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A B S T R A C T   

Cities worldwide are vulnerable to unpredictable extreme events such as disasters and public health crises. Urban 
big data and data-driven technologies have played an increasingly important role in building smart and resilient 
cities that can respond rapidly to these perturbations. However, many existing approaches had limited capa
bilities for processing big data, which has led to time-consuming and costly decision-making. Thus, we develop a 
real-time data-driven analytical and geo-visual system to enable smart and rapid responses to urban extreme 
events. The system is built on ArcGIS’s GeoEvent Server and Apache Spark and processes streaming data from 
social media with high speed, massive volume, and multiple modalities. The system employs online topic 
modeling and domain-adaptive sentiment analysis to track small-scale, undefined events, visualizes their spatial 
and semantic dynamics, and provides early alerts for crises and emergencies via an interactive online GIS 
platform. The proposed system has been applied during a large-scale hurricane and demonstrated effectiveness 
and agility in tracking and reporting emerging small-scale crises. The developed system can be applied in various 
urban scenarios to enable timely situation awareness and rapid response. This research contributes to the smart 
city safety and building rapidity of resilient cities.   

1. Introduction 

Cities are complex and dynamic systems that contain infrastructures, 
information, and innovation and house the majority of the world’s 
population (Batty, 2008). Cities are also exposed to a variety of un
foreseeable extreme events, such as disasters and infectious diseases, 
which have at times caused tremendous economic and social losses 
(Arafah & Winarso, 2017; Zhu, Li, & Feng, 2019). Disasters have 
affected more than a third of the world’s population (1.5 billion) and 
cost more than US$1.3 trillion in economic losses (UN DESA Population 
Division, 2018). In recent years, influenza epidemics have caused up to 
56,000 deaths annually in the United States and have had substantial 
financial costs (McGowan et al., 2019). To respond actively to such 
events, researchers and practitioners from multiple disciplines develop 
theories and approaches to help cities prepare for unexpected pertur
bations (Woetzel et al., 2018; Zhang & Li, 2018). 

In light of the need to building resilient and smart cities in this 
context, urban studies and practices strive to maintain cities’ essential 
functionality while reducing the adverse effects when disruptions 

happen (Allam & Newman, 2018; Angelidou et al., 2018; Desouza & 
Flanery, 2013; Hatuka, Rosen-Zvi, Birnhack, Toch, & Zur, 2018; Lei
chenko, 2011; Wang, Hulse, Von Meding, Brown, & Dedenbach, 2019). 
Existing literature body has discussed four critical aspects of resilience: 
robustness (the ability to withstand stress without suffering degradation 
or loss of function), redundancy (the extent to which components can be 
substituted for to recover reduced or lost functionality), resourcefulness 
(the capacity to identify problems, establish priorities, and allocate re
sources), and rapidity (the ability to meet priorities and achieve goals 
promptly) (Bruneau et al., 2003; Godschalk, 2003; Zobel, 2011). How
ever, as cities grow and gain complexity, conventional approaches that 
treat resilience as a conceptual process and use static data can become 
ineffective for achieving the conditions outlined above (Meerow, New
ell, & Stults, 2016). Thus, it is necessary to implement new methods and 
technologies to address the challenges of extreme events and promote 
resilience. 

In the context of burgeoning big data and advanced information and 
communication technologies (ICTs), more “smart” solutions have also 
been proposed to help cities survive and function under extreme stresses 
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(Palmieri, Ficco, Pardi, & Castiglione, 2016; Soyata, Habibzadeh, 
Ekenna, Nussbaum, & Lozano, 2019; Yang, Su, & Chen, 2017). A recent 
article proposed the smart robustness, smart redundancy, smart 
resourcefulness, and smart rapidity to leverage resilience by embedding 
smart technologies and systems in the fabric of cities (Desroches & 
Taylor, 2018). Although rapidity (e.g., speed) in responding to risks is 
essential to resilient cities (Al Nuaimi, Al Neyadi, Mohamed, & 
Al-Jaroodi, 2015; Desouza & Flanery, 2013; Palmieri et al., 2016; Platt, 
Brown, & Hughes, 2016), few studies have focused on this dimension of 
urban resilience, particularly among urban-scale quantitative studies 
(Meerow et al., 2016). Within the smart city context, however, rapid or 
real-time big data applications can mitigate damages’ impacts and 
enhance the capacity to recover from extreme events quickly (Desroches 
& Taylor, 2018; Malik, Sam, Hussain, & Abuarqoub, 2018). For instance, 
early detection of crises or emergencies and rapid responses allow cities 
to collect relevant information, monitor the characteristics of events (e. 
g., locations, time, types), and provide timely analyses and predictions, 
and thus to better coordinate relief efforts, assess damages, and restore 
urban system performance (Desouza & Flanery, 2013; Khan, Anjum, 
Soomro, & Tahir, 2015; Kitchin, 2014; Kontokosta & Malik, 2018; 
Woetzel et al., 2018; Zhang, Li, Li, & Fang, 2019). 

