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Abstract—Graphs or networks are a natural way to analyze
inter-related set of entities. When these entities are associated
with a diverse number of features, each denoting a specific
perspective, then the representation can be simplified by forming
a network of layers (one for each feature) or multiplexes.
Vertices with high centrality values in the multiplexes represent
the most influential vertices. However, detecting central entities
in multiplexes for different combinations of features becomes
computationally expensive, as the number of layers increases.

In this paper, we address the task of efficiently identifying
high centrality vertices for any conjunctive (AND) combination
of features (as represented by multiplex layers.) We propose
efficient heuristics that only use results from individual layers to
identify high degree and high closeness centrality vertices. Our
approaches, when applied to real-world, multi-featured datasets
such as IMDb and traffic accidents, show that we can identify
the high centrality vertices with an average accuracy of more
than 70-80% while reducing the overall computational time by
at least 30%.

Index Terms—Multiplexes; Graph Analysis; Degree Centrality;
Closeness Centrality; Lossless Composability;

I. INTRODUCTION

Networks (or graphs) are used to represent pair-wise rela-

tionship between entities in a system. In many cases, entities

may be connected by not one but multiple relations. For exam-

ple, a pair of traffic accidents may be related if they occurred in

the same location, or under the same light condition, weather

condition etc. Similarly, two actors may be related if they acted

in the same genre, such as action, comedy, etc. When multiple

features are present, then the relationship pertaining to each

feature can be represented as a network. Multiplexes are thus a

network of networks, where each individual network (termed

layer) denotes a distinct relationship (through edges) based on

a feature among the same set of entities (or nodes.)

Each individual layer of a multiplex, represents the rela-

tionship corresponding to a single feature. While there exist

several algorithms for analyzing individual networks, the chal-

lenge in analyzing a multiplex is that the analysis has to be

recomputed for each combination of layers.

In this paper, we concentrate on finding high degree

and closeness centrality vertices, also called hubs, in AND-

composed layers of multiplex networks. AND-composed lay-

ers denoting the conjunction of perspectives can be obtained by

combining the individual layers such that only edges that are
present in every individual layer are retained. High centrality

vertices in the accident dataset can help us in identifying the

most dominating traffic accident locations with respect to poor

lighting conditions and bad roads and this information can

be used to devise appropriate accident prevention techniques.

However, in order to obtain a holistic view of the multiplex

system with n layers, we have to generate, store and analyze

a total of 2n − 1 networks, leading to extremely expensive

operations for multiplexes with large number of layers (for

example the network in [4] has 300 layers.)

Problem Formulation and Contributions: Given this

challenge of efficiently finding hubs in multiplexes, the main

problem we aim to solve is as follows. Given a dataset with

multiple entities that are related via a number of distinct fea-

tures, how can we efficiently find the most influential entities

based on any conjunctive (AND) combination of features.

To solve this problem, we use multiplexes for representing

such multi-featured datasets and present elegant techniques for
estimating the hubs for any conjunctively composed multiplex
layer, without actually constructing that composed layer.

Our main contributions are two-fold. First we show that

finding high centrality vertices in the AND composed mul-

tiplexes, based on only analyzing the individual layers is a

non-trivial problem, and the naive approach of simply taking

the intersection of the hubs from each layer does not produce

accurate results. Second, we present four heuristics (3 for

degree centrality and 1 for closeness centrality) to identify

hubs in the AND-composed using only the hubs detected in

individual layers and their distance-1 neighbors. Our results

show that we can identify the vertices with 70−80% accuracy

while reducing the computation time by at least 30%.

Our proposed methods can be extended to any number of

layers. This approach significantly reduces the complexity of

analyzing the AND-composed network and also the storage as

only n individual layers are constructed and analyzed.

The remainder of this paper is organized as follows: In

Section III we give an overview of how a multiplex is formed

and how to conjunctively combine networks to produce new

AND-composed layers. In Section IV, we detect high degree

and closeness centrality vertices in each layer. We show how

these hub sets vary across different individual and AND-

composed layers. In Section V, we present four heuristics to

improve the accuracy of computing the degree or closeness

centrality based hubs of any conjunctive combination of layers

by using the required layer-wise hubs.

In Section VI, we empirically validate the quality of the hub
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sets generated by executing our algorithms on two diverse data

sets: traffic accidents and IMDb. We use the Jaccard Index

to compare the set of hubs obtained through our heuristics

with the actual set of hubs. We show that our approach can

significantly reduce the computational costs of finding hubs in

the composed networks.

