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Abstract: Current disaster impact assessments are conducted within days after an event and usually with limited workforce and resources.
Although many recognize the valuable information attainable in this way, the evidence is likely to be disturbed, and collecting information
rapidly is critical for timely disaster response. Many proposed approaches use either physical- or social-sensing data, and are not implemented
in real time, and therefore cannot assess disaster impacts holistically and timely. It also is challenging to integrate multisource data with
disparate data modalities and resolutions, and to accommodate large-volume, high-rate input data for real-time computations. Therefore, we
propose an assessing disaster impact in real-time (ADIR) system which harnesses cutting-edge computation and geovisualization platforms.
ADIR processes heterogeneous data for humans, hazards, and built environments, and outputs multiscale disaster impacts. The usefulness and
effectiveness of ADIR were demonstrated in the city of Houston, which was affected by Hurricane Harvey. ADIR provides a platform for
multiagent coordination during community response and recovery, which contributes to more-resilient communities by potentially reducing
life and property losses. DOI: 10.1061/(ASCE)CP.1943-5487.0000970. © 2021 American Society of Civil Engineers.

Author keywords: Crisis informatics; Disaster impact assessment; Resilience; Real-time data analytics; Geovisualization.

Introduction

Disaster impacts arise as the interactive consequence of the human,
hazard, and the built environment (Zhu et al. 2020). Disastrous
events such as hurricanes and earthquakes can destroy residences
and roadways, cause injuries and deaths, disrupt utility services
such as water and power supplies, and generate much debris, af-
fecting cities’ normal operation. In recent decades there has been
increasing occurrence and severity of major disasters such as tropi-
cal storms and wildfires (Kossin et al. 2020; McWethy et al. 2019).
Additionally, urban sprawl has brought large populations and ex-
pensive civil infrastructures to disaster-vulnerable areas, which
poses increased risks of adverse events to human communities
(Coronese et al. 2019; Dottori et al. 2018; Smith 2019). In the
US, both government agencies and research communities advocate
for resilience strategies to mitigate the increased risk and severe
impacts of extreme events (NRC 2012). Disaster resilience, as
the key concept, refers to the capability of a community to prepare
for, recover from, and adapt to disruptions induced by disasters
(NRC 2006). Many studies have emerged to articulate the elements,
characteristics, strategies, and measurements of disaster resilience
(Bruneau et al. 2003; Cutter et al. 2008; Wang et al. 2020). The
research outcomes have been used by urban planners and

emergency managers in project planning and policymaking. These
efforts ultimately contribute to communities that are more resilient
to the negative impacts of disasters.

Two key measurements of disaster resilience are resourcefulness
and rapidity (Bruneau et al. 2003), which measure the ability to
identify andmobilize resources (e.g., labor, money, and technology)
for problem-solving, and the speed of restoring disrupted systems,
respectively. For example, emergency responders have expressed
their need for timely knowledge of disaster impacts, such as loca-
tions and intensities of disaster hazards, operation status of infra-
structure systems, needed resources, and so forth. Timely and
accurate knowledge can support effective decisions and actions,
which optimizes resource mobilization (i.e., resourcefulness) and
expedites disaster recovery processes (i.e., rapidity), and hence
enhances disaster resilience. However, existing disaster impact as-
sessments usually are conducted after event occurrence by human
assessors or with postdisaster surveys. These conventional ap-
proaches require extensive labor and time to complete, which may
delay the disaster response and recovery and cause extra losses to
disaster-affected communities.

Authoritative agencies and research communities seek ap-
proaches to accelerate the acquisition of disaster impact informa-
tion. Agencies such as FEMA and the National Oceanic and
Atmospheric Administration (NOAA) use physical sensing devices
(e.g., radar, lidar, in situ sensors, and satellites) to gather data and
automate impact assessments. These physical sensing data provide
insights regarding locations and intensities of ongoing events
and conditions of the built environments, but they do not reflect
disaster impacts to humans (e.g., injuries, casualties, and service
disruptions). Some researchers used social sensing data (e.g., social
media posts) generated by people to mine rapid disaster impact
information (Kryvasheyeu et al. 2016; Wang and Taylor 2019;
Yao and Wang 2019, 2020; Zhong et al. 2016). The social sensing
data record personal experiences and perceived impacts of af-
fected communities, but they are limited by low data quality
(Agarwal and Yiliyasi 2010; Goodchild 2007; Zou et al. 2019).
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Consequently, approaches developed with either physical- or
social-sensing data sources do not depict disaster impacts compre-
hensively. Although some of the data can be acquired during disas-
ters, previous studies mainly analyzed them in offline mode to
assess collective impacts, which does not make full use of their
real-time nature to provide timely and evolving damage informa-
tion for prompt decision-making.

The use of real-time data sources does not translate into real-
time approaches. The latter should consider the complexity of the
timely processing of large data volumes and disparate data for-
mats. A few real-time disaster impact assessment systems have
been developed in previous studies, but they mostly rely on single
data sources. Emergency agencies use weather reports or in situ
environmental sensor measurements to predict affected areas and
sequential impacts based on numeric models (Glahn et al. 2009;
Schneider and Schauer 2006). The models output predictive re-
sults that may suffer from modeling errors. Some research studies
developed real-time crisis mapping systems leveraging social
media data to improve situational awareness, detect resource
needs, and identify impact hot-spots (Chen et al. 2016; Choi and
Bae 2015; Kelly et al. 2017). However, these data-driven systems
do not fully evaluate the credibility of social media data before
use. These limitations call for the integration of data from hetero-
geneous sources that enables a reliable and holistic understanding
of disaster situations.

