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Abstract. We study the mixed formulation of the abstract Hodge Laplacian on axisym-
metric domains with general data through Fourier finite element methods in weighted
function spaces. Closed Hilbert complexes and commuting projectors are used as in the
work of D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus:
from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), 47 (2010),
pp. 281–354, by using the new family of finite element spaces for general axisymmetric
problems introduced in M. Oh, de Rham complexes arising from Fourier finite element
methods in axisymmetric domains, Comput. Math. Appl., 70 (2015), pp. 2063–2073. In
order to get stability results and error estimates for the discrete mixed formulation, we
construct commuting projectors that can be applied to functions with low regularity.

1. Introduction

An axisymmetric problem is a problem defined on a three-dimensional (3D) domain

Ω̆ that is symmetric with respect to an axis, i.e., Ω̆ Ă R3 is obtained by rotating a two-
dimensional (2D) domain Ω Ă R2

` “ tpr, zq P R2 : r ě 0u around the axis of symmetry
(the z-axis). Throughout this paper, we will assume that Ω is a bounded Lipschitz
domain. We will also use pr, θ, zq to denote cylindrical coordinates. An axisymmetric
problem with data that is independent of the rotational variable θ can be reduced to a 2D
problem by using cylindrical coordinates. An axisymmetric problem with data that has θ-
dependency can be reduced to a sequence of 2D problems by using cylindrical coordinates
and a Fourier series decomposition in the θ-variable (´π ď θ ď π), where the solution
to each 2D problem is the n-th Fourier mode of the 3D solution. A discrete problem
corresponding to a 2D problem is significantly smaller than that corresponding to a 3D
problem, so such dimension reduction is an attractive feature considering computation
time. Due to the Jacobian arising from change of variables, however, the resulting 2D
problems are posed in weighted functions spaces where the weight function is the radial
component r. Furthermore, the formulas of the grad, curl, and div operators affecting the
n-th Fourier mode of a function is quite different from the standard ones. In particular,

there are multiple
n

r
-terms appearing in those formulas, so these operators do not map

standard polynomial spaces into another polynomial space. This makes it difficult to
construct finite element spaces that form a discrete de Rham complex even though that
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is a standard tool in the study of mixed finite element methods. (See [17, 2, 1, 3].) This
difficulty was overcome in [24] where the author constructed a new family of finite element
spaces (call them Ah,Bh,Ch, and Dh) that satisfy the following exact sequence property:

(1.1) 0 Ñ Ah
gradnrz
ÝÝÝÝÑ Bh

curlnrz
ÝÝÝÝÑ Ch

divnrz
ÝÝÝÑ Dh Ñ 0,

where gradnrz, curl
n
rz, and divnrz are the operators of interest when considering axisymmet-

ric problems with general data. This paper will use these Fourier finite element spaces to
approximate the solution to the mixed formulation of the abstract Hodge Laplacian on
axisymmetric domains with general data.

In [23], the continuous and discrete mixed formulations of the Hodge Laplacian on
axisymmetric domains were studied through Hilbert complexes under the additional as-
sumption that the given data in the problem is θ-independent. In this paper, we extend
these results to the general case where the data is dependent on θ. The key ingredients
needed to accomplish this task is the construction of a sequence of de Rham complexes
and a uniformly W -bounded (or V -bounded) cochain projections that can be applied to
axisymmetric problems with general data. In other words, we construct necessary tools
for the so-called Fourier-finite-element-methods (Fourier-FEMs) so that we can apply the
well-known theory of [3] to general axisymmetric problems.

Projection operators which commute with the governing differential operators are key
tools for the stability analysis of finite element methods (FEMs). Commuting projection
operators that are well-defined for functions with lower regularity are now standard for
the analysis of mixed FEMs as well. Mixed formulations on axisymmetric domains have
been studied through these commuting projection operators by many authors under the
assumption that the data is axisymmetric (θ-independent). (See [10, 4, 9, 22, 12, 23].)
In [13], commuting smoothed projections that can be applied to axisymmetric problems
with axisymmetric data were constructed by modifying the work of Schoberl ([26, 27]) and
Christiansen and Winther ([6]) to appropriate weighted functions spaces. In this paper,
we modify [13] to construct commuting smoothed projections onto the discrete spaces
arising in (1.1) that can be applied to axisymmetric problems with general data. These
projections can then be used as in [3] to prove stability and convergence results for the
weighted mixed formulation of the Hodge Laplacian.

The remainder of the paper is organized as follows. In the following section, we give a
brief introduction to the Fourier series decomposition and Fourier-FEMs. We also intro-
duce the main Hilbert spaces of interest there along with some notations. In section 3,
we introduce the abstract Hodge Laplacian on axisymmetric domains and its mixed for-
mulation following the framework of [3]. In section 4, we summarize the new family of
finite element spaces constructed in [24] that can be applied to axisymmetric problems
with general data and continue to discuss the discrete weighted mixed formulation of the
Hodge Laplacian. We state the main stability and quasi-optimality results at the end of
this section as well. In section 5, we construct a so-called W-bounded cochain projections
that are needed to prove the main result stated in section 4, and Numerical results fol-
low in section 6. Some proofs have been moved to the Appendix (section 8) to improve
readability of the paper.
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2. Preliminaries

Axisymmetric problems with general data have been studied by many authors through
a Fourier series decomposition. (See [5, 14, 19, 7] for example.) The underlying principle
is the application of partial Fourier approximation (truncated partial Fourier series) us-
ing trigonometric polynomials of degree N with respect to θ. This step reduces the 3D
problem into N 2D problems. The term Fourier-FEMs is used when each Fourier mode
is approximated by using appropriate FEMs. Fourier-FEMs for the axisymmetric Pois-
son equations have been studied in [14], and in [20, 21], Fourier-FEMs for the Maxwell
equations were analyzed.

If a 3D problem is defined on an axisymmetric domain Ω̆ Ă R3, then since any function
u defined on Ω̆ is periodic with respect to θ, one can use a Fourier series decomposition
to represent this function. In particular, by using the orthogonal and complete system
t1, sin θ, cos θ, ¨ ¨ ¨, sinnθ, cosnθ, ¨ ¨ ¨u in L2pp´π, πqq the function u can be written as

u “ u0 `

8
ÿ

n“1

un cosnθ `
8
ÿ

n“1

u´n sinnθ.(2.1)

Similarly, for vector-valued functions on Ω̆, we first write u “ urer ` uθeθ ` uzez by
using the cylindrical basis er, eθ, and ez. Then, write u “ us ` ua, where us and ua

denote the symmetric (with respect to θ “ 0) and antisymmetric parts of u respectively
[11, page 252 figure 8.3], and consider its partial Fourier series decomposition:

(2.2)

us “

¨

˝

u0
r

0
u0
z

˛

‚`

8
ÿ

n“1

¨

˝

unr cosnθ
unθ sinnθ
unz cosnθ

˛

‚,

ua “

¨

˝

0
u0
θ

0

˛

‚`

8
ÿ

n“1

¨

˝

u´nr sinnθ
u´nθ cosnθ
u´nz sinnθ

˛

‚.

Next, consider the usual grad, curl, and div-operators in cylindrical coordinates:

grad u “ pBru,
1

r
Bθu, Bzuq

T ,

curlu “ p
1

r
Bθuz ´ Bzuθ, Bzur ´ Bruz,

1

r
pBrpruθq ´ Bθurqq

T ,

divu “
1

r
Brprurq `

1

r
Bθuθ ` Bzuz.

If one applies these operators to (2.1) or (2.2), then by the orthogonality of cos nθ and
sinnθ, the individual n-th order Fourier modes in grad u, curlu, and divu decouple from
one another in a weak formulation. The resulting grad, curl, and div formulas that affect
the n-th Fourier mode, and therefore the main operators of interest in Fourier-FEMs, are
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the following:

(2.3)

gradnrz u “

»

–

Bru
´n
r
u

Bzu

fi

fl ,

curlnrz

»

–

ur
uθ
uz

fi

fl “

»

–

´pn
r
uz ` Bzuθq

Bzur ´ Bruz
nur`uθ

r
` Bruθ

fi

fl ,

divnrz

»

–

ur
uθ
uz

fi

fl “ Brur `
ur ´ nuθ

r
` Bzuz.

Throughout this paper, the variable n will be used to indicated the n-th Fourier mode of
the function of interest. Note that when n “ 0, the operators above become operators
that arise in axisymmetric problems with axisymmetric data. Since, we are extending the
known results for n “ 0 to general data in this paper, we assume that n ą 0.

Next, let L2pΩ̆q denote the function space consisting of square integrable functions on

Ω̆, and let L̆2pΩ̆q denote the closed subspace of L2pΩ̆q that consist of functions that are

independent of the θ-variable. We then consider the 2D domain Ω Ă R2
` associated to Ω̆

and define the following weighted Hilbert space:

L2
rpΩq “

"

u :

ż ż

Ω

upr, zq2rdrdz ă 8

*

.

Then, there is an isometry (up to a factor of
?

2π) between L̆2pΩ̆q and L2
rpΩq, since

ż

Ω̆

ŭpr, θ, zq2rdrdθdz “ 2π

ż

Ω

upr, zq2rdrdz,

where upr, zq P L2
rpΩq is the function that has the same formula as ŭpr, θ, zq P L̆2pΩ̆q. The

inner-product and norm associated with L2
rpΩq will be denoted as follows:

pu, vqL2
rpΩq

“

ż

Ω

uvrdrdz,

}u}L2
rpΩq

“

ż

Ω

u2rdrdz.

The weighted Hilbert spaces associated with the operators (2.3) are summarized below.

Hrpgrad
n,Ωq “

 

u P L2
rpΩq : gradnrz u P L

2
rpΩq ˆ L

2
rpΩq ˆ L

2
rpΩq

(

,

Hrpcurl
n,Ωq “

 

u P L2
rpΩq ˆ L

2
rpΩq ˆ L

2
rpΩq : curlnrz u P L

2
rpΩq ˆ L

2
rpΩq ˆ L

2
rpΩq

(

,

Hrpdivn,Ωq “
 

u P L2
rpΩq ˆ L

2
rpΩq ˆ L

2
rpΩq : divnrz u P L

2
rpΩq

(

.

The associated inner-product to each space is

pu, vqHrpgradn,Ωq “ pu, vqL2
rpΩq

` pgradnrz u,grad
n
rz vqL2

rpΩq
,

pu,vqHrpcurl
n,Ωq “ pu,vqL2

rpΩq
` pcurlnrz u, curl

n
rz vqL2

rpΩq
,

pu,vqHrpdivn,Ωq “ pu,vqL2
rpΩq

` pdivnrz u, divnrz vqL2
rpΩq

.
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We will use Γ0 (open) to denote the part of the boundary of Ω that is on the axis of
symmetry (the r “ 0 axis), and Γ1 to denote part of the boundary of Ω that is not on
the axis of symmetry. In other words, BΩ “ Γ0 Y Γ1, and a 2π-rotation of Γ1 around the
axis of symmetry returns the entire boundary of Ω̆. We will use boldface when writing
a vector-valued function or a function space that consists of vector-valued functions. For
any vector v of length-three, we will use vr to denote the r-component of v, vθ to denote
the θ-component of v, and so on, i.e., v “ vrer ` vθeθ ` vzez. Also, we will use vrz to
denote pvr, vzq, the length-two vector that consists of the r and z components of v.

