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ARTICLE INFO ABSTRACT

Keywords: Cities worldwide are vulnerable to unpredictable extreme events such as disasters and public health crises. Urban
Geo-visualization big data and data-driven technologies have played an increasingly important role in building smart and resilient
Rea}‘Fime cities that can respond rapidly to these perturbations. However, many existing approaches had limited capa-
l;;fglr‘terclicé bilities for processing big data, which has led to time-consuming and costly decision-making. Thus, we develop a

real-time data-driven analytical and geo-visual system to enable smart and rapid responses to urban extreme
events. The system is built on ArcGIS’s GeoEvent Server and Apache Spark and processes streaming data from
social media with high speed, massive volume, and multiple modalities. The system employs online topic
modeling and domain-adaptive sentiment analysis to track small-scale, undefined events, visualizes their spatial
and semantic dynamics, and provides early alerts for crises and emergencies via an interactive online GIS
platform. The proposed system has been applied during a large-scale hurricane and demonstrated effectiveness
and agility in tracking and reporting emerging small-scale crises. The developed system can be applied in various
urban scenarios to enable timely situation awareness and rapid response. This research contributes to the smart

Social media
Urban analytics

city safety and building rapidity of resilient cities.

1. Introduction

Cities are complex and dynamic systems that contain infrastructures,
information, and innovation and house the majority of the world’s
population (Batty, 2008). Cities are also exposed to a variety of un-
foreseeable extreme events, such as disasters and infectious diseases,
which have at times caused tremendous economic and social losses
(Arafah & Winarso, 2017; Zhu, Li, & Feng, 2019). Disasters have
affected more than a third of the world’s population (1.5 billion) and
cost more than US$1.3 trillion in economic losses (UN DESA Population
Division, 2018). In recent years, influenza epidemics have caused up to
56,000 deaths annually in the United States and have had substantial
financial costs (McGowan et al., 2019). To respond actively to such
events, researchers and practitioners from multiple disciplines develop
theories and approaches to help cities prepare for unexpected pertur-
bations (Woetzel et al., 2018; Zhang & Li, 2018).

In light of the need to building resilient and smart cities in this
context, urban studies and practices strive to maintain cities’ essential
functionality while reducing the adverse effects when disruptions
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happen (Allam & Newman, 2018; Angelidou et al., 2018; Desouza &
Flanery, 2013; Hatuka, Rosen-Zvi, Birnhack, Toch, & Zur, 2018; Lei-
chenko, 2011; Wang, Hulse, Von Meding, Brown, & Dedenbach, 2019).
Existing literature body has discussed four critical aspects of resilience:
robustness (the ability to withstand stress without suffering degradation
or loss of function), redundancy (the extent to which components can be
substituted for to recover reduced or lost functionality), resourcefulness
(the capacity to identify problems, establish priorities, and allocate re-
sources), and rapidity (the ability to meet priorities and achieve goals
promptly) (Bruneau et al., 2003; Godschalk, 2003; Zobel, 2011). How-
ever, as cities grow and gain complexity, conventional approaches that
treat resilience as a conceptual process and use static data can become
ineffective for achieving the conditions outlined above (Meerow, New-
ell, & Stults, 2016). Thus, it is necessary to implement new methods and
technologies to address the challenges of extreme events and promote
resilience.

In the context of burgeoning big data and advanced information and
communication technologies (ICTs), more “smart” solutions have also
been proposed to help cities survive and function under extreme stresses
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(Palmieri, Ficco, Pardi, & Castiglione, 2016; Soyata, Habibzadeh,
Ekenna, Nussbaum, & Lozano, 2019; Yang, Su, & Chen, 2017). A recent
article proposed the smart robustness, smart redundancy, smart
resourcefulness, and smart rapidity to leverage resilience by embedding
smart technologies and systems in the fabric of cities (Desroches &
Taylor, 2018). Although rapidity (e.g., speed) in responding to risks is
essential to resilient cities (Al Nuaimi, Al Neyadi, Mohamed, &
Al-Jaroodi, 2015; Desouza & Flanery, 2013; Palmieri et al., 2016; Platt,
Brown, & Hughes, 2016), few studies have focused on this dimension of
urban resilience, particularly among urban-scale quantitative studies
(Meerow et al., 2016). Within the smart city context, however, rapid or
real-time big data applications can mitigate damages’ impacts and
enhance the capacity to recover from extreme events quickly (Desroches
& Taylor, 2018; Malik, Sam, Hussain, & Abuarqoub, 2018). For instance,
early detection of crises or emergencies and rapid responses allow cities
to collect relevant information, monitor the characteristics of events (e.
g., locations, time, types), and provide timely analyses and predictions,
and thus to better coordinate relief efforts, assess damages, and restore
urban system performance (Desouza & Flanery, 2013; Khan, Anjum,
Soomro, & Tahir, 2015; Kitchin, 2014; Kontokosta & Malik, 2018;
Woetzel et al., 2018; Zhang, Li, Li, & Fang, 2019).

