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Abstract

Graphs, being an expressive data structure, have become increasingly important for modeling real-world applications, such as
collaboration, different kinds of transactions, social networks, to name a few. With the advent of social networks and the web, the
graph sizes have grown too large to fit in main memory precipitating the need for alternative approaches for an efficient, scalable
evaluation of queries on graphs of any size.

In this paper, we use the time-tested “divide and conquer” approach by partitioning a graph into desired number of partitions
(and possibly with appropriate characteristics) and process queries over those partitions to obtain all or specified number of answers.
This entails correctly computing answers that span multiple partitions or even need the same partition more than once. Given a
set of partitions, there are a number of approaches using which a query can be evaluated: i) One Partition At a Time (OPAT)
approach, ii) Traditional use of Multiple Processors (TraditionalMP), and iii) using the Map/Reduce Multi-Processor approach
(MapReduceMP) approach. The first approach, detailed in this paper, has established scalability through independent processing
of partitions. The other two approaches address response time in addition to scalability. For the OPAT query evaluation approach,
necessary minimal book keeping has been identified and its correctness established in this paper. Query answering on partitioned
graphs also requires analyzing partitioning schemes for their impact on query processing and determining the number as well as the
sequence in which partitions need to be loaded to reduce the response time for processing queries. We correlate query properties
and partition characteristics to reduce query processing time in terms of the resources available.

We also identify a set of quantitative metrics and use them for formulating heuristics to determine the order of loading partitions
for efficient query processing. For OPAT approach, extensive experiments on large graphs (synthetic and real-world) using different
partitioning schemes analyze the proposed heuristics on a variety of query types. The other two approaches are fleshed out,
analyzed, and contrasted with the OPAT approach. An existing graph querying system has been extended to evaluate queries on
partitioned graphs. Finally all three approaches are compared for their strengths and weaknesses.

Keywords: Graph query processing, Plan generation, Query evaluation on partitioned graphs, Scalability, Map/Reduce

1. Motivation

Querying transactional data stored in a database or searching of documents/web pages is well-established. Search
engines do a very good job of retrieving all or top k answers from data repositories. Lately, large data sets are
being created (e.g., social networks, web graphs, question/answer graphs, and other ontology-based data sets) that
have structural relationships in addition to a wide variety of meta data (multiple labels on nodes and edges, weights
on nodes and edges) as part of that structural description. This, in essence, provides an opportunity as well as a
challenge to query very large graphs for obtaining insights into the data set as well as efficiently extract desired
information (subgraphs) using an expressive query language. Currently, limited search is possible on graphs which
is different from answering expressive queries (containing comparison and Boolean operators as well as wild cards.)

1



S. Das, A. Santra, J. Bodra and S. Chakravarthy / Data and Knowledge Engineering 00 (2019) 1–19 2

With the size of the graph databases growing steadily and with the users’ need to query (not just mine or search) for
complex patterns, expressing them as graph queries and retrieving all or some answers is very much needed. Hence,
approaches for processing queries on large graphs have become a fundamental task (akin to substructure mining,
frequent subgraph detection, community and hub detection etc.) for retrieving answers efficiently and effectively with
respect to user specified patterns in the form of queries.

User specified patterns (as queries) can vary from completely known patterns (where the user exactly knows
what s/he is looking for, also termed as an exact match of a subgraph) to include range specification and comparisons,
unknown patterns with wild card specification on node and edge labels as well as edge distances in a query. Moreover,
the user may also be interested in uncovering results which are combination of multiple patterns (using Boolean
operators.) Similar to database querying, this calls for operators (both comparison and logical) to be available for
graph querying to satisfy user requirements. Although several techniques for graph querying have been proposed [20,
17, 19, 7, 24, 13, 16] none of them support (expressive) queries.

Although use of morphism (subgraph isomorphism, graph homnomorphism, ...) is commonly used during graph
mining, it is not needed for query processing. The plan used has all the information (node and edge labels including
wild cards) for matching each edge and node during expansion. This results in exact matches during the expansion
phase for answer detection. In-exact matches are not continued as query answers need to be exact.

Most of the extant querying or search approaches on graphs either materialize the graph in main memory or keeps
it on disk to be staged into memory as needed. Disk-based approaches are good to deal with graph sizes larger than
possible in memory, but introduce difficulties for providing customized buffer management and introduces I/O latency.
In contrast, partitioned approaches overcome this by partitioning a graph into desired-sized partitions each of which
can fit in memory, but introduces complexity in terms of correctness and efficiency in terms of processing required
number of partitions either one-at-a-time or in parallel depending upon resource availability. This approach can benefit
from not using the partitions that are not needed for processing queries, if they can be identified. This approach has
the potential for identifying the sequence in which partitions need to be loaded for processing (whether one at a time
or p at a time) using meta information of partitions and the queries. This approach can also accommodate different
processor characteristics by matching partition sizes to processor’s memory and computation capabilities. Finally,
this approach is amenable to parallel processing of partitions in multiple ways as well. The numerous benefits of a
partitioned approach have motivated the approaches presented in this paper.

In the presence of partitions, query answering starts from a particular partition (or partitions) based on the query
plan chosen and may need additional partitions to evaluate the query. The starting node of a query could be present in
multiple partitions necessitating a way to rank the starting partitions and choose one (or top k, if multiple partitions are
used in parallel.) What makes this even more challenging is that the answer(s) of a query may span multiple partitions
requiring us to load different partitions in a proper sequence and if needed, the same partition more than once in
that sequence. This calls for techniques to analyze the choice of partitioning strategies as well as query/partition
characteristics to determine the order of loading partitions.

In the ideal case, we want to load the minimum number of required partitions to answer a query (or a batch of
queries.) A required partition is one in which one or more of the query plan node exists. If processing a query
using multiple processors, minimizing the number of iterations (an iteration is the processing of one or p partitions
in parallel) as well as the total number of partitions loaded in all the iterations can be used as an efficiency measure.
The lower bound is loading at most the number of required partitions only once. Note that the lower bound cannot be
determined for a query only from analyzing the partitions and the query plan chosen because whether an answer spans
multiple partitions can only be determined at run time. Hence, we propose a number of metrics to base our heuristics
for choosing partitions after each iteration to minimize the total number of partitions loaded. This can also be done for
a batch of queries rather than each query. Note that the number of partitions loaded may be greater than the number
of distinct partitions needed.

