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Abstract

Modern deep neural networks achieve impressive performance in engineer-
ing applications that require extensive linguistic skills, such as machine trans-
lation. This success has sparked interest in probing whether these models
are inducing human-like grammatical knowledge from the raw data they
are exposed to and, consequently, whether they can shed new light on long-
standing debates concerning the innate structure necessary for language ac-
quisition. In this article, we survey representative studies of the syntactic
abilities of deep networks and discuss the broader implications that this work
has for theoretical linguistics.
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1. INTRODUCTION

In the last decade, artificial neural networks, which have been rebranded as deep learning (LeCun
et al. 2015), have made an astounding comeback in a range of technological applications. Among
those applications are natural language processing (NLP) tasks ranging from machine translation
(Edunov et al. 2018) to reading comprehension (Cui et al. 2017). From a linguist’s perspective, the
applied success of deep neural networks (DNNs) is striking because, unlike the systems that were
popular in NLP a decade ago (Jurafsky & Martin 2008), DNNs’ input data and architectures
are not based on the symbolic representations familiar from linguistics, such as parse trees or
logical formulas. Instead, DNNs learn to encode words and sentences as vectors (sequences of
real numbers); these vectors, which do not bear a transparent relationship to classic linguistic
structures, are then transformed through a series of simple arithmetic operations to produce the
network’s output. Thus, any grammatical competence acquired by standard DNNs derives from
exposure to large amounts of raw text as well as generic architectural features that have little
to do with those that many linguists have deemed necessary for language acquisition, such as a
preference for rules that are based on hierarchical tree structure (Chomsky 1986).

Ostensibly, the success of deep learning invites a reassessment of classic arguments that lan-
guage acquisition necessitates rich innate structure. But measures of practical success do not di-
rectly engage with the evidence that has motivated structural assumptions in linguistics: Whereas
success in applications rests primarily on the system’s ability to handle common constructions,
it is often the rare constructions that are the most informative ones from a theoretical stand-
point. In this review, we focus on work that directly evaluates DNNs’ syntactic knowledge and
use paradigms from linguistics and psycholinguistics that highlight such theoretically significant
cases. After a brief introduction to deep learning for language processing (Section 2), we review
work that has applied (psycho)linguistic analysis methods to English subject—verb number agree-
ment, filler—gap dependencies, and other syntactic phenomena (Sections 3 and 4); this body of
work suggests that contemporary DNNs can learn a surprising amount about syntax but that this
ability falls short of human competence. We then briefly survey work that aims to illuminate the
internal processes by which DNNs accomplish their grammatical behavior (Section 5). Finally, we
discuss our view regarding the implications of this body of work for linguistic theory (Section 6).

2. DEEP LEARNING FOR LANGUAGE PROCESSING

This section provides a very short overview of artificial neural networks as applied to language
processing at the word and sentence level. For a contemporary book-length introduction to neu-
ral networks for language processing, readers are referred to Goldberg (2017); for a less technical
introduction to artificial neural networks for cognitive scientists, which does not include a treat-
ment of language processing, we refer readers to Elman et al. (1998).

Artificial neural networks are mathematical objects that compute functions from one sequence
of real numbers to another sequence. They do so using large collections of simple computation
units (“neurons”). Each of these units calculates a weighted average of its inputs; this weighted
average is then passed as an input to a simple nonlinear function, such as the sigmoid: o(2) =
1/(1 + ¢7*). In other words, the function computed by each unitis o(wix; + - + w,x,), where
wy,. .., w, are the weights, and xy, ..., x, are the inputs. Although the computation performed
by each unit is very simple, by arraying a large number of units in layers—such that the output of
the units in one layer serves as the input to the units in the following layer—much more complex
functions can be computed (theoretically, all functions can be approximated to arbitrary precision;
see Leshno et al. 1993). Incidentally, the presence of multiple layers is what makes the networks
“deep.”
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The network’s weights are not set by the designer of the system but, instead, are learned from
examples. Each such training example consists of an input x; and an expected output y;. The train-
ing procedure starts from a random set of weights. The network then iterates through each input
example and computes the output j; based on the current weights. This output is then compared
with the expected output y;, and the weights are adjusted by a small amount such that the next time
the DNN receives x; as its input, the discrepancy between §; and y; will be smaller (this process is
referred to as gradient descent).

Neural networks compute numerical functions. For them to process language, each input
and output word needs to be encoded as a vector (a sequence of real numbers). In principle, a
word could be encoded by a vector whose size is equal to the size of the vocabulary and that
has zeros everywhere except for one component that indicates the identity of the word (a so-
called one-hot vector); in practice, however, words are typically encoded by vectors that are much
smaller and denser (with nonzero values in most components). Such distributed representations
(known as word embeddings) make it possible to assign similar vectors to words that occur in
similar contexts or have similar meanings [e.g., (1, 2.5, 3) for table and (1.2, 2.5, 2.8) for desk, but
(2.1, =3, 4) for dog]. Rather than being set by the designer of the system, these word embeddings
are learned using gradient descent, just like the network’s weights.