3. The Abstract Hodge Laplacian on Axisymmetric Domains and the
Mixed Formulation

In this section, we discuss the weighted Hodge Laplacian problem in a unified way
following the framework of [3]. We assume that n ą 0 is fixed and omit writing n when
writing the exterior derivative dk, the co-derivative δk, and the function spaces V k and
V ˚k appearing in the domain complex and dual complex respectively, for k “ 0, 1, 2, 3.
Throughout this paper, k is an integer value between zero and three.

Let dk be defined as the following

d0v “ gradnrz v,

d1v “ curlnrz v,

d2v “ divnrz v,

d3v “ 0,

and let V k be the Hilbert space associated with it, i.e.,

(3.1)

V 0
“ Hrpgrad

n,Ωq,

V 1
“Hrpcurl

n,Ωq,

V 2
“Hrpdivn,Ωq,

V 3
“ L2

rpΩq.

Viewing dk as an exterior derivative of differential forms that represents a Fourier series
decomposition, one can calculate the dual operator of dk by calculating its co-derivative δk.
The detailed formulation of the domain complex and the dual complex using differential
forms that represent our general axisymmetric setting can be found in subsection 8.1 in
the Appendix. Accordingly, we define δk in the following way:

δ0 “ 0,

δ1v “ ´ divn˚rz v,

δ2v “ curln˚rz v,

δ3v “ ´gradn˚rz v,
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where

(3.2)

gradn˚rz u “

»

–

Bru
n
r
u
Bzu

fi

fl ,

curln˚rz

»

–

ur
uθ
uz

fi

fl “

»

–

n
r
uz ´ Bzuθ
Bzur ´ Bruz

´nur`uθ
r

` Bruθ

fi

fl ,

divn˚rz

»

–

ur
uθ
uz

fi

fl “ Brur `
ur ` nuθ

r
` Bzuz.

We will also need the following Hilbert spaces associated with these operators.
(3.3)
V ˚3 “ Hr,0pgrad

n˚,Ωq

“ tu P L2
rpΩq : gradn˚rz u P L

2
rpΩq ˆ L

2
rpΩq ˆ L

2
rpΩq, u “ 0 on Γ1u,

V ˚2 “Hr,0pcurl
n˚,Ωq

“
 

u P L2
rpΩq ˆ L

2
rpΩq ˆ L

2
rpΩq : curln˚rz u P L

2
rpΩq ˆ L

2
rpΩq ˆ L

2
rpΩq,urz ¨ t “ 0 and uθ “ 0 on Γ1

(

,

V ˚1 “Hr,0pdivn˚,Ωq

“
 

u P L2
rpΩq ˆ L

2
rpΩq ˆ L

2
rpΩq : divn˚rz u P L

2
rpΩq,urz ¨ n “ 0 on Γ1

(

,

V ˚0 “ L2
rpΩq,

where the boundary conditions in (3.3) are understood through trace operators as usual.
(See [15] or subsection 8.1.) Then, δk`1 : V ˚k`1 Ñ V ˚k is the dual operator of dk : V k Ñ

V k`1 with respect to the L2
r-inner product, and

(3.4) pdku, vqL2
rpΩq

“ pu, δk`1vqL2
rpΩq

@u P V k
@v P V ˚k`1.

This is due to Theorem 8.1 and (8.2).

Remark 3.1. It is important to observe that dk is a closed, densely defined operator on
L2
rpΩq (or L2

rpΩq “ L2
rpΩq ˆ L2

rpΩq ˆ L2
rpΩq) such that the range of dk is in L2

rpΩq (or
L2
rpΩq), and dk`1 ˝ dk “ 0. In other words,

(3.5) 0 Ñ L2
rpΩq

d0
ÝÑ L2

rpΩq
d1
ÝÑ L2

rpΩq
d2
ÝÑ L2

rpΩq Ñ 0,

is a (unbounded) Hilbert complex. A Hilbert complex is closed if the range of each dk

is closed in L2
rpΩq (or L2

rpΩq). Since the range of dk is finite codimensional in the null
space of dk`1 (See [24]), (3.5) is a Fredholm complex. Therefore, (3.5) is a closed Hilbert
complex.

The domain complex associated with the closed Hilbert complex (3.5) is

(3.6) 0 Ñ Hrpgrad
n,Ωq

d0
ÝÝÝÑ Hrpcurl

n,Ωq
d1

ÝÝÝÑ Hrpdivn,Ωq
d2

ÝÝÝÑ L2
rpΩq Ñ 0.
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We note here that (3.6) for each Fourier mode has finite dimensional cohomology. In
fact, it was proved in [24, Theorem 2.1] that (3.6) form an exact sequence without further
geometrical assumptions [24, Remark 2.1], so the cohomology vanishes.

Associated with this domain complex, we have a dual complex of the following form:
(3.7)

0 Ð L2
rpΩq

δ1
ÐÝÝÝ Hr,0pdivn˚,Ωq

δ2
ÐÝÝÝ Hr,0pcurl

n˚,Ωq
δ3

ÐÝÝÝ Hr,0pgrad
n˚,Ωq Ð 0.

Let W k denote the spaces appearing in (3.5). Since (3.5) is a closed Hilbert complex,
we immediately get the following Hodge decomposition and Poincare inequality.

W k
“ rangepdk´1

q ‘ rnullpdkqsKW ,

V k
“ rangepdk´1

q ‘ rnullpdkqsKV ,

}v}V k ď CP }d
kv}Wk @v P rnullpdkqsKV ,

where rnullpdkqsKW is the orthogonal complement of the null space of dk with respect to
the L2

r-inner product, and rnullpdkqsKV is the orthogonal complement of the null space of
dk with respect to the V k-inner product.

Now, let us define the abstract Hodge Laplacian as in [3] in the following way:

Lk “ dk´1δk ` δk`1d
k.

Then, the domain of Lk denoted by Dk
L is

Dk
L “ tu P V

k
X V ˚k : dku P V ˚k`1 and δku P V

k´1
u.

If u P Dk
L solves the Hodge Laplacian problem Lku “ f , then u P Dk

L satisfies

pdku, dkvqL2
rpΩq

` pδku, δkvqL2
rpΩq

“ pf, vqL2
rpΩq

@v P V k
X V ˚k

by (3.4). This problem is well-posed, since the harmonic forms vanish.
Now, let us state the weighted mixed formulation of the abstract Hodge Laplacian Lk:
Find pσ, uq P V k´1 ˆ V k such that

(3.8)
pσ, τqL2

rpΩq
´ pdk´1τ, uqL2

rpΩq
“ 0, for all τ P V k´1,

pdk´1σ, vqL2
rpΩq

` pdku, dkvqL2
rpΩq

“ pf, vqL2
rpΩq

, for all v P V k.

Since (3.5) is a closed Hilbert complex, the following theorem follows directly from [3,
Theorem 3.1].

Theorem 3.1. The mixed formulation (3.8) is well-posed, and for any f P L2
rpΩq, we

have
}u}V k ` }σ}V k´1 ď }f}L2

rpΩq
.

It is straightforward to check that the four Hodge Laplacian problems arising from our
axisymmetric setting correspond to the following problems.

‚ k “ 0: The Neumann Problem for the Axisymmetric Poisson Equation

´ divn˚rz grad
n
rzu “ f in Ω,

gradnrzu ¨ n “ 0 on Γ1.



8 MINAH OH

‚ k “ 1: The Axisymmetric Vector Laplacian curl curl`grad div

´gradnrz divn˚rz u` curln˚rz curl
n
rz u “ f ,

pcurlnrz uqrz ¨ t “ 0, pcurlnrz uqθ “ 0 on Γ1,

urz ¨ n “ 0 on Γ1.

‚ k “ 2: The Axisymmetric Vector Laplacian curl curl`grad div

curlnrz curl
n˚
rz u´ gradn˚rz divnrz u “ f ,

urz ¨ t “ 0, uθ “ 0, divnrz u “ 0 on Γ1.

‚ k “ 3: The Dirichlet Problem for the Axisymmetric Poisson equation

´ divnrz grad
n˚
rz u “ f in Ω,

u “ 0 on Γ1.

4. Approximation of Weighted Hilbert Complexes

In this section, we will study the discrete weighted mixed formulation of the Hodge
Laplacian. We will use the Fourier finite element spaces constructed in [24]. Let us first
define the following polynomial spaces:

A1 “
 

α1r ` α2r
2
` α3rz : αi P R for 1 ď i ď 3

(

,

B1 “

$

&

%

¨

˝

β1 ` β4r ` β3z ´ β6rz
´nβ1 ` β2r ´ nβ3z

β5r ` β6r
2

˛

‚: βi P R for 1 ď i ď 6

,

.

-

,

C1 “

$

&

%

¨

˝

nγ1 ` γ2r
γ1 ` γ3r
γ4 ` γ2z

˛

‚: γi P R for 1 ď i ď 4

,

.

-

.

Assume that Ω is meshed by a finite element triangulation Th that satisfies the usual
geometrical conformity conditions [8]. Then define the following global finite element
spaces:

(4.1)

Ah “ tu P Hrpgrad
n,Ωq : u|K P A1 for all K P Thu ,

Bh “ tu PHrpcurl
n,Ωq : u|K P B1 for all K P Thu ,

Ch “ tu PHrpdivn,Ωq : u|K P C1 for all K P Thu ,

Dh “
 

u P L2
rpΩq : u|K is constant for all K P Th

(

.

The main significance of this family of Fourier finite element spaces is that they make
the following diagram commute:

(4.2)

Hrpgrad
n,Ωq

gradnrz
ÝÝÝÝÑ Hrpcurl

n,Ωq
curlnrz
ÝÝÝÝÑ Hrpdivn,Ωq

divnrz
ÝÝÝÑ L2

rpΩq
§

§

đ

Ing

§

§

đ

Inc

§

§

đ

Ind

§

§

đ

Io

Ah
gradnrz
ÝÝÝÝÑ Bh

curlnrz
ÝÝÝÝÑ Ch

divnrz
ÝÝÝÑ Dh



PROJECTORS IN WEIGHTED NORMS 9

where the interpolation operators used in the above commuting diagram are defined in
the following way (See [24, Section 3]):

Ing u|K “
3
ÿ

i“1

´

p
n

r
uqpaiq

¯ r

n
λi,(4.3)

Inc

¨

˝

ur
uθ
uz

˛

‚|K “

3
ÿ

i“1

uθpaiq

¨

˚

˝

´
1

n
λi

λi
0

˛

‹

‚

`

3
ÿ

i“1

p

ż

ei

ˆ

nur`uθ
r
nuz
r

˙

¨ tiq

¨

˚

˚

˝

r

n
νri

0
r

n
νzi

˛

‹

‹

‚

,(4.4)

Ind

¨

˝

ur
uθ
uz

˛

‚|K “ p
1

|K|

ż

K

nuθ ´ ur
r

q

¨

˚

˝

0
r

n
χK

0

˛

‹

‚

`

3
ÿ

i“1

p

ż

ei

ˆ

ur
uz

˙

¨ niq

¨

˚

˝

ξri
1

n
ξri

ξzi

˛

‹

‚

,(4.5)

Iou|K “ p
1

|K|

ż

K

udrdzqχK .(4.6)

In the above definition, we are using ai to denote the i-th vertex of triangle K P Th, and
ti and ni are being used to denote the unit vector tangent and normal to the i-th edge
of K respectively. For each x P K, λipxq denote its barycentric coordinates in K so that

x “
ř3
i“1 λipxqai, and νi “

ˆ

νri
νzi

˙

“ λj∇λk ´ λk∇λj for pi, j, kq-circular permutation

notation, and ξi “

ˆ

ξri
ξzi

˙

is the rotation of νi counter-clockwise by
π

2
, i.e.,

ˆ

ξri
ξzi

˙

“

ˆ

´νzi
νri

˙

.(4.7)

In other words, tνiu form a local basis for the lowest order Nédélec space ([18]), and
tξiu form a local basis for the lowest order Raviart Thomas space ([25]). χK denotes
the constant function one on triangle K. These interpolation operators also satisfy error
estimates which can be found in [24, Theorem 4.1].

