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Abstract. Neutron star mergers (NSMs) are rapid neutron capture (r-process)
nucleosynthesis sites, which eject materials at high velocities, from 0.1c to as high
as 0.6c. Thus the r-process nuclei ejected from a NSM event are sufficiently energetic
to initiate spallation reactions with the interstellar medium (ISM) particles. With
a thick-target model for the propagation of high-speed heavy nuclei in the ISM, we
find that spallation reactions may shift the r-process abundance patterns towards solar
data, particularly around the low-mass edges of the r-process peaks where neighboring
nuclei have very different abundances. The spallation effects depend both on the
astrophysical conditions of the r-process nuclei and nuclear physics inputs for the
nucleosynthesis calculations and the propagation process. This work extends that
of [Wang et al.(2019)] by focusing on the influence of nuclear physics variations on
spallation effects.

r-process, nucleosynthesis, nuclear reaction cross sections, nuclear

abundances, compact binary stars
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1. Introduction

The rapid neutron capture process (r process) is one dominant nucleosynthesis
avenue for heavy elements, especially for those heavier than the iron group
[Burbidge et al.(1957), Cameron(1957)]. In the r process, rapid neutron capture pushes
material far from stability and shapes the characteristic abundance pattern with
three distinct peaks (at mass numbers A ~ 80, A ~ 130, and A ~ 196). These
peaks are clearly seen in the abundance pattern of our solar system [Lodders(2003),
Sneden et al.(2008)], where approximately half of the heavy elements have an r-process
origin.

NSMs are one confirmed site of r-process nucleosynthesis [Abbott et al.(2017a),
Abbott et al.(2017b)], with the kilonova signal from the multi-messenger event
GW170817 which indicated lanthanide production from a NSM [Kasen et al.(2017),
Cowperthwaite et al.(2017)].  The r-process nuclei ejected from NSMs are ex-
pected to travel with high speed that ranges from 0.1¢ to as high as
0.6¢, based on kilonova models [Li, & Paczyniski(1998), Tanaka & Hotokezaka(2013),
Kasen et al.(2017), Rosswog et al.(2018), Wollaeger et al.(2018)], and NSM sim-
ulations for a dynamical ejecta [Bauswein et al.(2013), Hotokezaka et al.(2013),
Rosswog et al.(2013), Endrizzi et al.(2016), Lehner et al.(2016), Sekiguchi et al.(2016),
Rosswog et al.(2017)] or a viscous and/or neutrino-driven wind [Surman et al.(2008),
Chen & Beloborodov(2007), Dessart et al.(2009), Wanajo et al.(2014), Just et al.(2015),
Perego et al.(2014), Martin et al.(2015), Siegel & Metzger(2018)].

What happens if these energetic heavy particles ejected from a NSM are traveling
through the ISM? Obviously these particles would interact with the ISM and they
are sufficiently energetic to initiate spallation: nuclear fragmentation processes in
which a heavy nucleus emits one or more nucleons, thus reducing its atomic weight.
This interaction is well studied in the context of cosmic rays. The effect of
spallation on the cosmic-ray abundance pattern is to “fill in the valley” at Li,
Be, and B, at the expense of a small reduction in the neighboring CNO peak
[Meneguzzi et al.(1971), Duncan et al.(1992), Fields et al.(1994), Higdon et al.(1998),
Lemoine et al.(1998), Reeves, Fowler & Hoyle(1970), Walker, Viola & Mathews(1985),
Ramaty et al.(2000), Fields et al.(2000), Suzuki & Yoshii(2001)].  Thus, spallation
reactions may also influence the overall r-process nucleosynthesis yields from a NSM
in a similar way.

There are many uncertainties in r-process nucleosynthesis, including nuclear
inputs for unstable nuclei, and astrophysical conditions of the merger event
[Mumpower et al.(2016), Kajino & Mathews(2017)]. These uncertainties bring in the
large variations around the second peak (A ~ 130) and third peak (A ~ 196) of r-
process abundance patterns, which generally don’t match the solar data well. So in this
paper, we investigate the effect of spallation on the shapes of the r-process abundance
peaks produced in fast ejecta from a NSM event, and test whether spallation could
alleviate the mismatch between simulation results and solar data. In doing so, we
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explore the impact with different nuclear physics inputs and astrophysical conditions.

The next section will briefly introduce the methods of our spallation calculation.
Spallation results for r-process abundances calculated with different astrophysical
and nuclear physics inputs are presented in Section 3. In Section 4, further
discussions and conclusions are given. For detailed model construction and results,
see [Wang et al.(2019)]. This paper mainly investigate the influence of nuclear physics
variations on spallation effects, with comparison of different theoretical calculations for
spallation cross-sections, compared with [Wang et al.(2019)].