II. RELATED WORK

Recently, significant amount of work has been done in the

area of multilayer networks [3], [11] to handle varying inter-

actions among the same set of entities such as co-authorship

relationship in different conferences [4], citation relationship

across different topics [13], interaction relationships based

on calls/bluetooth scans [9], connection relationships across

different social media platforms [12] and multilayer protein-

protein interactions [8]. Most of this work focuses on overall
multiplex diagnostics by considering the multiplex layers indi-
vidually. However, in order to understand the effect of multiple

features using composition of individual multiplex layers, we

need a principled approach to arbitrarily combine features

without having to construct combined layers and analyze them.

Using multiplex representation schemes such as adjacency

tensors [5] are also not efficient as computations based on any

subset of layers will require the loading of the entire multiplex

tensor, thus increasing the computational complexity.

Santra et. al. [15] proposed an approach for efficiently

re-creating communities of any combination of layers by

performing Boolean operations on the communities obtained

from the individual layers. In this paper, we take inspiration

from their work and propose novel cost-effective heuristics

that are able to estimate highly accurate hub sets for any

conjunctive combination of layers.

Degree centrality [10] and closeness centrality [7], [14] have

been used in monoplex (single layer network) to detect high

centrality nodes. There has been work in determining centrality

measures by aggregating all the layers of a multiplex [6] or

performing walks across layers [16]. However, to the best of

our knowledge, the problem of inferring the degree centrality
or closeness centrality hubs of any arbitrary conjunctively
combined network from hubs of individual layers, in a cost-
effective manner, has not been addressed earlier.

III. MULTIPLEXES: A BRIEF OVERVIEW

In this section, we give an overview of how multi-featured

datasets like Internet Movie Database (IMDb) and traffic acci-

dent dataset can be modeled as multiplexes. We also show how

conjunctive composition of layers presents a new perspective

and discuss the benefits of multiplex-based modeling.

Multi-Source or Multi-featured Datasets: In multi-

featured datasets, the relationship between any two entities

can be defined in multiple ways. For example, the interaction

among people can be through various media such as email,

phone conversations, social networking, etc., the similarity

among the accidents can be based on different factors such

as light, weather, road conditions, etc., two actors can be

related based on the different movie genres in which they have

acted together, such as comedy, action, etc. In a multiplex,

the relation due to each feature is represented through a

network. Two vertices are connected if they exhibit a relation

based on feature represented in the network. The networks for

each feature together form a multiplex. The set of entities,

represented by nodes, remains the same in each layer. For

example, Figure 1 (a) shows an accident multiplex depicting

the similarity among 7 accident occurrences based on light

(Ga1) and weather (Ga2) conditions. Similarly, in Figure 1 (b),

the IMDb multiplex depicts the co-actor relationship among 6

actors based on the movie genres, comedy (Gm1) and action

(Gm2). The notations mentioned in Table I have been used to

formalize the various concepts discussed in this paper.

TABLE I
LIST OF NOTATIONS USED FOR DEFINING THE CONCEPTS.

I Set of entities

f Set of features/perspectives

G(Vk, Ek)/Gk The kth layer

uk
i Representative node for ith entity in the kth layer

NBDk(u
k
i ) Set of nodes adjacent to the ith node in the kth layer

degki Degree of the ith node in the kth layer

avgDegk Average degree of the kth layer

cloki Closeness centrality of the ith node in the kth layer

avgClok Average closeness centrality of the kth layer

Vk Set of nodes in the kth layer

(uk
i , u

k
j ) An edge in the kth layer

Ek Set of edges in the kth layer

DHk Set of degree centrality based hubs in kth layer

CHk Set of closeness centrality based hubs in kth layer

Fig. 1. Snapshots of accident and IMDb multiplexes

The distinct co-actor (or accident-accident) connectivity in

each layer shows that every genre (or factor) presents a unique

way of analyzing the same set of actors (or accidents). For

instance - accident 4 and accident 7 were not caused by the

same lighting conditions, but the weather conditions at the

time of occurrence were similar. Similarly, actor 3 is one of the

most paired actors in the action genre, whereas in the comedy

genre actor 6 has worked with most of the other actors.
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Composition of Multiplex Layers: In addition to analyzing

individual layers, it is also important to study the effect of

different combinations of features on the given set of entities.

In this paper, we compose any two individual layers in a

conjunctive (AND-based) manner, i.e. link will exist in the

composed layer if it exists in both the individual layers.

Formally, if Gx and Gy are two individual layers of a

multiplex, then the AND-composed layer, GxANDy , will be

constructed by including the edges that are part of both Gx

and Gy . For example, Figure 2 (a) shows the AND-composed

layer, Ga1ANDa2 generated by linking those accidents that

have similar lighting and weather conditions at the time of

occurrences. Similarly, in Figure 2 (b) the AND-composed

layer Gm1ANDm2 denotes the co-actors present in both the

comedy layer, Gm1 and the action layer, Gm2. Any AND-

composed layer will have same set of nodes as its constituent

layers. However, the upper bound on the number of edges,

|EiANDj |, will be min(|Ei|, |Ej |). The AND-composition can

be extended to multiple layers of the network.

