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Abstract. We are on the cusp of analyzing a variety of data being col-
lected in every walk of life - social, biological, health-care, corporate,
climate, to name a few. We are also in search for models and analytical
techniques that can accommodate more complex and increasingly large
size data (scalability). Our ability to analyze large complex, disparate
data for a broad set of analysis objectives differentiates big data analyt-
ics from mining which is narrow in scope. Hence, flexibility of analysis
(different from scalability) is important. Concomitantly, efficiency is im-
portant due to large number of analysis needs. Our ultimate goal is to
go from vertical analysis of data individually (corresponding to one of
the 4 V’s) to holistically (also termed fusion-based) analyze that that
corresponds to all or a subset of V’s!

In order to accomplish the above, we are always in search for more ef-
fective models to represent data and different analysis techniques that
support flexibility of analysis, efficiency, and scalability. We want to use
techniques that have worked well – whether it is for modeling, efficiency
or scalability. We also want to extend these techniques and/or develop
new and improved ones to accommodate more complex, diverse, and
larger size data.

The goal of this paper is to provide the reader an understanding of data
analysis approaches using graphs. Our thesis is that there are several
ways in which a graph representation can be used – both for modeling
and analysis. We will take the reader through the evolution of graph
usage and relevance leading to the current state of the use of multilayer
Networks (MLNs) or multiplexes for modeling and analysis. Graphs are
not new, but how they are used for big data analytics is going through a
transformation which is important to understand. The hope is that the
reader understands the path that has led us to this juncture and how
graph usage is extended!

Keywords: Graph-based modeling and analysis; Multilayer Networks; Decou-
pling approach; Efficiency and scalability.
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1 Introduction

This is a paper on big data analytics and science that is intended to capture the
progress of graph mining (one form of analysis) to a broader analysis of complex
data sets using graphs. We start with traditional graph mining and trace the
path towards multilayer networks for effective modeling and efficient & flexible
analysis.

Fig. 1. High level Architecture of Big Data Analytics/Science

Data mining is the process of automatically discovering useful information
from large data repositories. Data collected and validated (termed labeled) has
been used for generating models (Decision trees, SVM, termed supervised ap-
proach) that can be used for predicting outcomes for new data. Data has also has
been processed in a number of ways to glean patterns without using labeled data
(e.g., clustering, association rules, subgraph mining, termed unsupervised). Data
mining is different from querying or generating different types of reports from
managed data sets using a DBMS or a data warehouse. Big data analytics use or
incorporate appropriate mining and other techniques for a broader holistic anal-
ysis. Starting with text mining, a number of traditional mining techniques have
been developed (decision trees, clustering, neural nets, etc.) Both supervised
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and unsupervised approaches have shown to be useful for different applications.
Graph mining although developed in the 80’s have become popular recently due
to their usage in modeling and processing internet and social network. More
recently, association rule mining (and its flavors) became possible with the ad-
vances in data representation, availability of large real-world data, large and
cheap storage availability, and relevant technical advances. Data Mining, as we
have it today, became even more important from a business perspective (sim-
ilar to Data warehouses, but with different requirements) when we progressed
in our ability (storage, networking, processing, and algorithms) to handle vast
amounts of real business data (in contrast to samples of representative data)
for identifying non-intuitive nuggets with certain confidence for driving business
goals.

In our view, the fundamental difference between mining and big data an-
alytics is the scope and diversity of data. The holistic aspect of analysis and
the breadth (or diversity) of data along with their characteristics are the chal-
lenges that need to be taken into account. Here, the goal is more ambitious than
traditional mining in that this analytics is likely to need multiple approaches
working in concert. Hence, not only the need for large number of formalism,
techniques, and algorithms, but also a mechanism to combine or compose them
in novel ways based on user-defined or user-specified analysis objectives (see Fig-
ure 1). The long-term goal is even more ambitious in terms of requirements for
holistically analyzing (and developing formalism for) disparate data that cor-
responds to 4V’s (Volume, Velocity, Variety, and Veracity) or even 5V’s (plus
Value). This is the challenge currently faced by the community addressing big
data analysis/science. The basic premise here is that dealing with each of the
V’s individually or in small combinations (as has been done up to this point to
a large extent) is not sufficient, but need to include all or combinations of them
as warranted for a holistic analysis leading to inferring better and concise (ac-
tionable) knowledge for decision making. Towards this end, we will present
our previous and ongoing contributions towards big data analysis.