However, most existing quantitative studies are conceptual rather 
than operational to enhance resilience with smart rapidity, because it is 
challenging to design a specific plan for an abstract and complex notion 
such as resilience (Desouza & Flanery, 2013; Hatuka et al., 2018; Wang, 
Taylor, & Garvin, 2020). For example, Klein, Koenig, and Schmitt 
(2017) described a vision and a conceptual framework for monitoring 
and managing cities’ environmental and social dynamics without giving 
specific methods or plans. Current efforts to create smart and resilient 
cities also suffer from a mismatch between real-time information re
sources and delayed decision-making, as well as incompatible algo
rithms for processing high-volume and -velocity urban streaming data 
(Al Nuaimi et al., 2015; Khan et al., 2015; Yang et al., 2017). The 
existing prototypes of urban analytics systems (e.g., Huang, Cervone, & 
Zhang, 2017; Psyllidis, Bozzon, Bocconi, & Titos Bolivar, 2015) were 
designed for the analysis and visualization of a diversity of urban topics 
(human movement patterns, traffic conditions, or place of interests) 
using periodically updated data or a mixture of static and streaming 
data. These prototypes did not take full advantage of urban streaming 
data for smart and rapid resilient city management. 

In this research, we propose a real-time urban analytical and visual 
system that can detect, track, analyze, and visualize small-scale, unde
fined extreme events clustered in content and space. The system is built 
on the latest versions of GeoEvent Server and Online GIS for real-time 
data analysis and visualization and uses geotagged streaming Twitter 
data. We construct several data-mining and natural language–process
ing modules within the system, including online topic modeling and 
sentiment analysis using Apache Spark. The Apache Spark distributed 
system is especially favorable for online big-data processing with high 
speed and accuracy. The system is designed for geo-textual streaming 
data and has the potential to be applied to various urban management 
scenarios. By leveraging high-volume urban streaming data and smart 
technologies, we hope to demonstrate the usefulness of our system to 
understand the dynamics of urban systems, especially during unpre
dicted perturbations such as disasters. The system demonstrates the 
analysis results with interactive maps to improve situational awareness 
and enhance community engagement during extreme events. The sys
tem can also be integrated into a holistic, intelligent system to play an 
active role in future urban planning to achieve smart and resilient cities. 

2. Related work 

Recently, extracting and interpreting information from streaming 
data has gained increasing prominence in the data mining domain. In 
addition, social media platforms, such as Twitter, have brought valuable 
user-generated behavior-rich data resources in real time, offering a 

growing number of opportunities to analyze the dynamics of the text 
streams and topics (Benhardus & Kalita, 2013; Ghani, Hamid, Hashem, 
& Ahmed, 2019). In urban contexts, these platforms allow people to 
share the events they perceive, such as nearby crises or urgent needs for 
specific resources (Leykin, Lahad, & Aharonson-Daniel, 2018; Yoshi
naga & Kitsuregawa, 2014). Moreover, these crowdsourced social media 
data exist at the smallest possible measurement scale and represent the 
perceptions and emotions of citizens and can be used to engage citizens 
in two-way communication (Angelidou et al., 2018; Kitchin, 2014; 
Neirotti, De Marco, Cagliano, Mangano, & Scorrano, 2014; Woetzel 
et al., 2018). 

2.1. Existing methods for real-time streaming text mining and topic 
derivation 

Many methods have been proposed for topic detection and topic 
evolution over time. For example, Xie, Zhu, Jiang, Lim, and Wang 
(2016) proposed the TopicSketch framework for detecting bursty topics 
on Twitter in real time using a sketch-based topic model based on sta
tistical data “sketches” of tweets, such as the acceleration of the number 
of tweets and words. Hasan, Orgun, and Schwitter (2019) developed the 
TwitterNews + system to detect local newsworthy events from stream
ing tweets. This system continually updates the most recent tweets to 
determine their novelty and cluster tweets into different events. 

Other studies have considered both spatial and temporal features of 
tweets, making them more applicable to urban environments. For 
instance, Zhang et al. (2017) proposed TrioVecEvent, an online local 
event-detection method that uses geotagged tweet streams. This method 
generates topic clusters and selects local events by gathering informa
tion on location, time, and content to perform online clustering using a 
Bayesian mixture model. Yu, Li, Bhuiyan, Zhang, and Huai (2017) pre
sented a real-time emerging-anomaly monitoring system (Ring) to 
detect anomalies within minutes after the events happened. This system 
improved on a graph-stream model and was implemented on the Spark 
distributed data processing system. 

These streaming data-based methods were explicitly designed to 
achieve real-time topic derivation and event detection through the use 
of low-computation solutions and quickly updating the computation 
results. These methods were implemented to detect emerging topics or 
geo-textual clusters without further analyzing the detected events or 
enabling real-time visualization of the computation results. However, to 
improve the results of exploring and interpreting massive and complex 
streaming data, real-time visualization is crucial. Visualization ap
proaches couple human intuition with computational analysis and thus 
help users understand the patterns of the events and gain insights when 
making decisions (Chae et al., 2014; MacEachren et al., 2010; Thom, 
Bosch, Koch, Worner, & Ertl, 2012). 