Remark 4.1. Note that the finite element space Bh was constructed in [15] to approximate
the solution of the axisymmetric time harmonic Maxwell equations, but in a different way
compared to how it was constructed in [24].

Now let us focus on the discrete subcomplex appearing in (4.2):

(4.8) 0 Ñ Ah
d0
ÝÑ Bh

d1
ÝÑ Ch

d2
ÝÑ Dh Ñ 0.

This is again a closed Hilbert complex, and we can get the weighted Hodge decomposition
and the Poincare inequality as we did for the continuous closed Hilbert complex. Note
that (4.8) is also exact. For a unified notation, we use V k

h to denote the discrete function
spaces in (4.8), i.e., V 0

h “ Ah, V
1
h “ Bh, etc. We will use the notation pVh, dq to denote

this Hilbert subcomplex (4.8) while we use pV, dq to denote the Hilbert complex (3.6).
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Now, let us consider the following discrete weighted mixed formulation of the Hodge
Laplacian: find pσh, uhq P V

k´1
h ˆ V k

h such that

(4.9)
pσh, τhqL2

rpΩq
´ pdk´1τh, uhqL2

rpΩq
“ 0, for all τh P V

k´1
h ,

pdk´1σh, vhqL2
rpΩq

` pdkuh, d
kvhqL2

rpΩq
“ pf, vhqL2

rpΩq
, for all vh P V

k
h .

A uniformly V -bounded cochain projection from the complex pV, dq to the subcomplex
pVh, dq is a set of operators Πk

h : V k Ñ V k
h , k “ 0, 1, 2, 3, such that

(4.10)

Πk
hvh “ vh for all vh P V

k
h ,

dkΠ
k
h “ Πk`1

h dk,

}Πk
hv}V ď C}v}V for all v P V k,

for some constant C independent of the mesh parameter h. It was established in [3,
Theorem 3.9] that a uniformly V -bounded cochain projection guarantees the stability of
p4.9q along with error estimates between pσ, uq of (3.8) and pσh, uhq of (4.9).

With this goal in mind, we construct a uniformly V -bounded cochain projection from
the complex pV, dq to the subcomplex pVh, dq in the next section. Then, by [3, Theorems
3.8 and 3.9], we achieve the main result of this paper, the stability result along with
abstract error estimates.

Theorem 4.1. The discrete mixed formulation (4.9) is stable. Furthermore, if pσ, uq P
V k´1 ˆ V k is the solution to (3.8) and pσh, uhq P V

k´1
h ˆ V k

h is the solution to (4.9), then

}σ ´ σh}V k´1 ` }u´ uh}V k ď Cp inf
τhPV

k´1
h

}σ ´ τh}V k´1 ` inf
vhPV

k
h

}u´ vh}V kq.

Remark 4.2. As usual, the interpolation operators in (4.2) do not form a V -bounded
cochain projection, since it is not well-defined for all functions in V k but only for functions
in V k with extra regularity.

5. A Bounded Cochain Projection for Fourier-FEMs

In this section, we construct uniformly V -bounded cochain projections that satisfy
(4.10). In fact, the projections constructed here are W -boounded cochain projections
which can be applied to not only all functions in V k but also in W k. In [13], the well-known
work of Schoberl ([26, 27]) and Christiansen and Winther ([6]) were modified to weighted
function spaces, and we constructed W -bounded cochain projections that can be applied
to axisymmetric problems with axisymmetric data. We now extend the work of [13] to
construct W -bounded cochain projections that can be applied to axisymmetric problems
with general data. Before we discuss the detailed construction of these new commuting
smoothed projections, we first point out the differences between these projections versus
the ones already constructed in [13]. The projections constructed in [13] satisfy the
commuting diagram property with operators

(5.1)
gradrzu “ pBru, Bzuq

T ,

curlrzpvr, vzq “ Bzvr ´ Brvz,
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while the new projections must satisfy the commuting diagram property with operators in
(2.3). The formulas in p5.1q are significantly simpler than those in (2.3), and they are also
similar to the standard gradient and curl operators in 2D. Operators in (2.3) are more
complicated and quite different from the standard ones, so special attention is required
when constructing smoothed projections to ensure commutativity with these operators.

Furthermore, the multiple
n

r
-terms appearing in (2.3) cause difficulties in the analysis

that one does not have to deal with in [13]. One of the new ideas used to overcome this
difficulty is in the use of r3 (instead of r) when defining ηa in Proposition 5.2 and κi in
(5.11). This is explained in detail in Remark 5.2.

Let us start by constructing smoothing operators that satisfy the commuting diagram
property. Let K be a triangle in Th, rpyq denote the value of the radial coordinate at a
point y P R2

`,
hK “ diampKq, rK “ max

xPK
rpxq,

and ρK denote the diameter of the largest circle inscribed in K. We assume that

hK
ρK

ă C,

i.e., the triangular mesh Th is shape regular. Finally, let Pl denote the space of polynomials
of degree at most l (for some l ě 0). Throughout this paper, we use C to denote a generic
positive constant that is independent of thKu.

The first three items in the following proposition can be found in [13, page 4] while the
fourth item is an extra result that is needed to extend the results in that paper to general
axisymmetric problems. Its proof can be found in the Appendix (subsection 8.2).

Proposition 5.1. For all v P Pl,

}gradrzv}
2
L2
rpKq

ď Ch´2
K }v}

2
L2
rpKq

,(5.2)

}gradrzv}
2
L8pKq ď Ch´2

K }v}
2
L8pKq,(5.3)

rKh
2
K}v}

2
L8pKq ď C}v}2L2

rpKq
,(5.4)

Furthermore, if u P Pl vanishes on Γ0, then we have

r2
K

›

›

›

u

r

›

›

›

2

L2
rpKq

ď C }u}2L2
rpKq

.(5.5)

Let a “ par, azq be a point in R2
` and let Da be a closed disk of radius ρ, or its half,

centered around a, as shown in Figure 1. Using this notation, we have the following
proposition, and its proof can be found in the Appendix (subsection 8.3).

Proposition 5.2. There exists a function ηapr, zq P Pl, for any l ě 0, such that

prηa, rpqL2
rpDaq “ ppaq, for all p P Pl,(5.6)

}rηa}
2
L2
rpDaq

ď
C

ρ2r3
a

, where ra “

#

ρ, in Case 1,
min
yPDa

rpyq, in Case 2,(5.7)

ż

Da

r3
pyq|ηapyq|dy ď C.(5.8)
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z

r0

a

Da

ρ

Case 1

z

r0

a
Daρ

Case 2

Figure 1. Domains Da corresponding to point a.

Note that (5.6) implies that

(5.9)

ż

Da

r3
pyqηapyqdy “ 1.

Next, we will describe how to choose a Da for each mesh vertex a in Th. Let δ ą 0 be a
global parameter.

‚ If a is on the z-axis, then Da is set as in Case 1 of Figure 1 with ρ “ hδ.
‚ If a is not on the z-axis, then Da is set as in Case 2 of Figure 1 with ρ “ hδ.

Next, let Ωa denote the vertex patch of the mesh vertex a. We choose δ ą 0 small enough
that the following conditions are satisfied for all Da.

(1) Da Ă Ωa for all vertices a that are not on Γ1.
(2) Da X Ω Ă Ωa for all vertices a that are on Γ1.
(3) Da’s of different mesh vertices do not overlap.
(4) ra ě δh

Note that, for a’s that lie on Γ1, Da will not be fully in Ω but in an extension of Ω denoted

by rΩ. Let V kpΩq be the same as V k defined in (3.1), and V kprΩq be defined in a similar

way but on rΩ instead of Ω. Throughout this paper, we will assume that there exists a set

of extension operators Ek : V kpΩq Ñ V kprΩq for all k “ 0, 1, 2, 3 that satisfy the following
properties:

(5.10)

Ekupr, zq “ upr, zq for all pr, zq P Ω,

dk ˝ Ek
“ Ek`1

˝ dk,

}Eku}L2
rp
rΩq ď C}u}L2

rpΩq
.

For the rest of the paper, in the case when a of interest is on Γ1 and thus Da Ă rΩ, it is
assumed that the extension Eku is used in place of u when it is being evaluated at Da.
The assumptions (5.10) assures that Proposition 5.3 and Lemma 5.1 remain true as it is
stated even with such use of Ek.

Remark 5.1. Since a P Γ1 is on the natural boundary, we may construct Ek by modi-
fying [2, page 65] that uses a Lipschitz continuous bijection to the axisymmetric setting
discussed in subsection 8.1.
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We need some more notations to define the smoothing operators. We use r¨, ¨, ¨s to
denote the convex hull of its arguments. Accordingly, a triangle K P Th with vertices
a1, a2, and a3 is K “ ra1,a2,a3s. Its three edges are e1 “ ra2,a3s, e2 “ ra3,a1s, and
e3 “ ra1,a2s. Let Dai be the smoothing domains introduced above for the vertex ai
pi “ 1, 2, 3), and let yi P Dai . Set

(5.11) κipyiq “ r3
pyiqηaipyiq,

where ηai is the function given by Proposition 5.2 with a equal to ai. We write κ123 “

κ1κ2κ3 and κ12 “ κ1κ2, etc. When it is more convenient to use a pi, j, kq-circular permuta-
tion notation, we will use i, j, k instead of 1, 2, 3 above, i.e., K “ rai,aj,aks, ei “ raj,aks,
etc.

Recall that, for each x P K, λipxq denote its barycentric coordinates in K so that

x “
3
ÿ

i“1

λipxqai.

Following [26], we now define x̃y by

(5.12) x̃ypx,y1,y2,y3q “

3
ÿ

i“1

λipxqyi

and introduce these mesh dependent smoothers:
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Definition 5.1.

