevant for the rest of the paper.

Proposition 4.2. If F,,_;+1Gry, (14 Ox) = 0 for some q > 1, then the Hodge filtration
on Gr%(ur Ox) is generated at level q. In particular, if fdefines a singular hypersurface,
then the Hodge filtration on GrY,(1+Ox) is generated at level n — [as] + 1.

Proof. Arguing as above, using (2.5) and Proposition 3.1 we see that the Hodge fil-
tration on Grl, (14 Ox) is generated at level q if Fj,_,+1Gr) (14 Ox) = 0. This in turn
holds if ¢ = n — [a] + 1, since Lemma 1.2 implies that there exists § > 0 such that

o115 e V8. O

For Grb(w Ox) we need to use a more refined argument. We start by specializing
the criterion in Proposition 3.3 to the Zx xc-module M = Gr‘_/l(L+wX), in which case
we have d = n + 1 by (2.3), so that the vanishing in the proposition concerns

‘fxtfﬁx (GerfprnflGr‘f/l(L-l—wX) Ry N Tx,wx)

~ (E’xtjﬁx (Grf,p,n(}r%,(qﬁx), Ox) @y V.

Furthermore, the filtration on Gr%/(urﬁ x) is generated at level ¢ if and only if the
filtration on Gr",(14wx) is generated at level ¢ — n — 1. We thus obtain

Corollary 4.3. The Hodge filtration on Gr%/(urﬁx) is generated at level q if
éoxt]éx (Grf,p(}r%/(mrﬁx), ﬁX) =0 forall 0<j<n and p>qg-—1.

To apply this criterion, we need a better understanding of the terms Grf Gri (14 Ox).
To this end, for every & > 0 we introduce the following coherent ideals of &'x:

Jp={h € Ox |hdFs c Vi Ox} and J,={he Ox|hdisc V> i, Ox}.
From now on, we will only deal with the V-filtration on ¢4 &'x, hence in order to simplify
the notation we often denote V* = V. Ox and Gr{y = Gr{/(14+O0x).

We will make use of the fact that J; C (f) for all £ > 0. In fact, we prove the

following more precise result:

Lemma 4.4. If f defines a reduced hypersurface, then for every k > 0, we have
T, = (f).

Proof. Tt is well known that Z(f*+1) = (f**1), and so by (1.3) it follows that f¥*1§ ¢
V> We thus have f¥19F6 € V>1, hence f*! € J;.

It suffices to prove the reverse inclusion J;, C (f +1) on an open subset U of X such
that codimx (X ~\ U) > 2. Since f defines a reduced hypersurface, we can find such a
subset U on which f is smooth. We will therefore assume from now on that div(f) is
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smooth. After passing to a suitable open cover of X, we may further assume that we

have an algebraic system of coordinates x1,...,x, such that f = x;.
Recall that in this case the V-filtration on ¢;@x only jumps at integers (hence
V>1 = V2) and for every m > 1, V™ is generated over Zx by 3371"71. This follows

easily by checking that this definition satisfies the defining properties of the V-filtration.
(For a more general statement valid for arbitrary simple normal crossing divisors, see
[Sai90, Theorem 3.4].) In particular, we see that V2 is generated as an Ox-module by
0,716, for i > 0. Since 0 0 = (—1)'0;d, we have

O 216 = 210% 0 + [0, 21]6 = (—1)'210; + (—1)"" 9}~

xr1?

We conclude that given a regular function h, we have hdfé € V? if and only if there
are regular functions go, ..., g, such that

p P
hofs =3 gidh, w18 = gomd + > _(~1)gi (2196 — 0} 9.
i=0 i=1

This equality holds if and only if g; = 0 for i > k, h = (—1)*21gz, and
r1gi+ (1 4+ 1)git1 =0 for 0<i<k-—1.
This clearly implies that h € (z¥11), completing the proof of the lemma. O
We are now able to establish the connection between the Hodge filtration on Gr%/
and the minimal exponent ay.

Proposition 4.5. If f defines a reduced hypersurface and p > 0 is an integer such that
ay > p, then

GrﬁHGr%/(urﬁX) ~ J,/(f) and Grf Gri(14+O0x) ~ Ox/(f) for 0<i<p-—1

(note that the second statement is vacuous for p = 0).