2.2. Real-time event detection and geo-visualization systems 

To address the need for real-time analysis and visualization, some 
systems were designed to not only process social media data streams in 
real time but demonstrate the results to users interactively. Early sys
tems such as TwitterMonitor (Mathioudakis & Koudas, 2010) could 
detect trending topics in the Twitter stream and visualize their basic 
features (e.g., temporal line graphs, keywords) without mapping the 
topics. More subsequent research was devoted to developing 
geo-visualization systems or frameworks as prototypes that could be 
extended to automatically detect anomalies or events and to monitor 
human spatiotemporal activities in tweet streams in real time. Examples 
include Terpstra, Stronkman, De Vries, and Paradies (2012)’s Twitci
dent system, Huang et al. (2017)’s cloud-based framework for disaster 
monitoring, and Wachowicz, Arteaga, Cha, and Bourgeois (2016)’s 
workflow of querying space-time activities (STA) via geotagged tweet 
streams. 

Continuing these studies, many systems with similar designs could 
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achieve real-time data processing and geo-visualization. A large number 
of these systems were rooted in geospatial visualization and enabled 
real-time geo-visual analytics for geo-text aggregation, spatial cluster 
exploration, and crisis discovery, such as SensePlace2 (MacEachren 
et al., 2010), SensePlace3 (Pezanowski, MacEachren, Savelyev, & Rob
inson, 2018), and ScatterBlogs (Thom et al., 2012). These methods 
focused on making sense of places by extracting useful information from 
geo-textual streams. Some studies (e.g., MacEachren et al., 2010; Mid
dleton, Middleton, & Modafferi, 2014) parsed location information from 
textual data (e.g., hashtags, name entities, or user account location) and 
employed reversed geocoding. Although the geocoding approach 
increased the volume of data from the social media stream that could be 
crawled, it can be problematic when mapping fine-grained local events. 
Some other real-time geo-visual analysis systems were developed to 
recognize the importance of spatial scale and designed to identify 
small-scale or local events. For example, Boettcher and Lee (2012) 
proposed the Eventradar system for detecting small-scale local events 
using a density-based clustering algorithm with sliding time intervals. 

In addition to underlining the geographic magnitude of real-time 
analysis and visualization, some systems also introduced content- 
relevant features, such as incorporating human perspectives through 
sentiment analysis or targeting at one type of event by setting search 
keywords. For example, TwitInfo (Marcus et al., 2011) can automati
cally identify and label spikes of tweet events and allows users to select 
and track events through a visualization platform. This platform also 
shows the positive and negative sentiments surrounding events and the 
aggregate sentiment of the tweets within the events. Choi and Bae 
(2015) introduced the Social Big Board, a real-time disaster-monitoring 
system that can analyze and map disaster-related tweets and their 
trends. This system also analyzes people’s emotional information using 
pre-defined sentiment words in positive, negative, or neutral sentiment. 

Some real-time systems have been proposed to be better for specific 
types of events, based on the different characteristics of extreme urban 
events. For instance, Avvenuti, Cresci, Marchetti, Meletti, and Tesconi 
(2014) developed a real-time alert and report system specifically for 
earthquake disasters (EARS). Smith, Liang, James, and Lin (2017) pre
sented a real-time modeling framework to identify flooding areas and 
infer inundation during storm weather. Șerban, Thapen, Maginnis, 
Hankin, and Foot (2019) introduced a software system SENTINEL that 
classified health-related tweets to detect disease breaks and provide 
syndromic surveillance in real time. We also found that a large portion of 
the existing studies discuss the use of streaming data to extract 
crisis-relevant information for disaster management and risk control 
because these events are time-sensitive and require real-time decisions. 

In summary, a diverse set of data-driven methods have been designed 
for mining and mapping information from streaming data. However, 
only a few studies have been able to pinpoint the locations and scales of 

detected events and their evolution over time and space at a fine-grained 
resolution. Existing real-time systems that incorporate both computa
tional analysis and visualization to identify emerging events only show 
some basic features of the events (e.g., tweet volume change, repre
sentative tweets, and spatial clusters), but in-depth information extrac
tion and undefined event detection (without using predefined keywords) 
are lacking. Still fewer studies have initiated early alerts or other actions 
after the systems detected emergencies or crises. 

3. Developing a real-time urban analytical and geo-visual 
system 

In this section, we demonstrate the design and methods of our real- 
time urban analytical and geo-visual system that works for streaming 
geo-textual data (i.e., data with both geographical and content features). 
This system is built upon Esri’s GeoEvent Server (version 10.7). The 
server provides comprehensive tools and pipelines to support high- 
volume real-time data input, processing, and output, making it espe
cially suitable for geospatial streaming data. We employ several tools 
provided by the server and create our customized data-processing tools 
with the server’s Java SDK (Software Development Kit). 

Fig. 1 demonstrates the architecture of our proposed system, with 
analytical modules embedded in the GeoEvent Server. Three analytical 
and visual modules make up the core of the system: streaming data 
input, streaming data processing and analysis, and data output and real- 
time geo-visualization. This system is supported by a large geodatabase - 
PostgreSQL. The input module ingests streaming data directly from a 
Twitter streaming API and transforms the stream of information into 
formatted raw tweets. This module also performs simple tweet 
screening: collecting geotagged non-bot tweets from within defined 
spatial areas. The processing and analysis module serves as the primary 
analytical part of the system. In this module, we develop customized 
functional models (configured as processors in the server) to extract 
information of interest from the data stream. The output and geo- 
visualization module is our platform for real-time mapping and in
teractions using Online GIS maps. 