Fig. 2. AND Compositions using the individual layers from Figure 1

Benefits of Multiplex-based Modeling: Modeling of multi-

featured data as multiplexes allows ease of handling the
dataset incrementally through the addition of nodes (when a

new accident or actor is encountered), edges (to represent the

new entity’s relationships with the earlier entities) or layers (to

account for fresh perspectives). Moreover, a latest snapshot of

multiplex can be easily maintained through the deletion of

obsolete entities (nodes), relationships (edges) or perspectives

(layers). Further, this modeling facilitates the study of rela-

tionships among the entities with respect to individual as well

as combination of different features.

IV. HUBS (HIGH CENTRALITY VERTICES) ACROSS

MULTIPLEX LAYERS

Entities vary in their influencing capability with respect

to the occurrence of events, interaction networks and so on.

For example, a particular person might be considered highly

influential if he/she is connected to a large majority of people

on Facebook. Thus, an advertisement agency will prefer this

person in order to enhance their information transfer. However,

he/she may not be equally influential on LinkedIn. Thus, in

case of multi-featured data, the influencing capability for a

particular entity may vary substantially with features. With

respect to multiplexes, this translates to generating the hubs

across different individual or AND-composed layers.

Degree Centrality (degki ): The number of nodes adjacent to

the ith vertex in the kth multiplex layer defines a vertex’s layer

specific degree. The higher is the degree of a node, greater is

its influence on the immediate neighborhood. We define high

centrality nodes or hubs in the kth layer (or feature) as the

ones that have a degree greater than the average degree of the

layer, avgDegk, which is computed by
2|Ek|
|Vk| . Figure 3 (a)

encircles the accident nodes in red that have been detected as

hubs due to their greater than average degree.

Fig. 3. Variation in the Degree and Closeness Centrality based Hubs across
Different Individual and Composed Multiplex Layers

Closeness Centrality (cloki ): The closeness centrality of a

node measures how close are the other nodes in the network

from it. Therefore, closeness centrality of the ith vertex in the

kth multiplex layer is defined by the average of the summation

of reciprocal of shortest paths between the ith node and

every other node in the layer. We use the valued closeness

centrality variant proposed in [7], [14] as any multiplex

layer need not be comprised of a single connected component.

Therefore, cloki = 1
|Vk|−1

∑|Vk|
j=1,j �=i

1
d(uk

i
,uk

j
)
, where d(uk

i , u
k
j )

is the shortest path between the ith and the jth vertex in the

kth layer. The higher is the closeness centrality of a node,

closer it is from all other nodes in the layer and greater will

be its influence on the network. We define the high centrality

nodes or hubs in the kth layer (or feature) as the ones that

have their closeness centrality metric value greater than the

average closeness centrality of the layer, avgClok, which is

computed by

∑|Vk|
i=1

cloki
|Vk| . Figure 3 (b) encircles the actor nodes

in green that have been detected as hubs based on closeness

centrality.

Characteristics of Hubs in the Composed Layers: In

Figure 3, we show using simple examples that finding hubs of

the composed layer from the individual hubs is a non-trivial

problem. In some cases, such as for actor 4 (or accident 6) a
vertex may be a hub in the composed layer even if it is not
a hub in both the layers. Further, the actor 1 and accident 7

illustrate that a node that is a hub in both individual layers
may not be a hub in the AND-composed layer. Moreover, there
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can be some entities like actor 2 and accident 2 that are hubs
in the AND-composed layer in spite of not being a hub in
either of the individual layers. This is due to the fact that edge

connectivity varies across individual and composed layers,

thus effecting the values of degree centrality and closeness

centrality. Our goal is to develop heuristics that can take into

account these connectivity patterns and identify the hubs in the

AND-composed layer using the hubs of the individual layers.

V. IDENTIFYING HUBS IN AND-COMPOSED MULTIPLEXES

In this section, we introduce four heuristics to identify the

degree or closeness centrality hub sets in the AND-composed

layer using information about the hubs in the individual layers.

Our techniques eliminate the need to generate, store and

compute degrees and shortest paths for the AND-composed

layers, thus reducing the computational complexity.

For the following discussion, let us assume the two indi-

vidual layers to be Gx and Gy , with degree centrality based

hub sets, DHx and DHy , respectively, and closeness centrality

based hub sets, CHx and CHy , respectively. Further, let us

suppose that DHxANDy and CHxANDy are the actual degree

and closeness centrality based hub sets, respectively, for the

AND-composed layer, GxANDy .

A. Estimating Hubs based on Degree Centrality

As shown in Figure 3 (a), a) a node that is not high degree in

the individual layers may share enough neighbors across layers

to become a hub in the AND-composed layer, whereas b) the

node that is a hub across layers may lose its hub property after

AND-composition due to the absence of common neighbors.