Figure 1 shows, at a high level, the problem of big data analysis and science.
As shown in the figure, the ultimate goal is to synthesize meaningful and ben-
eficial actionable knowledge with good confidence that can be used for decision
making (what humans call wisdom which is culled from data and events based
on a combination of nature and nurture (together as experience) as biologists
put it) by using all available relevant disparate data coming from a variety of
sources. The inverted triangle shows the reduction of large raw data into small
nuggets of knowledge. Figure also shows some of the technologies that are avail-
able today (used for analytics), and a partial list of underpinnings (i.e., science)
using which we develop to support these technologies. The way we see big data
analysis is that instead of addressing each V (or small combinations of V), a
holistic approach is the desired goal driven by analysis objectives/expectations.
However, the problem is still the same as that of culling, filtering, aggregating,
and inferring nuggets of (actionable) knowledge that can be used for decision
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making including real-time decision making. Most of the current approaches
have addressed a small subset of this problem.

Although not explicitly shown in the figure, techniques for the visualization of
data as well as the derived knowledge is quite important. Pictorial representation
and multi-dimensional subject-oriented analysis of the results are also very useful
for understanding the results of analysis.

Personalized health care is a good example of how it is critical to avail and
process all types of data related to a single person (or even a community) over a
period of time (lab results, X-rays, EKG, endoscopy video, MRI, etc.) to make a
meaningful decision for that individual (or community) rather than using average
cases which is how it is done today. Similar applications include climate change
studies, monitoring earthquakes, pollution, and others.

The remainder of the paper is organized as follow. We briefly indicate our
contributions to data mining over the years in Section 2. Then we focus on
graph-based modeling and analysis that includes our current work in Section 3.
Finally, section 4 has conclusions.

2 Data Mining or Knowledge Discovery in Databases

Fig. 2. Convergence of Technologies That
Facilitated Data Mining

Data mining aims at discovering im-
portant and previously unknown pat-
terns from the data sets. Although
not explicitly termed data mining and
might not have used real-world busi-
ness data, the concept of understand-
ing data, in ways that are different
from querying and analysis that was
available through RDBMSs and data
warehouses, pre-dates them. Classi-
fication, clustering, prediction, devi-
ation analysis, and neural networks
were used by many businesses for se-
lective marketing, credit card trans-
action approval, and mortgage and
other types of lending. Supervised and
unsupervised approaches were devel-
oped and multi-fold cross validation
was widely used for establishing the accuracy of models. A number of algorithms
were developed, some couched in expert systems used by businesses. Due to the
limitations of storage and processing, the sizes of the data sets used were small
and often statistically representative samples were used for processing (instead
of all available data) and results extrapolated (or generalized) for larger data
sets.

The rapid improvement in the size of the storage devices along with with the
associated drop in the cost in the 1990s, and increase in the computing power
as well as the wide use of statistical approaches for processing data gave rise to
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the field of data mining as we know it today (see Figure 2. Suddenly, it became
feasible for organizations to store unprecedented amounts of organizational data
and process it. These organizations, though having a gold mine of data, were not
able to fully capitalize on its value mainly because the algorithms and approaches
had to be scaled to very large data sizes. Typically, the data captures the business
trends over a period of time and hence using real-world business data (rather
than samples) became the goal. However, the nuggets of useful knowledge hidden
were not so easy to discern. To compete effectively, decision makers felt they
needed to identify and utilize “nuggets of knowledge” buried in the collected
data and take advantage of the high return opportunities in a timely manner.
Association rule mining is a good example of this trend.

While these developments were ongoing, although graph theory has been
around for a very long time, graphs for data representation were not that pop-
ular. Graph theory belonged more to the realm of mathematicians rather than
its application in computer science. A few researchers were using graphs for
representing data in specific domains and were trying to identify patterns in
graphs around the same time businesses were trying to do the same using their
transactional data. Although association rule mining took off and became widely
popular with many commercial implementations, graph usage and mining caught
the attention of businesses much later. One of the early work on graph mining
was Subdue [28] which developed main memory algorithms for identifying sub-
structures in graphs (or forests) that were “interesting” based on some metric.
They used a information theoretic metric termed minimum description length
(or MDL) for this purpose. The data sets were drawn from chemical representa-
tions, CAD circuits, etc.