3.1. Streaming data input module 

Tweets generated during extreme events contain rich geographical 
and content information that is useful for city management. Twitter 
offers an open API for collecting large amounts of voluntarily reported 
tweets in real time. In general, about 1% of tweets can be collected by a 
standard account (Wang & Taylor, 2019; Wang, Wang, & Taylor, 2017). 
In this module, two tools are used to process the incoming data stream 
into a format suitable for the GeoEvent server so that the data can be 
further analyzed. The transport tool connects to the Twitter API and 

Fig. 1. The architecture and main modules of the real-time analytical and geo-visual system.  
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receives data as a raw byte stream, and the adapter tool converts this 
stream into formatted tweet objects that can be processed by the system. 
Each collected tweet is configured as a geo-textual object that contains 
both the text of the tweet and its metadata, such as unique ID, user ID, 
timestamp, latitude, and longitude. 

Then we set up a filter tool to remove tweets generated by robot 
accounts (bots), collect geotagged tweets, and define the geographic 
study area using GeoFences in the server. Fig. 2 shows an example of our 
filter settings. We refine a word list from a previous study that contains 
terms usually used by bots, such as “temp” and “barometer”(Yao & 
Wang, 2020a), and we use regular expressions to match the incoming 
raw tweets and exclude any that contain the words from the list. We also 
exclude tweets without geolocations and filter the tweets to select those 
from a predefined study area using GeoFences settings. GeoFences can 
determine the spatial relationship between a geographic boundary 
(polygon) and a geotagged tweet. We do not set keywords to filter 
tweets, as we intend to design a system for detecting unexpected extreme 
events that meet our design assumptions. We develop the filter tool that 
processes data in a computationally simple and fast way in order to 
remove unnecessary data volume for the computationally expensive 
process in the following steps, thus enhancing the speed and efficiency 
of the system. 

3.2. Streaming data process and analysis module 

This analytical module analyzes a stream of geotagged tweets and 
generates the outcomes for a dynamic map. We first apply the online 
topic model to identify the topic distribution for each tweet in the 
stream. Then we use a clustering method to synthesize the topics and 
generalize geo-topics using additional geospatial information embedded 
in the tweets. In this study, geo-topics are topics clustered in space that 

are used to represent urban events, such as urban activities, local news, 
and emergencies. The assumption is that if tweets are collected in a short 
period and contain similar words and topics, they are likely to be clus
tered spatially and related to a specific local event (Wang & Taylor, 
2019). In the third step, we compute the sentiment score of each tweet 
and average the sentiment score of each geo-topic. These scores can be 
used as indicators of potential extreme events, such as emergencies or 
crises. We use the Java SDK provided by the GeoEvent Server to create 
customized processors corresponding to these data-analysis methods. 

3.2.1. Topic modeling of streaming text data based on Online LDA 
One major challenge for real-time data analysis is handling the sheer 

volume of data rapidly. Topic modeling is a data-mining method for 
discovering hidden semantic structures (topics) in large text documents, 
such as tweets. The most commonly used topic models are probabilistic 
ones, such as probabilistic latent semantic indexing (PLSI) (Hofmann, 
1999) and latent Dirichlet allocation (LDA) (Blei, Ng, & Jordan, 2003). 
These models represent each document as a mixture of topics and each 
topic as a distribution over words. Most probabilistic models run offline 
and do not incorporate the temporal aspect of documents (Gao et al., 
2020; Yu et al., 2017). Some methods began to exploit timestamps 
jointly with topic detection and topic evolution, such as Topic Over Time 
(TOT) (Wang & McCallum, 2006) and Dynamic Topic Model (DTM) 
(Blei & Lafferty, 2006). In social media environments, tweets arrive 
continuously and topics change dynamically. Topic models that to be 
used online or in real time must consider this temporal aspect and be 
updated to capture topic changes over time rapidly. 

We employ Online LDA (Hoffman, Blei, & Bach, 2010), an online 
variational Bayes algorithm for LDA, to process streaming data and 
generate topics. Variational Bayes (VB) is a method of variational 
inference used in a Bayesian hierarchical model. VB is based on Bayes’ 

Fig. 2. The interface of filter settings.  

Fig. 3. The process of data cleaning and normalization.  
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theorem and is used to approximate the true posterior by minimizing the 
Kullback-Leibler divergence to the true posterior. Online LDA has ad
vantages in handling massive collections of documents because the 
method allows documents to be examined as they arrive in-stream and 
discarded after a single look to reduce the delays. The Online LDA model 
is defined by some essential parameters: κ ∈ (0.5, 1] is an exponential 
decay that controls the rate at which old topics are forgotten; its value 
range can guarantee an asymptotic convergence. τ0 ≥ 0 represents a 
positive learning offset that slows down the early iterations of the al
gorithm. Minibatch t is used to consider multiple observations per up
date to reduce noise. We also need to set the number of topics k before 
running Online LDA. 

We use Apache Spark’s machine learning library (MLlib) in the Java 
programming language to implement Online LDA. Apache Spark is an 
open-source distributed analytics system designed for big data pro
cessing that has exceptionally high performance. We choose Java to 
meet GeoEvent Server’s requirements so that we can create a processor 
with Java SDK. Before running the online topic modeling, we clean and 
normalize the texts of tweets using the SparkNLP library and MLlib: we 
remove web links, @ mentions, and stopwords, make all the words 
lowercase, and tokenize the texts into single terms (Fig. 3). 

