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This work investigated the electrocatalytic activity of a thermophilic methanogenic consortia (TMC) for de-
veloping a bioelectrosynthesis process to convert food and paper wastes to methane. Electroanalytical techni-
ques were used to analyze the electrocatalytic activity of the TMC biofilm formed onto the electrodes. The
developed electromethanogenesis process enhanced the yield of methane by 54.7% than control experiments.
Scanning electron micrographs of the TMC bioelectrodes showed that the electrosynthesis process accelerates
biofilm formation onto the electrodes leading to enhanced direct electron transfer reactions at electro-

de-electrolyte interface. This study will help in developing a novel approach for valorization of food and paper

waste to biofuels.

1. Introduction

Global warming and related environmental issues have instigated
development of environmental benign and facile technologies to sig-
nificantly lessen the conventional fossil fuels utilization rates.
Anaerobic digestion (AD) is a widely used technology for reduction of
solid organic waste (SOW) that recovers energy in the form methane.
AD is a multi-step biological process which utilizes a biocatalytic ac-
tivity of a complex microbial consortium for mediating the different
steps of the process. It has numerous advantages over aerobic waste
treatment processes including low energy consumption, less sludge
production, and being more economical. However, low substrate hy-
drolysis, low methane yield, VFA accumulation, and limitations with

respect to reaction kinetics (Tripathi et al., 2015) are some of the
bottlenecks. Different engineering strategies have been employed to
improve AD process by optimizing the process factors such as tem-
perature (Wang et al., 2014), pH and alkalinity (Chen et al., 2015), C:N
ratio of substrate (David et al., 2018) ammonia (Chen et al., 2016) and
VFA concentrations (Park et al., 2018), organic loading rates (Jansson
et al., 2019), hydraulic retention times, reactor configuration (Rabii
et al.,, 2019), and physical and chemical pretreatments (Porselvam
et al., 2017; Singh & Kumar, 2019).

Thermophilic anaerobic digestion (TAD, 50-60 °C) helps to over-
come some of the drawbacks of conventional mesophilic digestion such
as utilize better substrate hydrolysis leading to higher methane yield
and lower hydraulic retention time than its mesophilic counterpart due
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to increased solubility of the organic substrate as well as higher growth
rate and metabolic reactions of thermophilic microbes. In addition,
TAD process also aids in pathogen removal from the digested sludge
(Labatut et al., 2014). The thermophilic methanogenic consortium
(TMC) is generally composed of both facultative and obligate anaerobic
microbial groups and plays a crucial role in hydrolysis, acidogenesis,
acetogenesis, and methanogenesis. Furthermore, the use of bioelec-
trocatalysis approach is an attractive option to accelerate the rates of
waste utilization by the TMC and increase methane yield. Applying the
specific oxidation potential, will help in accelerating the rate of oxi-
dation of electron donor (increasing the rate of substrate utilization)
leading to enhanced methane production. This helps to avoid any ex-
pensive pretreatment measures for improving substrate hydrolysis but
accelerates microbial methane production providing electrons at the
biocathode (Venkata Mohan et al., 2014). Thus, aids in overcoming
limitations with respect to reaction kinetics. Microbial bioelec-
trosynthesis technology is gaining widespread significance as it helps in
harnessing the electrocatalytic activity of microbes to convert wastes to
storable and/or transportable chemical energy. This led to different
electrochemical approaches being attempted to increase methane pro-
duction in the anaerobic digestion process. For instance, Song et al.
(2016), reported that applying the potential of 0.3 V offered better
volatile solids reduction (70.5%), specific methane production rate
(407 mL L™t d™ 1), and the methane content (76.9%) with shorter HRTs
when compared with the conventional anaerobic digestion technolo-
gies. Park et al., 2019 reported that the bacterial communities change
in bio-electrochemical anaerobic digestion reactors which in turn in-
fluenced COD removal and methane production rates. The bio-elec-
trochemical methane production can be mediated either by direct or
indirect (hydrogen mediated) electron transfer (Fu et al., 2015). In di-
rect electron transfer, the methanogens can accept electrons directly
from cathode for electrocatalytic synthesis of methane. In indirect
electron transfer, an intermediate product i.e. hydrogen is formed by
transfer of electrons to H* ions (abiotic hydrogen production) in so-
lution or transfer of electrons to hydrogen producing microbes present
in the methanogenic consortium (Blasco-Gomez et al., 2017; Mateos
et al., 2020). Then, hydrogenotrophic methanogens produce methane
using hydrogen and carbon dioxide.