Therefore, we propose a system, assessing disaster impact in
real-time (ADIR), to estimate disaster impacts at multiple spatial
scales (e.g., neighborhood or city) with multisource data depict-
ing conditions of humans, hazards, and the built environments in
affected communities. The system can automatically process static
and streaming data with different data modalities and formats,
and outputs multiscale disaster impact information during and
after disasters. Specifically, the system outputs point-level eyewit-
ness reports, neighborhood-level integrated disaster impacts, and
citywide flood probabilities. We employed a set of data-driven tech-
niques to tackle the challenges associated with integrating hetero-
geneous data with various data modalities (e.g., number, text, and
image), formats (e.g., spatial, nonspatial, temporal, and static), res-
olution (e.g., point and neighborhood), and semantics (e.g., flooding
and property damage). We also employed Apache Spark, Apache
Kafka, and ArcGIS to achieve real-time computation and geovisu-
alization. The effectiveness of the system was examined with
data collected for Houston during Hurricane Harvey in a simulated
real-time scenario. The system provides timely and comprehensive
disaster impact information that can be used by different stake-
holders to coordinate their response and recovery decisions and
operations. The diverse and dynamic disaster impact information
improves the public’s situational awareness, informs infrastructure
managers regarding decisions for restoring disrupted civil infra-
structure systems, allows first responders to provide more-effective
damage control, and leads to timely resource allocations. These de-
cisions and operations contribute to more-disaster-resilient com-
munities that experience less physical and societal losses and
recover from disaster disruptions rapidly.

Related Works

We categorized existing studies on disaster impact assessments
according to the data sources that were used for the assessments.
Notably, very limited studies intended to achieve real-time damage
assessments, so we also reviewed real-time disaster information
systems that assist in various tasks.

Estimating Hazard Conditions and Built Environment
Impacts with Physical Sensing Data

Many approaches have been proposed to estimate the hazard con-
ditions during disasters, including event types, locations, and mag-
nitude, with physical sensing data such as weather reports and in
situ environmental sensor measurements. These approaches use
engineering modeling or simulation to predict hazard conditions,
such as wind speed and inundation depth. For example, some re-
searchers modeled wind fields based on weather observations for
tropic storms (Powell et al. 2010) whereas others simulated inun-
dation depth with wind speed, precipitation, and earthquake warn-
ing (Glahn et al. 2009; Musa et al. 2018; Shangguan et al. 2019).
These systems can deliver predictions for affected areas during
disasters, e.g., every 4–6 h in hurricane advisories (Glahn et al.
2009).

However, the estimation of hazard conditions cannot be trans-
lated directly into disaster impacts. Some authoritative agencies de-
veloped models to estimate disaster losses with hazard conditions
and asset inventories. For example, FEMA developed the Hazus
models to estimate losses caused by adverse events including earth-
quakes, floods, hurricanes, and tsunamis (FEMA 2020; Schneider
and Schauer 2006). These models use empirical damage functions
and formulate structure damages as responses of exposed hazard
conditions and structure types. For example, Hazus estimates
earthquake damages with ground motion intensities (Kircher et al.
2006), flood damages with inundation depths (Scawthorn et al.
2006a, b), and hurricane damages with wind speeds (Vickery
et al. 2006a, b). Hazus archived hundreds of empirical damage func-
tions for different disaster types. Built environment factors, such as
terrain roughness, elevation, asset type, and design code, are used to
select the damage function for use. The damage functions determine
the damage conditions of assessed structures and the aggregated
economic losses are calculated with asset values and determined
damage conditions. Similarly, the state of Florida developed the
Florida Public Hurricane Loss Model (FPHLM) for hurricane loss
estimations, which includes models for wind hazards, structure vul-
nerability, and insured loss costs (Chen et al. 2009).

These numeric models have been widely used by governmental
agencies and local insurance companies to determine the initial
disaster damage and economic losses. However, engineering mod-
els and simulations suffer from uncertainties, because real-world
situations are much more complicated and cannot be characterized
fully by numeric inputs. Empirical models that rely on empirical
damage functions often are calibrated to the aggregated loss of ma-
jor disasters, which can be inaccurate for individual structures
(Merz et al. 2010; Wing et al. 2020). Sociodemographic factors,
such as race, income, and education, are not considered in these
models, whereas abundant evidence shows that disasters impact
different social groups inappropriately and disaster response
decisions should consider the social vulnerabilities of affected com-
munities (Aerts et al. 2018; Eid and El-Adaway 2017). For exam-
ple, Burton (2010) showed better predictive performance for
modeling catastrophe damage when the Social Vulnerability Index
(SoVI) is included in the modeling; social vulnerabilities refer to
socioeconomic and demographic factors that affect communities’
resilience toward disasters (Flanagan et al. 2011). These human-
related influences have not been well captured by the physical-
sensing data in assessing disaster impacts.

Assessing Disaster Impacts on Human Communities
with Social Sensing Data

Social sensing data can record disaster impacts from a population’s
perspectives. Previous studies developed approaches to mine
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disaster impacts on human communities from social sensing data
using techniques such as natural language processing and computer
vision. For example, Imran et al. (2013) used the naïve Bayesian
model to classify tweet messages containing caution and advice,
casualties and damage, and donations with subcategories. Zhang
et al. (2020) proposed a semiautomatic approach combining
keyword search, clustering, and bidirectional long short-term
memory (Bi-LSTM) to monitor the public’s sentiment toward com-
munity disruptions including built environment hazards, casualty,
and power outage. Similarly, Pouyanfar et al. (2019) fused the vis-
ual and audio features of crowdsourced video clips to predict video
contents, e.g., flood/storm, human relief, damage, and victims.
These approaches identify predetermined disaster impact informa-
tion concerning humans, urban services, public facilities, and per-
sonal properties. The yielded outcomes reflect the experience and
hardship of affected people, and thus can be utilized by disaster
responders (Roy et al. 2020; Zhang et al. 2020).