Therefore, the naive way of taking the intersection of layer-

wise hubs to find the hubs in the AND-composed layer will

generate a large number of false positives and false negatives.

Here we propose and discuss three heuristics to estimate

degree centrality based hub set of the AND-composed layer.

Heuristic DC1: To reduce the false positives, we es-

timate the average degree of the AND-composed layer,

avgDegxANDy
est . Note that the upper bound on the average

degree in the AND-composed networks will be the mini-

mum average degree from the individual layers. Therefore,

avgDegxANDy ≤ min(avgDegx, avgDegx). We set the es-

timated average degree of the AND-composed network to this

upper bound: avgDegxANDy
est = min(avgDegx, avgDegx).

We first obtain the vertices from the intersection of the hubs

in the individual layers, i.e. all nodes u ∈ DHx ∩ DHy .

We then check whether these nodes have a common set

of one hop neighbors in their individual layers. The larger

the set of common neighbors, the greater the degree in the

AND-composed network. Formally we only retain the vertex

u as a hub if |NBDx(u) ∩ NBDy(u)| > avgDegxANDy
est ,

where NBDx(u) and NBDy(u) denote the sets of one hop

neighbors of vertex u in Gx and Gy , respectively.

Heuristic DC2: In the above heuristic, if avgDegxANDy
est

is much larger than avgDegxANDy , then a common hub

in spite of sharing enough neighbors across the individ-

ual layers will not be generated as a hub in the com-

Algorithm 1 Procedure for Heuristic DC1

Require: DHx, avgDegx, DHy , avgDegy , DH ′
xANDy = ∅

1: avgDegxANDy
est = min(avgDegx, avgDegx).

2: for all u ∈ DHx do
3: NBDx(u) ← one hop neighbors of u in Gx

4: end for
5: for all u ∈ DHy do
6: NBDy(u) ← one hop neighbors of u in Gy

7: end for
8: for all u ∈ DHx ∩DHy do
9: if |NBDx(u) ∩NBDy(u)| > avgDegxANDy

est then
10: DH ′

xANDy ← DH ′
xANDy ∪ u

11: end if
12: end for

posed layer. A better estimate for the AND-composed layer’s

average degree is obtained by maintaining the degree of
each vertex in every individual layer. In the AND-composed

layer, the number of neighbors for any vertex will be at

most that vertex’s least degree among all individual lay-

ers. That is, degxANDy
i ≤ min(degxi , deg

y
i ). This implies,

avgDegxANDy ≤ 1
|vx|

∑Vx

i=1 min(degxi , deg
y
i ). We set the es-

timated average degree of the AND-composed network to this

upper bound, avgDegxANDy
est = 1

|vx|
∑Vx

i=1 min(degxi , deg
y
i ).

We execute the steps in heuristic DC1 with this improved

estimate. This method provides a better accuracy as compared

to DC1, but the computational cost increases.

Heuristic DC3: Heuristics DC1 and DC2 reduce false

positives but cannot handle false negatives. Specifically they

miss out vertices that are hubs in the AND-composed layer

but are not hubs in at least one of the individual layers. For

handling this case, we maintain few low degree nodes from

each individual layer that have a degree close to the average

degree. That is, if degxi > (1 − ε)avgDegx, then insert the
vertex in DHx, where 0 ≤ ε ≤ 1, and we similarly update

DHy . Therefore, executing heuristic DC2 with these updated

layer-wise hub sets, will also generate those nodes that are

non-hubs in at least one of the individual layers, but share

enough neighbors across layers to become hubs in the AND-

composed layer. The higher is the value of ε, more accurate

will be the estimated hub set. This increased accuracy comes at

a cost of maintaining more overhead information. Thus, from

DC2 and DC3 it is evident that there is a trade-off between

accuracy and savings in computational costs.

Discussion: If the topology of the individual layers, Gx and

Gy is similar, then most of the layer-wise hubs will also be

hubs in the AND-composed networks and the naive approach

can give a good estimation. Also note that if the average degree

estimate for the AND-composed layer is not close enough to

the actual average degree then even an ε value of 1 may not

give 100% accuracy due to the exclusion of common hubs and

non-hubs that share more than actual but less than estimated

average degree number of neighbors across layers. Therefore,

the effectiveness of our heuristics depends on the fraction of
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Algorithm 2 Procedure for Heuristic DC3

Require: DHx, degxi ∀ ux
i , avgDegx, DHy , degyi ∀ uy

i ,

avgDegx, ε, DH ′
xANDy = ∅

1: for all ux
i ∈ Vx do

2: if degxi > (1− ε)avgDegx then
3: DHx ← DHx ∪ ux

i

4: end if
5: end for
6: for all uy

i ∈ Vy do
7: if degyi > (1− ε)avgDegy then
8: DHy ← DHy ∪ uy

i

9: end if
10: end for
11: execute Heuristic DC2 with updated DHx and DHy .