2. Method

To investigate the potential influence of spallation on r-process abundance patterns, we
first generate initial abundance patterns of r-process nuclei ejected from a NSM using the
nucleosynthesis network code PRISM [Mumpower et al.(2016), Mumpower et al.(2017),
Mumpower et al.(2018)]. We then adopt a thick-target model for propagation of the
r-process nuclei through the ISM, which assumes all the r-process nuclei will finally
interact with the ISM and the ionization loss dominates the total energy loss mechanism,
obtaining new abundances of the r-process nuclei after spallation. Detailed assumptions
and calculations are found in [Wang et al.(2019)].

2.1. Equations

We adopt the transport equation with a thick-target approximation [Wang, & Fields(2018)]
for the propagation of the r-process nuclei :

O:Ng ~ Op(bgNg) +qg . (1)

Here and throughout, F denotes kinetic energy per nucleon in MeV, which depends only
on the relative velocity between the projectile and target and thus is the same viewed
from either frame. The instantaneous number of propagated particles per energy per
nucleon at time ¢ is Ng(F,t) = dN/dE, thus Ng dE is the number of the propagated
ejecta nuclei with kinetic energy in the range (E, E + dFE). The source function is
qp = dN/dEdt and by = —dFE/dt is the rate of energy loss (per nucleon). Velocity of
the ejecta relative to the ISM is v(E) = [1 — (1 + E/(m,c?))"?]"%c, m,, is the proton
mass, such that for v(E£) = 0.3¢, £ ~ 45.29 MeV. We assume that the only important
loss mechanism is the energy loss due to ionization and spallation reactions.

We calculate a set of spallation reactions ¢ + 7 — ¢ + - - - in which projectile i and
target j nuclei give rise to products ¢, and the number fraction of the total spallation-
produced nuclei £ at time ¢; to the initial projectile ¢ at time ¢ is:

o (B')v(E') dE'

N.@(t ) Eo 2
¢ — Z — —Z‘j f — . Y
=2 =2y, zj:y]/ K

i, E’ (ngas)/ngas

, (2)

where Fj is the initial kinetic energy per nucleon of the projectile nuclei ¢, which is
the maximum kinetic energy of the nuclei. E,(t;) is the kinetic energy per nucleon
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of the projectile nuclei ¢ at time ¢y when the nuclei are no longer energetic enough to
fj(E) is the cross section for the production of nuclei
¢ by the spallation reaction between ejecta nuclei ¢ and ISM nuclei j. The weighting
Yj = N;/Ngas 1s the fraction by number of ISM particles in the form of j € (H, He), with

have spallation reactions. Here o

Ngas 1S the total number density of ISM particles.

For each nucleus ¢ interacting with ISM nucleus j through spallation reaction
i+j — (+---, we calculate f{; (A, = [A;—n, A;—0], n € (10,25)). Because the particle
number during propagation is conserved, nucleus i (abundance Y;) produces the same
number of nucleus ¢ (abundance Y}), thus the loss of nucleus i during the propagation
is at the same number as the production of all the nucleus from the spallation reaction
of nucleus i, i.e., fiprop loss = 2 (Yp ffp + Yo ffa). The new abundance after spallation is

¢

therefore

Y;,spallation = K(l - fi,prop loss) + Z(ypf];pyk) + Z(yaf]i,ayk) . (3)
k k

To compare the new abundance pattern with the initial r-process abundance pattern,
we compute the spallation abundance change ratio by

E,change = (Y;,Spaﬂation - Y;)/Y:L (4)

2.2. Spallation cross-sections

We need to know the cross sections for nuclear spallation in order to investigate
the spallation effects, based on Equation (2). However, there are little experimental
data available for spallation reactions between a proton or “He and a target
nuclide which is heavier than iron, in the energy range smaller than < 100 MeV.
Therefore we adopt the theoretical spallation/inelastic cross sections from TALYS/1.9
[Koning & Rochman(2012), Koning & Rochman(2019)]i with default nuclear inputs.

Left panel in Figure 1 shows the cross sections for each spallation channel
196Pt(p,x). The relevant energy range here is roughly 5 — 100 MeV; moving from
high projectile energy per nucleon to low within this range, the dominant creation
channel shifts from producing A = 185 to A = 195 nuclei. Spallation reactions change
a projectile nucleus to a new nucleus with nearby but smaller mass number. Thus we
would expect spallation to shift the r-process abundance pattern peaks to smaller mass
numbers, which is confirmed by the results presented in Section 3.