Data mining became a hot research area with the advent of association rule
mining and graph mining. Association rule mining [6] started with market basket
analysis for identifying items bought together with given support and confidence
from actual point-of-sales data. These data sets were huge (for example, Wal-
mart’s point-of-sales data around that time was estimated to be around 1Gb per
day) and multiple years of data could not be held in main memory for analysis.
For association rule mining of this data, novel data structures (e.g., hash tree)
and approaches to reduce the number of passes on the data (to minimize I/O’s)
were developed. Teradata developed a parallel processing system to facilitate
analysis of very large amounts of transactional data. As the search space was
prohibitively large, a priori and other properties were identified to reduce the
number of item sets carried over from iteration to the next one. Partitioning
approaches were developed to reduce the number of passes on data (stored in
disks) and the response time. A large amount of work followed resulting in a
number of mining systems marketed by almost every major vendor.

Along the same lines, the expressiveness of graphs became important with
the advent of Internet and social networks. Graphs both for modeling and analy-
sis (e.g., mining, PageRank, etc.) and their importance for identifying important
and useful graph patterns became apparent. Frequent subgraphs, identification
and counting of triangles and other substructures in very large graphs became
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important in addition to interesting substructures. Today, there is renewed in-
terest in using graphs for modeling and analysis of complex data as discussed in
Section 3.2.

2.1 IT Lab Contributions

Information Technology Laboratory (or IT Lab) at UT Arlington or UTA (also
in its previous incarnation at the University of Florida or UFL, Gainesville)
has been engaged in managing, processing, and analyzing large amounts of
data using diverse techniques, such as semantic and multiple query optimiza-
tion [13, 23–26, 60], real-time transaction scheduling [42–44], incorporating ac-
tive capability [1,20,27,38,39,45,59] into DBMSs, etc. An active object-oriented
DBMS termed Sentinel was developed at UFL incorporating Snoop as the
event specification languages. This was later integrated with the stream process-
ing system MavStream to provide both event and stream processing capabil-
ities in a seamless manner in a single system termed, MavEStream. Currently
it is being extended [12] to support continuous queries on videos by extending
it to support object comparison, spatial, and temporal aggregate computations
MavEStream.

Specifically, from the view point of mining, we have contributed to both
association rule mining [36,52–57,74–76] and substructure discovery [7, 16, 22].
We have also developed a number of techniques for aggregating streaming, real-
time relational data termed stream data processing/analysis [2–5, 14, 15, 17–19,
21,29,37,40,46–50,68,69,71,73]. A prototype data stream management system
(DSMS) MavEStream was implemented at UTA and the work was consolidated
into an authored book.

For association rules, we have extensively evaluated performance of database
algorithms on different RDBMSs and compared them. This helped us to identify
some of the quirks in the optimization of SQL queries by different vendors and
understand the difficulties of optimizing queries with 10 to 20 joins, a large
number of them being self joins. RDBMSs query optimization were not designed
with those number and types of joins in mind.

On the graph mining side, we have tried to scale the main memory substruc-
ture mining algorithm of Subdue using a number of alternative approaches. The
first one [8, 16,58] mapped graphs into relations and the substructure discovery
algorithm to SQL in order to leverage the built-in capabilities of a DBMS (buffer
manager, query optimizer) instead of re-inventing them for mining. This allowed
us to scale the size of the graphs to millions of nodes and edges. This approach
has certain limitations due to large number of joins as well DBMS’s inability to
order a relation using columns. Recently, we have been able to successfully scale
this algorithm even further to arbitrary sizes using the map/reduce paradigm.