Sgupxq “
r

n

ż

Da1

ż

Da2

ż

Da3

κ123

´nu

r

¯

px̃yq dy3dy2dy1(5.13)

Scvpxq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

«

r

n

ş

Da1

ş

Da2

ş

Da3
κ123

ˆ

dx̃y

dx

˙T

»

—

—

–

nvr ` vθ
r

px̃yq

nvz
r
px̃yq

fi

ffi

ffi

fl

dy3dy2dy1

ff

r

´
1

n

ş

Da1

ş

Da2

ş

Da3
κ123vθpx̃yqdy3dy2dy1

ş

Da1

ş

Da2

ş

Da3
κ123vθpx̃yqdy3dy2dy1

«

r

n

ş

Da1

ş

Da2

ş

Da3
κ123

ˆ

dx̃y

dx

˙T

»

—

—

–

nvr ` vθ
r

px̃yq

nvz
r
px̃yq

fi

ffi

ffi

fl

dy3dy2dy1

ff

z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.14)

Sdwpxq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

«

ş

Da1

ş

Da2

ş

Da3
κ123 det

ˆ

dx̃y

dx

˙ˆ

dx̃y

dx

˙´1 „
wrpx̃yq

wzpx̃yq



dy3dy2dy1

ff

r

1

n

«

ş

Da1

ş

Da2

ş

Da3
κ123 det

ˆ

dx̃y

dx

˙ˆ

dx̃y

dx

˙´1 „
wrpx̃yq

wzpx̃yq



dy3dy2dy1

ff

r

`
r

n

ş

Da1

ş

Da2

ş

Da3
κ123 det

ˆ

dx̃y

dx

˙

´nwθ ´ wr
r

¯

px̃yqdy3dy2dy1

«

ş

Da1

ş

Da2

ş

Da3
κ123 detp

dx̃y

dx
qp
dx̃y

dx
q´1

„

wrpx̃yq

wzpx̃yq



dy3dy2dy1

ff

z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.15)

Soupxq “

ż

Da1

ż

Da2

ż

Da3

κ123 det

ˆ

dx̃y

dx

˙

upx̃yqdy3dy2dy1(5.16)

Proposition 5.3. The smoothing operators satisfy a commuting diagram property:

gradnrzpS
guq “ Scpgradnrz uq,(5.17)

curlnrzpS
cuq “ Sdpcurlnrz uq,(5.18)

divnrzpS
duq “ Sopdivnrz uq.(5.19)



PROJECTORS IN WEIGHTED NORMS 15

Proof. The results follow by construction, so we will only include the proof of (5.17) here.
By the definition of Sg, Sc, and gradnrz, we have
(5.20)

Scpgradnrz uq “ ScppBru,´
nu

r
, Bzuq

T
q

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

«

r

n

ş

Da1

ş

Da2

ş

Da3
κ123

ˆ

dx̃y

dx

˙T
«

Brpnuq

r ´ nu
r2

Bzpnuq

r

ff

px̃yqdy3dy2dy1

ff

r

`
1

n

ş

Da1

ş

Da2

ş

Da3
κ123p

nu

r
qpx̃yqdy3dy2dy1

´
ş

Da1

ş

Da2

ş

Da3
κ123p

nu

r
qpx̃yqdy3dy2dy1

«

r

n

ş

Da1

ş

Da2

ş

Da3
κ123

ˆ

dx̃y

dx

˙T
«

Brpnuq

r ´ nu
r2

Bzpnuq

r

ff

px̃yqdy3dy2dy1

ff

z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

«

r

n

ş

Da1

ş

Da2

ş

Da3
κ123

ˆ

dx̃y

dx

˙T „

Brp
nu
r q

Bzp
nu
r q



px̃yqdy3dy2dy1

ff

r

`
1

n

ş

Da1

ş

Da2

ş

Da3
κ123p

nu

r
qpx̃yqdy3dy2dy1

´
ş

Da1

ş

Da2

ş

Da3
κ123p

nu

r
qpx̃yqdy3dy2dy1

«

r

n

ş

Da1

ş

Da2

ş

Da3
κ123

ˆ

dx̃y

dx

˙T „

Brp
nu
r q

Bzp
nu
r q



px̃yqdy3dy2dy1

ff

z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and
(5.21)

gradnrzpS
guq “ gradnrz

` r

n

ż

Da1

ż

Da2

ż

Da3

κ123

´nu

r

¯

px̃yq dy3dy2dy1

˘

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Br

«

r

n

ş

Da1

ş

Da2

ş

Da3
κ123

´nu

r

¯

px̃yq dy3dy2dy1

ff

´
ş

Da1

ş

Da2

ş

Da3
κ123p

nu

r
qpx̃yqdy3dy2dy1

Bz

«

r

n

ş

Da1

ş

Da2

ş

Da3
κ123

´nu

r

¯

px̃yq dy3dy2dy1

ff

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

r

n
Br

«

ş

Da1

ş

Da2

ş

Da3
κ123

´nu

r

¯

px̃yq dy3dy2dy1

ff

`
1

n

ş

Da1

ş

Da2

ş

Da3
κ123

´nu

r

¯

px̃yq dy3dy2dy1

´
ş

Da1

ş

Da2

ş

Da3
κ123p

nu

r
qpx̃yqdy3dy2dy1

r

n
Bz

«

ş

Da1

ş

Da2

ş

Da3
κ123

´nu

r

¯

px̃yq dy3dy2dy1

ff

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Since

ˆ

dx̃y

dx

˙T
´

gradrz
`nu

r

˘

¯

px̃yq “ gradrz

´

`nu

r
qpx̃yq

¯

,

it follows that (5.20) and (5.21) are equal, and this completes the proof of (5.17). The
remaining results are proved in a similar way by using chain rule and the covariant trans-
formation and the Piola transformation. (See [27, Lemma 14].) �

Definition 5.2.

Rg
hu “ Ing S

gu,(5.22)

Rc
hu “ Inc S

cu,(5.23)

Rd
hu “ Ind S

du,(5.24)

Ro
hu “ IoS

ou.(5.25)

Lemma 5.1. There exists a constant C independent of h and δ such that

}Rg
hu}

2
L2
rpΩq

ď
C

δ5
}u}2L2

rpΩq
, @ u P L2

rpΩq,(5.26)

}Rg
huh ´ uh}

2
L2
rpΩq

ď Cδ2
}uh}

2
L2
rpΩq

, @ uh P Ah,(5.27)

}Rc
hv}

2
L2
rpΩq

ď
C

δ5
}v}2L2

rpΩq
, @ v P L2

rpΩq ˆ L
2
rpΩq ˆ L

2
rpΩq,(5.28)

}Rc
hvh ´ vh}

2
L2
rpΩq

ď Cδ2
}vh}

2
L2
rpΩq

, @ vh P Bh,(5.29)

›

›Rd
hv
›

›

2

L2
rpΩq

ď
C

δ3
}v}2L2

rpΩq
, @ v P L2

rpΩq ˆ L
2
rpΩq ˆ L

2
rpΩq,(5.30)

›

›Rd
hvh ´ vh

›

›

2

L2
rpΩq

ď Cδ2
}vh}

2
L2
rpΩq

, @ vh P Ch,(5.31)

}Ro
hw}

2
L2
rpΩq

ď
C

δ3
}w}2L2

rpΩq
, @ w P L2

rpΩq,(5.32)

}Ro
hwh ´ wh}

2
L2
rpΩq

ď Cδ2
}wh}

2
L2
rpΩq

, @ wh P Dh.(5.33)

Proof. We will only prove (5.26), (5.27), (5.30), and (5.31) in detail here by modifying
the the proof of [13, Lemma 4.2]. In particular, we will combine the techniques used to
prove multiple items in [13, Lemma 4.2]. Items (5.28), (5.29), (5.32), and (5.33) can be
proved in a similar way. For simplicity, we assume that n “ 1 throughout this proof.

Let K “ ra1,a2,a3s be a fixed triangle in Th. We first we prove (5.26) and (5.27). By
(5.22) and (4.3), we have

Rg
hu|K “

3
ÿ

i“1

«

p
Sgu

r
qpaiq

ff

rλi.
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Therefore,

(5.34)

}Rg
hu}

2
L2
rpKq

“ }

3
ÿ

i“1

«

Sgu

r
paiq

ff

rλi}
2
L2
rpKq

ď

3
ÿ

i“1

|
Sgu

r
paiq|

2

ż

K

prλiq
2rdrdz

ď C
3
ÿ

i“1

|
Sgu

r
paiq|

2r3
Kh

2 since |λi| ď 1 for all i “ 1, 2, 3.

Let us first bound |
Sgu

r
paiq|. By definition, we have

(5.35) x̃ypai,y1,y2,y3q “ yi for all i “ 1, 2, 3,

and so by (5.13), we have
(5.36)

|
Sgu

r
paiq| “ |

ż

Da1

ż

Da2

ż

Da3

κ123
u

r
pyiq dy3dy2dy1| by (5.35)

“ |

ż

Dai

κipyiq
u

r
pyiqdyi| by (5.9)

“ |

ż

Dai

prηaiqpyiqupyiqrpyiqdyi| since κi “ r3ηai

ď }rηai}L2
rpDai q

}u}L2
rpDai q

ď
C

a

ρ2r3
ai

}u}L2
rpDai q

by Propostion 5.2 item (5.7).

Therefore, continuing from (5.34), we get

(5.37)

}Rg
hu}

2
L2
rpKq

ď

3
ÿ

i“1

C

ρ2r3
ai

}u}2L2
rpDai q

r3
Kh

2 by (5.36)

ď
C

δ2
}u}2L2

rpDKq

3
ÿ

i“1

p
rK
rai
q
3 since ρ “ hδ

ď
C

δ5
}u}2L2

rpDKq
,

where DK is the union of Da1 , Da2 , and Da3 . The last inequality above follows since
rK ď rai ` Ch, so we have

(5.38)
rK
rai

ď
rai ` Ch

rai
“ 1`

Ch

rai
ď 1`

C

δ
ď
C

δ
,

where we are using item (4) of the selection criteria of the smoothing domains. By
summing up over all triangles, and by using the shape regularity of Th, (5.37) implies
(5.26).
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Now let uh be any function in Ah. We first find a bound for the degrees of freedom of
Rg
huh ´ uh:

(5.39)

|
Sguh
r
paiq ´ p

uh
r
qpaiq| “ |

ż

Dai

κip
uh
r
pyiq ´

uh
r
paiqqdyi|

ď maxyiPDai
|
uh
r
pyiq ´

uh
r
paiq|

ż

Dai

r3
|ηai |dyi

ď CmaxyiPDai
|p
uh
r
pyiq ´

uh
r
paiqq| by (5.8)

ď CmaxyiPDai
|ai ´ yi|}gradrz

uh
r
}L8pDai q

ď Chδ}gradrz
uh
r
}L8pDai q

since yi P Dai .