Proof. Fix 0 < k < p. Since k < ay, it follows from Lemma 1.2 that 0i6 € V>0 for
0 < i < k. This implies that for every such i, we have t9{6 € V>!. Note that

t0id = fOj6 —idi"ts for 1<i<k,

hence t9;0, . .. ,t@f, 82{“5 give a basis of Fj 114+ O0x over Ox. Since all but the last one
of these elements lie in Fj 1V >!, we have a canonical isomorphism
(4.6) F1Gri = F VY Fp Vo4 ~ 03 /4

If k < p—1, then 9f6 € V! by Lemma 1.2, hence J, = Ox. Moreover, via the
isomorphisms (4.6), the inclusion

1 1
Fk+1GI'V — Fk+2GI'V

maps the class of 1 in Ox/Jj, to the class of k%klf in Jyy1/J;, ;. Indeed, this follows
from the fact that )

1
k k-+1
8t5_k 17‘8t o A

tok s,
We thus conclude that

Grg—ﬂGr%/ ~ Jer1/ (Jewr + () = Jrga /(f),
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where the equality follows from Lemma 4.4. Furthermore, as we have already men-
tioned, if k < p — 2, then Jxy; = Ox, hence GrngQGr%/ ~ Ox/(f).

On the other hand, note that we always have
Crl'Grl, = G}, ~ Jo /T = Jo/(f),
where the last equality holds by Lemma 4.4. Furthermore, Jo = Ox if p > 1. This
completes the proof of the proposition. O

Proposition 4.7. If f defines a singular, reduced hypersurface, then the Hodge filtra-
tion on Gri,(14Ox) is generated at level n — [ay].

Proof. Equivalently, we need to check that if p is a nonnegative integer such that
ay > p, then the filtration on Gr%/ is generated at level n — 1 — p. (Note that since
f defines a singular hypersurface, we have ay < 5 as mentioned in the introduction,
hence our assumption on p implies n — 1 —p > 1.) It follows then from Corollary 4.3
that it is enough to show:
(4.8) é"mtjéx(GrJF_iGr%/, Ox)=0 for 0<j<n and i>n-—2-—p.
Note that we only need to consider 7 and j suchthat 0<j—i—1<n—i—1<p.

To see this, we use the isomorphisms in Proposition 4.5. First, the short exact
sequence

0—>ﬁx—f)ﬁx—>ﬁx/(f)—>0
gives Sxty (Ox/(f),Ox) =0 for all m > 2. We thus see that if 0 < j—i—1<p—1,
we have ‘ .
&xtl, (Gri_,Gry, Ox) ~ Eaty, (Ox/(f), Ox) =0,
since j > i+ 12> n—p > 2. On the other hand, if j —i — 1 = p, then j = n, and the
short exact sequence
0= Jp/(f) = Ox/(f) = Ox/Jpy =0
implies that
Eaty (Grpyy\Gry, Ox) ~ Eatly (Jp/(f), Ox)
is a quotient of &ty (ﬁ x/(f), O X) = 0. This completes the proof of the proposition.
O

Remark 4.9. In the statements of Propositions 4.1, 4.2, and 4.7, we assumed that the
hypersurface defined by f is singular, in order to avoid the case when ay = oco. If f
defines a smooth hypersurface, then Gr{; is nonzero only when « is an integer and the
Hodge filtration on both Gr{, and Gr}, is generated in level 0.

5. The Hodge filtrations on V* and M(f~%). Let 7: X xC — X be the projection
onto the first component. Given o € Q, we consider the map
To: TV Ox — M(f79)

given by

p ‘ P "

To (Z via;5> = (Z Ql(a)fi) 7,

i=0 i=0
where Q;(z) = H’;B(x + j) (with the convention that Qo = 1). Note that both sides
have Zx-module structure; in fact 7,V Oy is naturally a Zx|[t, O;t]-module.
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Lemma 5.1. The map 1, is a morphism of Px-modules. Moreover, we have

(5.2) Tat1(tv) = 14 (v)  for every v e m V%, Ox and

(5.3) Ta(0) = a - Tar1(v)  for every v € m Vel Oy,

where the equalities hold via the identification in (1.4).