Word embeddings provide a mechanism for encoding individual words, but additional ma-
chinery is needed to process sequences of words. One such approach is to use recurrent neural
networks (RNNs). An RNN processes the sentence from left to right, maintaining a single vector
h,, the so-called hidden state, which represents the first # words of the sentence. The next hidden
state, h, 1, is computed from h, and the embedding of the ¢ 4+ 1-th word by using standard neural
network arithmetic. The hidden state thus acts as a bottleneck: The network does not have access
to its earlier hidden states hy, ..., h,_; when computing h, ;.

The performance of RNNs can be improved by the addition of gates. Gated RNNs, such as
long short-term memory networks (LSTMs) (Hochreiter & Schmidhuber 1997) and gated recur-
rent units (GRUs) (Cho et al. 2014), possess a mechanism that allows them to better control the
extent to which information in their hidden state is updated after each word. At least in princi-
ple, gating enables the network to better track dependencies that span a large number of words.
LSTMs have become the de facto standard RINN variant in NLP, and most of the studies we
review here use this architecture.

Attention, another important innovation, relaxes the single-hidden-state bottleneck and allows
the network to take all of its previous hidden states into account when computing the next state
(Bahdanau etal. 2015). The dynamics of both gating and attention are not hard-coded but, rather,
controlled by weights learned during the training phase.

When the network has access to a large window of previous states through attention, the recur-
rence mechanism, which computes the new hidden state b, ; based only on the most recent hidden
state h,, becomes largely redundant. Consequently, some state-of-the-art sequence processing ar-
chitectures, such as the transformer (Vaswani et al. 2017), dispense with recurrence altogether and
rely on attention only to carry information across time. Using specialized hardware, transformers
can be trained effectively on very large corpora, and they have become very common in NLP sys-
tems such as BERT (Devlin et al. 2019); however, a clear picture of the differences between their
linguistic abilities and those of RNNs, especially when both are exposed to the same amount of
training data, has yet to emerge (Y. Goldberg 2019, Rogers et al. 2020, Tran et al. 2018).

DNN:s for language processing are used in three common settings. When used as a classifier,
the network outputs a discrete label for the sequence; for example, a binary acceptability judgment
system might output either “acceptable” or “unacceptable.” This is a supervised setup, in which
the network is trained on a corpus of example sentences annotated for acceptability.
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When used in the setting referred to in computational linguistics as a language model, the
network receives the first # words of a sentence and assigns a probability to each of the words that
could come up next. The network is trained to maximize the probability of the word that actually
occurs next in the sentence as it appears in the corpus. For example, given the first five words of
the sentence The children went outside to play, the training objective would be to assign the largest
possible probability to the final word, play. This setup is unsupervised, in the sense that all we need
to train the network is a text corpus, without any annotation.

Finally, in the sequence-to-sequence (seq2seq) setting, the network is expected to generate
an output sequence in response to an input sequence—for example, when translating between
languages (Sutskever et al. 2014). This setting is configured by chaining two RNNs such that the
last state of the encoder RNN serves as input to the decoder RNN. Attention can be used to
allow the decoder to base its decisions on all of the encoders’ hidden states rather than the last
one only. The seq2seq setting requires pairs of input and output sequences as training materials
(e.g., sentences in a source language and the corresponding translations in a target language), but
it does not require any further annotation.

3. LONG-DISTANCE AGREEMENT

Much of the initial analytical work on the syntactic abilities of DNNs centered on long-distance
agreement between subject and verb or between other elements in a syntactic dependency.
Subject-verb agreement is a paradigmatic example of the observation that words in sentences are
organized according to “structures, not strings” (Everaert et al. 2015): The notion of the subject
makes crucial reference to the abstract structure of the sentence rather than to the linear sequence
of the words it comprises. A DNN’s ability to capture subject-verb agreement can be evaluated
in a straightforward manner using the number prediction task (Linzen et al. 2016). In this setting,
the DNN is exposed to a sentence prefix such as example 1, in which the word following the prefix
is expected to be a verb; the DNN is then tasked with predicting whether the verb that is expected
to come up next should be in plural or singular form:

(1) The length of the forewings (is/*are). . .

The correct form depends on the number of the verb’s subject, which, in example 1, is determined
by its head length rather than by forewings. Nouns such as forewings, which intervene between the
head of the subject and the verb, are referred to as attractors (Bock & Miller 1991). To correctly
predict the number of the verb, the DNN must derive an implicit analysis of the structure of the
sentence and resist the lure of the proximal but irrelevant attractor.

Linzen and colleagues (2016) exposed an LSTM (see Section 2) to a set of corpus-extracted
English sentence prefixes, such as the one in example 1, and trained it to perform the number
prediction task (i.e., it was trained in the supervised classification setting, in the terms established
in Section 2). When tested on new prefixes that had not been presented to it during training,
the network correctly predicted the number of the upcoming verb more than 99% of the time.
However, since in the overwhelming majority of English sentences the head of the subject happens
to be the most recent noun preceding the verb [as it is, for example, in the well-known lawyers
(are)], overall accuracy is not directly informative about whether a DNN is able to identify the
head of the subject. Crucially, even when it was tested on sentences with attractors, the DNN
showed considerable robustness: In sentences with as many as four attractors, number prediction
accuracy was still 82%. While the probability of an error increased substantially in the presence
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of attractors, it was considerably lower than what would be expected if the network was typically
misled by attractors.