However, most existing quantitative studies are conceptual rather
than operational to enhance resilience with smart rapidity, because it is
challenging to design a specific plan for an abstract and complex notion
such as resilience (Desouza & Flanery, 2013; Hatuka et al., 2018; Wang,
Taylor, & Garvin, 2020). For example, Klein, Koenig, and Schmitt
(2017) described a vision and a conceptual framework for monitoring
and managing cities’ environmental and social dynamics without giving
specific methods or plans. Current efforts to create smart and resilient
cities also suffer from a mismatch between real-time information re-
sources and delayed decision-making, as well as incompatible algo-
rithms for processing high-volume and -velocity urban streaming data
(Al Nuaimi et al., 2015; Khan et al., 2015; Yang et al., 2017). The
existing prototypes of urban analytics systems (e.g., Huang, Cervone, &
Zhang, 2017; Psyllidis, Bozzon, Bocconi, & Titos Bolivar, 2015) were
designed for the analysis and visualization of a diversity of urban topics
(human movement patterns, traffic conditions, or place of interests)
using periodically updated data or a mixture of static and streaming
data. These prototypes did not take full advantage of urban streaming
data for smart and rapid resilient city management.

In this research, we propose a real-time urban analytical and visual
system that can detect, track, analyze, and visualize small-scale, unde-
fined extreme events clustered in content and space. The system is built
on the latest versions of GeoEvent Server and Online GIS for real-time
data analysis and visualization and uses geotagged streaming Twitter
data. We construct several data-mining and natural language-process-
ing modules within the system, including online topic modeling and
sentiment analysis using Apache Spark. The Apache Spark distributed
system is especially favorable for online big-data processing with high
speed and accuracy. The system is designed for geo-textual streaming
data and has the potential to be applied to various urban management
scenarios. By leveraging high-volume urban streaming data and smart
technologies, we hope to demonstrate the usefulness of our system to
understand the dynamics of urban systems, especially during unpre-
dicted perturbations such as disasters. The system demonstrates the
analysis results with interactive maps to improve situational awareness
and enhance community engagement during extreme events. The sys-
tem can also be integrated into a holistic, intelligent system to play an
active role in future urban planning to achieve smart and resilient cities.

2. Related work

Recently, extracting and interpreting information from streaming
data has gained increasing prominence in the data mining domain. In
addition, social media platforms, such as Twitter, have brought valuable
user-generated behavior-rich data resources in real time, offering a
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growing number of opportunities to analyze the dynamics of the text
streams and topics (Benhardus & Kalita, 2013; Ghani, Hamid, Hashem,
& Ahmed, 2019). In urban contexts, these platforms allow people to
share the events they perceive, such as nearby crises or urgent needs for
specific resources (Leykin, Lahad, & Aharonson-Daniel, 2018; Yoshi-
naga & Kitsuregawa, 2014). Moreover, these crowdsourced social media
data exist at the smallest possible measurement scale and represent the
perceptions and emotions of citizens and can be used to engage citizens
in two-way communication (Angelidou et al., 2018; Kitchin, 2014;
Neirotti, De Marco, Cagliano, Mangano, & Scorrano, 2014; Woetzel
et al., 2018).

2.1. Existing methods for real-time streaming text mining and topic
derivation

Many methods have been proposed for topic detection and topic
evolution over time. For example, Xie, Zhu, Jiang, Lim, and Wang
(2016) proposed the TopicSketch framework for detecting bursty topics
on Twitter in real time using a sketch-based topic model based on sta-
tistical data “sketches” of tweets, such as the acceleration of the number
of tweets and words. Hasan, Orgun, and Schwitter (2019) developed the
TwitterNews + system to detect local newsworthy events from stream-
ing tweets. This system continually updates the most recent tweets to
determine their novelty and cluster tweets into different events.

Other studies have considered both spatial and temporal features of
tweets, making them more applicable to urban environments. For
instance, Zhang et al. (2017) proposed TrioVecEvent, an online local
event-detection method that uses geotagged tweet streams. This method
generates topic clusters and selects local events by gathering informa-
tion on location, time, and content to perform online clustering using a
Bayesian mixture model. Yu, Li, Bhuiyan, Zhang, and Huai (2017) pre-
sented a real-time emerging-anomaly monitoring system (Ring) to
detect anomalies within minutes after the events happened. This system
improved on a graph-stream model and was implemented on the Spark
distributed data processing system.

These streaming data-based methods were explicitly designed to
achieve real-time topic derivation and event detection through the use
of low-computation solutions and quickly updating the computation
results. These methods were implemented to detect emerging topics or
geo-textual clusters without further analyzing the detected events or
enabling real-time visualization of the computation results. However, to
improve the results of exploring and interpreting massive and complex
streaming data, real-time visualization is crucial. Visualization ap-
proaches couple human intuition with computational analysis and thus
help users understand the patterns of the events and gain insights when
making decisions (Chae et al., 2014; MacEachren et al., 2010; Thom,
Bosch, Koch, Worner, & Ertl, 2012).