Proof. We may and will assume that X is affine. The fact that 7,(gu) = g - 7a(u)
for every g € Ox(X) and every global section u of V is clear. Suppose now that
v=> " v0;0 € V* and P is a C-derivation of Ox(X). We have
P P
Pv=> " P(v)dj6 = > P(f)uof™s,

hence

= (Z; Qi(a) Z Qit1(a f’£{)> -

_p ((ZE Qi@;g) f““) = P(ra(v),

where we used the fact that Q;y1(a) = (o +1)Q;(«) and
h ._ P(h) (a+i)hP(f) ,_
P *f a) — f *— . f OC.
<f ’ fi firt
By the definition of the V-filtration, if v € V<, then tv € V! (and for a > 0,

multiplication by ¢ induces an isomorphism of Zx-modules V* — Veth) In order to
prove (5.2), note first that if v = Y"F  v;0;9, then

p p
to=">" fuidi6 =Y w0 6.
=0 =1

We thus have
Tat1(tv) = (ZQ Oé+1];% ZQ1106+1)wa>fal

Since
Qi(a + 1) — iQi_l(Oé + 1) = QZ(Oé) for i>1
and Qo(a+ 1) = Qo(«), we conclude that 7441(tv) = 7o (v) via (1.4).
Suppose now that v = Y5  v;0i6 € Ve+! hence dv = S°0_ v;0/16 € V. We
then have

atv (Z QH—I f7’+1> <Z Qz o+ 1 ) f ol = Q- Ta+1(v),

which proves (5.3). O

Proposition 5.4. If D = div(f) is a reduced divisor, then for every o > 0 the mor-
phism T, is surjective, and the Hodge filtration on the image s, up to a shift by 1, the
induced filtration from that on V*11Ox. More precisely, we have

F M%) = 1a(Fpi VO  Ox)  forall p > 0.
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Proof. Thanks to (1.1), the elements of F,11V* are the sums Y -_,v;9;6 that belong
to V. The fact that for all & > 0 we have

FoM(f™%) = 10(Fp1 V) forall p>0

is then precisely the content of Theorem 1.5. Since the Hodge filtration on M(f™%) is
exhaustive, we deduce that 7, is surjective. O

Remark 5.5. The same statement holds more generally when D = div(f) is not
necessarily reduced, but o > 0 is such that [aD] is reduced. For this one simply needs
to refer to [MP18, Theorem A] instead.

6. Proof of the main result. We begin with the following general (and well-known)
fact:

Lemma 6.1. If u € 1 Oy is such that Oyu € V* for some a <0, then v € VotL,

Proof. Certainly if 8 < 0, then u € V#. We may assume that u # 0 and choose 3
which is largest with this property, so that u & V8. If 8 > a + 1, then we are done.
Otherwise § — 1 < a < 0, and J;u vanishes in Gr?,_l. Recall however that an easy
consequence of the definition of the V-filtration is that for every v # 0, the map

~v+1 O v
Gry, " — Gry,
is bijective. It follows that « vanishes in Gr‘ﬁ,, a contradiction. g

Next, using the result of the previous section, we show that in order to bound the
generation level of M(f~%) for any a > 0, it suffices to study the Hodge filtration on

the associated graded terms Gr‘ﬁ,, for special rational 3.

Corollary 6.2. If a € (0,1] is a rational number and q > 0 is such that the Hodge
filtration on Gr@(uﬁ;@ is generated at level g + 1 for all B € |, 1], then the Hodge
filtration on M(f™%) is generated at level q.

Proof. We need to show that FyM(f~) C Fi9x - FoiM(f®) for every p > q.
Given such p and v € F,M(f~%), it follows from Proposition 5.4 that we can find
u € Fp1V* such that 7,(u) = u. The V-filtration is discrete, hence after using the
hypothesis finitely many times, we obtain

F,iV* C 1 9x - B,V + F, V7

Since 7, maps F1%x - F,V* to F19x - Fp_1M(f™%), we may clearly assume that
@ € F,11V>1. In this case we can write u = tv for some v € F,+1V>?; see for instance
(the proof of) [MP18, Lemma 4.5]. Furthermore, by the definition of Fj;1t4O0x, we
can write v = vy + Jyw, for some vy € Ox and w € F,u1 Ox. Note that § € V>0 hence
vpd € V>0, and thus d;w € V>0, By Lemma 6.1, we have w € F,V1, so in particular
w € F,V. Since tvgd = vg fd, we have

u = 7o(u) = To(tved + tow) = (vo f) f~* + Ta(tOw) = (vo f) f~% + a - To(w),

where the last equality follows from (5.2) and (5.3). But (vof)f~% € FoM(f~%), which
follows for example from Proposition 5.4, since f6 € V>! C V@ by (1.3). Also, since
w € F,V?, it follows from Proposition 5.4 that 7,(w) € F,_i1M(f~). We conclude
that u € F,_ 1 M(f™%), completing the proof. O
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We are finally able to give the proof of the main result:

Proof of Theorem E. According to Corollary 6.2, it suffices to know that Gr@(u Ox) is
generated at level n—[as+a+1 for all 8 € [, 1]. But this follows from Propositions 4.1

and 4.7, which show that each Gr/‘B,(LJrﬁ’X) is generated at level n — [ap + 4] +1. O

7. Proof of Theorem D. Consider a reduced complex scheme D, which can be
embedded as a hypersurface in a smooth variety X, with minimal exponent ap. We
consider a resolution of singularities p: D — D. (Recall that by this we mean the
disjoint union of resolutions of the irreducible components of D.) We further assume
that f is an isomorphism over the smooth locus of D and that the reduced inverse
image of the singular locus Dging of D is a simple normal crossing divisor £ on D.

We start with the following observation:

Lemma 7.1. The statement of Theorem D is independent of the choice of such a
resolution.

Proof. A standard argument shows that it is enough to compare the assertion for
u and for another resolution with the same properties of the form p o g, for some
morphism ¢g: D' — D. Note that if E’ is the reduced inverse image of Dging on D',
then E' = (¢*E)eq and g is an isomorphism over D~ Supp(E). In this case, we have
for all 4

92 (log E') = Q% (log ) and  RIQp,(log E') =0 for all ¢ >0

by [EV82, Lemmas 1.2 and 1.5]; cf. also [MP16, Theorem 31.1(i)]. The assertion in
the lemma thus follows via the Leray spectral sequence. O

If D is smooth, then p is an isomorphism, and we trivially have Ri,u*Q{, (logE) =0
for all ¢ > 0 and all j. From now on, we focus on the case when D is singular (in which
case recall, as mentioned in the Introduction, that ap < n/2, where dim(D) =n — 1).

The proof of Theorem D is inspired by the proof of [MOP17, Theorem E|, which
partly treats the case £k = 1. We begin with an auxiliary result:

Lemma 7.2. Let g: Y — X be the blow-up of a smooth variety X along a smooth,
irreducible subvariety Z, of codimension v > 2. Let F be a reduced simple normal
crossing divisor on X, having simple normal crossings with Z as well, and denote by F
the strict transform of F' and by E the exceptional divisor on'Y . Then for every i <r,
the following hold:

9:Q4 (log(E + F)) = Q% (log F) and Rig,Q% (log(E+F)) =0 forall q>1.

Proof. For i = 0 the assertion is clear and for ¢ = 1 it follows from [MP16, Theo-
rem 31.1(ii)], so from now on we assume ¢ > 2, hence r > 3. We argue by induction on
r. If Z C Supp(F'), then the assertion holds for all i, using again [EV82, Lemmas 1.2
and 1.5]. Suppose now that Z is not contained in Supp(F’). Since the assertion is local
on X, we may assume that we have algebraic coordinates x1,...,x, on X such that Z
is defined by x1,...,x, and all components of F' are defined by some xx, with k > r.
Let T be the smooth divisor on X defined by x; and consider the induced morphism
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h: T — T, where T is the strict transform of T on Y. Consider the standard residue
short exact sequence on Y:
(7.3) 0= Q4 (log(E+ F)) = Oy (log(E + F +T)) — Q5 (log(Elz + Flz)) — 0.
Note that h is the blow-up of T" along Z, with exceptional divisor E|z. Moreover, the
strict transform of F|r is F|7. Since codimr(Z) = r —1 > 2, the inductive assumption
thus gives ' N '
Q! (log(E|z + Flz)) = Q5 (log Flr)  and
th*Q?f_l(log(Eﬁ +F|7) =0 foral g¢>1.
On the other hand, since Z C Supp(F + T) it follows, again from the reference above,
that
9:Q% (log(E+ F+ 1)) = Q% (log(F +T)) and
Rig. % (log(E+F+T)) =0 forall ¢>1.
The long exact sequence for higher direct images associated to (7.3) gives
Rig. % (log(E + FV)) =0 forall ¢>2,
together with an exact sequence

0 — g% (log(E + F)) — Qi (log(F +T)) — Q& (log F|7)

— R'g.Q% (log(E + ﬁ)) — 0,
which compared to the standard residue sequence gives the assertions in the lemma. [

In order to apply the previous lemma, we will need to control the codimension of
the blow-up centers when we have a lower bound on ap. This is provided by:

Proposition 7.4. If D is a singular effective divisor on X such that ap > k for some
nonnegative integer k, then we have the following lower bound for the codimension of
the singular locus Dging of D:

codimx (Dsing) > 2k + 1.