This paper focuses on several aspects of the above problem: i) correctness of query evaluation for partitioned
graphs, ii) proposing and evaluating heuristics for reducing the number of partitions loaded for evaluating a query to
produce all answers, iii) an approach (termed TraditionalMP) using p available processors for parallel query eval-
uation, iv) another approach (termed MapReduceMP) using Map/Reduce framework for parallel query evaluation,
and iv) their comparison. This paper builds upon an existing main memory QP-Subdue [6] graph processing system
and extends it to work on graph partitions (termed PGQP or Partitioned Graph Query Processor.) QP-Subdue uses a
cost model for generating query plans and chooses the minimum cost query plan for execution. As the entire graph
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is loaded into main memory, all start nodes are expanded independently to obtain all answers. In this paper, we use
two widely-used partitioning strategies and identify several metrics for partition evaluation. Furthermore, the paper
uses a mix of query and partition characteristics to determine initial partition(s) for loading and after each partition
execution. The contributions of the paper are:

• First attempt at processing queries using graph partitions for scalability and response time,

• Extend a main memory graph query processing algorithm and establish its correctness (Section 3, 4.2 and 6),

• Metrics and heuristics using partition information and query characteristics to reduce the number of partitions
loaded for query evaluation (Section 5),

• Extensive experimental analysis for the OPAT approach that validates proposed heuristics on real-world and
synthetic data sets using a broad range of queries (Section 7), and

• Two more approaches (TraditionalMP and MapReduceMP) for parallel evaluation of queries on partitioned
graphs are presented from a response time perspective along with their correctness and analysis (Sections 8 and
9). Due to space constraints, experimental results could not be included for these approaches.

Remainder of the paper is organized as follows. Section 2 summarizes relevant work. Section 3 summarizes
query/graph representation, cost-based query plans, and the partitioning approaches used. In Section 4.2, we describe
the PGQP (Partition-based Graph Query Processor) architecture and correctness. Section 5 discusses the metrics
computed and proposed heuristics. Section 6, briefly describes the implementation of PGQP. Section 7 demonstrates
the viability of this approach along with the experimental validation of proposed heuristics. Section 8 analyzes parallel
evaluation of partitions using k processors (TraditionalMP). Section 9 introduces Map/Reduce approach to parallel
query evaluation (MapReduceMP) and its analysis including comparison of the three approaches. Conclusions are in
Section 10.

2. Related Work

Searching/Querying: Querying/searching is useful for retrieving information for understanding the contents of
graph databases. The process of finding exact/similar patterns in graphs is a well researched area. In Graph-grep [9], a
variable path index based approach is used. A separate hash index is constructed for different path lengths containing
all possible paths up to length l starting from each node in the graph database. In G-index [22], frequent substructures
are indexed as a prefix tree by translating the graph into unique edge sequences (called canonical labels) using depth
first search (DFS) coding. Using such an index, a search will produce results only if it is frequent. Another technique
for query processing, G-Ray [21], expands a seed node by finding a matching node followed by bridging both nodes
by the best possible path, while proposing a goodness score quantifying the proximity between two nodes that is used
to rank the results. The main challenges of the graph query/search techniques discussed above are managing the size
of the index in Graph-grep or the size of canonical labels as a prefix tree (G-Index) or information about remaining
vertices (G-Ray). The response time increases with respect to the size of the graph. Also, none of the above support a
query in its generality.

Recently, there have been some attempts to go beyond search. QP-Subdue [6] is an attempt to move towards
general purpose querying of graphs. It is a main memory approach and has modified a substructure mining algorithm
to perform query evaluation. A cost-based plan generator is used. Relational and Boolean operators as well as some
wild cards are supported for query specification. Querying by example [13] is another attempt to work only with
RDF tuples. However, it does not handle wild cards and general graph query and is also limited by the size of main
memory. This work is an extension of the paper [2] that extends query processing to partitioned graphs.

Partitioning Schemes: Graph partitioning, addressed extensively is to partition a graph into k (roughly equal)
partitions. As there are many ways to partition a graph, some metric such as minimizing the number of edges between
the partitions (termed cut set) is commonly used. For this work, we use two widely-used systems – METIS [14] and
Karlsruhe High Quality Partitioning (KaHIP) [18] – for partitioning a graph on which queries are processed. METIS
uses a multilevel algorithm proposed by Chaco [12]. KaHIP implements novel local improvement schemes to fit most
kind of graphs such as continental-sized road networks as well as large social networks and web graphs compared to
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METIS. We have chosen METIS and KaHIP as they are very popular and widely used algorithms with source code
availability. Although there are distributed graph databases – Neo4J is a good example(http://www.neo4j.org/)
– these are not the same as partitioned graphs and furthermore they are not directly relevant to the problem being
addressed (query plan generation and optimization) in this paper as you have to write programs for computing results.
More recent work on graph databases and querying (https://scholarworks.gsu.edu/cs_diss/110/) addresses
path queries using indexing and other techniques which is very different from our problem and approach.

Although Map/Reduce has become ubiquitous, to the best of our knowledge, there is no work on using map/reduce
framework for query processing using partitions. There have been some work on keyword based graph query answer-
ing [11] and also using XML query processing [8] both of which do not deal with graph structure. Relational query
processing (especially join) has been discussed in the map/reduce framework [23]. However, graph partitioning have
been used for mining [4, 5]. This paper uses several approaches to querying on partitioned approach both from
scalability and response time reduction perspective.

3. Graphs, Queries, Plan Generation, and Partitioning

In this paper, we divide a graph into desirable-sized partitions and process queries by loading the partitions one or
p at a time as needed to obtain all or n answers. For partitioning a graph, we use two popular approaches – METIS
and KaHIP.

(a) Input graph with type Information (b) Graph partition P1 (c) Graph partition P2

Figure 1: Sample input graph and its partitions

Graph Representation: Both undirected and directed graphs can be used for our approach. We follow the Sub-
due [15] representation where vertices are input as an unordered sequence of <vertex id (vID), vertex label (VL)>
pairs and edges are input as unordered tuples of <direction (dir), source vertex id (s vID), destination vertex id
(d vID), edge label (eL)>. For this approach, a partition number (pID) is added to each vertex in the above represen-
tation to keep track of query answers crossing partition boundaries.