Different theoretical calculations can give large variations in the spallation
cross-section values. Right panel in Figure 1 shows the comparison of the
cross-section values generated for the spallation channel Y°Pt(p, a)!%Ir by TALYS
and NONSMOKER calculations [Bao et al.(2000), Rauscher, & Thielemann(2001),
Rauscher(2010)]§. TALYS contains a variety of options for input nuclear physics such as
nuclear level densities, gamma-strength functions, and optical potentials. We compare

I https://tendl.web.psi.ch/tendl 2019/tend12019.html
§ https://nucastro.org/nonsmoker.html
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Figure 1. Left: Individual cross sections for each spallation channel for the reaction
between ?°Pt and a proton, generated with TALYS. The colored lines show the cross
sections for the individual channels '%°Pt(p, z)A, where A is the mass number of the
final nucleus after spallation. As the projectile energy per nucleon increases, the
dominant spallation production channel moves from A ~ 195 (dark red circles) to
smaller mass numbers, with a wide range of product nuclei at the highest energies.
Right: Comparison of two theoretical calculations from TALYS (default inputs: blue
solid line; JLM microscopic optical model potential: blue dotted line; microscopic level
densities from Goriely’s table & Goriely’s hybrid model for gamma-strength functions:
blue dash-dot line) and NONSMOKER (red line) for the cross section values for an
example individual spallation channel Pt (p, a)1%Ir.

the calculation results from default models with results from variations in available
inputs, finding that the calculated cross-section values differ by at most 10 percent.
However, the cross section value for the spallation channel obtained from NONSMOKER
calculations differs from TALY'S by more than an order of magnitude. Thus, we calculate
spallation effects using TALYS cross sections (orarys) and with cross sections ten times
larger (10 X orarys) to roughly account for these uncertainties.

3. Results

Nucleosynthesis calculation We use the nuclear reaction network code PRISM
(Portable Routines for Integrated nucleoSynthesis Modeling) [Mumpower et al.(2016),
Mumpower et al.(2017), Mumpower et al.(2018)] to perform the 7r-process nucle-
osynthesis calculations to obtain the abundance patterns for the initial r-
process nuclei ejected from a NSM. Details of our baseline nucleosynthesis cal-
culation set, are found in [Wang et al.(2019)].  To investigate the effects of
nuclear physics variations on our spallation results, we also adopt [ decay
rates of [Marketin et al.(2016)] and neutron capture rates from NONSMOKER
[Bao et al.(2000), Rauscher, & Thielemann(2001), Rauscher(2010)]||, in addition to
the baseline neutron capture rates calculated by the Los Alamos National Labo-

| https://nucastro.org/nonsmoker.html
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ratory (LANL) statistical Hauser-Feshbach code of [Kawano et al.(2016)] and base-
line 5 decay rates from [Moller et al.(2003)]. We adopt two kinds of NSM trajecto-
ries to compare astrophysical conditions: cold dynamical ejecta [Goriely et al.(2011),
Mumpower et al.(2018)] and a low entropy accretion disk wind which is parame-
terized similar to conditions in [McLaughlin & Surman(2005), Surman et al.(2006),
Just et al.(2015), Martin et al.(2015), Wanajo et al.(2014), Siegel & Metzger(2018)].

Spallation effects on r-process nuclei ejected from a NSM depend both on
the astrophysics conditions and the nuclear physics inputs for the nucleosynthesis
calculations and the propagation process. In this work, we examine the effects of
spallation on the A ~ 196 peak (third peak) region of r-process abundance patterns for
disk wind and dynamical ejecta, and we explore how the predicted influence of spallation
varies with the input nuclear physics. A more complete study, including spallation of
A ~ 130 peak nuclei and a full NSM simulation, is described in [Wang et al.(2019)].

3.1. Variations in Astrophysical Conditions

We first explore spallation effects on our baseline r-process abundance pattern with
different astrophysical conditions: different astrophysical trajectories and different initial
velocities.

Figure 2 compares the abundance patterns and abundance change ratios in the
third r-process peaks after spallation for the baseline cold dynamical ejecta (right)
and hot disk wind conditions (left). We can see that, for both trajectories, spallation
moves the r-process abundance pattern to lower mass numbers, towards the solar data,
and smooths the shapes at the left side of the peaks while leaving the right side of
the peaks largely unchanged. In addition, hotter r-process freeze-out conditions are
characterized by more late-time neutron capture, which produces abundance peaks that
can be narrower than and offset from solar data, as shown in the blue lines of Figure 2.
Thus, the effects of spallation are much larger with the sharper peak; the average positive
spallation abundance change is ~ 200% for the wind example versus ~ 40% for the cold
dynamical ejecta example with an initial velocity of 0.4c. Spallation effects are bigger
for steeper abundance features.