AND-composition hubs that are common to the layers, average

degree estimate and the value of ε.

B. Estimating Hubs based on Closeness Centrality

Closeness centrality depends on the shortest paths between

any two nodes. As shown in Figure 3 (b) that even if a certain

node is closest to all the remaining nodes in the individual

layers, it may not be a hub in the AND-composed layer due

to the absence of common paths between this node and every

other node, that are short enough. Therefore, the naive way of

intersecting the layer-wise closeness centrality based hubs will

generate false positives. We propose and analyze a heuristic

that maintains minimal neighborhood information to estimate

the closeness centrality hubs for the AND-composed layer.

Heuristic CC1: From a high closeness centrality node we

can traverse the entire network in minimum number of hops.

Therefore, if high degree nodes are close to a node, the

chances of this node becoming a high closeness centrality

node increase. Therefore, one way of eliminating the false

positives is to check whether the common closeness centrality

hubs share high degree neighbors across layers.

Based on this observation, we propose the following heuris-

tic. Initially, for every node, u ∈ CHx (or, u ∈ CHy),

we obtain the set of degree based hubs present in its one

hop neighborhood, degNBDx(u) (or degNBDy(u)). We

estimate the degree based hub set for AND-composed layer,

DH ′
xANDy , using one of the heuristics discussed above. We

then obtain the set of common closeness centrality hubs from

CHx and CHy . For each of these vertices, we obtain the

set of those common degree based hubs in the one hop

neighborhood that are also estimated to be hubs in the AND-

composed layer. The larger the size of this set, greater are

the chances of a node to remain a high closeness centrality

node even in the AND-composed layer. Formally, we only

retain a vertex u as a closeness centrality based hub if

|degNBDx(u) ∩ degNBDy(u) ∩DH ′
xANDy| ≥ 1.

Discussion: If the topology of layer Gx is similar to Gy ,

then the shortest paths between most of the node pairs will

be common. In such a case, the naive approach is capable

of generating good hub set estimates of the layer GxANDy .

Algorithm 3 Procedure for Heuristic CC1

Require: CHx, DHx, CHy , DHy , DH ′
xANDy , CH ′

xANDy

= ∅
1: for all u ∈ CHx do
2: degNBDx(u) = ∅
3: for all v ∈ NBDx(u) do
4: if v ∈ DHx then
5: degNBDx(u) ← degNBDx(u) ∪ v
6: end if
7: end for
8: end for
9: for all u ∈ CHy do

10: degNBDy(u) = ∅
11: for all v ∈ NBDy(u) do
12: if v ∈ DHy then
13: degNBDy(u) ← degNBDy(u) ∪ v
14: end if
15: end for
16: end for
17: for all u ∈ CHx ∩ CHy do
18: if |degNBDx(u) ∩ degNBDy(u) ∩ DH ′

xANDy| ≥ 1
then

19: CH ′
xANDy ← CH ′

xANDy ∪ u
20: end if
21: end for

Maintaining information about the alternate paths to every de-

gree based hub beyond 2-3 hops from the closeness centrality

hubs and similar path information about some layer-wise non-

closeness centrality based hubs will improve the accuracy of

the heuristic. However, due to the large overhead costs the

computational time will significantly increase.

C. Estimation of Hubs in k-layer AND Compositions

The input to any of the above heuristics is two hub sets

that may either be the actual hub sets of individual layers or

the estimated hub sets of AND-composed layers. For any 3

layers, Gx, Gy and Gz , the average degree estimation and

neighborhood intersection are both commutative and associa-

tive. Therefore, the four proposed heuristics are also commu-

tative (DH ′
xANDy = DH ′

yANDx, CH ′
xANDy = CH ′

yANDx)

and associative (DH ′
(xANDy)ANDz = DH ′

xAND(yANDz),

CH ′
(xANDy)ANDz = CH ′

xAND(yANDz)). Therefore, to esti-

mate the hub sets of a k-layer AND-composed network, any

heuristic is applied on the k/2 pairs of hub sets, in parallel,

generating k/2 AND-composed hub sets, and so on until

the final estimated set of hubs, corresponding to the k-layer

AND-composed network, is obtained. Thus, in this way for

a multiplex with n layers, the 2n − n AND-composition hub

sets can be estimated by only using n layer-wise hub sets and

minimal overhead information.