Extending these results, Bernardy & Lappin (2017) showed that other DNN architectures
(GRUs and convolutional networks) can also tackle the number prediction task with considerable
success. This finding indicates that Linzen and colleagues’ (2016) original result did not crucially
depend on specific features of the LSTM architecture. In particular, the convolutional network
trained by Bernardy & Lappin completely dispensed with the recurrent mechanism central to
LSTMs (Kalchbrenner et al. 2014). Its success therefore points to the generality of the outcome
across current DNN models.

In these early studies, the DNNs were trained specifically to predict the number of an upcom-
ing verb and were given explicit feedback about verb number in a large set of sentences. Gulordava
et al. (2018) showed that LSTMs can learn a significant amount about long-distance agreement
even when trained simply to predict the next word in a corpus without any specific focus on
subject—verb agreement or number features (the language modeling setting). To test a trained
DNN?s ability to compute agreement, the authors exposed it to a sentence prefix and compared
the probabilities it assigned, given the prefix, to the singular and plural forms of the upcoming
verb. The DNN was considered to have made a correct number prediction if it assigned a higher
probability to the contextually appropriate form; for example, after the length of the forewings, the
probability of is was expected to be higher than that of are.

Using this methodology, Gulordava and colleagues (2018) showed that LSTMs trained only
to predict the next word show high agreement prediction accuracy when tested on sentence pre-
fixes extracted from Wikipedia, across four languages (English, Hebrew, Italian, and Russian), and
in dependencies beyond subject-verb agreement, in languages that have them (e.g., adjective—
noun agreement). When compared with human subjects, the LSTM’s agreement prediction ac-
curacy in Italian (the only language for which this comparison was carried out) was only moder-
ately lower. Finally, Gulordava and colleagues tested the DNN’s predictions in “colorless green
ideas” (Chomsky 1957) prefixes: grammatically well-formed but highly semantically implausible
prefixes, which are constructed by replacing the content words in prefixes from the corpus with
other words from the same syntactic category (e.g., the colorless green ideas near the duck (are/*is). . .).
The DNN showed only a mild degradation in performance on these sentences, which suggests
that it is capable of computing agreement in the absence of lexical or semantic cues. Overall, this
study suggests that training on word prediction alone, without additional syntactic supervision
or semantic grounding, can teach networks a substantial amount about long-distance agreement
dependencies and the syntactic categories that underlie them (such as the notion of a syntactic
subject).

This is not to say that LSTM language models acquire perfect syntactic competence; rather,
there is evidence that they rely on simple heuristics. For example, because English does not indi-
cate the end of a relative clause with an explicit marker, LSTMs tend to expect embedded clauses
to be relatively short (Linzen & Leonard 2018); they also pay undue attention to the number of the
first noun of the sentence, even when it is not the head of the subject (Kuncoro et al. 2018a). In a
study using controlled experimental materials instead of evaluation sentences sampled from a cor-
pus, Marvin & Linzen (2018) found that LSTMs performed poorly on some sentence types that
are infrequent in corpora, such as nested agreement dependencies across an object relative clause
[The farmer that the parents love (swims/*swim)]. At the same time, the fact that DNNs perform
consistently well across a range of agreement dependencies suggests that they are able to extract
certain abstract syntactic generalizations. In Section 5, we discuss work that brings us close to a
mechanistic understanding of how LSTMs perform long-distance agreement.
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4. OTHER SYNTACTIC PHENOMENA

Research on the syntactic abilites of neural networks quickly expanded beyond agreement to
include a variety of other syntactic phenomena. Here, we review a few representative lines of
work. For additional examples, we refer the reader to the proceedings of the BlackboxNLP work-
shops (Linzen et al. 2018, 2019) and of the Society for Computation in Linguistics (https://
scholarworks.umass.edu/scil/).

Wilcox et al. (2018) tested the sensitivity of LSTM language models to English filler—gap de-
pendencies. As in the study by Gulordava et al. (2018), the DNNs were trained only to predict
the next word, without any specific supervision on this construction. In a filler-gap dependency, a
wh-licensor sets up a prediction for a gap—one of the noun phrases in the embedded clause must
be omitted:

(2a) I know that you insulted your aunt yesterday. (no wh-licensor, no gap)
(2b) *I know who you insulted your aunt yesterday. (wh-licensor, no gap)

According to Wilcox and colleagues’ (2018) logic, if the network is sensitive to this constraint, we
expect it to be more surprised by yesterday in the ungrammatical example 2b than in the grammat-
ical example 2a (we say that the DNN is more surprised by a word if it assigns a lower probability
to that word). The DNN’s surprise is measured at yesterday—instead of at the filled gap your aunt,
which is arguably the locus of ungrammaticality—because there are contexts in which the sen-
tence can be continued in a grammatical way after this noun phrase (I know who you insulted your
aunt with__).

It is not only the case that gaps are required after a wh-licensor; they are only allowed in the
presence of such a licensor. If the DNN is fully sensitive to filler-gap dependencies, then we
expect it to be more surprised by yesterday in example 3a, where the gap is ungrammatical, than in
example 3b:

(3a) *I know that you insulted yesterday.  (no wh-licensor, gap)
(3b) I know who you insulted yesterday.  (wh-licensor, gap)

Wilcox etal. (2018) reported that the networks showed the expected pattern. This was the case not
only for direct object extraction, as in examples 2 and 3, but also for subject extraction (example 4a)
and indirect object extraction (example 4b):

(4a) I know who showed the presentation to the visitors yesterday.