Figure 1a shows an IMDB (movie database) graph with type information like “Person”, “Genre”, etc. The two
graph partitions P1 and P2 for this graph along with the replicated cut set edges are shown in Figures 1b and 1c,
respectively. The broken lines show the additional information kept as part of each partition that corresponds to the
cut set. Tables 1 and 2 show the vertex and edge table representation, respectively, for the partitioned IMDB graph
shown in Figure 1c. This is used as the graph on which a query is processed. Figure 2 illustrates the representation of
a sample query - “Find all actors in the movie ‘Beyond all boundaries’ and year of its production”.
Cost-Based Plan Generation: As described in [6, 10], a cost-based plan generation is used along the lines of
relational approach to query processing where metadata collected from the database is used to estimate the cost of
a query plan, we create a graph catalog which contains information that are relevant to plan generation in a graph
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Figure 2: Representation of a query on
input graph in Fig. 1a

vID vL pID

5

Beyond
All
Bound-
aries

1

6 2011 2
7 Drama 2
8 Year 2
9 Movie 2
10 Genre 2

Table 1: Graph representation for partition
P2 (Vertex Table)

dir s vID d vID eL
u 5 6 In year
u 5 7 Genre is
u 5 9 is
u 6 8 is
u 7 10 is

Table 2: Graph representation for partition
P2 (Edge Table)

database. The graph catalog (generated by making a single pass over the graph database) consists of information,
such as type cardinality, average instance cardinality, average connection cardinality, min and max values of type
nodes.
Graph Partitioning: We use METIS and KaHIP for partitioning and use many of the configurations supported
to understand their effect from a query evaluation perspective. Currently, there are no partitioning schemes that
generate varying partition sizes (only number of partitions can be specified for METIS ands KaHIP.) In this paper, we
have used 2 configurations of METIS - i) kway as partitioning type and sorted heavy edge matching as coarsening
type (kway shem) and ii) recursive bisection as partitioning type and sorted heavy edge matching as coarsening type
(rb shem.) We have used 4 configurations of KaHIP to partition the graph - f ast, eco, f astsocial and ecosocial. These
6 strategies are used to partition an input graph into 4 partitions (typically decided based on resource availability. We
chose 4 for initial experimentation purpose as our graph sizes did not warrant larger number.)

In this paper, we have assumed independent partitioning and query plan generation using the catalog of the entire
graph. Optimization for the partitioned approach is handled using metrics and heuristics. Our choice was based on
the availability of a plan generator from a previous project. A different approach would be to generate plans after
partitions are generated. This is a more complex problem from the plan generator perspective and an interesting one.
Mapping parts of queries to partitions need to be addressed as well as combining multiple partial plans into a complete
correct plan.

4. Partitioned Approach to Query Processing

Processing queries on a partitioned graph is very different from processing queries on a single graph. When a
graph is partitioned, it will generate k graphs (G0,G1, ...,Gk) such that all the k partitions can be combined to form
the original graph. Some additional information is needed (e.g., cut set) for combining graphs. If all the answers
of a query are in a single partition, it is no different from a non-partitioned approach. However, the case where
answers span multiple partitions need to be computed correctly. This entails adding some additional information to
each partition to keep track of partial answers that continue into other partitions. These continuations may also require
visiting the same partition more than once. This again needs to be handled properly to ensure correctness of results.

In this paper, we process three alternative approaches to evaluating queries on partitioned graphs: i) One Partition
At a Time (OPAT) approach, ii) Traditional use of Multiple Processors (TraditionalMP), and iii) Map/Reduce
Multi-Processor (MapReduceMP). Our correctness is based on minimal extensions to each partition and keeping
track on intermediate results after each partition processing and continuing them as needed.

4.1. PGQP System Architecture
Input to the PGQP system is still a graph database and one or more queries. QP-Subdue architecture has been

extended (shown in Figure 3) to accept a partition with additional cut set information (instead of the whole graph) and
5



S. Das, A. Santra, J. Bodra and S. Chakravarthy / Data and Knowledge Engineering 00 (2019) 1–19 6

process a query from a set of specified starting points. Our approach uses files for communication between iterations.
At the end of an iteration (corresponds to processing one or more partitions independently), each partition appropriate
information is written for continuing query processing using other partitions. The shaded modules in Figure 3 are
extensions for the partitioned approach. The non-shaded modules correspond to pre-existing systems/modules that
are used, such as METIS/KaHIP, catalog generator, and plan generator. The partition chooser module chooses the
next partition to processing using a specified heuristics or base line as discussed in the rest of the paper.

Figure 3: Architecture of the PGQP System

As METIS and KaHIP generate partitions following their own representations, the partition graph creator is im-
plemented to convert the output into desired input for PGQP module as well as compute metrics in one pass. Three
metrics are computed by the system: i) number of connected components in each partition (one time), ii) number of
start nodes in each partition (one time) and its update after processing a partition, and iii) sequence and number of
times one (or p) partition is loaded (at the end) for query evaluation (one time, post-processing.) These are used in
various ways as described in the following sections.

4.2. Correctness of the Approach

The three cases that need to be addressed for answering queries correctly are shown in Figure 4. We establish cor-
rectness for each case and show how they are implemented in Section 6. This is common to all the query evaluation
algorithms – OPAT, TraditionalMP, and MapReduceMP – presented in this paper. When all query results are com-
pletely inside a single (or within a) partition as in Figure 4a, while processing that partition, all results are computed
and stored.
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(a) Answers within a partition (b) Answer crossing multiple partitions (c) Answer using a partition more than
once

Figure 4: Different Cases of Query Evaluation in Partitioned Graph

This is equivalent to QP-Subdue running individually on a (or each) partition as a whole graph. For the case
where query results span multiple partitions (illustrated in Figure 4b), when a query expands into another partition,
the intermediate answers are written into a Partition’s Continuing Answers (or PCA) file. Importantly, we update the
starting node information in the new partitions that the answers span into using the one edge cut set information that
has been added to each partition (see Figures 1b and 1c.) All files are written at the end of processing a partition. When
the next partition is loaded (by the partition chooser module based on the heuristic), the Starting Node Information (or
SNI) file (which contains all start nodes in each partition either as labels or as node ids) is used to identify all starting
nodes (both start nodes and continuing nodes) for processing. Things that ensure correctness are: i) addition of cut
set information to each partition to correctly identify the start nodes in each continuing partition, ii) update of SNI
file and its usage to determine all start nodes (whether initial or continuation) in that partition, and iii) Carrying and
concatenating intermediate results as new partitions are processed. Figure 4c is a special case of the above when an
answer instance comes back to a partition that has already been processed.

Since a query result can span multiple partitions or even need the same partition more than once, sequencing of
partition loads is important from a performance standpoint for all the query evaluation approaches. We discuss the
OPAT query evaluation approach first (Section 5.)

