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Abstract
Purpose of ReviewNapping is a common behavior across age groups. While studies have shown a benefit of overnight sleep on
memory consolidation, given differences in nap frequency, composition, and intent, it is important to consider whether naps serve

a memory function across development and aging.
Recent FindingsWe review studies of the role of naps in declarative, emotional, and motor procedural memory consolidation
across age groups. Recent findings in both developmental and aging populations find that naps benefit learning of many tasks but

may require additional learning or sleep bouts compared to young adult populations. These studies have also identified variations

in nap physiology based on the purpose of the nap, timing of the nap, or age.
SummaryThese studies lend to our understanding of the function of sleep, and the potential for naps as an intervention for those
with reduced nighttime sleep or learning impairments.

KeywordsNaps.Memory.Aging.Development.Sleep.Cognition

Introduction

Naps are colloquially viewed as either a reflection of laziness or

a vacation indulgence. Yet, we easily recognize naps as being
essential to the healthy behavior of toddlers who are inattentive

or emotionally dysregulated in the absence of a nap. Research
over the past two decades suggests that this cognitive benefit of

naps may be present in young adults and even older adults as

well. As such, not only does thisevidence suggest the need to
shift cultural views of napping but also that naps might even be

considered therapeutic for some purposes. A particular area of

interest is the influence of naps on learning and memory. Here
we review evidence for memory benefits of naps and how these

change across the lifespan for different types of memories.

Nap Frequency and Physiology
Across the Lifespan

Young infants are polyphasic, often napping four or more
times per day to balance high sleep need and frequent feeding.

Sleep becomes triphasic between 6 and 9 months and biphasic
by between 12 and 18 months [1]. The adult-like monophasic

sleep pattern becomes normative by 5 years [2,3]. Nap fre-

quency increases again in later ages, with 15% of 65–74 year
olds and 25% of 75–85 year olds napping regularly (4–7naps

per week) [4]. Though nap frequency is generally low in

young adulthood and middle age, many adults will nap if/
when their schedule permits, particularly if they are not meet-

ing their sleep need at night. For example, approximately 50–

75% of college students report napping at least once per week
[5,6].

Developmental- and age-related changes in nocturnal

sleep physiology are generally found in naps as well [7].
In early childhood, when naps are habitual, SWS and

NREM2 sleep each comprise about 45% of the nap inter-

val (90% combined; Fig.1). SWS in naps decreases into
young adulthood and continues to decline with aging.

NREM2 in naps is generally stable across age groups

while NREM1 increases from childhood to young adult-
hood and increases even more so from young adulthood

to older age groups, as is the pattern seen in overnight

This article is part of the Topical Collection onSleep and Learning

* Rebecca M. C. Spencer
rspencer@umass.edu

1 Department of Psychological & Brain Sciences, University of
Massachusetts Amherst, Amherst, MA, USA

2 Neuroscience & Behavior Program, University of Massachusetts
Amherst, Amherst, MA, USA

3 Institute for Applied Life Sciences, University of Massachusetts, 240
Thatcher Way, S315, Amherst, MA 01003, USA

https://doi.org/10.1007/s40675-020-00193-9

/ Published online: 12 November 2020

Current Sleep Medicine Reports (2020) 6:290–297

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s40675-020-00193-9&domain=pdf
https://orcid.org/0000-0002-8674-2384
mailto:rspencer@umass.edu


sleep as well [8,9]. The presence of REM in naturally

occurring naps is rare or minimal in all age groups al-

though dependent on sleep history and the length of the
nap, with naps longer than 70–90minmorelikelyto

contain REM [10].

Cognitive Functions of Naps
Across the Lifespan

Naps have an array of cognitive benefits in young adults. At the

most basic, naps counter the negative consequences of sleep
restricted behavior, enhancing attention and alertness which

has subsequent benefits on cognitive tasks [11–13]. Naps also

impart a direct benefit to cognitive functions; most understood
of these is memory.

Memory encoding engages unique brain regions depend-

ing on the type of memory encoded [14]. Declarative memo-
ries rely on the hippocampus at encoding. Emotional memo-

ries, while typically also declarative memories, uniquely en-

gage the amygdala. Motor procedural memories, however, are
independent of the hippocampus at least early in the learning

process, instead relying on subcortical structures such as the
cerebellum and striatum. Likely for this reason, the mecha-

nism underlying sleep’s benefit on memory is also thought to

vary across memory tasks. As such, here we separately con-
sider the benefit of naps on memory for declarative, motor

procedural, and emotional memories.