3.2.2. Generating geo-topics with spatial features 
Because topics in the data stream change over time, they cluster 

dynamically across space as geo-topics, and our system is designed to 
monitor these spatial changes. The system uses sliding time windows 
with statistical metrics to analyze the spatiotemporal dynamics of geo- 
topics. Sliding time windows are often used in the online mode of 
topic modeling (e.g., Boettcher & Lee, 2012; Lau, Collier, & Baldwin, 
2012). Fig. 4 shows the spatial clustering patterns of tweets for gener
ating geo-topics based on sliding time windows. We set the window size 
to one hour, and when new tweets arrive, the window moves forward, so 
geotagged tweets received more than an hour ago are discarded. All the 

tweets within the window are valid, and only valid tweets are aggre
gated and clustered to generate geo-topics and have their corresponding 
features (centers and ranges) calculated. As the window slides onward, 
the valid tweets and features of geo-topics change. We use statistical 
metrics to represent the spatial centers and ranges of geo-topics. For 

Fig. 4. Demonstration of spatial clustering patterns of geo-topics in streaming data.  

Fig. 5. The interface of GeoEvent Server for managing data and analysis.  

Fig. 6. The interface of GeoEvent Simulator.  
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each geo-topic k (k = 0, 1,2,…), the spatial center 
(
ϕk

c , λk
c
)

is represented 
by the arithmetic mean of the latitudes and longitudes of the valid 
tweets on that geo-topic 

(
ϕk

i , λk
i
)
, i ∈ [1,n]: 

ϕk
c =

1
n

∑n

i=1
ϕk

i , λk
c =

1
n
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i  

where ϕk
c is the latitude and λk

c is the longitude of the center of geo-topic 
k, and n is the number of tweets belonging to geo-topic k. The geographic 
range of a geo-topic γk is the variance in the tweets’ latitude or longitude 
converted to distance in kilometers: 

γk = min

(
α
n

∑n

i=1

(
ϕk

i − ϕk
c

)2
,
β
n

∑n

i=1

(
λk

i − λk
c

)2

)

where α and β are the coefficients for converting degrees of latitude and 
longitude into kilometers. Variance can measure how geotagged tweets 
spread out from their geographic center. If a geo-topic contains only one 
valid tweet, its range value is 0 (zero). 

3.2.3. Domain-specific sentiment analysis for extreme event detection 
We calculate the sentiment scores of geotagged tweets and geo-topics 

to identify potential extreme events that merit attention. This analytical 
procedure is based on the assumption that very negative sentiments are 
likely to indicate crises or accidents (Caragea, Squicciarini, Stehle, 
Neppalli, & Tapia, 2014; Lu et al., 2015). We employ a pre-trained, 

domain-adapted sentiment-analysis classifier to predict the sentiment 
score of each tweet in the data stream (Yao & Wang, 2020b). The 
sentiment classifier represents a domain-adversarial neural network 
(DANN) (Ganin et al., 2016) that is built on a recurrent neural network 
(RNN) with an additional domain-adversarial component. RNN is spe
cifically useful in text mining and processing sequence data, such as 
streaming texts. The domain-adversarial component is appended to a 
standard RNN learning process in the backpropagation steps, thus the 
learned representations are invariant across different domains. This 
method can achieve high accuracy in classification and performs 
robustly in distinct domains (e.g., disasters, news, and lifestyles) when 
analyzing tweets. This domain-adaption feature makes the method 
exceptionally suitable for streaming tweets and changing geo-topics. 
The DANN method calculates the sentiment scores of individual 
tweets as real numbers from –2 (most negative) to 2 (most positive), 
with 0 as neutral sentiment. The sentiment score of each geo-topic is the 
arithmetic mean of sentiment values of the valid tweets belonging to the 
geo-topic. 

We then use an emergency-detector tool to find abnormally negative 
geo-topics and provide early alerts when potential emergencies are 
identified. This tool works by setting up a sentiment threshold, usually a 
negative number between -2 and 0, to trigger the alerts. If the sentiment 
of a geo-topic at any time is equal to or below the threshold, the system 
generates a potential emergency alert and indicates it dynamically on 
the map. After the alert is detected, its status becomes ongoing, and the 
tool tracks the total duration of the alert. If the sentiment increases to 

Fig. 7. The user interface with pop-up windows.  
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above the threshold, the alert stops and the ongoing status ends. 

3.3. Data output and real-time geo-visualization module 

In the final output module, the geotagged tweets and the analytical 
results are stored as tables in the geodatabase. The analytical results are 
also visualized via a cloud-based GIS mapping platform - ArcGIS Online. 
These results include the geo-topics with their spatial, temporal, textual 
semantic, and sentiment features. The online maps can display and 

monitor changes in such features of detected urban events over both 
space and time. The maps can also show potential emergency alerts and 
their locations and status changes. The system employs a large-scale 
geospatial database (PostgreSQL) to support real-time geospatial data 
analysis and visualization. The PostgreSQL geodatabase stores and 
manages a collection of geographic datasets based on a relational 
database management system (RDBMS). During the real-time visuali
zation process, the geodatabase stores maps published by ArcGIS as a 
feature service. This feature service contains datasets with spatial 

Fig. 8. Geo-visualization of sentiment on different dates.  
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information that can be used to generate map layers. The datasets are 
updated simultaneously when our system is running. The feature service 
also contains GIS map templates with symbology that is used by Online 
GIS for data visualization. 