We have achieved data scalability using divide and conquer with and without
using map/reduce. We have developed generic Map/ Reduce based algorithms
for horizontal scalability of substructure discovery that can work with any par-
titioning strategy. The basic components of graph mining - subgraph expansion,
duplicate removal and counting of isomorphic substructures were incorporated
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into the algorithms for the Map/Reduce paradigm by carefully orchestrating
new representations. Vertical scalability was achieved by showing that these al-
gorithms produce the same results (loss-less property) irrespective of the number
of partitions. Experiments validated the advantage of using Map/Reduce based
substructure discovery to scale to arbitrarily large graphs [30–32]. In an effort to
analyze the partitioning strategies and associated algorithms from a performance
standpoint, we have done a component cost analysis of substructure discovery
in a distributed framework. The cost analysis identified places for improvements
in using the range-based partitioning strategy over its counterpart. Theoretical
justification along with experimental evaluation of the improvements were veri-
fied by varying a number of user parameters. The cost analysis also pointed out
the portability of our algorithms to a different paradigm such as Spark to reap
similar benefits.

Our approach to query processing on graphs developed a cost-based plan
generator by defining and using a catalog that is relevant to graphs [33, 41]. To
process a plan on large graphs, partitioning of graphs was used for processing the
plan on each partition separately and combining the results in a loss-less manner.
Several heuristics were developed for optimizing the number of partitions loaded
for this purpose [10,11].

3 Graph-Based Modeling and Analysis

To achieve the goals of big data analytics/science as explained in Section 1,
a number of perspectives on how to analyze a data set as well as a number of
approaches and their combinations need to be taken into consideration. Research
is ongoing by a large number of scientists with a broad brush covering data sets
from a variety of domains. In this section, we present some of the approaches
that we are working on to address the big data analysis problem in a small way.
This tutorial mainly focuses on this. Although they do not right now solve the
big data analysis problem completely as is posited in Figure 1, they address
components whose solutions are likely to contribute to the overall solution.

3.1 Modeling Data Using Single Graphs

The basic idea of graphs were first introduced in the 18th century by Swiss
mathematician Leonhard Euler. Interestingly, it seems to have been applied for
a real-world problem (famous Konigsberg bridge problem) – to formulate and
solve it. We have come a long way from there as a topic of mathematics and
recently with the explosion of social networks and internet as a computer science
topic. Graph theory is ultimately the study of entities as nodes (or vertices)
and relationships as edges. Weights and labels can be associated with nodes,
and can include directions as well for edges. Other properties such as cycles,
spanning trees can be associated with graphs. This rich graph representation
can be used to abstract a large number of real-world problems from city layouts
to printed circuits to social and biological networks. Studying graphs through
a framework provides answers to logistics, networking, optimization, matching,
and operational problems.
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For the purpose of modeling and analyzing complex data we have in mind,
let us consider the following data sets and associated analysis objectives.

US-based Airlines: This is a data set of six US-based airlines and their flight
information among US cities. This information has been collected by us from
multiple sources. The number of US cities is the same for all airlines. But their
connectivity (direct flights between cities) varies.

Potential Analysis Questions: Airlines are always looking for expansion
into new/existing markets (cities) to increase business. Using the above publicly
available data, an interesting analysis objective would be: Can we identify and
rank cities for potential expansion as a hub for each airline taking all
competitors into consideration?

Fig. 3. MLN Modeling Alternatives

If we were to rep-
resent each airline and
its direct flight con-
nectivity, we can ei-
ther do it as 3 sepa-
rate simple graphs as
shown in Figure 3(a)
or as one graph in
which we show them
combined into a sin-
gle graph as shown in
Figure 4(a). It is easy
to see that there are
multiple edges in the
combined graph and
colors correspond to
edge labels. If we do
not keep relationships
in each layer sepa-
rate, there is informa-
tion loss. We will not
be able to know how
many airlines have direct flights between the cities. If we keep them separate,
there are no algorithms to compute communities (or hubs) on such a graph
(termed an attribute graph)! This data set has the same entities in all layers and
different relationships and is termed Homogeneous Multilayer Network or
HoMLN.

However, if we represent this data set as 3 layers as shown in Figure 3(a),
the challenge is to compute network properties such as communities and hubs.
Currently, it is done in a way where there is loss of information due to combining
multiple edges into a single edge using Boolean operations. Or it is done on the
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entire MLN resulting in in-efficient algorithms. Our decoupling-based multilayer
network (MLN) analysis provides a solution for this.