These approaches estimate disaster impacts based on users’ ob-
servations that are exempted from the uncertainties of numeric
models. However, the imbalanced distribution of social-sensing
data may aggravate inequitable emergency response and relief
operations. The data sparsity may return a few on-topic posts for
fine-grained assessments. Additionally, previous work using social
media data rarely evaluated data credibility before usage. Some re-
searchers addressed these limitations by integrating developed ap-
proaches with human intelligence (Alam et al. 2018; Fan et al.
2021), which made the approaches not fully automatic. Although
with these limitations, social sensing data still are investigated
widely because they provide free, versatile, and humancentric in-
formation for disaster management.

Disaster impact assessment approaches based on either physical
or social sensing data may be inadequate to evaluate the impacts on
both the built environments and humans. This limitation calls for
approaches that integrate heterogeneous data sources depicting dif-
ferent aspects of affected communities. In addition, the aforemen-
tioned disaster impact assessments were not tested with real-time
computing settings. The complex modeling approaches, large data
volumes, and high data throughputs may impede these approaches
from delivering assessment results continuously during disasters.

Real-Time Data-Driven Systems for Disaster
Management

A few real-time data-driven systems were developed to assist in
disaster decisions and improving situational awareness. The early
systems in this area, such as Ushahidi and Sahana, harness the
power of crowdsourcing and integrate information contributed
by online volunteers (Careem et al. 2006; Gao et al. 2011). The
USGS developed the Did You Feel It (DYFI) system to exploit
citizens’ reports about earthquake shaking and damages, which
generates intensity maps after earthquakes (Wald et al. 2011).
The emergence of these tools provides platforms allowing different
emergency stakeholders to coordinate disaster relief operations
(Gao et al. 2011), but the effectiveness of these tools is affected
highly by their user group size. Some researchers developed sys-
tems based on real-time social media data to monitor ongoing
disasters (Choi and Bae 2015), assist resource dispatching (Chen
et al. 2016), detect impact hot-spots (Avvenuti et al. 2018; Tsou
et al. 2017), or detect abnormal incidents (Kelly et al. 2017). These
systems display results on web-based maps that easily can be
viewed and shared among emergency stakeholders, but they only
use single data sources, i.e., real-time social media posts.

We found a few systems that integrate data from heterogeneous
sources. Huang et al. (2017) presented a cloud-based system that

synthesizes multisource data including social media, remote sens-
ing, Wikipedia, and web data. The system allows users to analyze
historical events as well as track real-time events. Nara et al. (2017)
proposed a real-time system to support evacuation decision-making
during wildfires, which recommends evacuation routes based on
real-time population distribution estimation, wildfire parameters,
and people’s feedback. Wang et al. (2017) proposed a system for
real-time wildfire risk management which predicts and visualizes
property-level wildfire risks with real-time weather observations
and location-specific attributes such as vegetation and elevation.

In summary, a variety of approaches and systems have been
proposed to mine disaster impact information, but most of them
conduct analyses with archived data that do not yield real-time
knowledge. A few real-time disaster information systems rely
heavily on social media data, which can be unreliable and suffer
from spatial bias. There still is no system that provides comprehen-
sive real-time disaster impact information with multisource data in-
puts depicting different aspects of affected communities.

System Architecture of ADIR

The proposed ADIR system assesses disaster impacts in real-time
with multisource data depicting human, hazard, and the built envi-
ronment aspects of disaster-affected communities. The system con-
sists of four modules liable to data collection, analysis, storage, and
geovisualization (Fig. 1).

Data Collection Module

The data collection module collects data from different sources that
characterize the human, hazards, and built environment factors of

Fig. 1. System framework of ADIR.
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affected communities. The collected data are transmitted to the data
analysis module directly for analysis. Both real-time and static data
are collected through this module. Some real-time data sources that
can be harnessed for disaster impact assessments and the specific
data collection approaches include
• Real-time social media data. Disaster victims may post their ob-

servations on online platforms (e.g., Twitter) during disasters,
but the generated data often are kept proprietary by companies
who operate these platforms. Some companies provide open-
sourced APIs for application developers to obtain streaming
posts with programming (Twitter 2020).

• Real-time infrastructure/environment sensor measurements. In
situ and mobile sensors continuously measure the status of
monitored environments/infrastructure. Authoritative agencies,
such as NOAA and USGS, deploy abundant sensors to monitor
meteorological, hydrological, and geological environments. In-
frastructure managers in cities also use sensors to monitor the
operating status of infrastructure systems. The generated sensor
measurements are archived privately in data hubs administrated

by these stakeholders, but some agencies may publish data on-
line or provide subscription services allowing external users to
access the real-time sensor measurements.

• Real-time hazard data. In addition to the raw sensor measure-
ments, authoritative agencies also deliver data describing the
disaster hazards intermittently during the event. For example,
National Hurricane Center (NHC) delivers hurricane advisories
every 4–6 h during hurricane onsets, which include wind direc-
tions, intensities, and wind center locations. Approaches such as
web-crawling may download these data automatically.
To implement the proposed ADIR system for hurricane impact

assessments, we selected some open-source data that are available
for most US cities as the system inputs. Table 1 lists sources, cat-
egories, and temporal and spatial formats of input data.

Data Analysis Module

The data analysis module consumes received static and streaming
data and conducts analyses. Static data are loaded to the module
before analyses. Fig. 2 shows the transmission and processing
of heterogeneous real-time data. Specifically, we created different
Apache Kafka topics to receive heterogeneous streaming data.
Applications written in Apache Spark can access these data by sub-
scribing to corresponding Kafka topics. Both Kafka and Spark are
distributed computation platforms capable of parallel computing.