Recall that, by definition of Ah, uh “ 0 on Γ0 and
uh
r
P P1. Therefore,

(5.40)

}Rg
huh ´ uh}

2
L2
rpKq

“ }

3
ÿ

i“1

«

Sguh
r
paiq ´

uh
r
paiq

ff

rλi}
2
L2
rpKq

ď

3
ÿ

i“1

|
Sguh
r
paiq ´

uh
r
paiq|

2

ż

K

prλiq
2rdrdz

ď

3
ÿ

i“1

Ch2δ2
}gradrz

uh
r
}

2
L8pDai q

h2
Kr

3
K by (5.39) and since |λi| ď 1

ď Ch2δ2
}gradrz

uh
r
}

2
L8pDKq

h2
Kr

3
K

ď Ch2δ2
}gradrz

uh
r
}

2
L2
rpDKq

r2
K by (5.4)

ď Cδ2
}
uh
r
}

2
L2
rpDKq

r2
K by (5.3)

ď Cδ2
}uh}

2
L2
rpDKq

by (5.5),

and this completes the proof of (5.27).
Next, let us prove (5.30). To do so, it suffices to show that

}Rd
hu}

2
L2
rpKq

ď
C

δ3
}u}2CK .

By (5.24) and (4.5), we have
(5.41)

Rd
hu|K “

„

1

|K|

ż

K

pSduqθ ´ pS
duqr

r



¨

˝

0
rχK

0

˛

‚`

3
ÿ

i“1

„
ż

ei

ˆ

pSduqr
pSduqz

˙

¨ nids



¨

˝

ξri
ξri
ξzi

˛

‚.
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With this in mind, we show that the following bounds are true.

ż

ei

ˆ

pSduqr
pSduqz

˙

¨ nids ď

˜

C

δ
?
raj

`
C

δ
?
rak

¸

}u}L2
rpCKq

,(5.42)

1

|K|

ż

K

pSduqθ ´ pS
duqr

r
dx ď C

´ 1

h
a

r3
a1

`
1

h
a

r3
a2

`
1

h
a

r3
a3

¯

}u}L2
rpCKq

,(5.43)

where CK denotes the convex hull of Da1 , Da2 , and Da3 . We will first derive (5.42).
Using the pi, j, kq-circular permutation notation and the notations yj “ py

r
j , y

z
j q and yk “

pyrk, y
z
kq, we have

(5.44)

|

ż

ei

pSduqrz ¨ nids| “ |

ż

Daj

ż

Dak

κjk

ż

ryj ,yks

urz ¨ nidSdykdyj| by (5.15)

“ |

ż

Daj

ż

Dak

κjk

ż 1

0

urzpp1´ sqyj ` sykq ¨

ˆ

yzj ´ y
z
k

yrk ´ y
r
j

˙

dsdykdyj|

ď Ch

ż

Daj

ż

Dak

|κjk|

ż 1

0

|urzpp1´ sqyj ` sykq|dsdykdyj

ď Ch

ż

Daj

ż

Dak

|κjk|p

ż 1
2

0

`

ż 1

1
2

q|urzpp1´ sqyj ` sykq|dsdykdyj

“ A`B,

where we have broken the integral with respect to s into two integrals, one over s P r0, 1{2s
(A) and the other over s P r1{2, 1s (B). Before we proceed, we introduce another notation.
For any vertex a, ra,max denotes maxyPDa rpyq. It is straightforward to check that

(5.45)
ra,max
ra

ď 3.
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Now let us consider the case when 0 ď s ď 1
2

to get an estimate for A.
(5.46)

A “ Ch

ż

Daj

ż

Dak

|κjk|

ż 1
2

0

|urzpp1´ sqyj ` sykq|dsdykdyj

“ Ch

ż

Dak

|κk|

ż 1
2

0

ż

Daj

|κj||urzpp1´ sqyj ` sykq|dyjdsdyk

“ Ch

ż

Dak

|κk|

ż 1
2

0

ż

Daj

|rpyjqηajpyjq||rpyjqurzpp1´ sqyj ` sykq|rpyjqdyjdsdyk

ď Ch

ż

Dak

|κk|

ż 1
2

0

}rηaj}L2
rpDaj q

}rpyjqurzpp1´ sqyj ` sykq}L2
rpDaj q

dsdyk

ď Ch}rηaj}L2
rpDaj q

raj ,max

ż

Dak

|κk|

ż 1
2

0

´

ż

Daj

purzpp1´ sqyj ` sykqq
2rpyjqdyj

¯
1
2
dsdyk

ď Ch}rηaj}L2
rpDaj q

raj ,max

ż

Dak

|κk|

ż 1
2

0

´

ż

Zkj

urzpzq
2rpzqdz

¯
1
2
dsdyk by change of variables.

In the last inequality above, we are using a change of variables from yj to z “ p1´sqyj`
syk. Since 0 ď s ď 1{2 we have

rpyjq ď 2p1´ sqrpyjq ď 2p1´ sqrpyjq ` 2srpykq ď 2rpp1´ sqyj ` sykq “ 2rpzq

and

p1´ sq´2
ď 4

to bound the Jacobian. Continuing from (5.46), we get

(5.47)

A ď
Chraj ,max

hδ
b

r3
aj

}urz}L2
rpCKq

ż

Dak

|κk|

ż 1
2

0

dsdyk by (5.7) and since Zkj Ă CK

ď
Chraj ,max

hδ
b

r3
aj

}urz}L2
rpCKq

by (5.8)

ď
C

δ
?
raj
}u}L2

rpCKq
by (5.45).

We get a similar results as (5.47) for B as well, and this proves (5.42).
To prove (5.43) let us first introduce the following notation:

Tl “ tx P K : λlpxq ą
1

3
u for 1 ď l ď 3.

Since

1

|K|

ż

K

pSduqθ ´ pS
duqr

r
dx ď

1

|K|

3
ÿ

l“1

|

ż

Tl

pSduqθ ´ pS
duqr

r
dx|,
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it suffices to show that the bound holds for each
1

|K|
|
ş

Tl

pSduqθ ´ pS
duqr

r
dx|.

|

ż

T1

pSduqθ ´ pS
duqr

r
dx1|

“ |

ż

T1

ż

Da1

ż

Da2

ż

Da3

κ123 det
´dx̃y

dx

¯”uθ ´ ur
r

ı

px̃yqdy3dy2dy1dx| by (5.15)

ď

ż

Da2

ż

Da3

|κ23|

´

ż

T1

ż

Da1

rpy1q|ηa1py1q|rpy1q

ˇ

ˇ

ˇ

uθ ´ ur
r

px̃yq

ˇ

ˇ

ˇ
rpx̃yq

ˇ

ˇ

ˇ

ˇ

det
´dx̃y

dx

¯

ˇ

ˇ

ˇ

ˇ

dy1dx
¯

dy3dy2

ď

ż

Da2

ż

Da3

|κ23|

´

ż

T1

}rηa1}L2
rpDa1 q

}puθ ´ urqpx̃yq}L2
rpDa1 q

ˇ

ˇ

ˇ

ˇ

det
´dx̃y

dx

¯

ˇ

ˇ

ˇ

ˇ

dx
¯

dy3dy2

ď }rηa1}L2
rpDa1 q

c

|T1|| det
´dx̃y

dx

¯

|

¨

ż

Da2

ż

Da3

|κ23|

´

ż

T1

ż

Da1

ppuθ ´ urqpx̃yqq
2rpy1q| det

´dx̃y

dx

¯

|dy1dx
¯1{2

dy3dy2

ď }rηa1}L2
rpDa1 q

c

|T1|| det
´dx̃y

dx

¯

|

¨

ż

Da2

ż

Da3

|κ23|

´

ż

Da1

ż

rT1

ppuθ ´ urqpzqq
2rpzqdzdy1

¯1{2

dy3dy2 by change of variables

ď
C

a

ρ2r3
a1

?
Ch2

a

ρ2}uθ ´ ur}L2
rpCKq

since pareapDa1qq
1{2
“
a

πρ2

ď
Ch
a

r3
a1

}u}L2
rpCKq

.

The change of variables used above in particular is from x P T1 to z “ x̃y. The second
inequality above is true, since

rpy1q “
1

λ1pxq
¨ λ1pxq ¨ rpy1q ă 3rpλ1pxqy1q ď 3rpx̃yq,

as 1{λ1pxq ă 3 for all x P T1. We are also using above that rT1, the image of T1 under the
map xÑ x̃y, satisfies T̃1 Ă CK and that

| det
´dx̃y

dx

¯

| “
|T̃1|

|T1|
ď C.

Similar results can be shows for T2 and T3, and we get

1

|K|

ż

K

pSduqθ ´ pS
duqr

r
dx ď C

´ 1

h
a

r3
a1

`
1

h
a

r3
a2

`
1

h
a

r3
a3

¯

}u}L2
rpCKq

.
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akaj

yk

yj
Ljk

Figure 2. Ljk

Let us now complete the proof of (5.30) by using (5.42) and (5.43). It is true that
(5.48)
ż

K

`

3
ÿ

i“1

ż

ei

ppSduqrz ¨ nidSq

»

–

ξri
ξri
ξzi

fi

fl

˘2
rdrdz ď

3
ÿ

i“1

|

ż

ei

pSduqrz ¨ nidS|
2

ż

K

»

–

ξri
ξri
ξzi

fi

fl

2

rdrdz

ď
CrK
δ2ra

›

›

›
u}2L2

rpCKq
by (5.42)

ď
C

δ3
}u}L2

rpCKq
by (5.38).

In the second to the last inequality above, we are using ra to denote the minimal value
of rai , raj , and rak , and we are using the fact that pξri , ξ

z
i q is the local basis functions for

the lowest order Raviart Thomas space in two-dimensions, and thus satisfies

(5.49) }pξri , ξ
z
i q}

2
L2
rpKq

ď CrK .

It is also true that

(5.50)

ż

K

` 1

|K|

ż

K

pSduqθ ´ pS
duqr

r
dxrχK

˘2
rdrdz

ď r3
K

` 1

|K|

ż

K

pSduqθ ´ pS
duqr

r
dx

˘2
ż

K

χ2
Kdrdz

ď
Cr3

K

h2r3
a

}u}L2
rpCKq

¨ Ch2 by (5.43)

ď
C

δ3
}u}L2

rpCKq
by (5.38).

The proof of (5.30) is completed by (5.48), (5.50), and (5.41).
Finally, we prove (5.31). Let uh P Ch be written as uh “ pu

r
h, u

θ
h, u

z
hq
T . We will find

bounds for the degrees of freedom that defines Rd
huh ´ uh. Let Ljk “ raj,ak,yk,yj,ajs

(See Figure 2.) It should be clear that

areapLjkq ď Chphδq

and
lengthpraj,yjsq ď Chδ lengthprak,yksq ď Chδ.