VI. EXPERIMENTAL ANALYSIS

In this section we present our experimental results on the

performance of the four proposed heuristics to estimate the hub
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sets of the AND-composed multiplex layers with respect to

accuracy and computational costs. Specifically, we i) construct

multiplexes for datasets from diverse domains, ii) generate the

AND-composed layers and the actual sets of high centrality

nodes, iii) obtain the estimated hub set based on our heuristics

and iv) compute accuracy of the estimated hubs based on the

actual hub set.
Experimental Setup and Datasets: Our codes are imple-

mented in C++ and executed on a Linux machine with 4 GB

RAM and installed with UBUNTU 13.10.
Our experiments are performed on two different multiplexes

built from real-life datasets collected from diverse domains -

UK Traffic Accidents [2], Internet Movie Database - IMDb

[1]. Detailed structure of these multiplexes is as follows:
Accident Multiplex: We use 1000 random road accidents

that occurred in the United Kingdom in the year 2014. This

multiplex has 3 basic layers with respect to Light Conditions

(Domain = {daylight, darkness: lights lit, darkness: lights unlit,

darkness: no lighting, darkness: lighting unknown}), Weather

Conditions (Domain = {fine + no high winds, raining + no high

winds, snowing + no high winds, fine + high winds, raining

+ high winds, snowing + high winds, fog or mist, other}) and

Road Surface Conditions (Domain = {dry, wet or damp, snow,

frost or ice, flood, oil or diesel, mud}). An edge in any layer

represents that the corresponding accidents occurred within 10

miles of each other and are similar based on light conditions

(layer Ga1), weather conditions (layer Ga2) or road surface

conditions (layer Ga3).
IMDb Multiplex: This 3-layer multiplex is built with 5000

random actors. An edge in any basic layer signifies that the

corresponding actors have worked together in at least one

movie that belongs to the Comedy genre (layer Gm1), Action

genre (layer Gm2) or Drama genre (layer Gm3).
Actual Hub Sets in the Individual and AND-composed

Layers: Apart from the individual multiplex layers, four

AND-composed layers each, for the accident multiplex -

Ga1ANDa2, Ga1ANDa3, Ga2ANDa3 and Ga1ANDa2ANDa3,

and IMDb multiplex - Gm1ANDm2, Gm1ANDm3, Gm2ANDm3

and Gm1ANDm2ANDm3, are generated. Every cell in Table

II lists percentage of hubs followed by the average degree

or closeness centrality for the individual and AND-composed

multiplex layers. Variation in this information across layers

shows that any combination of layers (or features) presents a

unique perspective of analyzing the same set of entities.
Comparison Metrics: We compare the similarity of the

estimated hub sets with the actual hub sets using the jaccard

index. For any two sets, X and Y, jaccard index, JX,Y =
|X∩Y |
|X∪Y | . If two sets completely overlap, then jaccard index is

1, denoting highest accuracy of 100%. We compute overall

accuracy of a heuristic as the mean of the accuracies obtained

by estimating hub sets of every AND-Composed layer.
The computational time to generate the actual hub set for

any AND-composition includes the time to generate the AND-

composed layer followed by the time it takes to compute

degree based hubs or shortest paths for closeness centrality

based hubs. On the other hand, the time to estimate the hub

AND-Composed Layer
Accident (x = a) IMDb (x = m)
|DHk| |CHk| |DHk| |CHk|
avgDeg avgClo avgDeg avgClo

Gx1
23.4% 30.6% 34.9% 29.4%
14.92 0.0324 1.4404 0.0181

Gx2
20.5% 36.3% 29.4% 19%
17.99 0.0462 0.8564 0.0071

Gx3
21.3% 28.5% 47.1% 39.4%
16.44 0.0347 1.92 0.031

Gx1ANDx2
21% 28% 9.6% 9.6%
11.2 0.0251 0.1948 0.00009

Gx1ANDx3
20.4% 25.2% 22.7% 10.5%
10.18 0.0202 0.5176 0.0016

Gx2ANDx3
18.2% 26.2% 11.8% 9.3%
14.35 0.0302 0.24 0.0002

Gx1ANDx2ANDx3
18.2% 24.1% 1.6% 1.6%
9.28 0.0186 0.0228 0.000005
TABLE II

VARYING HUB INFORMATION DENOTING THE DIVERSE PERSPECTIVES

OBTAINED THROUGH MULTIPLEX LAYERS

set for the same AND-composed layer includes time it takes

to apply the proposed heuristics using the layer-wise hub sets.

The Naive Approach: Table III shows that the naive

approach of intersecting the layer-wise degree or closeness

centrality based hub sets will not guarantee a highly accurate

estimated hub set for the AND-composed layers, due to the

presence of a large number of false positives. Absence of

common immediate neighboring nodes and common shortest

paths between nodes across the layers may lead to such low

accuracies with the naive approach. However, we observed

that the Accident multiplex layers have similar topology due

to which the naive approach gives relatively better accuracies

as most of the layer-wise hubs are also hubs in the composed

layers (Table IV).