Data streams transmitted to Spark are discretized into micro-
batches, or resilient distribution data sets (RDDs). RDDs are
read-only data collections that can be partitioned across large com-
puting clusters. Spark regulates two types of functions for RDDs,
i.e., transformation and action. A transformation function trans-
forms a RDD into a new RDD, and an action function returns
the analysis results. By integrating Spark functions and third-party
libraries (e.g., scikit-learn, PyTorch, and ArcGIS), ADIR can
achieve a series of complex data transformations and analyses.
For example, the system deals with two types of spatial data,
i.e., point-level eyewitness reports and neighborhood-level disaster
impacts. ADIR uses Spark transformation functions to transform

Table 1. Multisource data used for disaster impact assessment

Data source Category Temporal form Spatial form

Real-time data
Streaming tweets H, D, BE Streaming Geographic coordinates
311 service requests H, D, BE Streaming Geographic coordinates
USGS stream gauge readings D Updated every 15 min —

Static data
USGS DEM BE — 10 m
CDC SoVI index H — Census tracts
USGS stream gauge locations — — Geographic coordinates

Note: H = Human; D = Disaster; and BE = Built-environment.

Fig. 2. Transmitting multisourced streaming data.

Fig. 3. Transforming and mapping spatial data.
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received raw data into different data formats (Fig. 3). The raw
point data containing numeric coordinates are converted to spatial
DataFrames that can be mapped with ArcGIS. Polygons represent-
ing neighborhoods have fixed spatial locations. ADIR processes
nonspatial attributes describing the changing status of polygons
(e.g., flooding conditions) and links these attributes to cloud-stored
polygon maps through unique identification numbers. We use ac-
tion functions to write results to the data storage module.

With the Spark and third-party libraries, we implement three
parallel analysis processes (described in the following subsections)
in the data analysis module for hurricane impact assessment, which
extracts multiscale disaster impact information.

Mining Eyewitness Reports from User-Generated Point Data
ADIR retrieves eyewitness reports describing disaster impacts from
311 service requests and geotagged streaming tweets. Compared
with social media posts, 311 service requests generally are more
relevant and reliable, but not all requests represent damages caused
by disasters. This research mainly focused on six request types as-
sociated with hurricane-induced impacts on humans and the built
environment: crisis cleanup, storm debris collection, flooding, tree
removal, storm damage, and medicine evacuation. A filter is used to
limit the mapped 311 service requests to be one of the six types.
The raw crawled social media data can be noisy and irrelevant. We
use an approach developed by Hao and Wang (2020) to filter out
irrelevant reports and extract various disaster damage information
from geotagged streaming tweets. The approach uses computer vi-
sion and text mining to analyze multimodal social media data
(Fig. 4). ADIR checks whether each tweet arriving in the stream
includes an image or images, and downloads the image(s) if it does.
Then the approach is applied to tweet texts and images to extract
disaster impact information, including hazard types (i.e., wind haz-
ard, flood hazard), severities, and damage types (e.g., infrastructure
damage, power outage, and house damage). The filtered 311 ser-
vice requests and tweets identified to include disaster impact infor-
mation are transformed to point features and saved in a hosted data
service in the data storage module.

The eyewitness reports obtained from social media data can be
unreliable due to the existence of fake content, photoshopped im-
ages, inaccurate spatial and temporal attributes, and less precise
models for knowledge extraction, which can undermine the validity

of ADIR. We use a density-based method to check and tag the reli-
ability of eyewitness reports obtained from social media data. An
eyewitness report o is tagged to be reliable when the number of
reports falling in its temporal-spatial neighborhood Nεs;εtðoÞ ex-
ceeds a threshold, εn. The neighborhood Nεs;εtðoÞ is determined
using Eq. (1), where distsðp; oÞ and disttðp; oÞ is Euclidean and
temporal distance between report p and o, and εs and εt are pre-
determined spatial and temporal thresholds. The basic assumption
is that an eyewitness report is credible if multiple reports are found
with close spatial and temporal proximity to that report (Sakaki
et al. 2010)

Nεs;εtðoÞ ¼ fp ∈ Djdistsðp; oÞ ≤ εs; disttðp; oÞ ≤ εtg ð1Þ

Computing Citywide Flood Probabilities with Stream Gauge
Measurements and Digital Elevation Models
ADIR maps flood probabilities with the USGS digital elevation
model (DEM) file and gauge height measurements. It intermittently
retrieves the maximum gauge heights of stream gauges located
within and near the study region over consecutive time windows
(e.g., 3 h). We adopt an inverse distance weighted–based method
described by Li et al. (2018) for flood probability mapping. The
method generates a flood probability index (FPI) surface for each
stream gauge (p) using

FPIpi ¼
maxðΔhwp þ hp − hiÞa

ðdpiÞb
ð2Þ

where dpi = Euclidian distance between location i and stream
gauge p; hp and hi = elevation of stream gauge p and location
i; Δhwp = increment of gauge heights of stream gauge p at inves-
tigated time compared with its normal condition; and a and b are
parameters used to adjust impact magnitude of water height and
distance. For this study, we tested different combinations of a
and b, and set a ¼ b ¼ 1.