Declarative Memories

Declarative memories, explicit memories often of facts or
events, are protected by naps compared to equivalent intervals

of wake. Already in infancy, a benefit of naps on declarative

memory can be observed [15–17]. In one such study, infants
who napped following observation of novel actions remem-

bered the target actions at later test while those who stayed

awake after the action observation did not [18]. Similar nap

benefits have been observed across early childhood using a

storybook sequence task [19], a visuospatial learning task
[20], word learning tasks [21–23], and, in older children, a

word-pair association task [24]. Naps have been shown to

benefit many of these tasks in young adults as well [25–34].
For example, young adults who napped following learning of

a word-pair association task recalled 17% more items than

those participants that stayed awake following learning [25].
Few studies have investigated the influence of naps on declar-

ative memory in older adults. Unlike the benefit frequently

observed with overnight sleep [35–37], the benefit from naps
often appears to be absent in older study populations [38,39].

However, compared to both quiet rest and interference learn-

ing, a nap benefitted vocabulary learning in older individuals
and this effect persisted the next day [40].

Consistent with studies of nocturnal sleep [41–47], the nap

benefit for declarative memory has been associated with
NREM sleep, particularly SWS and the presence of sleep

spindles. Although few studies in infancy and childhood have
considered such physiological mechanisms, nap sleep spin-

dles predicted episodic memory in infants [10] (but see [15,

48]), visuospatial learning in early childhood [20], and word-
pair learning in adolescents [49]. Likewise, sleep spindle char-

acteristics in naps of young adults have been associated with

greater memory protection in tasks of contextual learning [33],
word-pair learning [34,50,51], film clip recall [52], and face-

city association learning [53]. However, other studies find that

declarative memories benefit from nap SWS. For instance, a
recent study in preschoolers that tested learning of a sequence

of events in a storybook task found that the over-nap protec-

tion of memory was specifically associated with the amount of
SWS in the nap [19]. Likewise, in adults, nap SWS has been

associated with nap-dependent benefits in picture recognition

memory [54], word-pair learning [27,38], and word-sound
association learning [55]. Findings regarding sleep spindles

and SWS are consistent with the active system consolidation

Fig. 1Sleep stage composition of
naps at different ages [based on
7,11,15,20,38]
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model whereby coordinated interactions between slow waves
and sleep spindles (and hippocampal sharp wave-ripples) un-

derlie hippocampal memory consolidation [56].

Consistent with a role of SWS in declarative memory con-
solidation, studies showing an absent sleep benefit in older

adults observed reduced SWS and SWA in the naps of these

older participants. Greater nap SWA predicted reduced acti-
vation of the hippocampus during post-nap recall in young

adults but not older adults, perhaps suggesting reduced sys-

tems consolidation in the latter [38]. Thus, older adults may
not achieve sufficient SWA during naps to consolidate mem-

ories. Indeed, transcranial slow-oscillatory stimulation that

enhances nap SWA led to improved nap-dependent memory
consolidation in older adults [57,58].

Emotional Memories

Although emotional memories are a form of declarative mem-

ory, the emotional tone provides additional salience and en-
gages additional limbic regions during encoding. For this rea-

son, emotional memories are often found to be prioritized for

processing during naps in adults [59,60] (but see [61,62]).
Little research has considered how naps may support emotion-

al memory in children. A study from our lab found a benefit of

naps for emotional memory performance in young children
(3–5 years); however, this benefit was only found after subse-

quent overnight sleep [63]. Specifically, although there was

no difference in memory for emotionally encoded faces fol-
lowing a nap and an equivalent interval spent awake, memory

the following day was greater when a nap followed learning

the previous day even though no feedback was given. Those
that forgot the most over the nap had the greatest performance

improvement following overnight sleep. This result is

interpreted to suggest that naps yield an initially destabilized
emotional memory that is most labile to plastic processes in

overnight sleep. Thus, children may need multiple sleep cy-

cles and/or the presence of REM sleep (which is typically not
obtained in their naps) to fully consolidate emotional

memories.

Preferential consolidation of emotional memories follow-
ing naps is maintained with aging. Adults 18–39 and adults

40–64 years of age had similar nap-dependent memory bene-

fits for emotional foreground objects at the expense of mem-
ory for neutral backgrounds [64]. Aging may be associated

with a“positivity effect”whereby positive information is pri-
oritized over negative information [65]. While an age-related

positive memory bias has been observed in overnight sleep-

dependent consolidation [66,67], it remains to be seen wheth-
er such a memory bias would emerge over a nap.

Slow wave sleep in naps may be particularly critical for

emotional memories. In early childhood, worse emotional
memory following the nap was associated with greater slow

wave activity in the nap, consistent with the interpretation that

naps destabilized emotional memories which promoted sub-
sequent overnight improvement [63]. In young and middle-

aged adults, recognition of emotionally negative scenes and

foreground objects viewed prior to sleep positively correlated
with the percent of the nap spent in SWS [60,64,68].