4. Experiments and results 

4.1. Study case and system settings 

We applied the proposed visual urban analytical system in a simu
lated real-time scenario of Hurricane Harvey, one of the most destruc
tive disasters to happen in the U.S. in the past decade. The hurricane 
caused more than a hundred billion in damage and made landfall in a 
densely populated area in south-central Texas. We use geotagged tweets 
collected by a Twitter streaming API. Our study period ran from August 
18 to September 12, 2017, covering the time before (August 18–24), 
during (August 25–26), and after (August 27 to September 12) the 
disaster. Our study area was the counties spatially overlapped by the 
wind swaths of Hurricane Harvey. The area was set as the GeoFences 
polygon in our system. In general, our proposed system can provide the 
GeoEvent Server interface for collecting real-time streaming tweets 
using the adapter, transport, and filter described in Section 3.1 (Fig. 5). 
For this case study, we simulated the collected tweets at a real rate. The 
rate was computed from the tweets’ timestamps using the simulator in 
the GeoEvent Server (Fig. 6). This simulation can precisely capture the 
temporal features of tweets and mirror the real-time collection of 
streaming data. In addition, we set the topic number to 100 for online 
topic modeling to cover the most possible topics. We also set the senti
ment threshold to –0.15 to detect potential emergency alerts. 

4.2. Geo-visualization of the analytical system 

4.2.1. User interface 
The video (uploaded as supplementary “Video Still”) and the 

screenshots below (Figs. 7 and 8) show the user interface of our system 
and the analysis results for Hurricane Harvey. The center is the online 
map showing the analysis results in real time and refreshing every few 
seconds. The light pink polygons are county boundaries of the study 
area. The circles are local urban events represented by geo-topics 
detected by our system. The size of each circle represents the affected 
range of the geo-topic: the larger the radius, the greater the affected 
area. The colors of the circles represent the average sentiment scores of 
different events: the darker the color, the more negative the geo-topic is. 
The map also shows potential emergency alerts. The red symbol 

represents ongoing emergencies and the green one represents emer
gencies that have ended. The left side of the user interface shows the 
legend for the map, including the study area county boundaries, spatial 
ranges, sentiment scores of urban events, and potential emergency 
alerts. The bottom of the map is the table area, which shows detailed 
information on individual map layers. For example, the urban event 
layer updates the event number, the location of the event center with 
latitude and longitude, the number of tweets representing the events, the 
average sentiments of the events, the approximate times the events 
appeared, and the spatial ranges of the events. The emergency alert layer 
updates the ID, description, status, duration, and condition of each alert. 
Our system also uses pop-up windows (Fig. 7). Users can click urban 
events or potential emergency alerts on the map to check all the infor
mation provided in the bottom table. 

4.2.2. Spatiotemporal patterns of sentiment 
We examined the general spatiotemporal patterns of sentiment for 

detected urban events. Fig. 8 shows screenshots of urban events (geo- 
topics) on different dates. Before the hurricane made landfall (Fig. 8A on 
August 21), the overall sentiment of the geo-topics was rather positive 
(see lighter colors of geo-topics). The negative sentiment was mainly 
distributed around the metropolitan areas of Houston, Austin, and San 
Antonio. During the hurricane (Fig. 8B on August 25), the sentiment 
became more negative, shown by darker colors on the map. The spatial 
area of negative sentiment also expanded to surrounding areas, such as 
the coast. After the hurricane (Fig. 8C on August 28), the sentiment was 
even more negative, and the spatial area was more sprawled out because 
of the accumulated damage and bad weather. 

We also found that the Houston metropolitan area had the highest 
number of potential emergency alerts during the hurricane. These 
included traffic delay (geo-topic #17), bayou flood flow (geo-topic 
#62), and heavy rain that might affect citizens’ health (geo-topic #81). 
San Antonio had three traffic-related emergencies on three separate days 
(e.g., geo-topic #23). In addition, the detected potential emergency 
alerts also indicated the emergency locations reasonably well. For 
example, traffic-related emergencies were found near major roads, and 
bayou flood emergencies were found near Buffalo bayou. We also found 
that traffic delays and accidents were the most common and long-lasting 
emergencies during the hurricane (geo-topic #17, 23, 44). This type of 
emergency can affect social media for a period from half an hour to 
almost nine hours. Our system found 12 potential emergencies at 
different times and locations during the hurricane. We detected one false 
alarm (geo-topic #85), about fitness and training, and it lasted 25 min. 
The precision of emergency detection in this study case is 91.67 %. 

Fig. 9. Daily data volume processed by the system.  
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4.3. System performances and data statistical features 

4.3.1. Streaming data volume and temporal patterns 
Our system processed about 2,707,346 tweets during the study 

period. The daily numbers of tweets before and after the data filtering 
are shown in Fig. 9. Before the filtering, the Twitter streaming API 
received 100,000 to 140,000 tweets a day. The peak throughput (vol
ume) of our system is 147,589 tweets per day, and its average 
throughput is 117,710. 