We calculate the final flood probability for location i, i.e., PðiÞ,
as the average value of FPIs associated with that location [Eq. (3)].
Averaging reduces the result difference caused by different num-
bers of stream gauges used in analyses. Eq. (3) may not return prob-
abilities ranging from 0 to 1. We tested the method and use
a step function [Eq. (4)] to map the obtained PðiÞ into the range

Fig. 4. Multimodal social media analysis. [Image courtesy of Todd Dwyer, under Creative Commons-BY-SA 2.0 (https://creativecommons.org
/licenses/by-sa/2.0/).]
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of 0–1 based on the test results. Fig. 5 demonstrates a FPI surface
generated with a single stream gauge measurement and an overall
flood probability map. We use ArcGIS’s Python module to imple-
ment the spatial analyses. The generated flood probability maps
are converted to Keyhole Markup Language (KML) files that
can be added and updated in web map objects in the geovisualiza-
tion module

PðiÞ ¼ 1

n

Xn

p¼1

FPIpi ð3Þ

PðiÞ ¼ minðPðiÞ; 1Þ ð4Þ

Integrating Hazard and Social Vulnerabilities for
Neighborhood Impact Assessment
We assess disaster impacts at the neighborhood scale by integrating
hazard conditions and social vulnerabilities. For a given time, the
flood probability for each neighborhood is calculated with the co-
ordinate of neighborhood centroid and the latest generated flood
probability map. Similarly, we also calculate flood probabilities
for reliable eyewitness reports with their coordinates and the flood
probability map. We use the minimum and quartiles (i.e., 0%, 25%,
50%, and 75%) of the flood probabilities associated with reliable
eyewitness reports as thresholds to divide neighborhoods into five
hazard-vulnerability levels (Levels 0–4). Thus, a neighborhood
with the highest flood vulnerability level (Level 4) has a centroid
flood probability higher than the flood probabilities associated with
75% reliable eyewitness reports, which shows evident damage.
Because eyewitness reports are used only for setting the thresholds
for dividing neighborhoods, the generated flood vulnerability maps
are immune to potentially unbalanced spatial distribution of eyewit-
ness reports.

Neighborhoods undergoing more severe hazard conditions
may not experience more disaster impacts than other neighbor-
hoods. Social factors, such as population, wealth, connectedness,
and education, can modify disaster outcomes (Burton 2010). These
factors are represented comprehensively by SoVI. This research
used the Centers for Disease Control and Prevention’s(CDC) SoVI,
which is determined with variables depicting four themes:

socioeconomic status (e.g., income, unemployment, and educa-
tion), household composition (e.g., age, disability, and single-
parent households), minority status (e.g., disability and language),
and housing and transportation (i.e., multiunit home, mobile home,
and possession of vehicles). The index is normalized into the range
0–1, with which we equally divided neighborhoods into five levels.
We use a bivariate map to show the neighborhood hazard vulner-
ability levels and social vulnerability levels together.

For illustration, Fig. 6 shows the temporal change of raw
computed flood probabilities, neighborhood-level hazard vulner-
abilities that are curated by reliable eyewitness reports, and a
bivariate map showing integrated neighborhood vulnerabilities.
The flood probabilities mapped with DEM and stream gauge
readings suggest expanding flood zones in western Houston from
September 1–3, 2017, but the neighborhood-level hazard vulner-
ability maps display an inverse trend and predict fewer neighbor-
hoods experiencing flooding on September 3 when taking into
account reliable eyewitness reports. The curated trend of neighbor-
hood hazard vulnerabilities also is consistent with the USACE’s
estimations that flood conditions were relieved after the release
of two western reservoirs (USACE 2017).

Data Storage Module

The analysis results from different sections of the data analysis
module are stored in different locations, including MongoDB,
ArcGIS’s hosted data service, and local files. MongoDB was se-
lected to store the analysis results because it is an open-source
and cloud-based database suitable for storing big data. MongoDB
is a NoSQL (i.e., nonrelational) database that stores data as schema-
free documents with key-value structures. In Spark, we write
the analysis results continuously to MongoDB. The assessment
of disaster impacts may use data across temporal and spatial scales.
For example, the mapping of individual eyewitness reports is
executed as soon as the report is received, but the mapping of neigh-
borhood impacts refers to reliable eyewitness reports identified
within a time window. MongoDB supports queries with temporal,
content, or spatial filters, and therefore the archived data can be
retrieved according to temporal or spatial attributes for analyses.

Fig. 5. (a) FPI generated with a single stream gauge measurement; and (b) overall flood probability map. (Base maps by Esri, HERE,
© OpenStreetMap contributors, and the GIS user community.)
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Spatial data (e.g., points and polygons) that are displayed for users’
visualization are stored in a hosted data service operated by ArcGIS
for Developer (Esri 2020a). The hosted data service is a cloud-based
database that provides access tomanage, query, and edit spatial data.
Local folders provide extra options to store critical analysis results.

Geovisualization Module

The geovisualization module communicates the analysis results
to system users. We implemented the geovisualization layer with

a set of ArcGIS products developed by ESRI, including ArcGIS
for Developer, ArcGIS Dashboard, and ArcGIS Online. The spatial
data stored in hosted data services can be added directly as feature
layers in web map objects of ArcGIS Online. Then we con-
figure web map objects into web-based dashboards and add ele-
ments, such as charts, gauges, and indicators, to describe the data.
The dashboard offers a comprehensive and engaging view of
displayed spatial data and provides key insights for at-a-glance
decision-making (Esri 2020b). When users make a change to the
spatial data stored in hosted data services, the change can be shown

Fig. 6. (a) Mapped flood probabilities; (b) neighborhood hazard vulnerabilities; and (c) neighborhood integrated vulnerabilities. (Base maps by Esri,
HERE, © OpenStreetMap contributors, and the GIS user community.)
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immediately in the configured dashboards. In this way, real-time
geovisualization is realized.