Figure 2 also shows the spallation effects with different initial ejecta speeds, varying
from 0.2c to 0.5¢ for both the dynamical ejecta and disk wind conditions. We can see
that the influence of spallation strongly depends on the initial velocity of the r-process
ejecta, and the abundance pattern changes are non-negligible for ejecta of 0.3c or faster.
For the dynamical ejecta as an example, at 0.3¢, spallation brings an ~ 8% on average
of the abundance change; at 0.5¢, the abundance change can be as high as a factor of 2
for some nuclei.

3.2. Variations in Input Nuclear Physics

In Section 3.1, we have considered r-process ejecta traveling through the ISM with
different (but still uniform) initial velocities and different astrophysical conditions for
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Figure 2.  Spallation effects in the third peak (180 < A < 200) region for the
baseline disk wind (left) and dynamical ejecta (right) simulations assuming initial
ejecta velocities of 0.2¢, 0.3¢, 0.4c and 0.5¢. The initial r-process abundance pattern
from the PRISM simulation is shown in blue and the black points are the solar r-
process residuals [Arnould et al.(2007)]. The solar data scales to the 1Pt abundance
from the initial r-process simulation. Upper panels: Abundances before (blue lines)
and after (red/orange lines) spallation. Lower panels: The abundance change ratio
due to spallation as defined in Equation (4).

the r-process nucleosynthesis calculations. Here we repeat the analysis of Section 3.1
with different choices of nuclear physics adopted for the nucleosynthesis and propagation
process, while keeping the initial velocity of the ejecta at v = 0.3¢ for the same disk
wind trajectory.

As discussed in Sections 2.2, different theoretical calculations result in different
spallation cross-section values, thus affecting the spallation abundance changes based on
Equation (2). Furthermore, the r-process proceeds through a region of the nuclear chart
where the nuclear properties are highly uncertain [Mumpower et al.(2016)]. Different
choices of nuclear data yield different initial r-process patterns. Therefore the choice of
nuclear data in our calculation leads to a variance in the potential influence of spallation.

Figure 3 compares the abundance patterns and abundance change ratios after
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Figure 3. Spallation effects in the third peak (180 < A < 200) region for the baseline
hot disk wind simulations assuming initial ejecta velocity of 0.3¢c, with two choices
of § decay rates (Left: baseline calculation rates from [Moller et al.(2003)]; Right:
rates from [Marketin et al.(2016)]) and two choices of spallation cross sections, oraLys
(red dashed line) and 10 x oparys (orange dotted line). Upper panels: Abundances
before (blue lines) and after (red/orange lines) spallation, compared to solar data as
in Figure 2. Lower panels: The abundance change ratio due to spallation as defined
in Equation (4).

spallation in the third r-process peaks for the baseline hot disk wind conditions
with § decay rates from [Moller et al.(2003)] (baseline nuclear rates; left) and from
[Marketin et al.(2016)] (right), which assume an initial ejecta velocity of 0.3¢, and
spallation cross sections from TALYS (orarys; red line) and 10 X orarys (orange line).
We can see that the spallation effect increases significantly with an increased spallation
cross section. Compared with baseline rates, 5 decay rates from [Marketin et al.(2016)]
(MKT) act to broaden the third peak and move the peak position towards solar,
resulting in a flatter abundance shape and smaller abundance changes due to spallation
(Baseline: ~ 30% in average; MKT: ~ 8% in average). We also repeat our
spallation calculation starting with abundance patterns produced with neutron capture
rates calculated with NONSMOKER [Bao et al.(2000), Rauscher, & Thielemann(2001),
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Rauscher(2010)]. which also bring a broader and flatter third peak and thus a smaller
spallation effect (~ 20% in average) than baseline calculation.

4. Discussions and Conclusions

In this paper, we present a thick-target spallation model to investigate how the r-process
abundance pattern produced in fast NSM ejecta is influenced by spallation reactions with
ISM nuclei. We find spallation to have non-negligible effects on relative abundances in
the A ~ 130 and A ~ 196 r-process peak regions for material ejected with speeds above
0.2c. The effects of spallation are to move the peak abundances towards lower mass
numbers and to smooth the slope of the left side of the peaks. The extent to which
spallation reactions can reshape the r-process peaks depends on the relevant spallation
cross sections, the initial abundance pattern and the initial bulk velocity of the ejecta,
and here we explore different astrophysical conditions of the r-process ejecta and different
choices of input nuclear physics. We find in cases where the initial abundance peaks are
sharper or offset from solar data, spallation can partially or fully alleviate the mismatch.

Our work calls for new measurements of spallation reactions of r-process heavy
nuclei at energy range ~ 5 — 100 MeV, which will test the importance of spallation
in shaping NSM r-process abundance patterns. The most important spallation targets
are 18Pt ¥7Au, Pt and %5Pt, based on our sensitivity study of the spallation cross-

sections [Wang et al.(2019)]. These measurements could be within reach for appropriate
facilities such as FRIB, FAIR and RIKEN.
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