(4b) I know who the businessman showed the presentation to yesterday.

The acceptability of grammatical filler-gap constructions was only marginally affected by the dis-
tance between the wh-licensor and the gap, in line with studies of human processing. Further, the
networks correctly learned that a wh-phrase cannot license more than one gap, distinguishing the
well-formed examples 5a and 5b from the less natural Sc:

(52) I know what the lion devoured ___at sunrise.
(5b) I know what___devoured a mouse at sunrise.
(5¢) *T know what ___devoured ___ at sunrise.

In some syntactic configurations that are referred to as islands (Ross 1967), extracting a noun
phrase (replacing it with a gap) is ungrammatical. If the networks are sensitive to this constraint,
their expectation of a gap should be attenuated in these contexts. Wilcox and colleagues (2018)
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found this to be the case for some contexts, such as wh-islands and adjunct islands. One exception
was the Subject Island Constraint, under which a prepositional phrase modifying a noun phrase
can only contain a gap if that noun phrase is not the subject:

(6a) I know who the family bought the painting by ___last year.
(6b) *I know who the painting by ___fetched a high price at auction.

Neither of the two LSTMs tested by Wilcox et al. (2018) captured this asymmetry. Although
the two LSTMs were quite similar in terms of architecture and training corpus, they erred in
opposite ways: One found both examples 6a and 6b grammatical, and the other found both
unacceptable.

Opverall, Wilcox and colleagues’ (2018) conclusions about LSTM language models’ sensitivity
to filler-gap dependencies are quite upbeat. Other authors have reached more mixed conclusions.
Chowdhury & Zamparelli (2018) argued that what appears to be an effect of syntactic islands on
language model probabilities can be explained using other, nongrammatical factors. Chaves (2020)
showed that DNNs do not capture the full complexity of island constraints—for example, they do
not capture negative islands (e.g., *How fast didn’t Jobn drive___?), where semantics and pragmatics
play a central role. Warstadt et al. (2019) reported that DNNs that displayed significant sensitivity
to a range of syntactic phenomena showed limited sensitivity to the island constraints they tested.

In future research, it would be fruitful to establish how these mixed results arise from differences
in the particular constructions and evaluation measures used in these studies.

Futrell et al. (2019) have provided converging evidence that LSTMs can keep track of syntactic
state. In a paradigm similar to that of Wilcox et al. (2018), the LSTM language model they tested
showed high surprise when a subordinate clause was not followed by a matrix clause, as in
example 7:

@) *As the doctor studied the textbook.

In so-called NP/Z garden path sentences such as example 8, in which a noun phrase (the vez. . .)
that is preferentially attached as the direct object of the subordinate clause verb (scrazched) later
turns out to be the subject of the matrix clause, the DNN was surprised at ook (the same reaction
has been reported in human subjects; see also van Schijndel & Linzen 2018):

8) When the dog scratched the vet with his new assistant took off the muzzle.

Futrell and colleagues (2019) compared the LSTM of Gulordava and colleagues (2018) with two
models trained on orders-of-magnitude less data: a standard LSTM and a recurrent neural net-
work grammar (RNNG) (Dyer et al. 2016), which processes words according to the correct parse
of the sentences, thus incorporating a strong bias toward syntactic structure. In this minimal-
data regime, only the syntactically biased RNNG was able to track syntactic state appropriately;
however, the RNNG did not perform better than the Gulordava LSTM (which was trained on
considerably more data).

Other studies have further investigated the ways in which the syntactic performance of a
DNN is affected by its architecture and the amount of syntactic supervision it receives. McCoy
et al. (2020) explored this question using the test case of auxiliary fronting in English question
formation—a hierarchic phenomenon that has become the parade case of the poverty-of-the-
stimulus argument (Chomsky 1986). Using the seq2seq framework (see Section 2), McCoy and
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colleagues trained a range of DNNs to produce questions from simple declarative sentences in a
small fragment of English, as in the following pair:

(92) The zebra does chuckle.
(9b) Does the zebra chuckle?

After training, the DNNs were asked to generate questions from statements in which the sub-
ject was modified by a relative clause, as in example 10a. This syntactic configuration, which had
been withheld from the DNN§’ training data (following Chomsky’s assumption that such config-
urations are very rare in child-directed speech), differentiates two generalizations that a learner
could plausibly acquire. If the DNN has learned, correctly, to front the main clause auxiliary (the
Move-MAIN rule), it will produce question 10b. But the examples seen during training are also
compatible with the nonhierarchical rule move-rirsT, whereby the first auxiliary in the sentence
is fronted irrespective of its syntactic role, as in example 10c:

(10a)  Your zebras that don’t dance do chuckle
(10b) Do your zebras that dor’t dance chuckle?
(10c)  Don’t your zebras that dance do chuckle?