Application and Evaluation of ADIR in Simulated
Real-Time Hurricane

Case and Data Description

We applied the ADIR system to a historical disaster, Hurricane
Harvey, that in 2017 affected Houston, a city in southern Texas with
a population of more than 2 million. Hurricane Harvey was a
Category 4 hurricane that made landfall on coastal Texas on the
night of August 25, 2017. The storm brought exceptional rainfall
of 76.2–152.4 cm (35–60 in.) and sustained winds of about
177.0 km/h (110 mi=h) to the coastline. Harvey severely impacted
southern Texas cities, including Houston. The urban river runoff
caused massive flooding that inundated nearly one-third of Hous-
ton, disabled almost all major roads in the city, and cut power con-
nections to many households (Blake and Zelinsky 2018). The
severe impacts and large affected population make Harvey and
Houston an ideal study case to evaluate our proposed system.
We collected geotagged tweets in Houston during the study period,
i.e., August 25 to September 5, 2017, using a Twitter streaming API
(Wang et al. 2020). We downloaded the 311 service requests re-
ported by Houston citizens during the study period from the Hous-
ton 311 portal. The portal collects 311 service requests received
from multiple resources (e.g., phone calls, online forms, and
emails). For hazard data, we used the measurements of 46 stream
gauges located in and near Houston which were published online in
the National Water Information System (NWIS) by USGS. Fig. 7
shows the location of the 46 stream gauges and the measurement of

a stream gauge during the study period. The measurements were
updated every 15 min. For the built environment and social vulner-
ability data, we used the USGS DEM data with 10-m resolution and
the 2016 CDC SoVI for the study region. The SoVI is mapped for
each census tract in Harris County. The general data sets are de-
scribed in Table 1.

Because we investigated a historical event and the real-time
data were collected and archived before system implementation,
we developed a simulator to simulate these archived data in a
streaming manner according to their associated timestamps (Halse
et al. 2019). The simulator was developed in Apache Kafka
(Fig. 8). It sorted the archived data according to their temporal
sequences and then sent the data contents to designated Kafka
topics following the same temporal pattern as that in which they
were created. We converted the creation time of different data
sources to the same time zone, i.e., Coordinated Universal Time
(UTC), before running the simulator. When the system is used for
an ongoing event, users can connect streaming data inputs to
Kafka topics directly.

Analytical and Geovisualization Outcomes from ADIR

With the simulated streaming data, ADIR generates maps for eye-
witness reports, flood probabilities, and integrated neighborhood
impacts with approaches described in the section “Data Analysis
Module.” Then the analysis results are stored and visualized
with tools described in the sections “Data Storage Module” and
“Geovisualization Module.” The dynamic disaster impact assess-
ments is demonstrated in Video S1 in the Supplemental Materials.

The system maps eyewitness reports as individual points with
attributes showing location, time, type of report, and reliability.
Images are attached, if they are detected, to show evidence of

Fig. 7. (a) Location of stream gauge sites (base map by Esri, HERE, © OpenStreetMap contributors, and the GIS user community); and (b) measure-
ments of a single stream gauge.

Fig. 8. Simulating real-time streaming data.

© ASCE 04021010-8 J. Comput. Civ. Eng.
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flood or wind hazards. ADIR detects nine types of disaster impact
information from streaming tweets and 311 service requests:
power outage, roadway blockage, residence damage, fallen tree,
vehicle damage, debris, flood damage, wind damage, and medical
evacuation. Fig. 9 shows the temporal distribution of identified
eyewitness reports. The 311 service request data contributed
more eyewitness reports than did streaming tweets (Fig. 9). Flood
damage and debris were the most reported impact types. The
numbers of reports regarding flood damage and medical evacu-
ation peaked on August 27 and then gradually decreased, whereas
reports about debris dominated in the later investigation period.
We use different symbols to represent different report types. A
tweet report is denoted multiple if it contains multiple types of
impact information. The tagging of tweet report reliability uses
thresholds εs ¼ 1,000 m, εt ¼ 3 h, and εn ¼ 3. The selection
of thresholds is based on the intuition that the hurricane situations
would not change drastically for locations within 1 km and within
a temporal period of 3 h.

The dashboard sidebar shows the temporal trend of received
tweets, report type distribution, report number, and most recently
received eyewitness reports. System users quickly can grasp disas-
ter situations by looking at the displayed maps and sidebar charts.
They also can zoom in and click individual reports to check their
attributes and images. Fig. 10 shows two screenshots showing the
mapped eyewitness reports by 9:00 a.m., August 27.

The flood probability map provides ADIR users with a general
sense of flood locations and intensities, in which darker colors re-
present areas with higher flood probabilities. Fig. 11 shows screen-
shots of the displayed flood probability maps at 10:00 a.m.
and 4:00 p.m. on August 27. Central Houston and areas along
the Buffalo Bayou River were flooded, and the flooding areas
sprawled over the 6 h (Fig. 11). The integrated neighborhood
impact map displays neighborhood hazard vulnerabilities and

social vulnerabilities with red and blue colors, respectively. Fig. 12
shows the integrated neighborhood impact maps. Stakeholders
can refer to the map to plan disaster response activities. For ex-
ample, disaster managers may want to dispatch resources and res-
cue teams to neighborhoods displayed in deep purple first, which
suggests the exposure of both severe flooding and high social vul-
nerabilities (Fig. 12). Disaster managers may check crowdsourced
reports (Fig. 9) collected within or near these neighborhoods to
acquire a general sense of disaster situations before dispatching.
These three maps are displayed on a single dashboard in which
users can switch or combine the feature layers for display.