5. Metrics and Heuristics for Partitioned Query Evaluation

One of the widely used metrics for graph partitioning is the cut set. Partitioning strategies (e.g., METIS and
KaHIP) and partitioning schemes (e.g., kway shem of METIS, eco of KaHIP) try to minimize the cut set to reduce
inter-partition connections. In our approach, cut sets are the means by which an answer to a query can span multiple
partitions. In general, if the number of edges in a cut set-cut is small, the likelihood of an answer crossing to another
partition from that partition is likely to be small as well. Of course, this depends on the query mix and the characteris-
tics of the cut set (e.g., connecting nodes and labels.) Since our focus is on computing query answers across partitions
correctly by loading partitions to maximize efficiency, we want to identify metrics and formulate heuristics to reduce
the number of partition loads, the ideal being the minimum required.

5.1. Number of Query Plan Start/Continuation Nodes in a Partition

For a partitioned approach to query evaluation, we first identify the partitions in which a query plan start node
exists (termed starting partitions.) Since there can be many start nodes in each starting partition, it is useful to compute
the number of such nodes in each starting partition. This is done by using the label information of the start node. It
is also possible to rank partitions based on the number of start nodes. If a partition does not have a start node, it may
be needed only if an answer spans that partition. In this paper, we propose two heuristics for choosing a partition to
process based on the number of query plan start/continuation nodes in each partition. Note that any query plan node
can become a continuing node in a partition during the process of query evaluation. Starting partition for processing
a query is determined based on the chosen heuristic. Since these heuristics involve number of query plan start nodes
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in a partition, this could change after processing a partition. Hence, this metric is updated at the end of each partition
processing to determine the next partition to be used. This process is continued until there are no more eligible
partitions to process. The two heuristics, based on number of start nodes (SN), are discussed below.

1. MAX-SN-heuristic: This is similar to the greedy strategy for the choice of the next partition for processing.
The partition with the most number of start nodes (from the eligible set of partitions) is chosen. If there is a
tie, one is chosen randomly. The intuition behind this heuristic is that highest number of query answers (due to
maximum number of start nodes) will be explored and is likely to help reduce the number of partitions loaded
if the answers span into other partitions. Also, if some answers are answered within that partition (initially
or while continuing), it will reduce the number of spans. The start node information is updated at end of
each partition processing and the process repeated. Note that a previously processed partition may have to be
processed again.

2. MIN-SN-heuristic: In this case, we load the partition with the least number of start nodes in that partition.
Again, ties are resolved randomly. The intuition behind this heuristic is that we accumulate the spanning
requirements into partitions with larger number of start nodes in the hope that they can be processed only once.

In order to evaluate the proposed heuristics, we need a baseline. We use random way of choosing the initial as well
as the next partition from among the set of eligible partitions as our baseline. We completely ignore the number of start
nodes in any partition. We believe that the MAX-SN-heuristic will lead to better performance (in terms of the number
of partition loads) than the other heuristic and the baseline. We also believe that either heuristic should do better than
the baseline choice (RANDOM-SN.) When the number of partitions are large, the impact of the proposed heuristics
is likely to be more pronounced than when compared to the baseline. These observations have been evaluated for
validation in section 7.1

5.2. Total Number of Connected Components

Partitioning strategies seem to focus more on the cut set and not worry so much about the number of connected
components generated in each partition. However, for query processing, the number of connected components within
each partition and hence the total number of connected components in a partitioning scheme are very important. The
partitioning schemes typically produce one partition with a single connected component and the rest of the partitions
with varying number of connected components in each of them. We compute the number of connected components
in each partition for each partitioning scheme during the same pass in which we compute other metrics.

In the presence of disconnected components in a partition, if a query answer spans more than one connected
component in that partition, it forces this partition to be loaded again for processing. This is avoided (or less likely)
if a partition has only one (or small number of) connected component.

Instead of analyzing the effect of connected components at the individual partition level, we evaluate the effect
of total number of connected components in a partitioning scheme on the performance (i.e., the number of partitions
used) of query processing. We believe that choosing a partitioning scheme with least number of total connected
components (termed MIN-CC-heuristic) is always better from a query evaluation perspective as compared to any
other scheme and especially one that produces highest number of total connected components (termed MAX-CC-
heuristic). This is likely to make an answer stay inside a partition more often and thereby reduce the total number of
partitions used. We will also evaluate this with experiments showing total partition loads using different partitioning
schemes of the same graph in section 7.2. Moreover, either of these heuristics will perform better than arbitrarily
choosing any of the partitioning schemes randomly as baseline (RANDOM-CC.)

5.3. Quantitative Measures for Evaluating the Heuristics

In the OPAT approach, the total time to answer a query will be directly proportional to the number of partitions
loaded (includes multiple loads of the same partition) in order to generate all answers. For each query, the ideal case
can be inferred from the number of partitions in which a query plan node occurs (actually an upper bound.) We use
this as the lower bound on the number of partitions that are needed for processing a query. A quantitative measure
for evaluating a heuristic h (e.g., MIN-CC) can be derived by comparing the lower bound (Lideal) of partitions to
the number of actually loaded partitions (ALh). This load ratio of ideal to actual (Lideal/ALMAX) will indicate the
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effectiveness of a heuristic. This value is at best 1. A heuristic that has a higher value for this ratio is better than the
one with a lower value.

For this purpose, we define two measures for MIN-SN and MAX-SN heuristics (denoted by h below) – one that
measures the average load ratio for the same query across partitioning schemes for a given database D (h(D)query

pschemes)
and another that measures the average load ratio for a batch of queries using the same partitioning scheme for a given
database D (h(D)pscheme

qbatch ). For example, MAX-SN(IMDB)Q1
pschemes can be expressed as 1

|pschemes|
∑

pschemes(Lideal/ALMAX),
where ALmax is the number of actual partitions loaded for Q1 using MAX-SN-heuristic. Others are defined similarly.

The second measure defined above is also used for the connected component heuristics: MIN-CC-heuristic and
MAX-CC-heuristic. For any of the starting node related heuristics, MIN-CC-heuristic is the average load ratio of
a batch of queries executed on the partition scheme with minimum number of connected components. MAX-CC-
heuristic is defined similarly. These measures are computed for our experiments to validate our conjecture.

Note that CC and SN heuristics are orthogonal or independent of each other. Either can be used individually to
improve performance and they can be used in tandem as well for improving the performance further. This provides
alternatives to the user depending upon the graph characteristics and the partitioning strategies available.

6. Implementation Summary

Only the important aspects of implementing the PQGP system (whose architecture is shown in Figure 3) is briefly
summarized in this section. For additional details, refer to [1]. We capture start node and its label information of the
query plan for each partition in a Starting Node Information (SNI) file. This file is updated at the end of processing
each partition and used for choosing the next partition based on a heuristic as well as identifying the start nodes in
that partition. In addition, we keep an Intermediate Answers (IMA) file – one for each partition. This file stores
intermediate or partial query results relevant to that partition. When a query has been answered completely the
final results are appended to a Final All Answers (FAA) file. This file contains all the answers at the end of query
processing. Finally, we also keep a log file to compute some run time metrics needed for our analysis.