Because the DNNs were trained only on examples that are ambiguous between the two rules, any
preference for Mmove-MAIN would arise from the DNNs a priori bias and, possibly, from a specific
bias favoring hierarchical rules. Indeed, at least some of the DNN architectures that McCoy and
colleagues (2020) tested were biased in favor of move-maiN. However, this bias was not very ro-
bust: Small differences in network parameters, or even in random weight initializations of the exact
same architecture, had a large effect on the outcome. Some differences are amenable to explana-
tion; for example, gating mechanisms that disfavor counting lead to a preference for move-maIN,
possibly because it is difficult to implement Move-FIrsT without some counting device. Other fac-
tors are more difficult to interpret, especially because they interact in surprising ways; for example,
different kinds of attention lead to more or less pronounced hierarchical behavior depending on
the underlying gating mechanism. Finally, even the architectures that did acquire move-maIN for
auxiliary fronting preferred a linear rule in a similarly ambiguous subject—verb agreement task—a
result that suggests that these DNN§’ bias is not reliably hierarchical.

McCoy and colleagues (2020) contrasted the mixed results for standard sequential RNNs with
the robust results of experiments with tree-based RNNs, which, like the RNNG architecture we
have discussed briefly above, combine the words of the sentence in an order determined by an ex-
plicit syntactic parse rather than from left to right as in standard RNNs (Pollack 1990, Socher et al.
2011). Such tree-based RNNs showed the clearest across-the-board preference for move-mamn
(and for the hierarchical generalization in the agreement test). However, this robust preference
emerged only when the bias was implemented in its strongest form: Both the encoder and the de-
coder were based on trees, and correct trees were provided for both the input and the output. An
important direction for future work is to determine whether reliably hierarchical generalization
can arise from weaker architectural features.

Most studies of agreement and related phenomena have focused on languages with syntactic
properties similar to those of English. An interesting exception has been provided by Ravfogel
et al. 2018), who studied case assignment in Basque. Basque has a number of characteristics that
make it very different from English, such as relatively free word order, an ergative case system,
and explicit marking of all arguments through morphemes suffixed to the verb form. Ravfogel
and colleagues explored the task of reconstructing the case suffix (or lack thereof) of each word
in sentences with all suffixes stripped off—for instance, reconstructing example 11a from 11b:
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(11a)  Kutxazain-ek bezeroa-ri liburu-ak eman dizkiote.
cashier-pL.ERG customer-sG.DAT book-pL.ABs gave  they-them-to-her/him
“The cashiers gave the books to the customer.’

(11b)  Kutxazaina bezeroa liburua eman dizkiote.

Ravfogel etal. (2018) formulated this task as a supervised classification problem, which they tackled
with a bidirectional LSTM—that is, an LSTM trained, in parallel, in both the left-to-right and
right-to-left directions, to handle the fact that arguments can both precede and follow the verb.
They achieved relatively high overall accuracy; the difficulties they observed were concentrated
in particular around dative suffix prediction. A post hoc analysis revealed that the model was using
a mix of shallow heuristics (e.g., relying on the closest verb to each argument to determine its
case) and genuine generalizations (e.g., correctly encoding the distinction between the ergative
and absolutive cases).

5. WHAT DO THE NETWORK’S INTERNAL REPRESENTATIONS
ENCODE?

The work reviewed so far evaluates a neural network’s syntactic abilities by examining its output
in response to inputs with particular syntactic properties. Much as linguists study human syntac-
tic knowledge by providing or eliciting acceptability judgments without access to internal brain
states, this so-called black box approach does not require access to the network’s inner workings.
However, compared with the neuroscientific techniques that are currently available for studying
human subjects, direct access to the state of an artificial network is much cheaper, and it can be
more granular: We know precisely what the activation of each unit is after the DNN processes
each word. To the extent that the network’s behavior indicates that it captures a particular syntactic
phenomenon, there is clear interest in understanding how this behavior arises from the network’s
internal states.

This sort of analysis faces major challenges. In traditional symbolic systems, internal repre-
sentations are in a format that is readily interpretable by a researcher (e.g., a parse tree, a logical
formula), and so are the processes that operate over those representations (e.g., syntactic trans-
formations, deduction rules). By contrast, the internal states of a DNN consist of vectors of hun-
dreds or thousands of real numbers, and processing in the network involves applying to those
vectors arithmetic operations that are parameterized by millions of weights. To understand how
the DNN’s behavior arises from its internal states, we need methods that allow us to translate
these vectors into a format interpretable by a human. Such translation is difficult and may not
be possible in all cases. In this section, we review a handful of methods that attempt to interpret
DNN internal states and link them to the network’s behavior; for additional pointers, we refer
readers to Belinkov & Glass (2019).

One of the most popular interpretation methods is based on diagnostic classifiers (also known
as probing tasks; see Adi et al. 2017, Shi et al. 2016). This approach takes vectors produced by an
existing network N—trained, for example, to represent sentences—and measures to what extent a
new, separate classifier C can recover a particular linguistic distinction from N’s vector representa-
tions. This measurement is done by presenting C with N's representations of sentences of different
types—for example, sentences with singular subjects and sentences with plural subjects, labeled
as such—and training it to distinguish the two classes. If C generalizes this distinction with high
accuracy to the vector representations of new sentences, then a component of N that received this
vector representation as input could, in principle, have access to this information (this process is
analogous to multivoxel pattern analysis in neuroscience; see Haxby et al. 2001).
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In a study of the mechanisms tracking subject—verb agreement in a DNN language model, for
example, Giulianelli et al. (2018) showed that the plurality of the subject could be decoded with
high accuracy from the hidden state of the DNN. In another study, Conneau et al. (2018) showed
that a classifier could be trained to decode from a DNN’ vector encoding of a sentence such
syntactic information as the maximal depth of the parse tree of the sentence.