2.2. Real-time event detection and geo-visualization systems

To address the need for real-time analysis and visualization, some
systems were designed to not only process social media data streams in
real time but demonstrate the results to users interactively. Early sys-
tems such as TwitterMonitor (Mathioudakis & Koudas, 2010) could
detect trending topics in the Twitter stream and visualize their basic
features (e.g., temporal line graphs, keywords) without mapping the
topics. More subsequent research was devoted to developing
geo-visualization systems or frameworks as prototypes that could be
extended to automatically detect anomalies or events and to monitor
human spatiotemporal activities in tweet streams in real time. Examples
include Terpstra, Stronkman, De Vries, and Paradies (2012)’s Twitci-
dent system, Huang et al. (2017)’s cloud-based framework for disaster
monitoring, and Wachowicz, Arteaga, Cha, and Bourgeois (2016)’s
workflow of querying space-time activities (STA) via geotagged tweet
streams.

Continuing these studies, many systems with similar designs could
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Fig. 1. The architecture and main modules of the real-time analytical and geo-visual system.

achieve real-time data processing and geo-visualization. A large number
of these systems were rooted in geospatial visualization and enabled
real-time geo-visual analytics for geo-text aggregation, spatial cluster
exploration, and crisis discovery, such as SensePlace2 (MacEachren
et al., 2010), SensePlace3 (Pezanowski, MacEachren, Savelyev, & Rob-
inson, 2018), and ScatterBlogs (Thom et al., 2012). These methods
focused on making sense of places by extracting useful information from
geo-textual streams. Some studies (e.g., MacEachren et al., 2010; Mid-
dleton, Middleton, & Modafferi, 2014) parsed location information from
textual data (e.g., hashtags, name entities, or user account location) and
employed reversed geocoding. Although the geocoding approach
increased the volume of data from the social media stream that could be
crawled, it can be problematic when mapping fine-grained local events.
Some other real-time geo-visual analysis systems were developed to
recognize the importance of spatial scale and designed to identify
small-scale or local events. For example, Boettcher and Lee (2012)
proposed the Eventradar system for detecting small-scale local events
using a density-based clustering algorithm with sliding time intervals.
In addition to underlining the geographic magnitude of real-time
analysis and visualization, some systems also introduced content-
relevant features, such as incorporating human perspectives through
sentiment analysis or targeting at one type of event by setting search
keywords. For example, TwitInfo (Marcus et al., 2011) can automati-
cally identify and label spikes of tweet events and allows users to select
and track events through a visualization platform. This platform also
shows the positive and negative sentiments surrounding events and the
aggregate sentiment of the tweets within the events. Choi and Bae
(2015) introduced the Social Big Board, a real-time disaster-monitoring
system that can analyze and map disaster-related tweets and their
trends. This system also analyzes people’s emotional information using
pre-defined sentiment words in positive, negative, or neutral sentiment.
Some real-time systems have been proposed to be better for specific
types of events, based on the different characteristics of extreme urban
events. For instance, Avvenuti, Cresci, Marchetti, Meletti, and Tesconi
(2014) developed a real-time alert and report system specifically for
earthquake disasters (EARS). Smith, Liang, James, and Lin (2017) pre-
sented a real-time modeling framework to identify flooding areas and
infer inundation during storm weather. Serban, Thapen, Maginnis,
Hankin, and Foot (2019) introduced a software system SENTINEL that
classified health-related tweets to detect disease breaks and provide
syndromic surveillance in real time. We also found that a large portion of
the existing studies discuss the use of streaming data to extract
crisis-relevant information for disaster management and risk control
because these events are time-sensitive and require real-time decisions.
In summary, a diverse set of data-driven methods have been designed
for mining and mapping information from streaming data. However,
only a few studies have been able to pinpoint the locations and scales of

detected events and their evolution over time and space at a fine-grained
resolution. Existing real-time systems that incorporate both computa-
tional analysis and visualization to identify emerging events only show
some basic features of the events (e.g., tweet volume change, repre-
sentative tweets, and spatial clusters), but in-depth information extrac-
tion and undefined event detection (without using predefined keywords)
are lacking. Still fewer studies have initiated early alerts or other actions
after the systems detected emergencies or crises.

3. Developing a real-time urban analytical and geo-visual
system

In this section, we demonstrate the design and methods of our real-
time urban analytical and geo-visual system that works for streaming
geo-textual data (i.e., data with both geographical and content features).
This system is built upon Esri’s GeoEvent Server (version 10.7). The
server provides comprehensive tools and pipelines to support high-
volume real-time data input, processing, and output, making it espe-
cially suitable for geospatial streaming data. We employ several tools
provided by the server and create our customized data-processing tools
with the server’s Java SDK (Software Development Kit).