However, emotional and reward-related memory consolida-

tion has also been associated with nap sleep spindles and
sigma activity [64,69–71] and nap REM sleep in young adults

[59,72]. These mixed findings may lend support to a sequen-

tial processing model of memories over sleep, with alternating
processing of both NREM and REM sleep. For instance, slow

waves and embedded sleep spindles may support the consol-

idation of the declarative memory while REM may support
processing of the emotional tone and prioritizing the memory

for additional NREM processing [73].

Motor Memories

While motor learning tasks have a clear nap benefit in young
adults [74–80], this benefit is reduced both with

developmental- and aging-related changes. A finger motor

sequence learning task is a common task used across age
groups. Young adults’reaction time and speed when

performing a learned movement sequence improves by 6–

17% [75,76,81–83] more following a nap compared to per-
formance changes following an equivalent interval awake.

This distinction between nap- and wake-dependent improve-

ments is noticeably absent in children under the same condi-
tions [81]. However, similar to emotional memory findings,

following subsequent overnight sleep, a benefit of a nap fol-

lowing learning emerges [84]. Intriguingly, overnight perfor-
mance improvements are greater for children whose perfor-

mance was reduced by a nap, even in the absence of feedback.

One interpretation of these results is that, for a motor proce-
dural learning task, mechanisms of plasticity (e.g., protein

synthesis, dendritic spine formation) may impede behavioral

benefits initially but may ultimately facilitate successful con-
solidation. Alternatively, children who slept more deeply may

have consolidated their learning but also had longer sleep

inertia which led to worse performance after the nap but great-
er overnight improvement. An immediate benefit of the nap

on motor sequence learning has also been observed in children

by providing additional training. When children receive addi-
tional training prior to the nap/wake interval, performance

improves by about 8% more following a subsequent nap com-
pared to performance improvements following a similar inter-

val of wake, an equal benefit to that of adults [81].

With aging, the nap benefit on motor learning tasks is
sometimes absent [85,86]. However, similar to results in chil-

dren, one study found a delayed benefit of a nap on motor

sequence learning when performance was assessed again fol-
lowing subsequent overnight sleep [87]. The overnight benefit

was similar to that obtained in young adults who did not nap
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following the learning session. In one case, a nap led to both
an immediate and delayed benefit on motor sequence learning

in older adults [88]. When tested shortly after a nap or wake

interval, performance was maintained relative to the end of
training in the nap group but had declined in the wake group.

Both groups improved overnight, such that the nap group

showed enhanced performance relative to training whereas
the wake group showed equivalent performance to training.

Functional imaging indicated that nap-related improvements

were linked to activation in a motor-related network during
encoding. Notably, older adults practiced the motor sequence

prior to encoding which led to a higher level of performance at

training compared to a similar study where no benefit was
observed [85]. Thus, as in children, additional training may

promote nap-dependent consolidation in older adults.

Motor learning improvements have primarily been associ-
ated with sleep spindles in the nap. Motor sequence perfor-

mance gains over a nap positively correlated with sleep spin-

dle count [81] and spindle density [74,76]. Spindle count in
naps was found to be lower in children and not associated with

nap-dependent motor learning improvements [81]. Compared

to young adults, older adults showed shorter sleep spindle
duration, and spindle density was associated with over-nap

activation change in brain areas involved in earlier stages of
motor learning [85]. In a combined sample of young and older

adults, increased density of sleep spindles in a nap following

motor learning compared to a baseline nap mediated the rela-
tionship between thalamo-cortical white matter integrity and

over-nap performance improvement in motor sequence learn-

ing [89]. Thus, white matter integrity may be essential for
sleep spindle activity that consolidates motor learning.

Types of Naps and Nap Function

Naps can be classified based on the motivation for the nap [7,

90], and nap function and physiology may vary based on this
motivation. For instance, recovery naps are naps that are ini-

tiated because of prior sleep loss. These naps are thus likely to

be longer and contain more REM sleep than naps taken to
prepare for upcoming sleep loss (prophylactic naps) and naps

taken for pure enjoyment (appetitive naps). Essential naps,

those due to sickness or inflammation, may be physiologically
distinct. Though not tested in humans, mice given influenza

virus show increases in NREM sleep and delta power and
decreases in REM sleep [91]. Increases in NREM sleep during

illness may be important for immune system response [92].

Finally, fulfillment naps, which are taken to meet a high sleep
need, are also likely to be physiologically distinct from a nap

of a rested person with less sleep need (e.g., an appetitive nap

or laboratory-based nap). For instance, reflecting sleep need, a
fulfillment nap would be expected to contain more slow wave

activity, a marker of homeostatic sleep pressure [93].