AND-Composed Layers Degree Centrality Closeness Centrality

Gm1ANDm2 59% 43.3%
Gm1ANDm3 67.9% 55.4%

Gm2ANDm3 54.4% 48.1%
Gm1ANDm2ANDm3 14.1% 13.5%

Overall 48.9% 40.1%
TABLE III

LOW ACCURACIES OF THE NAIVE APPROACH TO ESTIMATE

AND-COMPOSITION HUB SETS (IMDB MULTIPLEX)

AND-Composed Layers Degree Centrality Closeness Centrality

Ga1ANDa2 84.8% 93%

Ga1ANDa3 82.6% 82.1%

Ga2ANDa3 85.4% 93.3%

Ga1ANDa2ANDa3 79.2% 87.4%

Overall 83% 88.9%
TABLE IV

SIMILAR TOPOLOGY ACROSS LAYERS LEADING TO GOOD ACCURACIES

OF THE NAIVE APPROACH TO ESTIMATE AND-COMPOSITION HUB SETS

(ACCIDENT MULTIPLEX)

Estimating Degree Centrality based Hubs: Here we

empirically evaluate the performance of the three degree-based

hub estimation heuristics.
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Performance of Heuristic DC1: In DC1, the average degree

estimate for an AND-composed layer is obtained by taking the

minimum of the two layer-wise average degrees. This heuristic

generates only those common layer-wise hubs that share more

than this estimated number of neighbors across layers, thus

striking out the possibility of any false positive’s presence from

the estimated hub sets. Table V and VI show that the overall

accuracy of the estimated hub sets is 79.5% and 82.8% for the

accident and IMDb multiplexes, respectively. Moreover, there

is an overall saving of 70.8% and 41.9% in computation time

for generating the hub sets of accident and IMDb multiplexes,

respectively.

AND-Composed Layer Accuracy
Hub Set Generation Time (secs)
Actual Estimated by DC1

Ga1ANDa2 78.6% 0.0523 0.0166

Ga1ANDa3 77.5% 0.0423 0.0152

Ga2ANDa3 85.7% 0.0711 0.0152

Ga1ANDa2ANDa3 76.4% 0.0458 0.0147

Overall 79.5% 0.2115 0.0618 (70.8%↓)
TABLE V

EFFECTIVE PERFORMANCE OF DC1: HIGH ACCURACIES AND LOWER

HUB SET GENERATION TIMES (ACCIDENT MULTIPLEX)

AND-Composed Layer Accuracy
Hub Set Generation Time (secs)
Actual Estimated by DC1

Gm1ANDm2 88.2% 0.0597 0.0302

Gm1ANDm3 74.6% 0.0681 0.0483

Gm2ANDm3 82.4% 0.0634 0.0385

Gm1ANDm2ANDm3 85.9% 0.0492 0.0226

Overall 82.8% 0.2403 0.1396 (41.9%↓)
TABLE VI

EFFECTIVE PERFORMANCE OF DC1: HIGH ACCURACIES AND LOWER

HUB SET GENERATION TIMES (IMDB MULTIPLEX)

Note that for IMDB the overall accuracy improved from

48.9% in the naive scheme to 82.8%. However, the accuracy

for the Accident multiplex decreased. This is because the

estimated average degree was far larger than the actual average

degree of the AND-composed networks. To solve this issue we

apply heuristic DC2.

Performance of Heuristic DC2: Table VII shows that the

improved average degree estimate for the AND-composed

layers can also improve the accuracy. Using heuristic DC2,

increases the overall accuracy from 79.5% to 83.04% for

the Accident Multiplex. Similarly, the accuracy of estimated

hub set for IMDb Multiplex increases from from 82.8% to
83.9%. The proximity of this estimate to the actual average

degree allows the generation of some common layer-wise

hubs that were excluded by DC1, however the computational

costs increase. Therefore, for instance, in case of the Accident

multiplex hub set estimation process the overall savings in

computational time falls from 70.8% to 58.4%.

Performance of Heuristic DC3: To consider the case where

non-hub layer-wise nodes become hubs in the AND-composed

layer, few low degree nodes from each layer are maintained

such that their degree is at least (1 − ε) times the individual

layer’s average degree, where 0 ≤ ε ≤ 1. Figure 4 (a) and (c)

AND-Composed Layer Average Degree % Change
(Actual Average Degree) DC1est DC2est in Accuracy

Ga1ANDa2 14.92 12.988 5.2%↑
(11.2)

Ga1ANDa3 14.92 12.847 4.4%↑
(10.18)

Ga2ANDa3 16.44 15.257 1.6%↑
(14.35)

Ga1ANDa2ANDa3 14.92 12.045 2.7%↑
(9.28)

Overall – – 3.5%↑
TABLE VII

IMPROVED ACCURACIES OF DC2 OVER DC1 (ACCIDENT MULTIPLEX)

show that by increasing the value of ε the overall accuracy

increases as the number of false negatives are reduced. How-

ever, higher the value of ε, more is the number of layer-wise

non-hubs carried forward to the estimation process. Therefore,

this increased overhead cost increases the time to estimate hub

sets (Figure 4 (b) and (d)).