To see this, we first prove a general lemma concerning the behavior of ap under
restriction to a general hypersurface.

Lemma 7.5. If D is an effective divisor on X and H is a general smooth hypersurface
in X (for example, a general member of a basepoint-free linear system), then

apl, > ap.

Proof. We may assume that D is reduced: otherwise lct(X, D) < 1, hence lct(X, D) =
ap and for H general we have

apj, > let(H, D|g) > 1ct(X, D),
where the second inequality follows, for example, from the Generic Restriction theorem
for multiplier ideals, see [Laz04, Theorem 9.5.35]. Supposing now that D is reduced,
we appeal to results on Hodge ideals (for Q-divisors). If we write ap = p+ «, for some

a € (0,1] and some nonnegative integer p, it follows from [MP18, Corollary C] that
I,(aD) = Ox and since H is general, according to [MP19, Theorem 13.1] we have

Ip(aD|H) = Ip(aD) . ﬁH = ﬁH
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Another application of [MP18, Corollary C] gives ap|,, > p+a = ap. O

Proof of Proposition 7.4. We may assume that X is an affine variety. We denote r =
dim(Dsing). If 7 > 1 and H is a general hyperplane section of X, then H is smooth,
D|y is singular, and dim ((D|g)sing) = 7 — 1. Moreover, it follows from Lemma 7.5
that ap|, > k. After iterating this r times, we obtain a smooth subvariety ¥ of X,
with dim(Y’) = n —r, such that Dly is a singular effective divisor and ap, > k. Since
aply < +dim(Y"), we conclude that k < 1(n —r), hence

codimy (Dging) =n —r > 2k + 1.

We can finally approach our main goal for this section.

Proof of Theorem D. Let X be a smooth variety in which D embeds as a hypersurface.
We need to show, equivalently, that if k& is a nonnegative integer such that ap > k,
then

R”fl*iu*Q%(log E)=0 foral i<k.

By Lemma 7.1, the assertion in the theorem is independent of the choice of reso-
lution p. We thus first construct a log resolution p: Y — X of the pair (X, D), as a
composition

Y =Xy Xy — - — X1 25 X = X,
where

i) Each p; with 1 < j < N is the blow-up of a smooth, irreducible subvariety
Zj—1 of X;_1 that lies over Dgjne € X. We denote by F} the exceptional divisor
of X; — X and by D; the strict transform of D on X;.
ii) Each Z;_; with 1 < j < N has simple normal crossings with D;_1 + Fj_;.
In particular, we see inductively that each X, is smooth and F; + D; is a simple
normal crossing divisor. We may assume that D =Dy is smooth, so that the induced
morphism ¢: D — D is a resolution of D that is an isomorphism over D \ Dging.
Furthermore, if F' = Fy, and E' = F|5, then £ = ,u_l(Dsing)red and this is a simple
normal crossing divisor on D.

Claim. For every i < 2k, we have
(7.6) 1% (log F) = Q% and  RYu,Q% (log F) =0 for all ¢ > 1.

To see this, using the Leray spectral sequence, it is enough to show that for every
1 <35 < N we have

(7.7) pj, Q% (log Fj) = Q,  (log Fj_1) and R%u; O (log Fj) =0 for all ¢ > 1.

If Z;_1 C Fj_1, then this follows from [EV82, Lemmas 1.2 and 1.5] (or [MP16, The-
orem 31.1(i)]). On the other hand, if Z;_1 ¢ F;_1, then Z;_; is equal to the strict
transform of its image in X. By construction and Proposition 7.4, it follows that
codimy; ,(Zj-1) > 2k + 1, and (7.7) then follows from Lemma 7.2. This proves our
claim.
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Consider now the residue short exact sequence
0 — Q! (log F) = Q! (log(D + F)) — Q%5 (log E) — 0

on Y, and the following piece in the corresponding long exact sequence for higher direct
images:

R, (log(D + F)) — R™™' 70,0l (log B) — R" ™', Q4 (log F).

Since

1<k<ap<mn / 2,
the first term vanishes because of Corollary C. Since the third term vanishes by the
above Claim, we conclude that the middle term vanishes as well. This completes the
proof of the theorem. O
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