Studies comparing the nap benefit for habitually napping
children, for whom naps arefulfillment naps, and non-

habitually napping children, for whom naps are experimental

and thus like appetitive naps, find that the benefits of naps for
memory are similar across these two nap types. That is, de-

clarative memories were similarly protected by the nap for

habitually and non-habitually napping children [20].
Likewise, the delayed benefit of the nap on emotional memory

consolidation was similar for habitually and non-habitually

napping children [63]. Importantly, what differed for both
studies was the damage from staying awake for a comparable

interval. Memories decayed to a greater extent over wake for

habitually napping children compared to performance of non-
habitually napping children. Thus, fulfillment naps in young

children may be necessary to prevent memory loss throughout

the day. One possible explanation for these naps is that the
hippocampus is still developing in the first years of life and

needs to“offload”its encoded memories more frequently.

Indeed, we found larger hippocampal volume in the CA1
subfield in children who were habitual nappers compared to

non-habitual nappers, suggesting the hippocampus is more

mature (from synaptic pruning) in non-habitually napping
children [94]. In more mature children, the hippocampus is

capable of storing memories over the day without interference
from ongoing learning.

In young adults, half of whom report napping at least once

per week, the most commonly endorsed reason for napping is
for restorative/recovery purposes (e.g., feeling tired and/or not

getting enough sleep the previous night), whereas higher fre-

quency of napping is associated with appetitive reasons (e.g.,
enjoying napping, feeling better with a nap; [5]). Thus, where-

as habitual naps in children are fulfillment naps, habitual naps

in young adults appear most often to be appetitive. Increased
frequency of napping has been associated with larger amounts

of light sleep (NREM1 and 2) and smaller amounts of SWS in

the nap [95]. Compared to a wake group, participants who
regularly napped (at least once per week) received a nap ben-

efit on perceptual learning whereas those who rarely or never

napped did not receive a nap benefit [5]. Regular nappers had
more sleep spindles in NREM2 sleep, and improvement over

the nap was positively linked to spindle density in this group

but negatively associated with spindle density in non-nappers.
On the other hand, slow oscillation power was positively as-

sociated with improvement in non-nappers but not in regular

nappers. In a brief (~ 15 min) nap, NREM2 spindle density
was linked to post-nap performance in motor learning in ha-

bitual nappers but not non-habitual nappers [96]. Thus, due to

differences in nap physiology, habitual (appetitive) young
adult nappers may benefit more from naps on tasks that rely

on NREM2 sleep physiology than individuals who rarely or

never nap. Though the effect of nap frequency on declarative
memory consolidation has not been tested in young adults,

habitual nappers may be expected to benefit less than non-
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habitual nappers given evidence of less SWS in the former
group.

In older adults, increased daytime sleepiness and napping

can often be considered essential napping, as this pattern is
frequently associated with pathological conditions including

cognitive impairment [7,97,98]. However, habitual naps of

moderate length have been linked to preserved cognition in
some instances, particularly in healthy older adults [99,100].

The effect of nap frequency on nap-related memory consoli-

dation has not been tested in older adults. However, given that
experimental naps, akin to appetitive naps, provide at least a

limited memory benefit on some tasks, appetitive napping

may provide an opportunity to improve cognition in aging.
For example, in healthy older adults, a daytime nap had no

adverse effect on subsequent overnight sleep and led to im-

provement on multiple indices of cognitive and psychomotor
performance on both the nap day and subsequent day [101].

Conclusions

Naps can be beneficial for learning at all ages. The benefit for
declarative learning is most reliable in children and young

adults and declines with aging. This pattern may be due to

reductions in SWA in naps with aging, which in turn may
be related to reduced sleep pressure [102]and/orgraymatter

[103] with aging. The effect of napping on emotional memory

has rarely been studied in children and older adults. However,
given that both SWS and REM sleep may contribute to as-

pects of emotional memory consolidation, a longer nap may

be needed, and an immediate nap benefit may be most prev-
alent in young adults who are most likely to obtain sufficient

amounts of both SWS and REM sleep in their naps. A nap

without sufficient SWS and/or REM sleep may still impart a
delayed benefit that emerges after subsequent overnight sleep,

as was observed in children [63]. A nap benefit for motor

procedural learning is reliable in young adults but appears
reduced in children and older adults. This pattern may be

due to age differences in sleep spindle properties. However,

when children and older adults get extra training [81,85]or
the addition of subsequent overnight sleep [84,87], a nap

benefit can emerge. Finally, sleep architecture and memory
benefits may vary to some extent with the type (and timing)

of naps. Fulfillment naps are needed in young children to

prevent memory loss throughout the day. In young and older
adults, appetitive napping may provide limited memory ben-

efits in addition to other cognitive benefits.
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