Also, we use divrz to denote the usual divergence operator in the pr, zq-plane, i.e.,

divrzpvr, vzq “ Brvr ` Bzvz.
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It follows that
(5.51)
ˇ

ˇ

ˇ

ż

Daj

ż

Dak

κjk

´

ż

ryj ,yks

puhqrz ¨ nidS ´

ż

raj ,aks

puhqrz ¨ nidS
¯

dykdyj

ˇ

ˇ

ˇ

ď

ż

Daj

ż

Dak

|κjk|
´

|

ż

Ljk

divpuhqrzdA| ` |

ż

raj ,yjs

puhqrz ¨ nidS| ` |

ż

rak,yks

puhqrz ¨ nidS|
¯

dykdyj

by the Divergence Theorem

ď

ż

Daj

ż

Dak

|κjk|
´

Chphδq} divpuhqrz}L8pCKq ` Chδ}puhqrz}L8pCKq

¯

dykdyj

ď Chδ}puhqrz}L8pCKq by (5.8) and an inverse inequality.

Therefore,
(5.52)
ż

K

´

3
ÿ

i“1

p

ż

ei

pRd
huh ´ uhqrz ¨ niq

»

–

ξri
ξri
ξzi

fi

fl

¯2

rdrdz ď Ch2δ2
}puhqrz}L8pCKqrK by (5.51) and (5.49)

ď Cδ2
}uh}L2

rpCKq
by (5.4).

Next,
(5.53)

1

|K|

ż

K

pRd
huh ´ uhqθ ´ pR

d
huh ´ uhq

r

r
dx

“
1

|K|

ż

K

ż

Da1

ż

Da2

ż

Da3

|κ123|

´

det
´dx̃y

dx

¯

p
uθh ´ u

r
h

r
qpx̃yq ´ p

uθh ´ u
r
h

r
qpxq

¯

dy3dy2dy1dx

“
1

|K|

ż

Da1

ż

Da2

ż

Da3

|κ123|

´

ż

K

det
´dx̃y

dx

¯

p
uθh ´ u

r
h

r
qpx̃yqdx´

ż

K

p
uθh ´ u

r
h

r
qpxqdx

¯

dy3dy2dy1

“
1

|K|

ż

Da1

ż

Da2

ż

Da3

|κ123|

´

ż

K̃y

p
uθh ´ u

r
h

r
qpzqdz ´

ż

K

p
uθh ´ u

r
h

r
qpxqdx

¯

dy3dy2dy1

by change of variables from x to z “ x̃y

ď
1

|K|
}
uθh ´ u

r
h

r
}L8pCKqhphδq by (5.8)

ď δ}
uθh ´ u

r
h

r
}L8pCKq.

In the second to the last inequality above, we are also using the fact that

areappKzK̃yq Y pK̃yzKqq ď Chphδq,

which is clear from Figure 3.
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ak

aj

ai

yk

yj

yi

K̃y

K

Figure 3. K is mapped to K̃y under the map x ÞÑ x̃y.

Finally,

(5.54)

ż

K

` 1

|K|

ż

K

pRd
huh ´ uhqθ ´ pR

d
huh ´ uhq

r

r
dxrχK

˘2
rdrdz

ď h2r3
Kδ

2

›

›

›

›

uθh ´ u
r
h

r

›

›

›

›

2

L8pCKq

by (5.53)

ď δ2r2
K

›

›

›

›

uθh ´ u
r
h

r

›

›

›

›

2

L2
rpCKq

by (5.4)

ď δ2
}uθh ´ u

r
h}

2
L2
rpCKq

by (5.5)

ď Cδ2
}uh}

2
L2
rpCKq

.

Hence, the proof of (5.31) is completed by (5.52), (5.54), and (4.5).
�

Remark 5.2. It is worth mentioning how we are using κi in the proof of Lemma 5.1. The
three r’s in the definition of κi “ r3ηai are each being used for a different purpose. One
r is being multiplied to ηai so that we can use (5.7), another r is being multiplied to the
integrand that appears next to κi, and the last r is being left in the integral so that the
integral is still an inner product in the weighted L2-space, so that the resulting norms
in the next step after applying the Cauchy-Schwarz inequality continue to be L2

r-norms.
(See (5.36) for example.)

The following Lemma is a straightforward result followed by (5.27), (5.29), (5.31),
(5.33), and a standard Neumann series argument.

Lemma 5.2. There are operators

Jgh : Ah Ñ Ah, J ch : Bh Ñ Bh, Jdh : Ch Ñ Ch, Joh : Dh Ñ Dh,
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and δ1 ą 0 such that for all 0 ă δ ă δ1, the operators Rg
h|Ah , R

c
h|Bh

, Rd
h|Ch

, and Ro
h|Dh are

invertible, their inverses are Jgh , J
c
h, J

d
h , and Joh, resp., and their operator norms satisfy

}Jgh}L2
rpΩq

ď 2, }J ch}L2
rpΩq

ď 2, }Jdh}L2
rpΩq

ď 2, }Joh}L2
rpΩq

ď 2.

Furthermore, these inverse operators satisfy the commuting diagram property as well.

Finally, we are ready to define the commuting smoothed projectors that are uniformly
bounded in the L2

r-norm. For the rest of the paper, we assume that δ P p0, δ1s, where δ1

is given as in Lemma 5.2. Recall that L2
rpΩq denotes L2

rpΩq ˆ L
2
rpΩq ˆ L

2
rpΩq.

Definition 5.3. Define Πg
h : L2

rpΩq Ñ Ah, Πc
h : L2

rpΩq Ñ Bh, Πd
h : L2

rpΩq Ñ Ch and
Πo
h : L2

rpΩq Ñ Dh by

Πg
h “ JghR

g
h, Πc

h “ J chR
c
h, Πd

h “ JdhR
d
h, Πo

h “ JohR
o
h.

The following theorem summarizes the properties of these projectors.

Theorem 5.1. The above operators are projectors and have the following properties:

(1) Continuity. There exists a C ą 0 such that

}Πg
hu}L2

rpΩq
ď C}u}L2

rpΩq
, @u P L2

rpΩq,

}Πc
hu}L2

rpΩq
ď C}u}L2

rpΩq
, @u P L2

rpΩq,

}Πd
hu}L2

rpΩq
ď C}u}L2

rpΩq
, @u P L2

rpΩq,

}Πo
hu}L2

rpΩq
ď C}u}L2

rpΩq
, @u P L2

rpΩq.

(2) Commutativity. The operators satisfy the following commuting diagram:

(5.55)

L2
rpΩq

gradnrz
ÝÝÝÝÑ L2

rpΩq
curlnrz
ÝÝÝÝÑ L2

rpΩq
divnrz
ÝÝÝÑ L2

rpΩq
§

§

đ

Πgh

§

§

đ

Πch

§

§

đ

Πdh

§

§

đ

Πoh

Ah
gradnrz
ÝÝÝÝÑ Bh

curlnrz
ÝÝÝÝÑ Ch

divnrz
ÝÝÝÑ Dh

(3) Approximation.

}u´ Πg
hu}L2

rpΩq
ď C inf

uhPAh
}u´ uh}L2

rpΩq
,

}u´ Πc
hu}L2

rpΩq
ď C inf

uhPBh

}u´ uh}L2
rpΩq

,
›

›u´ Πd
hu

›

›

L2
rpΩq

ď C inf
uhPCh

}u´ uh}L2
rpΩq

,

}u´ Πo
hu}L2

rpΩq
ď C inf

uhPDh
}u´ uh}L2

rpΩq
.

Proof. We will prove all items for Πg
h only as the remaining statements can be proved in

a similar way. First of all, Πg
h is indeed a projector, since

pΠg
hq

2v “ pJghR
g
hq

2v “ JghR
g
hJ

g
hR

g
hv “ JghpR

g
h|AhJ

g
hqR

g
hv “ JghR

g
hv “ Πg

hv.

Furthermore, by (5.26) and Lemma 5.2, we also have

}Πg
h}L2

rpΩq
ď C}Jgh}L2

rpΩq
}Rg

h}L2
rpΩq

ď 2C{δ5,
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which proves the continuity estimate. Commutativity follows by Proposition 5.3 and the
fact that the inverse operators in Lemma 5.2 also satisfy a commuting diagram property.
Lastly, since Πg

huh “ uh, we have

}u´ Πg
hu}L2

rpΩq
“ }u´ uh ´ Πg

hpu´ uhq}L2
rpΩq

ď p1` Cq}u´ uh}L2
rpΩq

,

for any uh P Ah, and therefore

}u´ Πg
hu}L2

rpΩq
ď C inf

uhPAh
}u´ uh}L2

rpΩq
.

�

It is clear from Theorem 5.1 that the projections constructed in the previous section
are certainly uniformly V -bounded cochain projections by (4.10), and this verifies Theo-
rem 4.1, the main result of this paper.

Remark 5.3. We note here that the constant C appearing in Theorem 5.1 items (1) and
(3) is independent of the Fourier mode n. Item (3), however, provides abstract error
estimates, so we investigate how the concrete error estimates are affected by n through a
numerical example in the next section.

6. Numerical Results

In this section, we present numerical results for the weighted mixed formulation of the
Hodge Laplacian problem that we investigated in this paper. We present numerical results
of the weighted mixed formulation of the Hodge Laplacian for k “ 0, 1, 2, and 3. For all
examples presented below, we choose the domain to be the unit square in R2

` with vertices
p0, 0q, p1, 0q, p1, 1q, and p0, 1q.

Weighted Hodge Laplacian Problem with k “ 3

The problem of interest in this case can be stated as follows:
find pσh, uhq P Ch ˆDh such that

(6.1)
pσh, τ hqL2

rpΩq
´ pdiv1

rz τ h, uhqL2
rpΩq

“ 0, for all τ h P Ch,

pdiv1
rz σh, vhqL2

rpΩq
“ pf, vhqL2

rpΩq
for all vh P Dh.

For computer implementation of the mixed method, we need to assemble the matrix
representations of the operators Kh : Ch ÞÑ C 1

h and Lh : Ch ÞÑ D1h defined by

Khvhpwhq “ pvh,whqL2
rpΩq

for all vh,wh P Ch

Lhvhpshq “ ´pdiv1
rz vh, shqL2

rpΩq
for all vh P Ch, sh P Dh.

Let K and L denote the matrix representations of Kh and Lh respectively, in terms of the
standard local bases for Ch and Dh. Then (6.1) can be rewritten as the linear system

Kσh ` LTuh “ 0,

´L σh “ fh,
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Table 6.1. k “ 3 case with Fourier mode n “ 1

mesh level l }u´ ul}L2
rpΩq

rate }σ ´ σl}L2
rpΩq

rate

1 4.265e-02 1.922e-01
2 2.318e-02 0.88 1.018e-01 0.92
3 1.188e-02 0.96 5.198e-02 0.97
4 5.979e-03 0.99 2.616e-02 0.99
5 2.995e-03 1.00 1.311e-02 1.00
6 1.498e-03 1.00 6.556e-03 1.00
7 7.492e-04 1.00 3.278e-03 1.00

where σh and uh denote the vectors of coefficients in the basis expansions of σh and uh,
respectively. The vector fh is computed from the right hand side of (6.1) as usual. In
practice, we compute uh and σh by solving

Muh “ fh,

Kσh “ gh,

where M “ LK´1LT and gh “ ´L
Tuh. Both these systems can be solved via the conjugate

gradient method as M and K are symmetric and positive definite. Note that when solving
the first equation, for each application of M, we use another inner conjugate gradient
iteration to obtain the result of multiplication by K´1.