IMDb data set: The IMDb data set captures movies, TV episodes, actor,
directors and other related information, such as rating. This is a large data set
consisting of movie and TV episode data from their beginnings.

Potential Analysis Question: For a large data set such as above, is it possi-
ble to infer, through data-driven analysis, well-known actors who have
worked in several common genres, but have never worked together!
This would be of interest to directors and producers who are scouting for bank-
able and novel casting for their next project!

Fig. 4. Reducing MLN to Single Graphs

This data set is
more complicated in
that there are dif-
ferent entity types –
actors, directors, and
movies. Each entity
is connected among
themselves – actors
acting in a specific
genre, directors di-
recting a specific genre,
and movies whose rat-
ings are in a range.
In addition, there are
also links (or inter-
layer edges) between
the actors and direc-
tor entity nodes indi-
cating which director
has directed which
actor at least once.
Figure 3(b) shows each
entity type separately
and also the connections between different entity types as inter-layer edges. Note
that HoMLNs have a single entity type and their connections across layers are
implicit and hence not shown in Figure 3(a). Figure 4(b) shows what happens
when the HeMLN in Figure 3(b) is converted into a single graph shown in Fig-
ure 4(b) using type-independence approach. That is, all the type information
(essentially labels of both nodes and edges) is lost. Although network properties
can be computed on the resulting graph shown in Figure 4(b), both structure
and semantics of the original representation is lost.

On the other hand, if we keep edge and node labels in the aggregated graph,
we will have an attribute graph that has node and edge labels. There are no
algorithms for computing networking properties that we are dealing with such
as community and centrality on such a graph. However, attributed graphs are
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widely used for substructure discovery, querying etc. An attributed graph is
shown in Figure 5 ( source) for a better understanding.

Fig. 5. Example of an Attributed Graph

This representation with multiple entity types is termed Heterogeneous
multilayer network or HeMLN. Again the issue is which representation is
more effective from a modeling perspective and which one from a computation
perspective.

The above are just a couple of examples to indicate the analysis complexity
and potential of the approach proposed in this paper. Data sets being analyzed
may also contain features that are derived from contents (e.g., posts in Facebook)
in addition to explicit ones. Such derived information can also be incorporated
into this approach as shown in [77].

3.2 Modeling and Analyzing Complex Data Using MLNs

In the previous section we illustrated the difficulties of modeling complex data
sets as a single graph without loss of information. In addition, computation of
network properties, such as community and centrality (e.g., hub), which are
available for single graphs, are not available for MLNs or multiplexes. Hence,
if one wants to use multiplexes for modeling, it is imperative that we develop
approaches and algorithms for computing network properties and efficiently. Net-

https://www.researchgate.net/figure/An-example-of-attributed-graph-Both-nodes-and-edges-have-attributes_fig1_260389937
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work Decoupling approach is one such techniques which we will discuss in detail
in this tutorial with its application to real-world data sets.

Before we go into modeling using MLNs (HoMLN or HeMLN) and com-
putations on that, let us clearly understand the alternatives. Figure 7 shows
three alternatives ways of modeling and computing network properties (cur-
rently, community and centrality). Figure 7(a) shows a HeMLN aggregated into
a single graph removing node/edge identities resulting in losing entity and/or
relationship identities. Computing network properties on this single graph is
not preferred due to loss of information. On the other end of the spectrum,
Figure 7(c) shows the same HeMLN layers and computing the result using the
entire MLN as a whole. Although this has been proposed in the literature (e.g.,
Infomap recently), this is likely to be computationally expensive as the number
of layers and data sizes become large. The advantage of modeling is lost to some
extent due to computational complexity.

Figure 7(b) on the other hand proposes an approach developed by us (termed
networking decoupling) where network property for each layer is computed in-
dependently (possibly in parallel) and compose them using a binary operator
Θ as shown. We have shown this to be effective, can be done for Boolean op-
erations for HoMLNs and for HeMLNs as well without aggregating and losing
type information. Furthermore, we have shown it be more efficient than the ap-
proaches shown in Figures 6(a) or (c). Furthermore, the advantages of modeling
is retained as well.