6.1. Management of Partial results

For each query, based on the start node label of the query plan, PGQP finds all the relevant partitions containing
the start node label, number of occurrences (or nodes) for that label and generates an initial SNI file. The initial SNI
file contains the starting vertex label (according to the query plan) and the number of its occurrences. Figure 5 shows
the initial SNI for all partitions with starting node label and number of occurrences. Note that the vertex ids are NULL
indicating that they are start nodes and not continuation nodes. Continuation nodes will have both a label and a vertex
id obtained from the partition extension information. Following the chosen heuristic (let us assume MAX-SN for this
discussion), we pick partition 1 (P1) as our starting partition to process. Expansion process is identical to breadth first
search from the starting vertex id and abiding by the query plan.

Assume that some answers can be found completely in P1 and some continue in other partitions. At the end
of processing P1, complete answers are written into the FAA file (here 1-17-50-201). Final answers can easily be
demarcated from partial answers by the size of the answer and edge label(s). Following the query plan, a result having
the same size and edge label(s) of the query is a complete answer while any answers with a lesser size is considered a
partial result. Partial answers continue in other partitions which are written into corresponding IMA files. For example
if 1-4 crossed P1 and moved into P2 this intermediate result is written in IMA2 while the SNI has been updated with
the vertex id 4 for B. The SNI after completion of P1 indicates that, query answers can continue from partial answers
in P2 and P3 (the ones with vertex ids) or start from node labels A in partitions 2 and 3 (marked with NULL in vertex
ids). The vertices already expanded are dropped from the SNI. Continuing with our MAX-SN heuristic we load P2
next as it has 18 vertices in SNI as compared to 10 of P3.

Query answers that start in P1 and end in P2 are written to the FAA. See that some query answers continued onto
other partitions and the SNI file was updated accordingly. The intermediate results going now into P3 are appended
to IMA3. See in Figure 5, IMA3 is updated by containing both substructures with 2 and 3 vertices. All of these
intermediate results will be expanded when P3 is loaded. When all answers are computed, the SNI file will be empty
indicating that there are no more partitions to be processed.

9
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Figure 5: Query answering in the PGQP System

The SNI file and all IMA files are dropped at the end of query processing. The FAA file contains all the answers
added incrementally as soon as an answer is completed. Hence, the user can see results as and when they are generated
instead of waiting for the processing to complete. This process can be stopped to generate only k answers.

A combination of the SNI, IMA and FAA guarantees correctness. Intuitively SNI contains all starting points or
continuation points for partial results while the IMA contains the intermediate or partial results for each partition.
After every iteration, the partitions that needs processing have a non-empty IMA file. The SNI file is properly updated
to facilitate easy continuation of the query from the next partition.

7. Experimental Analysis

Experimental results presented in this section provide an analysis of the proposed heuristics and their validation
for the OPAT query processing approach.

Experimental Setup: All experiments have been carried out on Dual Core AMD Opteron 2 GHz processor
machine with 16 GB memory. To test the correctness of our approach, query results given by QP-Subdue ([6]) - a
non-partitioned, main-memory query processor for graph databases - have been used as ground truth. The largest
graph size we have been able to handle in QP-Subdue on our 16GB machine is 550K nodes and 1700K edges. Note
that ground truth was established for several types of queries using datasets that could fit in memory. For testing
partitioning approach, larger datasets have been used as was necessary to get realistic partitions. Ground truth was
assumed to be correct based on previous exhaustive tests.

Datasets: We have used two datasets: i) The Internet Movie Database - IMDB graph (1750KV, 5100KE) con-
taining information of movies, actors, genres, year, company, etc. The vertex labels in IMDB are unique, thus the
result set for any query is small (some times one.) ii) A synthetic graph generated using Subgen with 400K vertices,
1200K edges, 2000 unique vertex labels and 4000 unique edge labels with uniform distribution to analyze queries
with multiple results.

Query Characteristics: Three different queries were used on IMDB - Find tv-series and their production com-
panies from the animation AND comedy genres that had “Kelsey Wagner” as an actor and matched with person is
(Query 1), List the “Adam Sandler” movies and their production companies that belonged to the comedy AND Sci-Fi
genres but the release year was NOT EQUAL to 2000 (Query 2) and, Find all the production companies where “Fred
Wolf” has worked as a writer OR “Salma Hayek” has worked as an actress (Query 3.) These formulated queries have
different characteristics that are relevant to the partitioning problem, such as query answers completely inside a single
partition (Query 3), query answers spanning multiple partitions for exact results (Query 2), and queries that need to
use the same partition more than once (Query 1). Moreover, we have used different combinations of comparison
operators (<, <=, >, >=, ! =, =) and logical operators (OR, AND). Query plans were generated for all the queries on
IMDB data sets using QP-Subdue.

10
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Figure 6: Queries for Synthetic Graph Figure 7: Performance of query answering on the IMDB graph partitioned by METIS

We have used the synthetic graph mainly to test our metrics and heuristics for multiple answers spanning several
partitions. Due to the synthetic nature of the graph, embedded substructures were used instead of queries that not
only span partitions but also need a partition more than once. In the synthetic graph, we embed 200 instances of a
substructure shown in Figure 6 that also acted as Query 5. One of the queries was a subgraph of the embedded structure
(Query 4), whereas for one query only a part (2 nodes and one edge) of the embedded substructure was present in
the synthetic graph (Query 6.) Each query was executed using the MIN-SN, MAX-SN and baseline RANDOM-SN
choice, on a dataset that was partitioned by 6 schemes, resulting in a total of 54 experiments per dataset.

7.1. Evaluation of Start Node Heuristics

h(D)Queryi
pschemes

IMDB
i = 1 i = 2 i = 3

MAX-SN 0.847 0.944 1.0
MIN-SN 0.847 0.944 1.0
RANDOM-SN 0.302 0.337 0.320

Synthetic
i = 4 i = 5 i = 6

MAX-SN 0.587 0.545 0.618
MIN-SN 0.385 0.368 0.401
RANDOM-SN 0.280 0.260 0.270

Table 3: Performance of SN heuristics for a single query
across partitioning schemes

Figure 8: Performance of query answering on the Synthetic graph par-
titioned by METIS

Figure 7 and 10 illustrate the number of partitions loaded for the ideal case, proposed heuristics (MAX-SN and
MIN-SN) and the baseline (RANDOM-SN) for IMDB partitioned by METIS or KaHIP, respectively. From these
figures, we obtain the values of the evaluation measures - h(D)query

pschemes and h(D)pscheme
qbatch (defined in Section 5.3) listed

in Table 3 and Table 4, respectively. The higher values for the proposed MIN-SN or the MAX-SN heuristic show that
they have a better performance while answering single or a batch of queries on a partitioned graph as compared to
the baseline RANDOM-SN choice. Similar inference has been made for the Synthetic graph, for which the values of
the measures have been calculated from Figure 8 and 9.