Fig. 4. Performance of DC3 with respect to the parameter ε

Figure 4 (c) shows that the average degree estimate for the

IMDb multiplex is good enough to give a perfectly accurate

estimate for an ε = 0.5. However, the average degree estimate

becomes a bottleneck in the case of Accident multiplex due

to which even with increasing ε, the rate of increase in the

overall accuracy is low (Figure 4 (a)). A better average degree

estimate in these cases will prove to be helpful.

The overall accuracy and total hub set estimation times

shown in each cell for the three proposed heuristics in the

Summary Table VIII justify that there is an evident trade-off

between accuracy and savings in the computational costs.

Estimating Closeness Centrality based Hubs using

Heuristic CC1: In every layer, high degree neighbors for each

high closeness centrality node are maintained. The intuition

is that if a common high closeness centrality node shares

140148

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on June 19,2021 at 23:05:46 UTC from IEEE Xplore.  Restrictions apply. 



DC3
DC1 DC2 ε = 0.25 ε = 0.5 ε = 0.75

Accuracy Accuracy Accuracy Accuracy Accuracy
Time (secs) Time (secs) Time (secs) Time (secs) Time (secs)

Accident Multiplex
79.5% 83.04% 88.5% 88.7% 88.7%
0.0618 0.088 0.1268 0.1499 0.1602

IMDb Multiplex
82.8% 83.9% 83.9% 100% 100%
0.1396 0.211 0.2312 0.2685 0.2716

TABLE VIII
SUMMARIZING THE PERFORMANCES OF THE THREE DEGREE BASED HUB

ESTIMATION HEURISTICS

high degree neighbors across layers that are also part of the

hub set estimated by heuristic DC2, then its chances of being

accessible via less number of hops from every other node in

AND-composed layer increase. Table IX and X show that for

both accident and IMDb multiplexes, this heuristic estimates

hub sets that have an overall accuracy of 73.8% and 66.5%,

respectively. Moreover, this process leads to a saving of at

least 30% in computation time.

AND-Composed Layer Accuracy
Hub Set Generation Time (secs)
Actual Estimated by CC1

Ga1ANDa2 73.1% 0.3086 0.2028

Ga1ANDa3 68.9% 0.2834 0.2004

Ga2ANDa3 78.2% 0.345 0.2017

Ga1ANDa2ANDa3 75.1% 0.237 0.2051

Overall 73.8% 1.174 0.81 (31%↓)
TABLE IX

EFFECTIVE PERFORMANCE OF CC1: HIGH ACCURACIES AND LOWER

HUB SET GENERATION TIMES (ACCIDENT MULTIPLEX)

AND-Composed Layer Accuracy
Hub Set Generation Time (secs)
Actual Estimated by CC1

Gm1ANDm2 60.4% 2.0534 1.5153

Gm1ANDm3 71.3% 2.6168 1.5255

Gm2ANDm3 70.1% 2.0432 1.5159

Gm1ANDm2ANDm3 64.1% 2.029 1.5071

Overall 66.5% 8.7424 6.0637 (30.64%↓)
TABLE X

EFFECTIVE PERFORMANCE OF CC1: HIGH ACCURACIES AND LOWER

HUB SET GENERATION TIMES (IMDB MULTIPLEX)

The similar topology among the Accident Multiplex layers

means that most of the shortest paths among the node pairs

across layers are common leading to the naive approach giving

a higher accuracy as compared the proposed heuristic that

excludes some common layer-wise hubs as it only considers

shared one hop high degree neighbors. Even though this

heuristic gives good accuracies for the estimated hub sets, but

it can be improved by maintaining the path information to

high degree nodes beyond 2-3 hops from the high closeness

centrality hubs in each layer. However, as stated earlier,

maintaining such longer path information will significantly

increase the computational costs.

VII. CONCLUSION AND FUTURE WORK

In this paper, various heuristics have been presented and

validated to efficiently estimate hubs in any conjunctively

composed layer of a multiplex. Using real-life datasets from

diverse backgrounds, we have empirically shown that by

maintaining minimal neighborhood information along with

the layer-wise hubs, it is possible to estimate good quality

degree or closeness centrality based hub sets of any AND-

composed layer with an overall accuracy exceeding 80% or

70%, respectively, while reducing the computation time by

at least 30%. Further, such techniques eliminate the need to

generate and store any composed layers, thus saving storage

space too.

We plan to extend hub estimation to other centrality mea-

sures like betweenness and eigenvector, and handle weighted

and/or directed edges. In addition to conjunction, we plan on

extending this composition to disjunction and negation.
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