A related but distinct method is the structural probe of Hewitt & Manning (2019). This ap-
proach seeks to find a simple similarity metric between a DNN’ internal representations of words
in context, such that the similarity between the vector representations of two words corresponds
to the distance between the two words in a syntactic parse of the sentence. Hewitt & Manning
showed that such a similarity metric can be found for the representations generated by modern
DNNs based on LSTMs or transformers but not for simpler (baseline) representations.

An important caveat of the methods described so far is that successful recovery of information
from a network’s representation does not establish that the network in fact uses that information:
The information may not affect the network’s behavior in any way. For example, in their study of
auxiliary fronting, McCoy et al. (2018) analyzed the sentence representations produced by various
networks, by training two diagnostic classifiers: one that decoded the main verb’s auxiliary, which
was relevant to correct generalization on the auxiliary fronting task, and one that decoded the
irrelevant first auxiliary (see Secton 4). Disconcertingly for the naive interpretation of diagnostic
classifier accuracy, both types of information were decodable with high accuracy from the net-
works regardless of whether the DNNSs’ behavior indicated that they relied on one or the other.
Giulianelli et al. (2018) addressed this concern in their diagnostic classifier study of subject-verb
agreement in two ways. First, they showed that the classifier’s accuracy was much lower in sen-
tences in which the language model made incorrect agreement predictions, and second, they were
able to use the classifier to intervene in the state of the network and cause it to change its agreement
predictions. Very few of the studies that used the diagnostic classifier method have provided such
compelling evidence linking the information decoded by the classifier to the analyzed network’s
behavior.

The studies discussed so far have examined the numerical activation of a large set of the units
of a DNN and have treated these units jointly as a vector. Lakretz et al. (2019) explored whether
the activation of an individual unit had a causal effect on the behavior of the DNN they studied.
They ablated each unit—that is, set its activation to zero—and measured how this setting affected
the long-distance agreement performance of Gulordava and colleagues’ (2018) LSTM language
model (Section 3). Using this method, Lakretz and colleagues uncovered a sparse mechanism
whereby two units keep track of singular and plural number for agreement purposes. These units
are in turn linked to a distributed circuit (i.e., a circuit consisting of a number of units) that records
the syntactic structure of a sentence and signals when number information needs to be stored and
released. This sophisticated, grammar-aware subnetwork is complemented by a bank of syntax-
insensitive cells that apply agreement heuristics based on linear distance rather than syntactic
structure.

In sum, Lakretz and colleagues (2019) showed that the neurons of an LSTM trained to predict
the next word implement a genuine syntax-based rule to track agreement. However, the sparse
mechanism the DNN develops, complemented by the heuristic linear-distance system, cannot
handle multiply embedded levels of long-distance relations. What becomes increasingly difficult
for the network is not the outermost agreement dependency, which is handled by the sparse cir-
cuit, but rather the embedded one: With the sparse circuit being occupied by outermost agree-
ment tracking, agreement in the embedded clause can only rely on syntactically naive linear-
distance units, which are fooled by intervening attractors. In other words, in a sentence such as
example 12, the network has greater difficulty predicting the correct number for /ike than for is:
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(12) The kid; that the parents; of our neighbor like; is; tall.

Such a precise understanding of how agreement checking is (imperfectly) implemented in a DNN
may help us formulate predictions about the processing of syntactic dependencies by humans
(Lakretz et al. 2020).

6. DISCUSSION

In the past decade, deep learning has underpinned significant advances in NLP applications. The
quality of deep learning—based machine translation systems such as Google Translate and DeepL
is sufficiently high that they have become useful in everyday life. Perhaps even more strikingly,
DNN:s that are trained only on large amounts of natural text—without “innate” linguistic con-
straints and with no support from explicit linguistic annotation—have shown an ability to generate
long stretches of text that is grammatically valid, that is semantically consistent, and that displays
coherent discourse structure (Radford et al. 2019). Here, we discuss to what extent this success
should inform classic debates in linguistics about the innate mechanisms necessary for language
acquisition and about human linguistic competence more generally (for a high-level perspective
on the place of DNNs in cognitive science, see Cichy & Kaiser 2019).

6.1. Nature Versus Nurture

In early debates about the neural network approach to cognitive science (connectionism), neural
networks were often portrayed as pure empiricist machines—that is, as learners that were devoid
of innate biases and induced all their cognitive abilities from data (e.g., Christiansen & Chater
1999, Churchland 1989, Clark 1989, Fodor & Pylyshyn 1988, Pinker & Prince 1988). If that is
the case, DNN§’ success on syntactic tasks may be taken to indicate that human-like syntactic
competence can be acquired through mere statistical learning, thus refuting the classic poverty-
of-the-stimulus argument (Lasnik & Lidz 2017). However, learning theory considerations show
that the notion of a tabula rasa is incoherent in practice. Finite training data are always consistent
with an infinite number of possible generalizations; the stimulus is always poor. Consequently,
any useful learner must have innate biases that lead it to prefer some possible generalizations over
others (Mitchell 1980). DNNGs are not an exception: They have biases that arise from their initial
weights and from the structure of their architectures, which incorporate assumptions of temporal
invariance, gating mechanisms, attention, encoding and decoding modules, and other architectural
elements (see Section 2).