Performance Evaluation of ADIR

We evaluated the system performance regarding the (1) assessment
accuracy and (2) timeliness of the processing. First, we examined
the accuracy of impact assessments using an existing damage as-
sessment benchmark, which annotated buildings located in areas
affected by Hurricane Harvey with five damage levels (i.e., none,
affected, minimum, major, and destroyed) (Choe et al. 2018). The
annotation referred to the FEMA’s postdisaster estimation and a
crowdsourced project. We randomly inspected some spatial win-
dows containing damaged buildings (Fig. 13). We found that af-
fected or damaged buildings mostly were located in areas with
sustained flooding probabilities higher than 0.7 during the study
period. We then treated the building levels with two independent
variables, i.e., average flood probabilities and the number of inun-
dated days, which are calculated with the flood probability maps
generated from August 2 to September 4, 2017. The basic
assumption is that a building is more likely to experience severer
damage if it is associated with higher flood probabilities and/or
longer inundation periods. The correlation tests had positive
correlations, with coefficients 0.23 (p-value < 0.0001) and 0.28

Fig. 9. Temporal distribution of eyewitness reports by (a) source; and (b) type.
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(p-value < 0.0001) for the two independent variables (Table 2).
The building damage levels also are determined by other factors
such as building qualities. The correlation tests showed that our
system generally can predict areas that are more likely to experi-
ence property damages.

The real-time setting can deliver results throughout events
and can show changing disaster situations for AIDR users. We
checked whether the dynamic mapping results delivered by ADIR
corresponded to the real-world changes. However, we found only
a video created by the USACE, Galveston District showing the

changing inundation conditions for western Houston (USACE
2017). The USACE’s video screenshots are shown in Fig. 14(a)
and the ADIR flood maps (with flood probabilities equal or larger
than 0.7) are shown in Fig. 14(b) with the same temporal and
spatial scales. Flood maps from both sources showed scattered
flooding in central Houston on August 26 and the massive
flooding on August 28, which almost inundated the whole city.
Flood waters receded from central Houston on August 30. The
USACE’s video shows that the flood water accumulated in two
western reservoirs, i.e., Addicks and Barker Reservoirs, after

Fig. 10. Mapped eyewitness reports: (a) overview; and (b) zoomed-in view. (Base maps by City of Houston, HPB, Texas Parks & Wildlife, Esri,
HERE, Garmin, SafeGraph, METI/NASA, USGS, EPA, NPS, USDA.)
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August 30, which relieved the flooding conditions in other places.
However, the flood probability maps created with our approach
did not capture the discrepancies caused by the human-operated
flood control devices. They predicted that western Houston gradu-
ally was inundated with flood water accumulated there. However,
we consider that our system can show the general flooding con-
ditions and locations over time. However, future improvements
should consider flood-control infrastructures.

We then examined the timeliness of the processing performance
for the three data streams, i.e., streaming tweets, 311 service re-
quests, and stream gauge readings. In particular, we monitored their

input rates (i.e., the numbers of records in the present data batch),
processing time (i.e., the time spent to process the present data
batch), and scheduling delay (i.e., the time delay need to wait to
process the present data batch). We tested the system rigorously
by accelerating the simulator by 10 times, meaning that the data
volume the system received in 1 s corresponded to the 10-s data
volume collected in the real world. We did this considering that
the data volume generated by sensors and citizens increases rapidly,
and the future application of ADIR may incorporate more real-time
data sources. We set the batch interval to 30 s and ran the experi-
ment for 5 day’s data, i.e., from 12:00 p.m. August 26 to 12:00 p.m.

Fig. 11. Flood probability map for August 27, 2017 at (a) 10:00 a.m.; and (b) 4:00 p.m. (Base maps by Earthstar Geographics.)
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August 31, 2017, on a local computer with an Intel Core i7 proc-
essor and 16 GB memory.

Fig. 15 shows the performance metrics for the processing of
the three data sources. The input rates of streaming tweets and
311 service requests had periodic patterns in which more reports
were received in the daytime than at nighttime. Stream gauge mea-
surements were routinely updated every 15 min. The average input
rates were about 20 and 5 for streaming tweets and 311 service
requests, and the average processing times were 25 and 5 s, respec-
tively. The longer processing time of streaming tweets was caused
by the higher input rate and potential image processing, which

included checking and downloading images, analyzing image con-
tents, and uploading images to the cloud storage. The processing
time for stream gauge data was about 1 s, which was much faster
than that for 311 service requests; 311 service requests needed to be
transformed and mapped as spatial points, whereas stream gauges
had fixed locations. Both 311 service requests and stream gauge
data had low scheduling delays close to zero, suggesting that these
data were analyzed immediately after they were received. However,
there was a significant scheduling delay for streaming tweets from
August 27 to 30. The delay accumulated when the processing time
exceeded the batch interval (i.e., 30 s). More tweets were received

Fig. 12. Integrated neighborhood impact map: (a) overview; and (b) zoomed-in view. (Base maps by Earthstar Geographics.)
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on these days, and the received tweets were more likely to include
texts and images describing disaster situations. A tweet maximally
needed to wait 16 min for processing on August 30, 2017.

Discussion

We proposed and evaluated an end-to-end data-driven system,
ADIR, for assessing disaster impacts in real time. Previous disaster
impact assessments mainly focused on single data modalities and
sources (Glahn et al. 2009; Roy et al. 2020; Shangguan et al. 2019;
Zhang et al. 2020), which may not track holistically disaster im-
pacts to both the built environments and population. This research
contributes to the computational civil engineering with (1) domain-
specific parameter tuning, system implementation, and extensive
experiments with real-time multi-sourced and multimodal data
streams processing; (2) an automated approach assessing fine-
grained disaster impacts with integrated considerations of social
vulnerability, physical built environment, and natural hazard fac-
tors; and (3) the integration human–cyber–physical system for
more reliable and informative disaster situation awareness.

Some existing work has developed approaches and systems for
disaster impact assessments based on social sensing data, but with-
out evaluating the data credibility. A few researchers proposed in-
tegrating human intelligence with artificial intelligence approaches
to improve system reliability (Alam et al. 2018; Fan et al. 2021),
which makes the high-throughput social media posts difficult to
synthesize. ADIR addresses this gap by automatically tagging

the reliability of social media posts with a density-based approach.
This data reliability assessment makes the system more self-
sustainable and credible for use.