Further, Table 3 and 4 also show that the average load ratio for MAX-SN is greater than or equal to the average
load ratio of MIN-SN heuristic, for processing a single or batch of queries across all or a single scheme, respectively.
Therefore, these experiments also validate our claim that the MAX-SN heuristic performs as good as or better than
the MIN-SN heuristic. In case of Synthetic graph, where multiple results for each query are possible MAX-SN is
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h(D)pschemei
{Q1,Q2,Q3}

IMDB
fast fastsocial eco ecosocial kway shem rb shem

MAX-SN 0.889 0.889 0.889 1.0 0.917 1.0
MIN-SN 0.889 0.889 0.889 1.0 0.917 1.0
RANDOM-SN 0.262 0.317 0.345 0.306 0.341 0.344

h(D)pschemei
{Q4,Q5,Q6}

Synthetic
fast fastsocial eco ecosocial kway shem rb shem

MAX-SN 0.613 0.571 0.603 0.756 0.463 0.495
MIN-SN 0.355 0.430 0.366 0.448 0.366 0.344
RANDOM-SN 0.262 0.267 0.279 0.321 0.248 0.226

Table 4: Performance of SN heuristics for a batch of queries on partitioning schemes

always better than MIN-SN (Figure 8 and 9). However, due to presence of only unique vertex labels the order and
number of partition loads for IMDB queries is same for both MIN-SN and MAX-SN (7, 10).

Figure 9: Performance of query answering on the Synthetic graph partitioned by KaHIP

7.2. Evaluation of Connected Components Heuristics

The heuristic for choosing a partitioning scheme based on connected components metric is for improving perfor-
mance.

Table 5 shows the evaluation of the partitioning schemes that generated the highest and least number of total
connected components by measuring their performance for a batch of queries (h(D)pscheme

qbatch ). In most of the scenarios,
the higher values for the schemes that generate the least number of total connected components, irrespective of the
MAX-SN or MIN-SN heuristic, validate our claim that choosing a scheme using MIN-CC heuristic serves as better
choice for answering queries on partitioned graphs as compared to MAX-CC heuristic.

However, if the difference between highest and the least number of total connected components is not signifi-
cant then no definite choice can be made. This case is exemplified by the MET-IS partitioned Synthetic graph in
Table 5 where both the listed schemes have similar performance because the difference between the number of total
connected components produced by them falls below 5%. Therefore, the ecosocial partitioning scheme that always
generates substantially low number of total connected components as compared to the other three schemes, becomes
the preferred partitioning scheme using MIN-CC heuristic.

Thus, section 7.1 and 7.2, empirically validate that MAX-SN and MIN-CC independently are better than other
heuristics. Furthermore, they can be combined to improve the performance even more as can be seen from Table 5.
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Figure 10: Performance of query answering on IMDB graph partitioned by KaHIP

h(D)pschemei
{Q1,Q2,Q3}

IMDB
KaHIP METIS

MIN-CC MAX-CC MIN-CC MAX-CC
ecosocial fast rb shem kway shem

MAX-SN 1.0 0.889 1.0 0.917
MIN-SN 1.0 0.889 1.0 0.917
# Total CC 40975 77687 58371 80417

h(D)pschemei
{Q4,Q5,Q6}

Synthetic
KaHIP METIS

MIN-CC MAX-CC MIN-CC MAX-CC
ecosocial fast kway shem rb shem

MAX-SN 0.756 0.613 0.463 0.495
MIN-SN 0.448 0.355 0.366 0.344
#Total CC 5367 14365 16606 17316

Table 5: Performance of CC heuristics on a Batch of Queries

8. Parallel Partition Processing Using TraditionalMP

The OPAT approach described in detail and evaluated in the previous sections concentrated on scalability based
on partitions, and its correctness. Loading one partition at a time is the easiest way to achieve scalability with very
limited resources. The TraditionalMP and MapReduceMP approaches, discussed in this and the next section, address
minimizing the response time by leveraging parallel processing on partitions to the extent possible. We explore the
traditional as well as the map/reduce multi-processor approaches as there are significant differences in how the query
processing algorithm is designed and partial results created and merged. It is easier to understand the TraditionalMP
approach as it is an extension of the OPAT approach with a focus on determining how many partitions to load in each
iteration for processing them in parallel based on resource availability.

Although the total number of partitions needed in any round can not be known a priori (or determined a priori),
we need to consider two cases for analysis: i) enough processors are available to process all the partitions in parallel
in any given iteration i (termed as required(i)) and ii) only p processors are available for any iteration which is less
than required(i). In fact, p as 1 is the OPAT approach. Note that the following observations do not depend on the
total number of partitions of the graph. However, if the number of partitions is greater, it is likely that the number
of processors needed in many iterations is likely to increase, but the computation time used in each round is likely
to decrease (due to smaller partition sizes.) Also, the number of iterations needed for answering a query is likely
to increase if the number of graph partitions increase due to increase in the likelihood of answers spanning more
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than one partition. Increasing the number of partitions may also positively benefit query processing as the number
of connected components in each partition is likely to reduce. Clearly, there is a trade off between the number of
processors available, number of partitions of the graph, and the number of partitions that are needed in each iteration
for answering a query (or a batch of queries.)

8.1. TraditionalMP Algorithm

Algorithm 1 Traditional Parallel Query Processing Algorithm (TraditionalMP)

Require: n partitions, p processors, a query plan qp, and a heuristic h to use
Ensure: All answers to the query q using the query plan qp

1: Initialize SNI (Starting Node Information) file (see Section 5.1)
2: EP = Identify all eligible partitions from the SNI file
3: Initialize p InterMediate Answers (IMA) File, one for each partition
4: CP = choose p partitions from EP using heuristics h //chosen partitions
5: while CP is not empty do
6: Assign partitions to processors
7: Execute the PGQP algorithm in each processor
8: IMAi is generated by the ith processor
9: Merge IMAi files into FAA file (see Section 5.1)

10: Recompute metrics based on this iteration
11: update the SNI file using IMA files (see Section 5.1)
12: update EP file from the SNI file
13: CP = choose p partitions from EP using heuristics h //chosen partitions
14: end while
15: FAA file contains all the answers

Algorithm 1 uses the same extended partition graphs as input and code used by the OPAT approach (i.e., PGQP)
and generates the same intermediate answers files. Merging of intermediate answers (IMA) files into final all answers
(FAA) file is done at the end of each iteration. The merging can be done one file at a time as is done in the OPAT
approach and the order does not matter. The SNI file is also updated after each iteration. The main difference between
the OPAT approach and this approach is in the set of partitions chosen for each iteration (CP) and allocation of
processors to partitions. When there are no more eligible partitions to be processed, the algorithm stops yielding all
answers in FAA file.