While DNNs are clearly not tabulae rasae, their biases are quite different from those tra-
ditionally proposed by linguists as underlying language acquisition. DNNs used for NLP are
not constrained to perform only syntactically defined, recursive operations, as dictated by the
structure-sensitivity-of-rules principle (Chomsky 1965, 1980) or Merge (Chomsky 1995, Hauser
etal. 2002). If anything, the central architectural features of standard DNNs emphasize sequential
left-to-right processing (RNNs) and content-addressable memory storage and retrieval (gating,
attention). If a DNN performs syntactic tasks in a way that is consistent with human syntactic
competence, we can conclude, for example, that an innate principle constraining the system to use
Merge is not needed to acquire the relevant abilities. What we cannot do is ignore the biases con-
tributed by a DNNs architecture and conclude that statistical learning from data alone suffices to
acquire the relevant abilities.

At the moment, we do not know which (if any) DNN architectural features are fundamental
for learning syntax. Future work should tease apart the crucial factors that enable particular DNN
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architectures to generalize in a human-like way from finite training data, along the lines of studies
such as those of McCoy etal. (2020), which explicitly link success in diagnostic tasks to the specific
priors of different DNN architectures, and those of Lakretz et al. (2019), which characterize at a
mechanistic level how architectural features such as gates underlie the ability of a DNN to perform
a particular linguistic task.

6.2. Incorporating Linguistic Principles into Deep Neural Networks

Instead of trying to understand how the somewhat opaque prior biases of DNNs affect their
linguistic abilities, we can attempt to directly inject a particular bias of theoretical interest into
their architecture and assess the impact of that bias on the generalizations acquired by the DNN.
The studies of Futrell et al. (2019) and McCoy et al. (2020) reviewed in Section 4 illustrate this
approach. These studies have shown that when DNNs are explicitly constrained to process words
in an order dictated by a parse tree rather than from left to right, the DNNs’ syntactic behavior
more closely matches that of humans: They require fewer data than do standard DNNS to acquire
certain generalizations, and they generalize in a human-like way to new syntactic structures (see
also Hale et al. 2018, Kuncoro et al. 2018b). At this point in time, the technological tools for
injecting linguistic constraints into standard DNN architectures are still in their infancy; we do
notyet have reliable methods to implement proposals for innate constraints that are more specific
than a general sensitivity to the parse of a sentence. Developing such tools would significantly
benefit linguistics and cognitive science and, we argue, is an important area for future research. In
the meantime, negative results must be taken with more than one grain of salt because they might
reflect the technological difficulty of combining neural networks and symbolic knowledge rather
than the inefficacy of the linguistic priors in question per se.

6.3. Amount and Nature of Training Data

Neural networks extract linguistic generalizations from raw, unannotated language data, or so the
standard spiel goes. But to understand the implications of the successes and failures of a particular
DNN experiment, we need to consider the nature of the training data used in the experiment.
A first fundamental division is between supervised/focused and unsupervised/generic training.
Consider, for example, the difference between the studies of Linzen et al. (2016) and Gulordava
et al. (2018), both of which suggest that DNNs can learn (long-distance) agreement (Section 3).
In Linzen and colleagues’ supervised setup, the network was fed many sentences exemplifying
subject—verb agreement and was explicitly trained on the objective of predicting verb number.
This study thus asked the following question: Is the architecture of a DNN able, in principle, to
learn agreement, even if explicit instruction is required? By contrast, Gulordava and colleagues
took a network that had been trained to predict each word in a corpus from its context and inves-
tigated, with no further instruction, whether it displayed sensitivity to agreement dependencies.
The question here changes to whether there is enough signal in a raw text corpus for the DNN
architecture in question to correctly pick up the agreement rule.

Another central distinction is between synthetic and corpus-extracted test (or training) data.
The agreement benchmarks of Linzen et al. (2016) and Gulordava et al. (2018) were derived from
corpora; other studies have trained the DNN on corpus data but tested it on constructed examples
(e.g., Futrell etal. 2019, Marvin & Linzen 2018) or have trained and tested the DNN on synthetic
data (e.g., McCoy etal. 2020). All of these setups may lead to useful insights, but the interpretation
of the results should change accordingly, and different confounds have to be taken into account.
For example, on the one hand, unfiltered corpus data may contain spurious correlations that the
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network could rely upon (Kuncoro et al. 2018a). On the other hand, synthetic sentences might
be so different from the corpus data the DNN has been trained on that its failure to handle them
might have more to do with irrelevant differences in factors such as lexical frequency distributions
than with the grammatical phenomenon under investigation.