Focusing on the specifically hurricane-affected area, the number of 
clean tweets (no bots and geotagged) had a maximum of 5,439 and an 
average of 3,189 per day. These tweets were considered useful for 
improving situational awareness during disasters. The cleaned tweets 
flowed to the following modules for analysis and visualization. After the 
hurricane made landfall on August 25, Twitter activity measured by the 
number of clean tweets increased dramatically and reached its peak on 
August 28, then became relatively stable after the disaster. 

Fig. 10 shows the hourly change in Twitter activity over the study 
period. The clean tweets increased and reached a peak then decreased 

every day, both before and after the hurricane. During the hurricane- 
affected period (after August 25 until September 1), the daily peaks 
were greater than before or after the hurricane. The hourly peak 
throughput of cleaned data for the subsequent analysis was 401 tweets, 
and the average number was 142 tweets. 

4.3.2. Feature patterns of geo-topics 
Our system generated geo-topics with features such as centers, 

ranges, and sentiment scores over time. The results showed that the 
system can detect a wide range of topics, including disaster-relevant 
events and daily life events, and monitor their features over time. 
Although many disaster-relevant events did not trigger emergency 
alerts, they still provided rich enough information to improve situational 
awareness. 

We aggregated the daily temporal patterns of several geo-topics with 
counts of their represented geotagged tweets (Fig. 11). Table 1 lists a few 
of these geo-topics and their top keywords, which have the highest 
probabilities of representing those geo-topics. For example, during the 
hurricane period, our system detected multiple hurricane-relevant geo- 

Fig. 10. Hourly clean data volume processed by the system.  
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topics (e.g., geo-topic #2, 32, and 54) with keywords such as “hurri
cane”, “Harvey”, “flood” and “accident”, and multiple locations of 
hurricane-affected areas such as “Austin”, “San Antonio”, “downtown”, 
or “highway”. Geo-topic #2 indicated flash flooding and stormwater 
conditions during the hurricane, geo-topic #54 was related to traffic 
accidents on the highways, and geo-topic #32 was about the general 
situation of Hurricane Harvey. The system also found that such geo- 
topics reached their volume peaks in the numbers of represented 
tweets during the hurricane-affected period (from August 25 to August 
29) and then gradually disappeared afterward. 

Our system also detected some hurricane-irrelevant events and 
tracked their changes. For example, geo-topic #31 had keywords such as 
“birthday”, “bar”, and “restaurant”. The volumes of such geo-topics 
were relatively stable over time, unlike hurricane-relevant geo-topics 
that reached peak volume. We also found that some geo-topics appeared 
only in parts of the study period. For example, geo-topic #88 with 
keywords such as “jog”, “partner”, and “produce” appeared only after 
the hurricane. 

We also analyzed the sentiment changes on each geo-topic over time. 
To further demonstrate the sentiment patterns and their relationships to 
different geo-topics, we selected several geo-topics that represented 
hurricane-relevant and -irrelevant events and then compared their 
sentiment patterns over time (Fig. 12). We used the minimum sentiment 
scores among the tweets belonging to the geo-topic because minimum 
scores revealed more apparent temporal trends. We found that 
hurricane-relevant geo-topics (Fig. 12A) had more negative sentiment 
overall throughout the study period, and the most negative sentiments 
during the period when the hurricane hit the study area. By contrast, 
hurricane-irrelevant geo-topics (Fig. 12B) had more positive and stable 

sentiment and were affected less by the hurricane. 

5. Discussion 

In this paper, we have presented an urban analytical and geo-visual 
system that automatically collects geotagged tweets and performs urban 
event detection and visualization in real time. Through the application 
in the simulated streaming data from a large-scale hurricane, the system 
has been demonstrated to provide useful and timely information on 
emergencies and crises during disasters. The system is specifically 
designed to address the smart rapidity aspect of resilient cities by 
enabling real-time analysis and geo-visualization to decipher the dy
namics of urban environments and systems. Early detection and tracking 
of the urban events help provide early alerts to the residents and assist 
city managers and first responders to rapidly respond to the adverse 
effects. 

Processing and analyzing social media streaming data in real time is 
exceptionally challenging because the speed and volume of data stream 
require methods to update rapidly to capture the topic changes (Goyal 
et al., 2019; Hasan, Orgun, & Schwitter, 2018; Nugroho, Paris, Nepal, 
Yang, & Zhao, 2020). Our proposed system improves on previous 
research by implementing online data-analysis methods that enable the 
rapid detection and processing of streaming data (Yao & Wang, 2020a). 
We used a variational inference method—Online LDA (Hoffman et al., 
2010)—to process and infer the topics of incoming data using Bayes’ 
theorem. In general, topic models can be computationally complex and 
time-consuming (Xie et al., 2016; Yu et al., 2017). The system reduces 
the redundant computation for topic modeling by applying multiple 
preprocessing methods that are much faster than topic modeling. By 
filtering and cleaning streaming raw tweets, and only triggering the later 
topic modeling and sentiment analysis functions when necessary, we 
improve the accuracy and efficiency of the overall system. We also 
exploit the Apache Spark distributed analytics system to improve the 
scalability and speed of data processing. All these methods and settings 
can help our system increase data throughput and reduce latency in data 
processing to achieve a real-time analysis and visualization system. 