More clearly, current approaches, such as using the MLN as a whole [78],
type-independent [35], and projection-based [9, 72], do not accomplish this as
they aggregate (or collapse) layers into a simple graph in different ways. More
importantly, aggregation approaches are likely to result in some information
loss [51], distortion of properties [51], or hide the effect of different entity types
and/or different intra- or inter-layer relationships as elaborated in [34]. Structure-
preservation is critical for understanding a HeMLN community and for drill-
down analysis of communities.

From an analysis perspective, lack of structure- and semantics makes the
drill down extremely difficult (or even impossible) and hence the understanding
of results. Our computation results clearly show the community structure and
how easy it is to drill down to see patterns in terms of original labels.

Figures 6 a) and b) illustrate the difference between the current approaches
and our proposed approach. Figure 6 a) shows type-independent aggregation1 of
two layers into a single graph on which extant community detection is applied.
As can be seen, both structure as well as entity and relationship labels
– shown as colored nodes and edges – are lost in the resulting com-
munities. In contrast, the Figure 6 b) shows the same layers and community
detection using the proposed definition and the decoupling approach. As there
is no aggregation, both structure and semantics are preserved.

1 Other aggregation approaches have the same problem.
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Fig. 6. Lossy Traditional Approach Vs. Structure- and Semantics-Preserving Decou-
pling Approach

3.3 Our Contributions Towards MLN modeling and Analysis

Instead of modeling complex data as a monoplex, we have proposed multi-
plexes [51, 63], In a multiplex, instead of creating a single graph with colored
nodes and/or edges, a number of graphs are created, each representing one as-
pect or feature or perspective. For example, Figure 3 shows both a homogeneous
and a heterogeneous multiplex. In each layer, actors are nodes and one genre
is used to create edges. We believe this model is better than a monoplex as
the graph in each layer is smaller, will not have multiple edges, and easier to
understand semantically.

Efficient Analysis Of Multiplexes: Our ongoing research towards big data
analytics includes modeling and efficient analysis of multiplexes. Applying com-
munity and hub detection algorithms for a multiplex-as-a-whole is being explored
by the research community [70,79]. This, in our view, is not the best way as the
complexity of community and hub detection increases and the decomposition of
the problem into its components (layers) is not leveraged.

For analyzing multiplexes in a holistic and flexible way, we propose decou-
pling as the approach of choice. The basic idea of decoupling is to analyze
individual layers using extant algorithms and compose the results of individ-
ual layers to obtain results for any combinations of layers in a loss-less manner
( [61,62,64–67]).

Figure 7(b) shows our decoupled approach to HeMLN community detection.
The steps of our decoupling approach is given below:
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Fig. 7. Lossy Traditional Approach Vs. Structure- and Semantics-Preserving Decou-
pling Approach

(i) First use the function Ψ (e.g., community detection, but any network
property in general) to find the property in each of the layers individually (can
also be done in parallel),

(ii) for any two chosen layers, compose the partial results from each layer
using the identified composition function Θ. For example, we have proposed
vertex- and edge-based composition for Boolean composition of Homogeneous
MLNs and a bipartite-graph and maximal matching for Hetereogeneous MLNs.

(iii) repeat this process for computing the network property for given number
of layers in the order specified.

In this tutorial, we will discuss the MLN approach to modeling and analysis
and contrast it with traditional approaches for efficiency and scalability. We will
discuss how the objectives proposed in Section 1 can be efficiently computed
using the proposed approach. We will also co consider other analysis objectives
on different data sets.

4 Conclusions

In this paper, we have demonstrated why a multilayer network is better both
from a modeling as well as analysis perspective. Multilayer networks provide an
effective way of compartmentalizing the information in the data set using analy-
sis objectives. Further, when appropriate composition mechanisms are available
or developed (e.g., decoupling approach demonstrated here), computational effi-
ciency as well as analysis flexibility can be accomplished. We have also been able
to fold content extraction [77] into this framework in our analysis of Facebook
data. We are currently working on approaches to extend this decoupling tech-
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nique for a variety of analysis, in addition to community and centrality (such as
substructure, motifs, querying), with the goal of broader analysis capability.
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