Even when the training data consist of a raw corpus of naturally occurring language, as they do
in popular NLP word prediction models such as BERT (Devlin et al. 2019) and GPT-2 (Radford
etal. 2019), it is important to remember that these data differ significantly in both size and nature
from those that a child is exposed to. In NLP, the old adage that more data is better data (Banko &
Brill 2001) has held up remarkably. Over the course of just one year, NLP practitioners have in-
creased the size of the corpora used to train word prediction models from 4 billion words (BERT)
to 8 billion words (GPT-2) to well over 100 billion words (T'5) (Raffel et al. 2019). Clearly, the
steadily increasing volume of data made available to these systems is orders-of-magnitude larger
than that available to children [at most 10 million a year, according to Hart & Risley (1995)]. This
divergence limits the cognitive conclusions that can be drawn from testing off-the-shelf NLP sys-
tems and implies that linguists need to train their own DNNs to assess how the volume of training
data affects DNNs’ syntactic knowledge (van Schijndel et al. 2019).

DNN¥’ training data differ from those of children not only in size but also in nature. The
books and articles that DNNs are trained on in NLP differ in their syntactic properties from
child-directed speech. More generally, word prediction networks in NLP are, in essence, asked to
learn language by reading entire libraries of books while sitting alone in a dark room. This setting
is profoundly different from the context in which children learn language, which is grounded in
perception and social interaction. Efforts are underway to introduce such grounding into DNNs
(see, e.g., Chrupata et al. 2015 on perception and Weston 2016 on interaction), but these efforts
are severely limited by the paucity of appropriate training data. When making claims about the
syntactic abilities that can be acquired by the DNNs discussed in this survey, we must keep in
mind that the real question we are asking is how much can be learned from huge amounts of
written linguistic data alone. While purely distributional cues are one of the sources of information
children use when acquiring syntax (Gémez & Gerken 2000), they are certainly not the only type
of evidence children rely upon; this fact greatly complicates quantitative comparisons between the
volume of data available to children and that available to DNNGs.

6.4. Implications for the Study of Human Linguistic Abilities

The body of work we have reviewed in this survey establishes that DNNs are capable of high ac-
curacy in challenging syntactic tasks such as implicitly distinguishing the head noun of the subject
from other nouns in a sentence. At the same time, nearly all studies have reported that DNNs’
behavior deviated from the idealized syntactic competence that a linguist might postulate; in the
case of agreement, for instance, the DNNSs’ behavior suggests that they rely on a complex array of
heuristics rather than on a fully fledged, context-free grammar that would allow them to correctly
process center-embedded clauses, such as in example 12 above. In what ways, then, can findings
on the syntactic abilities of DNNs inform the cognitive science of language in humans?

At a minimum, DNNS can be useful to thoroughly vet the stimuli of human language process-
ing experiments. If a DNN that is known to fall short of human competence succeeds on a task,
such a result suggests that the task in question may not probe the full-fledged grammatical abil-
ities we think humans possess. Consider, for example, the experiment of Gulordava et al. (2018),
who showed that DNNs were almost as good as Italian speakers in the long-distance agreement
task. This finding suggests that the stimuli that were used did not truly probe the human ability to
resort to a full-fledged, context-free grammar to parse sentences, or else the difference between
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DNN and human subjects would have been much more dramatic given the limitations uncovered
by Lakretz et al. (2019) and Marvin & Linzen (2018).

At the same time, humans themselves often deviate from linguists’ idealized description of syn-
tactic competence. We regularly make agreement errors (Bock & Miller 1991) and have difficulty
parsing multiply center-embedded sentences (Chomsky & Miller 1963, Gibson & Thomas 1999).
DNN error patterns, and the heuristics that give rise to those errors, may therefore serve as a
source of hypotheses for experiments designed to study human syntactic performance (Linzen &
Leonard 2018).

Furthermore, not all modern linguistic theorists recognize a sharp distinction between com-
petence and performance. Under some views of syntax, grammar is more akin to a toolbox of
tricks we picked up along our evolutionary way than to the maximally elegant and powerful for-
mal grammars of computer science (e.g., Culicover & Jackendoff 2005, A. Goldberg 2019, Pinker
& Jackendoff 2005). Under such views, the difference between the syntactic knowledge of DNNs
and that of humans might be more one of quantity than one of quality: Humans possess a larger
and more sophisticated set of heuristics to parse sentences than DNNs do, but they do not rely
on any radically different, more powerful narrow language faculty abilities. If that is the case,
the behavior of DNNs might give us insights not only into online processing (performance) but
also into some of the core syntactic tools that constitute human grammatical competence. We
look forward to theoretical work that links modern DNNs to construction grammar and similarly
“shallow” syntactic formalisms.

7. CONCLUSION

In our view, the time is ripe for more linguists to get engaged in the lines of work we have sketched
in this review. On the one hand, linguists’ know-how in probing grammatical knowledge can help
develop the next generation of language processing DNNs, and the success of events such as the
BlackboxNLP series confirms that the deep learning community is warmly welcoming linguistic
analyses of DNNGs. On the other hand, studying what the best DNNs learn about grammar, and
how they do so, can offer new insights into the nature of language and, ultimately, into what is
genuinely unique about the human species. For this line of work to be effective, linguists will need
to be closely involved in developing relevant network architectures, training them on appropriate
data, and conducting experiments that address linguists’ theoretical concerns.
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