Fig. 1 demonstrates the architecture of our proposed system, with
analytical modules embedded in the GeoEvent Server. Three analytical
and visual modules make up the core of the system: streaming data
input, streaming data processing and analysis, and data output and real-
time geo-visualization. This system is supported by a large geodatabase -
PostgreSQL. The input module ingests streaming data directly from a
Twitter streaming API and transforms the stream of information into
formatted raw tweets. This module also performs simple tweet
screening: collecting geotagged non-bot tweets from within defined
spatial areas. The processing and analysis module serves as the primary
analytical part of the system. In this module, we develop customized
functional models (configured as processors in the server) to extract
information of interest from the data stream. The output and geo-
visualization module is our platform for real-time mapping and in-
teractions using Online GIS maps.

3.1. Streaming data input module

Tweets generated during extreme events contain rich geographical
and content information that is useful for city management. Twitter
offers an open API for collecting large amounts of voluntarily reported
tweets in real time. In general, about 1% of tweets can be collected by a
standard account (Wang & Taylor, 2019; Wang, Wang, & Taylor, 2017).
In this module, two tools are used to process the incoming data stream
into a format suitable for the GeoEvent server so that the data can be
further analyzed. The transport tool connects to the Twitter API and
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Fig. 2. The interface of filter settings.

receives data as a raw byte stream, and the adapter tool converts this
stream into formatted tweet objects that can be processed by the system.
Each collected tweet is configured as a geo-textual object that contains
both the text of the tweet and its metadata, such as unique ID, user ID,
timestamp, latitude, and longitude.

Then we set up a filter tool to remove tweets generated by robot
accounts (bots), collect geotagged tweets, and define the geographic
study area using GeoFences in the server. Fig. 2 shows an example of our
filter settings. We refine a word list from a previous study that contains
terms usually used by bots, such as “temp” and “barometer”(Yao &
Wang, 2020a), and we use regular expressions to match the incoming
raw tweets and exclude any that contain the words from the list. We also
exclude tweets without geolocations and filter the tweets to select those
from a predefined study area using GeoFences settings. GeoFences can
determine the spatial relationship between a geographic boundary
(polygon) and a geotagged tweet. We do not set keywords to filter
tweets, as we intend to design a system for detecting unexpected extreme
events that meet our design assumptions. We develop the filter tool that
processes data in a computationally simple and fast way in order to
remove unnecessary data volume for the computationally expensive
process in the following steps, thus enhancing the speed and efficiency
of the system.

3.2. Streaming data process and analysis module

This analytical module analyzes a stream of geotagged tweets and
generates the outcomes for a dynamic map. We first apply the online
topic model to identify the topic distribution for each tweet in the
stream. Then we use a clustering method to synthesize the topics and
generalize geo-topics using additional geospatial information embedded
in the tweets. In this study, geo-topics are topics clustered in space that

are used to represent urban events, such as urban activities, local news,
and emergencies. The assumption is that if tweets are collected in a short
period and contain similar words and topics, they are likely to be clus-
tered spatially and related to a specific local event (Wang & Taylor,
2019). In the third step, we compute the sentiment score of each tweet
and average the sentiment score of each geo-topic. These scores can be
used as indicators of potential extreme events, such as emergencies or
crises. We use the Java SDK provided by the GeoEvent Server to create
customized processors corresponding to these data-analysis methods.

3.2.1. Topic modeling of streaming text data based on Online LDA

One major challenge for real-time data analysis is handling the sheer
volume of data rapidly. Topic modeling is a data-mining method for
discovering hidden semantic structures (topics) in large text documents,
such as tweets. The most commonly used topic models are probabilistic
ones, such as probabilistic latent semantic indexing (PLSI) (Hofmann,
1999) and latent Dirichlet allocation (LDA) (Blei, Ng, & Jordan, 2003).
These models represent each document as a mixture of topics and each
topic as a distribution over words. Most probabilistic models run offline
and do not incorporate the temporal aspect of documents (Gao et al.,
2020; Yu et al.,, 2017). Some methods began to exploit timestamps
jointly with topic detection and topic evolution, such as Topic Over Time
(TOT) (Wang & McCallum, 2006) and Dynamic Topic Model (DTM)
(Blei & Lafferty, 2006). In social media environments, tweets arrive
continuously and topics change dynamically. Topic models that to be
used online or in real time must consider this temporal aspect and be
updated to capture topic changes over time rapidly.

We employ Online LDA (Hoffman, Blei, & Bach, 2010), an online
variational Bayes algorithm for LDA, to process streaming data and
generate topics. Variational Bayes (VB) is a method of variational
inference used in a Bayesian hierarchical model. VB is based on Bayes’
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Fig. 3. The process of data cleaning and normalization.
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theorem and is used to approximate the true posterior by minimizing the
Kullback-Leibler divergence to the true posterior. Online LDA has ad-
vantages in handling massive collections of documents because the
method allows documents to be examined as they arrive in-stream and
discarded after a single look to reduce the delays. The Online LDA model
is defined by some essential parameters: x € (0.5, 1] is an exponential
decay that controls the rate at which old topics are forgotten,; its value
range can guarantee an asymptotic convergence. 7o > O represents a
positive learning offset that slows down the early iterations of the al-
gorithm. Minibatch t is used to consider multiple observations per up-
date to reduce noise. We also need to set the number of topics k before
running Online LDA.