In Table 6.1, we report the L2
rpΩq-norm of the observed errors. ul and σl are used to

denote the approximation of u and σ respectively at mesh level l. We choose the right
hand side data function f so that the exact solution pσ, uq is

u “ sinpπzqpr2
´ rq,

σ “ p´ sinpπzqp2r ´ 1q,´ sinpπzqpr ´ 1q,´π cospπzqpr2
´ rqqT .

Weighted Hodge Laplacian Problem with k “ 2

We next consider the case when k “ 2 with Fourier mode n “ 3. We are interested in
finding pσh,uhq P Bh ˆCh that satisfies

pσh, τ hqr ´ pcurl
3
rzτ h,uhqr “ 0 for all τ h P Bh,

pcurl3rzσh,vhqr ` pdiv3
rz uh, div3

rz vhqr “ pf ,vhqr for all vh P Ch.

The implementation is done in the usual way similar as the k “ 3 case, and we choose f
so that the exact solution pσ,uq is

u “ p3rpr ´ 1q,´3r2
` 2r, 0qT ,

σ “ p0, 0, r2
pr ´ 1qqT .

In Table 6.2, we report the L2
rpΩq-errors for this problem.
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Table 6.2. k “ 2 case with Fourier mode n “ 3

mesh level l }u´ ul}L2
rpΩq

rate }σ ´ σl}L2
rpΩq

rate

1 3.416e-02 2.295e-01
2 2.865e-02 0.25 1.367e-01 0.75
3 2.033e-02 0.50 7.075e-02 0.95
4 1.105e-02 0.88 3.583e-02 0.98
5 5.652e-03 0.97 1.800e-02 0.99
6 2.845e-03 0.99 9.015e-03 1.00
7 1.425e-03 1.00 4.510e-03 1.00

Table 6.3. k “ 1 case with Fourier mode n “ 2

mesh level l }u´ ul}L2
rpΩq

rate }σ ´ σl}L2
rpΩq

rate

1 3.368e-02 1.147e-01
2 2.484e-02 0.44 6.520e-02 0.81
3 1.749e-02 0.51 1.964e-02 1.73
4 9.658e-03 0.86 5.206e-03 1.92
5 4.963e-03 0.96 1.326e-03 1.97
6 2.501e-03 0.99 3.335e-04 1.99
7 1.254e-03 1.00 8.351e-05 2.00

Weighted Hodge Laplacian Problem with k “ 1

The discrete problem for k “ 1 with Fourier mode n “ 2 can be stated as follows:
Find pσh,uhq P Ah ˆBh that satisfies

pσh, τhqr ´ pgrad
2
rzτh,uhqr “ 0 for all τh P Ah,

pgrad2
rzσh,vhqr ` pcurl2rzuh, curl2rzvhqr “ pf ,vhqr for all vh P Bh.

We choose f so that the exact solution pu, σq is

u “ pr3
pr ´ 1q, 0, 0qT ,

σ “ ´5r3
` 4r2.

The error for this case is reported in Table 6.3.

Weighted Hodge Laplacian Problem with k “ 0

We fix the Fourier mode to be n “ 1 in this example. Let Qh : Hrpgrad
1,Ωq Ñ Ah be

a projection that satisfies

pgrad1
rzQhu,grad

1
rzvhqL2

rpΩq
“ pgrad1

rzu,grad
1
rzvhqL2

rpΩq
for all vh P Ah.

Note that, the right-hand-side of the above problem is in a different form compared to
that appearing on the right-hand-side of the weighted mixed formulation of the Hodge
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Table 6.4. k “ 0 case with Fourier mode n “ 1

u “ r1{2 u “ r2{3 u “ r5{6 u “ r sin z
mesh level }u´Qhu}L2

rpΩq rate }u´Qhu}L2
rpΩq rate }u´Qhu}L2

rpΩq rate }u´Qhu}L2
rpΩq rate

1 8.578e-03 4.086e-03 1.474e-03 . 1.116e-03
2 3.306e-03 1.38 1.437e-03 1.51 4.789e-04 1.62 2.904e-04 1.94
3 1.225e-03 1.43 4.802e-04 1.58 1.465e-04 1.71 7.349e-05 1.98
4 4.464e-04 1.46 1.569e-04 1.61 4.351e-05 1.75 1.843e-05 2.00
5 1.615e-04 1.47 5.074e-05 1.63 1.272e-05 1.77 4.609e-06 2.00
6 5.825e-05 1.47 1.631e-05 1.64 3.685e-06 1.79 1.152e-06 2.00
7 2.096e-05 1.47 5.225e-06 1.64 1.061e-06 1.80 2.881e-07 2.00
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Figure 4. The order of convergence of }σ7 ´ σ6}L2
rpΩq

for various Fourier
modes when k “ 1

Laplacian for k “ 0. Also recall that the nullspace of the grad1
rz operator is trivial. In

Table 6.4, we report the L2
rpΩq-norm of the observed error for different u-values that are

indicated in the chart. As expected, one can see the increase of the order of convergence
as the r-degree grows higher.

Before we end this section, we include one more numerical example that shows the relation
between the order of convergence and the Fourier mode n. We consider the case when k “ 1
and investigate the order of convergence of the σ approximation for Fourier modes n from 2 to
60 in increments of 2. We fix f “ p0, r, 0qT throughout this experiment. The exact solution
for various n-values are unknown for this case, so we compute the L2

rpΩq-error between two
consecutive approximations. Figure 4 shows the order of convergence of }σl´σl´1}L2

rpΩq
at l “ 7

in relation to various Fourier modes. When f is independent of n, the exact solution will depend
on n, and it is noticeable from Figure 4 that the order of convergence slowly decreases as n gets
larger.

7. Concluding Remarks

We studied the mixed formulation of the Hodge Laplacian on 3D axisymmetric domains
with general data through Fourier-FEMs by using a recently developed family of Fourier finite
element spaces. While we focused on axisymmetric 3D domains in this paper, the extension of
this work to general m-dimensions (mD) will be interesting. Understanding what it means for
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a differential form to be axisymmetric in general mD and extending the results in this paper to
general mD manifolds remain as future work.

8. Appendix

8.1. Understanding Axisymmetric Problems with General Data through Differential
Forms. One way to reach the formulas of (2.3) is by considering differential forms that represent
a Fourier series decomposition and then applying the exterior derivative to it. Then, we can
calculate the co-derivative in this setting to reach the formulas of the dual operators (3.2). In
[23], a new approach in analyzing axisymmetric problems with axisymmetric data (data that is
independent of θ) by using differential forms in a similar way was given. In this section, we will
extend that approach to the general framework of axisymmetric problems with general data.
Recall that Ω̆ Ă R3 is an axisymmetric domain that can be obtained by rotating Ω Ă R2

` around
the axis of symmetry. We will use the standard notation in differential geometry that can be
found in [3] for example. Since we will be using cylindrical coordinates, we will use dr, rdθ, and
dz instead of dx1, dx2, and dx3 when writing a differential s-form.

In [23], the closed subspace of L2ΛspΩ̆q denoted by L̆2ΛspΩ̆q consisting of axisymmetric dif-

ferential s-forms were considered. We write out the definition of L̆2ΛspΩ̆q here:

L̆2Λ0pΩ̆q “ tf P L2Λ0pΩ̆q :
Bf

Bθ
“ 0u,

L̆2Λ1pΩ̆q “ tfdr ` grdθ ` hdz P L2Λ1pΩ̆q :
Bf

Bθ
“
Bg

Bθ
“
Bh

Bθ
“ 0u,

L̆2Λ2pΩ̆q “ tfrdθ ^ dz ` gdz ^ dr ` hdr ^ rdθ P L2Λ2pΩ̆q :
Bf

Bθ
“
Bg

Bθ
“
Bh

Bθ
“ 0u,

L̆2Λ3pΩ̆q “ tfdr ^ rdθ ^ dz P L2Λ3pΩ̆q :
Bf

Bθ
“ 0u.

These are the differential forms of interest when studying axisymmetric problems with axisym-

metric data, and since if
Bf

Bθ
“ 0 then

ż ż ż

Ω̆
fdV “ 2π

ż ż

Ω
frdrdz,

we utilized the weighted differential t-form space denoted by L2
rΛ

tpΩq for t “ 0, 1, 2 that consist
of differential t-forms whose each component is square integrable with the weight r (with the
measure rdrdz). This is again a Hilbert space with the inner product

ă ω, η ąL2
rΛ

t“

ż

Ω
ă ωx, ηx ąAltt TxΩ rdrdz,

for all ω, η P L2
rΛ

tpΩq.
In this paper, we are considering axisymmetric problems with data that does have θ-dependency,

and therefore, we need to consider a subspace of L2ΛspΩ̆q that is different from L̆2ΛspΩ̆q. In
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particular, we need the following subspace of L2ΛspΩ̆q that represent a Fourier series decompo-
sition:

(8.1)

L̃2,nΛ0 “

"

f cospnθq P L2Λ0pΩ̆q :
Bf

Bθ
“ 0

*

,

L̃2,nΛ1 “

"

f cospnθqdr ` g sinpnθqrdθ ` h cospnθqdz P L2Λ1pΩ̆q :
Bf

Bθ
“
Bg

Bθ
“
Bh

Bθ
“ 0

*

,

L̃2,nΛ2 “

!

f sinpnθqrdθ ^ dz ` g cospnθqdz ^ dr ` h sinpnθqdr ^ rdθ P L2Λ2pΩ̆q :

Bf

Bθ
“
Bg

Bθ
“
Bh

Bθ
“ 0

*

,

L̃2,nΛ3 “

"

f sinpnθqdr ^ rdθ ^ dz P L2Λ3pΩ̆q :
Bf

Bθ
“ 0

*

.

The inner-product associated with these spaces is simply

ă w, v ąL̃2,nΛs“ă w, v ąL2Λs .

Note that if
Bf

Bθ
“ 0 then

(8.2)

ż ż ż

Ω̆
f2 cos2pnθqrdrdθdz “ π

ż ż

Ω
f2rdrdz,

ż ż ż

Ω̆
f2 sin2pnθqrdrdθdz “ π

ż ż

Ω
f2rdrdz,

so the functions f, g, and h appearing in (8.1) satisfy f, g, h P L2
rΛ

0pΩq. Therefore, ă w, v ąL̃2,nΛs

can also be expressed by using the inner-product in L2
rΛ

0pΩq as well.
Next, consider the exterior derivative d defined as

(8.3) dpασdxσp1q ^ ¨ ¨ ¨ ^ dxσpsqq “
3
ÿ

j“1

Bασ
Bxj

dxj ^ dxσp1q ^ ¨ ¨ ¨ ^ dxσpsq,

and the relations

(8.4)

dx1 “ cos θdr ´ r sin θdθ,

dx2 “ sin θdr ` r cos θdθ,

dx3 “ dz,

and

(8.5)

dr “ cos θdx1 ` sin θdx2,

rdθ “ ´ sin θdx1 ` cos θdx2,

dz “ dx3.
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One can calculate
(8.6)
dpf cospnθqq

“ pBrfq cospnθqdr ´ p
n

r
q sinpnθqrdθ ` pBzfq cospnθqdz,

dpf cospnθqdr ` g sinpnθqrdθ ` h cospnθqdzq

“ p´Bzg ´
n

r
hq sinpnθqrdθ ^ dz ` pBzf ´ Brhq cospnθqdz ^ dr ` pBrg `

n

r
¨ f `

g

r
q sinpnθqdr ^ rdθ,

dpf sinpnθqrdθ ^ dz ` g cospnθqdz ^ dr ` h sinpnθqdr ^ rdθq

“ pBrf `
f

r
´
n

r
¨ g ` Bzhq sinpnθqdr ^ rdθ ^ dz.