Our developed system can continuously track multidimensional in
formation from the data stream, such as location, timestamp, semantics, 
and sentiment changes of detected events. This property expanded on 
previous research that offered simple place or place–time information 
reports (e.g., Bifet, Holmes, & Pfahringer, 2011; MacEachren et al., 
2010; Wachowicz et al., 2016) or spatial clustering results (Pezanowski 
et al., 2018; Smith et al., 2017). Some earlier methods used bursty 
keywords as prerequisites for event detection and tracking (Avvenuti 

Fig. 11. Temporal patterns of selected geo-topics and the count of their represented tweets.  

Table 1 
Selected geo-topics of Hurricane Harvey and their top keywords.  

Geo- 
topic 

Top keywords 

2 flood, flash, county, report, free, warning, giveaway, include, storm, 
public 

31 birthday, drink, happy, college, great, bar, photo, food, restaurant, show 
32 harvey, today, come, sanantonio, hurricaneharvey, time, hurricane, last, 

austin, tonight 
45 tornado, warning, lafayette, continue, lakes, city, mission, parish, 

weston, brookshire 
54 traffic, stop, accident, lane, delay, hwy, block, high, water, rock 
71 austin, nowplaying, pool, palmillabeach, atx, downtown, livingston, 

near, airport, long  
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et al., 2014; Li, Sun, & Datta, 2012). Our system does not set keywords 
for event detection, which gives it the potential to detect a variety of 
unforeseeable urban events related to disasters and other unexpected 
perturbations. Instead of using keywords, our system employs sentiment 
analysis to automatically identify potential emergencies or crises at an 
early stage. Sentiment analysis in existing systems was classified into 
two or three categories and demonstrated only in basic statistical fea
tures, such as the percentage of each category of sentiment (Choi & Bae, 
2015; Marcus et al., 2011). Our system can calculate sentiments in 
finer-gradations and can be used to trigger early alerts about potential 
emergencies to help with decision-making. 

Although we have used the system to demonstrate one study case, 
the system is open to other data resources and application scenarios due 
to its flexible and adaptable design. Supporting by the GeoEvent Server, 
the system can ingest streaming API from different resources and pro
vide additional analysis by properly changing the adapters, filters, or 
processors within the system modules. The users of our system can also 
customize the geo-visualization effects (colors, legends, base maps) as 
needed through Online GIS maps. Thus, our system is advantageous for 
transforming extracted information into a broad spectrum of applica
tions, ranging from extreme events such as disaster management, epi
demics tracking, and crime monitoring to business-as-usual situations 

such as place recommendation (Gao et al., 2020; Ghani et al., 2019; 
Nugroho et al., 2020; Pezanowski et al., 2018). 

Additionally, our system uses a dynamic online map to visualize the 
latest analysis results update every few seconds. Managing extreme 
events in cities can be complicated, users of our system may not be 
familiar with data analysis but still need specific information to improve 
situational awareness, allocate resources, or take action. This geo- 
visualization feature allows users to learn intuitively about important 
events happening in their areas and whether people should be aware of 
those events during unpredictable extreme situations. Using crowd
sourced social media data generated by the public, our system also 
provides citizens opportunities to be actively involved in the system and 
promotes community engagement. 

However, the proposed system has several limitations that can be 
addressed in our future research. Currently, the system uses Twitter as 
its only data source. However, people have differencing preferences in 
using social networking platforms. Future systems can consider 
streaming data from multiple sources to become more integrated and 
reduce the data bias caused by single data source. Additionally, the 
proposed system performs streaming data analyses based on pre-defined 
parameters, such as the number of topics and the sentiment threshold. 
These parameters need to be set case by case due to the complexity in 

Fig. 12. Temporal patterns of sentiment for selected geo-topics.  
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contents and languages online. Future studies will focus on testing and 
tuning parameters across urban events with different study areas and 
periods, and propose a method for system users to set parameters for 
best performances. Lastly, it is challenging to compare the outcomes (e. 
g., small-scale local events) of the proposed system with the ground 
truth because these detected events may not be reported by officials, 
which makes the data unavailable. Although the system is constructed 
with well-developed data analysis methods, the usage of social media 
data requires further credibility checks. The future system can also be 
improved with additional event analysis modules when increasing the 
volume and versatility of streaming data becomes available. 

6. Conclusion 

Building resilient cities requires smart solutions, and achieving smart 
rapidity is one of the most important approaches to enhancing urban 
resilience when promoting smart cities. We develop a real-time urban 
analytical and geo-visual system for social media streaming data to track 
small-scale undefined urban extreme events and provide early emer
gency alerts. The system has demonstrated the effectiveness and rapidity 
in processing large volumes of data with low latency. The system has the 
potential to incorporate streaming data from more sources and to be 
involved in cities’ emergency management tasks, such as improving 
situational awareness, assisting rapid damage assessments, monitoring 
emergent incidents, and supporting collaborative decision-making for 
multiple stakeholders. The research also contributes to developing smart 
city technologies that can be integrated into holistic urban surveillance 
systems and achieving more safe, resilient, and smart future cities. 
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