We use Apache Spark’s machine learning library (MLIib) in the Java
programming language to implement Online LDA. Apache Spark is an
open-source distributed analytics system designed for big data pro-
cessing that has exceptionally high performance. We choose Java to
meet GeoEvent Server’s requirements so that we can create a processor
with Java SDK. Before running the online topic modeling, we clean and
normalize the texts of tweets using the SparkNLP library and MLIib: we
remove web links, @ mentions, and stopwords, make all the words
lowercase, and tokenize the texts into single terms (Fig. 3).

3.2.2. Generating geo-topics with spatial features

Because topics in the data stream change over time, they cluster
dynamically across space as geo-topics, and our system is designed to
monitor these spatial changes. The system uses sliding time windows
with statistical metrics to analyze the spatiotemporal dynamics of geo-
topics. Sliding time windows are often used in the online mode of
topic modeling (e.g., Boettcher & Lee, 2012; Lau, Collier, & Baldwin,
2012). Fig. 4 shows the spatial clustering patterns of tweets for gener-
ating geo-topics based on sliding time windows. We set the window size
to one hour, and when new tweets arrive, the window moves forward, so
geotagged tweets received more than an hour ago are discarded. All the

tweets within the window are valid, and only valid tweets are aggre-
gated and clustered to generate geo-topics and have their corresponding
features (centers and ranges) calculated. As the window slides onward,
the valid tweets and features of geo-topics change. We use statistical
metrics to represent the spatial centers and ranges of geo-topics. For
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where ¢* is the latitude and 4% is the longitude of the center of geo-topic
k, and n is the number of tweets belonging to geo-topic k. The geographic
range of a geo-topic y¥ is the variance in the tweets’ latitude or longitude
converted to distance in kilometers:

PO £ R " 02 Bk aey?

v = mm(ﬂ Zl (¢t - ¢¢) n E (/1,' 7}%) )

i= i=1

where a and g are the coefficients for converting degrees of latitude and
longitude into kilometers. Variance can measure how geotagged tweets
spread out from their geographic center. If a geo-topic contains only one
valid tweet, its range value is 0 (zero).

3.2.3. Domain-specific sentiment analysis for extreme event detection

We calculate the sentiment scores of geotagged tweets and geo-topics
to identify potential extreme events that merit attention. This analytical
procedure is based on the assumption that very negative sentiments are
likely to indicate crises or accidents (Caragea, Squicciarini, Stehle,
Neppalli, & Tapia, 2014; Lu et al., 2015). We employ a pre-trained,

domain-adapted sentiment-analysis classifier to predict the sentiment
score of each tweet in the data stream (Yao & Wang, 2020b). The
sentiment classifier represents a domain-adversarial neural network
(DANN) (Ganin et al., 2016) that is built on a recurrent neural network
(RNN) with an additional domain-adversarial component. RNN is spe-
cifically useful in text mining and processing sequence data, such as
streaming texts. The domain-adversarial component is appended to a
standard RNN learning process in the backpropagation steps, thus the
learned representations are invariant across different domains. This
method can achieve high accuracy in classification and performs
robustly in distinct domains (e.g., disasters, news, and lifestyles) when
analyzing tweets. This domain-adaption feature makes the method
exceptionally suitable for streaming tweets and changing geo-topics.
The DANN method calculates the sentiment scores of individual
tweets as real numbers from -2 (most negative) to 2 (most positive),
with O as neutral sentiment. The sentiment score of each geo-topic is the
arithmetic mean of sentiment values of the valid tweets belonging to the
geo-topic.

We then use an emergency-detector tool to find abnormally negative
geo-topics and provide early alerts when potential emergencies are
identified. This tool works by setting up a sentiment threshold, usually a
negative number between -2 and 0, to trigger the alerts. If the sentiment
of a geo-topic at any time is equal to or below the threshold, the system
generates a potential emergency alert and indicates it dynamically on
the map. After the alert is detected, its status becomes ongoing, and the
tool tracks the total duration of the alert. If the sentiment increases to
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above the threshold, the alert stops and the ongoing status ends.
3.3. Data output and real-time geo-visualization module

In the final output module, the geotagged tweets and the analytical
results are stored as tables in the geodatabase. The analytical results are
also visualized via a cloud-based GIS mapping platform - ArcGIS Online.
These results include the geo-topics with their spatial, temporal, textual
semantic, and sentiment features. The online maps can display and
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Fig. 8. Geo-visualization of sentiment on different dates.

monitor changes in such features of detected urban events over both

space and time. The maps can also show potential emergency alerts and

their locations and status changes. The system employs a large-scale

geospatial database (PostgreSQL) to support real-time geospatial data

analysis and visualization. The PostgreSQL geodatabase stores and
manages a collection of geographic datasets based on a relational
database management system (RDBMS). During the real-time visuali-
zation process, the geodatabase stores maps published by ArcGIS as a
feature service. This feature service contains datasets with spatial
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Fig. 9. Daily data volume processed by the system.

information that can be used to generate map layers. The datasets are
updated simultaneously when our system is running. The feature service
also contains GIS map templates with symbology that is used by Online
GIS for data visualization.