Then we define the following spaces:

H̃nΛs “
!

ω P L̃2,nΛs : dω P L̃2,nΛs`1
)

.

This is a Hilbert space with the inner product being

ă ω, ν ąH̃nΛs“ă ω, ν ąL̃2,nΛs ` ă dω, dν ąL̃2,nΛs`1 ,

and we have a de Rham complex

(8.7) 0 Ñ H̃nΛ0 d
ÝÑ H̃nΛ1 d

ÝÑ H̃nΛ2 d
ÝÑ H̃nΛ3 Ñ 0.

Let inc : BΩ̆ Ñ Ω̆ be the inclusion map. Then, the pullback of the map inc is the trace map
denoted by tr : ΛspΩ̆q Ñ ΛspBΩ̆q, and it is continuous from H̃nΛspΩ̆q to H´1{2ΛspBΩ̆q.

On Ω̆, the Hodge star operator ‹ from ΛspΩ̆q to Λ3´spΩ̆q satisfies
ż

Ω̆
ω ^ µ “ă ‹ω, µ ąL̃2,nΛ3´s

for all µ P L̃2,nΛ3´s.
The coderivative operator δ maps a s-form to a ps´ 1q-form in the following way:

(8.8) ‹pδωq “ p´1qsdp‹ωq.

Now, by using the definition (8.8), let us calculate the co-derivative δ of d.

(8.9)

δpf cospnθqdr ` g sinpnθqrdθ ` h cospnθqdzq

“ ´pBrf `
f

r
`
n

r
¨ g ` Bzhq cospnθq,

δpf sinpnθqrdθ ^ dz ` g cospnθqdz ^ dr ` h sinpnθqdr ^ rdθq

“ p´Bzg `
n

r
hq cospnθqdr ` pBzf ´ Brhq sinpnθqrdθ ` pBrg ´

n

r
¨ f `

g

r
q cospnθqdz,

δpfdr ^ rdθ ^ dzq

“ p´Brfq sinpnθqrdθ ^ dz ´ p
nf

r
q cospnθqdz ^ dr ´ pBzfq sinpnθqdr ^ rdθ.

As we did for the exterior derivative, we define

H̃˚nΛs “
!

ω P L̃2,nΛs : δω P L̃2,nΛs´1
)

.

Furthermore, we define the subspace with vanishing trace:

H̃˚n,0Λs “
!

ω P H̃˚nΛs : trω̃ “ 0
)

.
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Its inner product is

ă ω, ν ąH̃˚nΛs“ă ω, ν ąL̃2,nΛs ` ă δω, δν ąL̃2,nΛs´1 ,

and we have a dual complex

(8.10) 0 Ð H̃˚n,0Λ0 δ
ÐÝ H̃˚n,0Λ1 δ

ÐÝ H̃˚n,0Λ2 δ
ÐÝ H̃˚n,0Λ3 Ð 0.

By the Leibniz rule, Stokes theorem, and the fact that pullbacks respect the wedge product,
we obtain the integration by parts formula for differential forms ([3, section 4]):

ă dω, µ ąL̃2,nΛs“ă ω, δµ ąL̃2,nΛs´1 `

ż

BΩ̆
trω ^ ‹µ for all ω P Λs´1pΩ̆q, µ P ΛspΩ̆q,

and this can be extended to

ă dω, µ ąL̃2,nΛs“ă ω, δµ ąL̃2,nΛs´1 for all ω P H̃nΛs´1, µ P H̃˚n,0Λs.

Furthermore, the following theorem follows. (See [3, Theorem 4.1].)

Theorem 8.1. Let d be the exterior derivative viewed as an unbounded operator from L̃2,nΛs´1

to L̃2,nΛs with domain H̃nΛs´1. Then, the adjoint of d, as an unbounded operator from L̃2,nΛs

to L̃2,nΛs´1, has H̃˚n,0Λs as its domains and coincides with δ.

8.2. Proof of Proposition 5.1 item (5.5). Recall that rK denotes maximal value of r in K.
For triangles that do not intersect the z-axis, the proof of (5.5) is trivial, since

r2
K}
u

r
}2L2

rpKq
ď

r2
K

r2
K,min

}u}2L2
rpKq

ď C}u}2L2
rpKq

,

where rK,min denotes the minimal value of r in K. This is true, since
rK

rK,min
ď C for triangles

that are aways from the z-axis.
For triangles that do intersect the z-axis, we use [16, Corollary 4.1] and [15, Lemma 10] that

states that

(8.11)

ż

K

u2

r2
drdz ď C

ż

K
|gradrzu|

2drdz,

for all function u P H1pKq that vanishes on Γ0.
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By using (8.11), the proof of (5.5) for any triangle K that intersects the z is completed by

r2
K}
u

r
}2L2

rpKq
“ r2

K

ż

K

u2

r
drdz

“ r2
K

ż

K

u2

r2
rdrdz

ď r3
K

ż

K

u2

r2
drdz

ď Cr3
K

ż

K
|gradrzu|

2drdz by (8.11)

ď Cr3
Kh

2
K}gradrzu}

2
L8pKq

ď Cr2
K}gradrzu}

2
L2
rpKq

by (5.4)

ď C
r2
K

h2
K

}u}2L2
rpKq

by (5.2)

ď C}u}2L2
rpKq

since rK ď ChK on K that intersects the z-axis.

This completes the proof of (5.5).

8.3. Proof of Proposition 5.2. We will prove this proposition in two separate cases as done
in [13].

The first case is when a is a point on the z-axis, i.e., a “ p0, azq. Then Da is the half disk

tpr, zq P R2
` : r2`pz´azq

2 ď ρ2u. Let D̂1 “ tpr̂, ẑq : r̂2` ẑ2 ď 1, r̂ ě 0u be the reference domain,
and consider the mapping

r “ r̂ρ z “ ẑρ` az.

On the reference domain, define η̂1 P P̂l, where P̂l is the space of polynomials on D̂1 of order
less than or equal to l, in the following way:

ż

D̂1

r̂3η̂1p̂dr̂dẑ “ p̂p0q @p̂ P P̂l.

Set ηapr, zq “
1

ρ5
η̂1pr̂, ẑq. Then

prηa, rpqL2
rpDaq “

ż

Da

r3ηapr, zqppr, zqdrdz

“

ż

D̂1

r̂3ρ3 1

ρ5
η̂1pr̂, ẑqp̂pr̂, ẑqρ

2dr̂dẑ

“

ż

D̂1

r̂3η̂1p̂dr̂dẑ

“ p̂p0q “ ppaq,

where p̂pr̂, ẑq “ ppr, zq. This proves (5.6). Furthermore,

}rηa}
2
L2
rpDaq

“ ηapaq “
1

ρ5
η̂1p0q ď

C

ρ2r3
a

,
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since ra “ ρ in case 1. This proves (5.6). Furthermore, (5.7) holds true as
ż

Da

r3pyq|ηapyq|dy “

ż

Da

|ηar
3{2|r3{2dy

ď }r3{2ηa}L2pDaq}r
3{2}L2pDaq by Holder’s inequality

“ }rηa}L2
rpDaq

d

ż

Da

r3dy

ď
C

a

ρ2r3
a

b

r3
a,max ¨ πρ

2 by (5.6)

ď C,

where ra,max “ maxxPDa rpxq, so
ra,max
ρ

“ 1. This proves (5.7) and (5.8) for the first case.

Next, we consider the second case where a “ par, azq is not on the z-axis. In this case,
Da “ tpr, zq P R2

` : pr ´ arq
2 ` pz ´ azq

2 ď ρ2u, and we will used the reference domain

D̂2 “ tpr̂, ẑq : r̂2 ` ẑ2 ď 1u. The mapping from that we will be using between Da and D̂2 is

r “ ar ` ρr̂ z “ az ` ρẑ.

Let us consider two polynomials η̂a,1 P P̂l and η̂a,‹ P P̂l on D̂2 defined as
ż

D̂2

par ` ρr̂q
3η̂a,‹p̂dr̂dẑ “ p̂p0q for all p̂ P P̂l,

ż

D̂2

η̂a,1p̂dr̂dẑ “ p̂p0q for all p̂ P P̂l.

Note that, since r “ ar ` ρr̂ and Da is away from the z-axis, ar ` ρr̂ is bounded above and
below on D̂2. Then, since

ż

D̂2

par ` ρr̂q
3η̂2

a,‹dr̂dẑ “ η̂a,‹p0q

“

ż

D̂2

η̂a,1η̂a,‹dr̂dẑ

ď }η̂a,1}L2pD̂2q
}η̂a,‹}L2pD̂2q

by Holder’s inequality

ď }η̂a,1}L2pD̂2q

d

ż

D̂2

η̂2
a,‹par ` ρr̂q

3dr̂dẑ ¨ max
yPD̂2

”

par ` ρr̂q
´3{2

ı

.

This shows that
d

ż

D̂2

η̂2
a,‹par ` ρr̂q

3dr̂dẑ ď C max
yPD̂2

”

par ` ρr̂q
´3{2

ı

,

and so

(8.12) η̂a,‹p0q “

ż

D̂2

par ` ρr̂q
3η̂2

a,‹dr̂dẑ ď C max
yPD̂2

“

par ` ρr̂q
´3
‰

.

Now let us define ηapr, zq on Da as

ηapr, zq “
1

ρ2
η̂a,‹pr̂, ẑq.
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Then, (5.6) is true, since

prηa, rpqL2
rpDaq “

ż

Da

r3ηapr, zqppr, zqdrdz

“

ż

D̂2

par ` ρr̂q
3 1

ρ2
η̂a,‹pr̂, ẑqp̂pr̂, ẑqρ

2dr̂dẑ

“

ż

D̂2

par ` ρr̂q
3η̂a,‹pr̂, ẑqp̂pr̂, ẑqdr̂dẑ

“ p̂p0q “ ppaq for all p P Pl.

Furthermore, (5.7) and (5.8) also hold true, since

}rηa}
2
L2
rpDaq

“ ηapaq “
1

ρ2
η̂a,‹p0q ď

C

ρ2r3
a

,

by (8.12), and
ż

Da

r3pyq|ηapyq|dy “

ż

Da

|ηapyqr
3{2|r3{2dy

ď }rηa}L2
rpDaq

d

ż

Da

r3dy by Holder’s inequality

ď
C

a

ρ2r3
a

b

r3
a,max ¨ πρ

2 by (5.6)

ď C by (5.45),

and this completes the proof.
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