There is a difference between the two cases where the available processors are p and required(i in iteration i). If
the number of available processors are required(i), all eligible partitions can be processed in parallel in each iteration.
Otherwise, some heuristics need to be used for choosing p partitions out of eligible partitions. Note that the number of
eligible partitions is not the same in each iteration. It depends on the query and the partition characteristics and hence
can only be determined at run time. Lines 2 and 12 update the eligible partitions based on the information in SNI file.
It is possible that some paths will terminate as they do not satisfy query constraints. Other paths will continue in other
partitions and this information is added to the SNI file at the end of each iteration.

Line 4 and 13 determine partitions chosen for the current iteration (CP) using EP and h discussed in Section 5.1. In
case of p < required(i), the partitions can be ordered using either MIN-SN or MAX-SN heuristic and top p partitions
are chosen. This is moot for the RANDOM-SN choice. The final all answers file (FAA) is updated after each iteration
using all intermediate answers files (the order doesn’t matter.)

8.2. Heuristics and Response Time Discussion for TraditionalMP

If required number of processors are available for each iteration, a good estimate for the upper bound on the
number of iterations required is the maximum path length of the query plan (which is a tree.) The actual or average
case is likely to be much smaller because, in each iteration, more than one edge of the query plan is likely to be
traversed which will reduce the total number of iterations. This is a significant departure from the OPAT approach.
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However, for the case where the number of processors available is less than required(i) in iteration i, the number of
iterations may increase gradually reaching the OPAT case where p is one.

In fact, p being less than required(i) may not be as pronounced if some of the answers span into partitions that are
yet to be processed. Our heuristics take this into account by recomputing the number of start nodes in each partition
after each iteration. Analytically, it is not possible to predict this as it depends on query plan structure, conditions
in the query plan that have to be computed at run time, and graph characteristics. As for the number of connected
components heuristic is concerned (MIN-CC, MAX-CC, and RANDOM-CC), there should not be any difference in
terms of their effect between the OPAT approach and TraditionalMP approach as both work in the same way.

From a response time perspective, TraditionaldMP approach will certainly improve the response time significantly
for any p greater than one. The amount of improvement depends on several factors: i) matching of processor capability
with partition size as the iteration time is determined by the longest time used by a processor, ii) number of processors
available as it may change the number of iterations required, iii) partition and query characteristics in terms of the
distance of starting nodes to the end of the partition, iv) maximum number of partitions spanned by an answer, and
v) importantly, whether the same partition is needed more than once. Some of these can be empirically measured by
a set of well-chosen experiments. Due to space constraints, we have not been able to include experimental results in
this paper. If the number of processors available is slightly less than required(i), that may not increase the response
time significantly. It will be interesting to analyze the effect of p and its effect on response time as it changes from 1
to max(required(i)). If an answer spans multiple connected components within a partition, that necessitates loading
that partition as many times even in the parallel processing approach. This also indicates why MIN-CC has come out
as a better heuristic than others (see Section 7.2.)

A much greater response time benefit can be obtained when a batch of queries are processed using this approach
instead of a single query. However, for this the book keeping complexity increases as one needs to keep track of not
only different answers for the same query but also separate answers for each query correctly. We are investigating this
as future work.

9. Parallel Partition Processing Using MapReduceMP

Use of Map/Reduce paradigm is another promising alternative for processing partitions independently in parallel
and assemble the answers correctly. Anyone familiar with map/reduce paradigm will immediately discern that the
algorithm used in OPAT (and TraditionalMP) can not be directly used either in the map function or in the reducer.
The requirements of a map function to process each input record independently and emit a key/value entails that
we view this problem and computation differently. Preferably, the reducer should be able to assemble intermediate
results emitted by the mapper and grouped the way we have done in the previous approaches and update the eligible
partitions set (EP) for the next iteration and FAA using IMA files as well as the SNI file for the next iteration. For
this approach, we lean on one of earlier work where we have mapped a substructure discovery algorithm into the
map/reduce framework (for scalability and speed up) and have conducted extensive experiments and cost analysis [5,
3].

Unlike the previous two approaches, each query plan node is expanded by one edge on multiple eligible partitions
in each iteration by the mapper task. In the previous approaches, we processed all answer paths within a partition
in each iteration. This cannot be done in this approach as we cannot assume the input adjacency list of a partition to
be presented in some order of nodes. Actually, there may not even be an order that allows us to compute all paths
within a partition in the same map/reduce computation. Since we are expanding one edge at a time in this approach,
the minimum number of iterations required will correspond to the maximum query plan path length.

9.1. MapReduceMP Algorithm

Each graph partition along with cut set information is used as input to the mapper in the form of an adjacency
list. Expansion occurs either on a vertex id or on a label as we do in the previous approaches. To facilitate expansion
on the node label, the adjacency list used for substructure discovery [4] is slightly modified to include vertex label
in addition to vertex id as part of the key. Hence, the input to the mapper has < vertex id, label> as its key and the
adjacency list as value. The adjacency list will include partition id for each node as well. This will allow us to identify
when an edge expansion goes out of the current partition indicating that answer evaluation needs to be continued in a
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different partition indicated by the partition number associated with the node. In addition to the input, the same SNI
file is used by all mapper tasks and the partition-relevant IMA file is used by each partition.

Although the query plan contains only labels, once the query plan evaluation starts, the expansion will lead to
nodes whose ids are known. Hence, it should be possible to expand either on a node label or using a node id during
any iteration. This is done either by using the node id or the node label of the key using the SNI file. In all iterations,
the mapper uses the SNI file to find the vertex ids or the label and expands the vertices by adding an edge from the
adjacency list. Conditions present in the query are also applied to the edge labels and vertex labels to determine
whether the answer evaluation will continue further. For each one-edge expansion, the mapper emits the partition id
in which the next expansion needs to takes place as the key and the the node id and its label of start and end nodes as
the value. The expansion could be either in the same partition or in a different partition. Note that if continuation is
in a different partition that information comes out correctly along with the node id and label of the node in the output
emitted by the mapper. Shuffle groups the output of mappers on the partition id and sends them to corresponding
reducers. A combiner can also be used to improve response time. Since the amount of work done in a reducer is not
as much as a mapper, less than required(i) reducers can be used without sacrificing response time.