4. Experiments and results
4.1. Study case and system settings

We applied the proposed visual urban analytical system in a simu-
lated real-time scenario of Hurricane Harvey, one of the most destruc-
tive disasters to happen in the U.S. in the past decade. The hurricane
caused more than a hundred billion in damage and made landfall in a
densely populated area in south-central Texas. We use geotagged tweets
collected by a Twitter streaming APIL. Our study period ran from August
18 to September 12, 2017, covering the time before (August 18-24),
during (August 25-26), and after (August 27 to September 12) the
disaster. Our study area was the counties spatially overlapped by the
wind swaths of Hurricane Harvey. The area was set as the GeoFences
polygon in our system. In general, our proposed system can provide the
GeoEvent Server interface for collecting real-time streaming tweets
using the adapter, transport, and filter described in Section 3.1 (Fig. 5).
For this case study, we simulated the collected tweets at a real rate. The
rate was computed from the tweets’ timestamps using the simulator in
the GeoEvent Server (Fig. 6). This simulation can precisely capture the
temporal features of tweets and mirror the real-time collection of
streaming data. In addition, we set the topic number to 100 for online
topic modeling to cover the most possible topics. We also set the senti-
ment threshold to —0.15 to detect potential emergency alerts.

4.2. Geo-visualization of the analytical system

4.2.1. User interface

The video (uploaded as supplementary “Video Still”) and the
screenshots below (Figs. 7 and 8) show the user interface of our system
and the analysis results for Hurricane Harvey. The center is the online
map showing the analysis results in real time and refreshing every few
seconds. The light pink polygons are county boundaries of the study
area. The circles are local urban events represented by geo-topics
detected by our system. The size of each circle represents the affected
range of the geo-topic: the larger the radius, the greater the affected
area. The colors of the circles represent the average sentiment scores of
different events: the darker the color, the more negative the geo-topic is.
The map also shows potential emergency alerts. The red symbol

represents ongoing emergencies and the green one represents emer-
gencies that have ended. The left side of the user interface shows the
legend for the map, including the study area county boundaries, spatial
ranges, sentiment scores of urban events, and potential emergency
alerts. The bottom of the map is the table area, which shows detailed
information on individual map layers. For example, the urban event
layer updates the event number, the location of the event center with
latitude and longitude, the number of tweets representing the events, the
average sentiments of the events, the approximate times the events
appeared, and the spatial ranges of the events. The emergency alert layer
updates the ID, description, status, duration, and condition of each alert.
Our system also uses pop-up windows (Fig. 7). Users can click urban
events or potential emergency alerts on the map to check all the infor-
mation provided in the bottom table.

4.2.2. Spatiotemporal patterns of sentiment

We examined the general spatiotemporal patterns of sentiment for
detected urban events. Fig. 8 shows screenshots of urban events (geo-
topics) on different dates. Before the hurricane made landfall (Fig. 8A on
August 21), the overall sentiment of the geo-topics was rather positive
(see lighter colors of geo-topics). The negative sentiment was mainly
distributed around the metropolitan areas of Houston, Austin, and San
Antonio. During the hurricane (Fig. 8B on August 25), the sentiment
became more negative, shown by darker colors on the map. The spatial
area of negative sentiment also expanded to surrounding areas, such as
the coast. After the hurricane (Fig. 8C on August 28), the sentiment was
even more negative, and the spatial area was more sprawled out because
of the accumulated damage and bad weather.

We also found that the Houston metropolitan area had the highest
number of potential emergency alerts during the hurricane. These
included traffic delay (geo-topic #17), bayou flood flow (geo-topic
#62), and heavy rain that might affect citizens’ health (geo-topic #81).
San Antonio had three traffic-related emergencies on three separate days
(e.g., geo-topic #23). In addition, the detected potential emergency
alerts also indicated the emergency locations reasonably well. For
example, traffic-related emergencies were found near major roads, and
bayou flood emergencies were found near Buffalo bayou. We also found
that traffic delays and accidents were the most common and long-lasting
emergencies during the hurricane (geo-topic #17, 23, 44). This type of
emergency can affect social media for a period from half an hour to
almost nine hours. Our system found 12 potential emergencies at
different times and locations during the hurricane. We detected one false
alarm (geo-topic #85), about fitness and training, and it lasted 25 min.
The precision of emergency detection in this study case is 91.67 %.
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Fig. 10. Hourly clean data volume processed by the system.

4.3. System performances and data statistical features

4.3.1. Streaming data volume and temporal patterns

Our system processed about 2,707,346 tweets during the study
period. The daily numbers of tweets before and after the data filtering
are shown in Fig. 9. Before the filtering, the Twitter streaming API
received 100,000 to 140,000 tweets a day. The peak throughput (vol-
ume) of our system is 147,589 tweets per day, and its average
throughput is 117,710.