Additionally, acquiring and processing streaming data in real-
time can be challenging, especially when the data are from hetero-
geneous sources and have multiple formats. Therefore, very few
previous studies implemented their developed disaster impact as-
sessment approaches or tools within real-time settings, and the ex-
tant data-driven assessments mostly use simple analyses such as
hot-spot detection to assess the spatial scale of disaster impacts
and frequency analyses to assess the temporal scale of disaster im-
pacts (Chen et al. 2016; Choi and Bae 2015; Kelly et al. 2017).
ADIR addresses this gap by harnessing a series of advanced com-
putation and geovisualization platforms, including Spark, Kafka,
and ArcGIS, to realize real-time data analytics and mapping. We
also use a set of third-party libraries and APIs to achieve detailed
analyses, such as multimodal social media analysis to extract ac-
tionable information from individual tweet posts and spatial analy-
sis to map citywide flood probabilities. The incorporation of these
tools makes ADIR powerful enough to include more detailed
analyses and flexible enough to be adapted to other scenarios.

Lastly, we applied ADIR with data collected for a historical
hurricane case and running in a simulated real-time manner. The
evaluation showed that ADIR quickly can pinpoint areas with
the most-damaged buildings and detects and displays changing dis-
aster situations during and immediately after disasters. The identi-
fied eyewitness reports can provide nuanced information about the
disturbances to infrastructure (e.g., power outage and roadway

Fig. 13. Mapped flood probabilities and building damage assessment results. (Base maps by Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA,
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)

Table 2. Pearson correlation tests for building damage levels, and average flood probabilities and number of inundated days

Variable Correlation coefficient 95% confidence limits p-value

Average flood probabilities 0.22559 0.221265 0.229909 <0.0001
Number of inundated days 0.27528 0.271067 0.279483 <0.0001
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blockage), situations of urban floods, debris/garbage removal,
and the impacts on citizens’ daily lives at fine spatial scales. Differ-
ent stakeholders (e.g., utility companies, city managers, and emer-
gency responders) can refer to the report details to coordinate their
disaster relief activities and bring affected communities back to nor-
mal operation quickly. Although ADIR was applied with a hurri-
cane case, it has the versatility to be applied in other adverse events
(e.g., earthquakes, tornados, severe winter storms, and flooding) by
using new data sources and reconfiguring the analysis processes.
For example, when applied during and immediately after an earth-
quake, system users can replace the hazard vulnerability map
(i.e., flood probabilities, in this study) with earthquake intensity

maps generated with seismometer measurements or with crowd-
sourced reports (Wald et al. 2011). Analysis modules for social
sensing data also should be changed to new computer vision mod-
els and text mining approaches that are trained for seismic damage
detections.

This research has a few limitations that can be improved in fu-
ture studies. First, we use the static SoVI indexes derived from cen-
sus data to account for the social vulnerabilities. The census data
may not represent the dynamic population distributions during
disasters considering that people may evacuate or take shelters.
Our work can benefit by integrating real-time human mobility data
(Wang and Taylor 2016). Second, we use three streaming data

Fig. 14. Temporal change of inundation mapped by (a) USACE; and (b) flood probability map. (Base maps by Esri, DigitalGlobe, GeoEye, i-cubed,
USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community.)
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sources that generally are available for all US cities. Additionally,
the flood mapping does not consider the ground flood control fa-
cilities such as reservoirs and dams. Future work may improve
flood predictions by taking into consideration flood control devi-
ces. Our system easily can be extended to include other real-time
data sources. For example, city departments may use infrastructure
sensors to monitor the operating status of critical infrastructure sys-
tems. Hospitals and shelters also may report their real-time
capacities. Our system can be more useful when including more
data representing ongoing disaster situations. Third, because our
system uses distributed computing platforms (i.e., Kafka and
Spark) for data transmissions and analyses, a cloud infrastructure
may be considered in future work to further accelerate the system
and accommodate more data sources. Forth, our system focuses on
assessing disaster impacts on humans and the built environments
from a perspective of assisting prompt decision-making. Other
types of disaster impacts, e.g., economic impacts and psychological
impacts, which can be evaluated in a less time-critical manner,
were not considered in this study. In addition, our system also may
benefit from external validation. Video S1 in the Supplemental
Materials demonstrates system outputs that can be evaluated by
practitioners of disaster management and response. We will con-
tinue improving the system with their advice in future work.

Conclusion

We developed a system, ADIR, to assess the impact of disasters on
humans and the built environments in real-time and evaluated its
effectiveness and applicability with a historical hurricane event.
The evaluation showed that ADIR is capable of delivering timely,
accurate, and comprehensive disaster impact information at multi-
ple scales and across disastrous events. The system provides a plat-
form for different stakeholders, including infrastructure managers,
service companies, public agencies, and citizens, to share disaster
impact information and gain situational awareness. The diverse and
dynamic information then can be used by emergency responders to
adjust their decisions and operations, such as waste management,
infrastructure fixation, and service restoration. The system also
may encourage the wider community to participate in disaster relief
assistance, for example, through contributing accurate eyewitness
data and taking part in voluntary activities. These operations and
activities accelerate the restoration of community disruptions
and reduce physical and societal losses from disastrous events,
and thus enhance disaster resilience concerning resourcefulness
and rapidity. This research also is innovative in integrating real-
time computing, big data, and geospatial analytics to address an
urban problem. Consequently, the emergence of computer-aided

Fig. 15. Performance metrics for the streaming processing of simulated tweets, 311 service requests, and stream gauge data.
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tools such as ADIR relieves the stress posed to the growing pop-
ulation and civil infrastructures in disaster-vulnerable locations
such as coastal lines and flood plains.

Data Availability Statement
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are available from the corresponding author upon reasonable
request.
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