The reducer processes key value lists generated for each partition. The reducer does the following by traversing the
value list for each partition id once: i) updates the SNI file by removing the nodes expanded in this iteration (whether
on label or node id). Also, new nodes and their partition ids are inserted into the SNI file for the next iteration, ii)
IMA file for that partition is updated using the edge information for each answer. Since both start and end node ids
are present, it is not difficult to separate answers based on their path within and across the partitions, and iii) finally,
the FAA file is updated with partial or complete answers while processing the value list. The iterations end when the
SNI file is empty leaving all answers in the FAA file. Fig. 11 shows the first iteration of MapReduceMP algorithm.
The map/reduce driver (or jobtracker) is responsible for adding the local SNIs across reducer to create the updated
SNI file for use in next iteration. Final answers emitted by each reduce task is also merged by the driver into a single
FAA file (order of answers does not matter.)

Partiti
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p1 20 A NULL

p2 15 A NULL
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2

A B C D
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Reducer
2
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1 25 B 2,9,…
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….Partition	
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1 25 B 2,9,…

2 12 B 5,8,18,…

Updated SNI after iteration used in next iteration

p1 <1,A,p1,2,B,p1>

p2 <1,A,p1,5,B,p2>

p2 <3,A,p1,8,B,p2>

p1 <3,A,p1,9,B,p1>

<1,A>	 [<1,A,p1,2,B,p1><1,A,p1,5,B,p2>]

<3,A>	 [<3,A,p1,8,B,p2><3,A,p1,9,B,p1>]

….. ………………………….

<10,A>	 [<10,A,p2,2,B,p1><10,A,p2,18,B,p2>]

<15,A>	 [<15,A,p2,8,B,p2><15,A,p2,9,B,p2>]

……… ……………………………..

p1 <10,A,p2,2,B,p1>

p2 <10,A,p2,18,B,p2>

p2 <15,A,p2,8,B,p2>

p1 <15,A,p2,9,B,p1>

p1 <1,A,p1,2,B,p1>

p1 <3,A,p1,9,B,p1>

p1 <10,A,p2,2,B,p1>

p1 <15,A,p2,9,B,p1>

p2 <1,A,p1,5,B,p2>

p2 <3,A,p1,8,B,p2>

p2 <10,A,p2,18,B,p2>

p2 <15,A,p2,8,B,p2>

FAA

IMA1

IMA2

Initial SNI

Query Plan (QP)

Local SNI from p2

Local SNI from p1

Figure 11: First iteration for query processing using Map/Reduce
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9.2. Heuristics and Response Time Discussion for MapReduceMP

The correctness of the algorithm follows from what is generated in each iteration and how they are used for updat-
ing SNI, IMA, and FAA files. Instead of a path, a subset of a path is generated in each iteration. All the information
emitted for continuing the query evaluation is the same as in the previous approaches but different algorithmically.

Given p partitions we will have required(i) mapper tasks in iteration i. If we have m mapper nodes, we can either
assign m mapper tasks in each iteration or required(i) mapper tasks in each iteration even if m < required(i). In
this case, multiple mapper tasks will be processed by the same mapper node. Note that required(i) may be different
in each iteration. For the case m < maximum(required(i)), allocation of m mapper tasks for that iteration is better
than allocating required(i) mapper tasks. This is because the completion of an iteration (and hence response time)
is dictated by the slowest mapper node completion. On the other hand, since the number of partitions eligible for
execution in each iteration (i.e., required(i)) varies in each iteration, the mapper tasks may get amortized over the
number of iterations. However, if m << maximum(required(i)), the number of iterations will increase there by
increasing the response time, hopefully asymptotically reaching OPAT when m is one. There is a need to study the
trade off between allocation of more than one mapper task to a mapper node versus increasing the number of iterations
from a response time perspective. Certainly, the best response time is obtained when the number of mappers is the
same as required(i) for every iteration. In contrast, the number of reducers needed is small (compared to required(i))
as the amount of work done in updating SNI, IMA and FAA files is quite negligible as it depends on the number of
answers being computed and not on the size of any partition being processed as is the case for a mapper task.

The heuristics of MAX-SN and MIN-SN can be used for choosing the partitions to be processed in any iteration
when m < required(i) as in the previous approaches. Similarly,the number of connected components heuristic (MIN-
CC, MAX-CC, and RANDOM-CC) can also be used in the same way. The usage of heuristics should produce the
same performance trend in all the three approaches.

9.3. Desiderata

Development of the OPAT approach was critical for establishing scalability and correctness of partitioned query
processing. Using that, we have extended the work to improve response time based on the availability of resources.
The motivation for the map/reduce approach comes from its ability to provide resources on demand and match par-
tition sizes based on that. Both approaches support varying number of processors with response time trade off. The
algorithms are different although inputs are same modulo representation. We believe that further improvements are
possible for the map/reduce approach using combiners and applying component cost analysis as we have done for
the substructure discovery approach [3]. We also believe that both traditional and map/reduce approaches are needed
in different contexts for achieving scalability and response time improvement. The suite of algorithms presented in
this paper provides alternatives for response time trad off. More importantly, all approaches are independent of the
partitioning strategy so the user can use different partitioning strategies based on query and graph characteristics.

10. Conclusions

In this paper, we have proposed alternative approaches for processing queries over partitions of a large graph
database. These approaches range from processing one partition at a time (termed OPAT) to processing multiple par-
titions in parallel using the traditional (termed TraditionalMP) and currently popular map/reduce framework (termed
MapReduceMP). Each has its own strengths and weaknesses which are analyzed and compared. The goal of this work
is to move towards efficient and scalable query processing techniques for large graphs.

Partitioning is one way to ensure scalability of query processing on a graph database of any size. Parallel pro-
cessing further helps improve the response time critical for i) large graph sizes and ii) large number of partitions. We
have addressed correctness and proposed heuristics to reduce the amount of work done (in terms of the number of
partitions loaded) for query processing. Implementation of one of the proposed approaches as well as validation of
the proposed heuristics for all approaches has been shown on real-world and synthetic data sets.

Beyond this, we are exploring the use of parallel processing of partitions, heuristics for optimizing the work done
for a batch of queries, and partitioning strategies to improve the efficiency of query processing.
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