Focusing on the specifically hurricane-affected area, the number of
clean tweets (no bots and geotagged) had a maximum of 5,439 and an
average of 3,189 per day. These tweets were considered useful for
improving situational awareness during disasters. The cleaned tweets
flowed to the following modules for analysis and visualization. After the
hurricane made landfall on August 25, Twitter activity measured by the
number of clean tweets increased dramatically and reached its peak on
August 28, then became relatively stable after the disaster.

Fig. 10 shows the hourly change in Twitter activity over the study
period. The clean tweets increased and reached a peak then decreased

every day, both before and after the hurricane. During the hurricane-
affected period (after August 25 until September 1), the daily peaks
were greater than before or after the hurricane. The hourly peak
throughput of cleaned data for the subsequent analysis was 401 tweets,
and the average number was 142 tweets.

4.3.2. Feature patterns of geo-topics

Our system generated geo-topics with features such as centers,
ranges, and sentiment scores over time. The results showed that the
system can detect a wide range of topics, including disaster-relevant
events and daily life events, and monitor their features over time.
Although many disaster-relevant events did not trigger emergency
alerts, they still provided rich enough information to improve situational
awareness.

We aggregated the daily temporal patterns of several geo-topics with
counts of their represented geotagged tweets (Fig. 11). Table 1 lists a few
of these geo-topics and their top keywords, which have the highest
probabilities of representing those geo-topics. For example, during the
hurricane period, our system detected multiple hurricane-relevant geo-
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Fig. 11. Temporal patterns of selected geo-topics and the count of their represented tweets.

Table 1
Selected geo-topics of Hurricane Harvey and their top keywords.
Geo- Top keywords
topic
2 flood, flash, county, report, free, warning, giveaway, include, storm,
public
31 birthday, drink, happy, college, great, bar, photo, food, restaurant, show
32 harvey, today, come, sanantonio, hurricaneharvey, time, hurricane, last,
austin, tonight
45 tornado, warning, lafayette, continue, lakes, city, mission, parish,
weston, brookshire
54 traffic, stop, accident, lane, delay, hwy, block, high, water, rock
71 austin, nowplaying, pool, palmillabeach, atx, downtown, livingston,

near, airport, long

topics (e.g., geo-topic #2, 32, and 54) with keywords such as “hurri-
cane”, “Harvey”, “flood” and “accident”, and multiple locations of
hurricane-affected areas such as “Austin”, “San Antonio”, “downtown”,
or “highway”. Geo-topic #2 indicated flash flooding and stormwater
conditions during the hurricane, geo-topic #54 was related to traffic
accidents on the highways, and geo-topic #32 was about the general
situation of Hurricane Harvey. The system also found that such geo-
topics reached their volume peaks in the numbers of represented
tweets during the hurricane-affected period (from August 25 to August
29) and then gradually disappeared afterward.

Our system also detected some hurricane-irrelevant events and
tracked their changes. For example, geo-topic #31 had keywords such as
“birthday”, “bar”, and “restaurant”. The volumes of such geo-topics
were relatively stable over time, unlike hurricane-relevant geo-topics
that reached peak volume. We also found that some geo-topics appeared
only in parts of the study period. For example, geo-topic #88 with
keywords such as “jog”, “partner”, and “produce” appeared only after
the hurricane.

We also analyzed the sentiment changes on each geo-topic over time.
To further demonstrate the sentiment patterns and their relationships to
different geo-topics, we selected several geo-topics that represented
hurricane-relevant and -irrelevant events and then compared their
sentiment patterns over time (Fig. 12). We used the minimum sentiment
scores among the tweets belonging to the geo-topic because minimum
scores revealed more apparent temporal trends. We found that
hurricane-relevant geo-topics (Fig. 12A) had more negative sentiment
overall throughout the study period, and the most negative sentiments
during the period when the hurricane hit the study area. By contrast,
hurricane-irrelevant geo-topics (Fig. 12B) had more positive and stable
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sentiment and were affected less by the hurricane.
5. Discussion

In this paper, we have presented an urban analytical and geo-visual
system that automatically collects geotagged tweets and performs urban
event detection and visualization in real time. Through the application
in the simulated streaming data from a large-scale hurricane, the system
has been demonstrated to provide useful and timely information on
emergencies and crises during disasters. The system is specifically
designed to address the smart rapidity aspect of resilient cities by
enabling real-time analysis and geo-visualization to decipher the dy-
namics of urban environments and systems. Early detection and tracking
of the urban events help provide early alerts to the residents and assist
city managers and first responders to rapidly respond to the adverse
effects.

Processing and analyzing social media streaming data in real time is
exceptionally challenging because the speed and volume of data stream
require methods to update rapidly to capture the topic changes (Goyal
et al., 2019; Hasan, Orgun, & Schwitter, 2018; Nugroho, Paris, Nepal,
Yang, & Zhao, 2020). Our proposed system improves on previous
research by implementing online data-analysis methods that enable the
rapid detection and processing of streaming data (Yao & Wang, 2020a).
We used a variational inference method—Online LDA (Hoffman et al.,
2010)—to process and infer the topics of incoming data using Bayes’
theorem. In general, topic models can be computationally complex and
time-consuming (Xie et al., 2016; Yu et al., 2017). The system reduces
the redundant computation for topic modeling by applying multiple
preprocessing methods that are much faster than topic modeling. By
filtering and cleaning streaming raw tweets, and only triggering the later
topic modeling and sentiment analysis functions when necessary, we
improve the accuracy and efficiency of the overall system. We also
exploit the Apache Spark distributed analytics system to improve the
scalability and speed of data processing. All these methods and settings
can help our system increase data throughput and reduce latency in data
processing to achieve a real-time analysis and visualization system.

Our developed system can continuously track multidimensional in-
formation from the data stream, such as location, timestamp, semantics,
and sentiment changes of detected events. This property expanded on
previous research that offered simple place or place-time information
reports (e.g., Bifet, Holmes, & Pfahringer, 2011; MacEachren et al.,
2010; Wachowicz et al., 2016) or spatial clustering results (Pezanowski
et al.,, 2018; Smith et al., 2017). Some earlier methods used bursty
keywords as prerequisites for event detection and tracking (Avvenuti
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Fig. 12. Temporal patterns of sentiment for selected geo-topics.

et al., 2014; Li, Sun, & Datta, 2012). Our system does not set keywords
for event detection, which gives it the potential to detect a variety of
unforeseeable urban events related to disasters and other unexpected
perturbations. Instead of using keywords, our system employs sentiment
analysis to automatically identify potential emergencies or crises at an
early stage. Sentiment analysis in existing systems was classified into
two or three categories and demonstrated only in basic statistical fea-
tures, such as the percentage of each category of sentiment (Choi & Bae,
2015; Marcus et al., 2011). Our system can calculate sentiments in
finer-gradations and can be used to trigger early alerts about potential
emergencies to help with decision-making.

Although we have used the system to demonstrate one study case,
the system is open to other data resources and application scenarios due
to its flexible and adaptable design. Supporting by the GeoEvent Server,
the system can ingest streaming API from different resources and pro-
vide additional analysis by properly changing the adapters, filters, or
processors within the system modules. The users of our system can also
customize the geo-visualization effects (colors, legends, base maps) as
needed through Online GIS maps. Thus, our system is advantageous for
transforming extracted information into a broad spectrum of applica-
tions, ranging from extreme events such as disaster management, epi-
demics tracking, and crime monitoring to business-as-usual situations
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such as place recommendation (Gao et al., 2020; Ghani et al., 2019;
Nugroho et al., 2020; Pezanowski et al., 2018).

Additionally, our system uses a dynamic online map to visualize the
latest analysis results update every few seconds. Managing extreme
events in cities can be complicated, users of our system may not be
familiar with data analysis but still need specific information to improve
situational awareness, allocate resources, or take action. This geo-
visualization feature allows users to learn intuitively about important
events happening in their areas and whether people should be aware of
those events during unpredictable extreme situations. Using crowd-
sourced social media data generated by the public, our system also
provides citizens opportunities to be actively involved in the system and
promotes community engagement.

However, the proposed system has several limitations that can be
addressed in our future research. Currently, the system uses Twitter as
its only data source. However, people have differencing preferences in
using social networking platforms. Future systems can consider
streaming data from multiple sources to become more integrated and
reduce the data bias caused by single data source. Additionally, the
proposed system performs streaming data analyses based on pre-defined
parameters, such as the number of topics and the sentiment threshold.
These parameters need to be set case by case due to the complexity in
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contents and languages online. Future studies will focus on testing and
tuning parameters across urban events with different study areas and
periods, and propose a method for system users to set parameters for
best performances. Lastly, it is challenging to compare the outcomes (e.
g., small-scale local events) of the proposed system with the ground
truth because these detected events may not be reported by officials,
which makes the data unavailable. Although the system is constructed
with well-developed data analysis methods, the usage of social media
data requires further credibility checks. The future system can also be
improved with additional event analysis modules when increasing the
volume and versatility of streaming data becomes available.

6. Conclusion

Building resilient cities requires smart solutions, and achieving smart
rapidity is one of the most important approaches to enhancing urban
resilience when promoting smart cities. We develop a real-time urban
analytical and geo-visual system for social media streaming data to track
small-scale undefined urban extreme events and provide early emer-
gency alerts. The system has demonstrated the effectiveness and rapidity
in processing large volumes of data with low latency. The system has the
potential to incorporate streaming data from more sources and to be
involved in cities’ emergency management tasks, such as improving
situational awareness, assisting rapid damage assessments, monitoring
emergent incidents, and supporting collaborative decision-making for
multiple stakeholders. The research also contributes to developing smart
city technologies that can be integrated into holistic urban surveillance
systems and achieving more safe, resilient, and smart future cities.
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