Among SOW, food and paper waste (FPW) constitutes a significant
fraction (~42%) of municipal solid wastes (MSWs) and there is an ur-
ging need to ensure safe disposal of FPW (David et al., 2020). According
to Environmental protection agency, nearly 6.3 percent of the food
waste generated in the Unites states is wasted in composting process
(EPA, 2017). Reports also showed that only 64.7% of the paper and
paperboard waste is recycled. The remaining 28.4% of it is landfilled
and 6.9% is incinerated (EPA, 2017). This clearly indicates that FPW
can be used as an inexpensive feedstock in TAD process to produce
methane. Therefore, this study aims to investigate the electrocatalytic
activity of a thermophilic methanogenic consortium developed in our
lab which is capable of digesting FPW. The goal of this investigation is
to improve the TAD performance in terms of methane production and
substrate utilization.

2. Materials and methods
2.1. Consortium

The inoculum was obtained from the anaerobic digester of the
Wastewater Reclamation plant, Rapid city, SD. It was purged with ni-
trogen gas after collection to maintain anaerobic conditions and stored
at —20 °C until use. The thermophilic methanogenic consortium (TMC)
was enriched through sub-culturing technique described in our pre-
vious work (David et al., 2020). An organic loading of 1% volatile solids
(VS) was used for the sub-culturing experiment as well as for the
electrochemically assisted AD process investigated in this study. The
TMC was revived by growing it at 60 °C on food waste (1% w/v VS) in
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250-mL serum bottles containing 100 mL anaerobic medium described
previously (David et al., 2018). The revived consortium was used for
the electrochemical investigations and electrosynthesis studies. Micro-
bial diversity analysis of the enriched TMC revealed the dominance of
syntrophic acetate oxidation coupled with hydrogenotrophic metha-
nogenesis (our unpublished data).

2.2. Fabrication of electrodes

TMC biofilms for electrochemical investigations were formed onto
fabricated carbon felt electrodes (dimension: 1 em X 1 c¢m). The TMC
bioelectrodes were used to investigate the electrocatalytic activity of
the microbial consortium (Rathinam et al., 2015). Sodium phosphate
buffer solutions (0.1 M, pH 7) was used as electrolyte for the experi-
ments.

2.3. Electrochemical analysis

Cyclic voltammetry was used to elucidate the electrocatalytic ac-
tivity of the TMC bioelectrodes. Cyclic voltammograms (CV) of bioe-
lectrodes was analysed in phosphate buffer (0.1 M, pH 7) at a scan rate
of 10 mV/s with glucose as the electron donor. Silver wire and platinum
(Pt) were used as a pseudo-reference and counter electrodes, respec-
tively. The electrochemical investigations were conducted at aseptic
conditions, and the temperature was maintained at 60 °C. Cyclic vol-
tammograms of bioelectrodes were recorded at scan rate of 10 mV/
s with glucose as the electron donor (Rathinam et al., 2013).

2.4. Bioelectrosynthesis experiment

Bioelectrosynthesis of methane was carried out by applying a spe-
cific oxidation potential using amperometry (Rathinam et al., 2018,
2014). Experiments were conducted with 1% VS (w/v) food and paper
waste mixture as feedstocks in 100 mL of anaerobic medium as de-
scribed in our previous study (David et al., 2018). The effects of applied
electrochemical potential on the substrate utilization, COD removal
rate, methane production, and biofilm formation were investigated.
Control experiments were conducted with bioelectrodes without ap-
plied oxidation potential. Electrolyte samples collected before and after
the experiment were used for quantification of COD levels. Changes in
the quantity of volatile solids in both bioelectrocatalysis and control
experiments with food and paper waste as substrates were analysed.
The effect of applied electrochemical potential on the biofilm formation
were analysed using a Zeiss Supra40 variable-pressure field-emission
SEM.

2.5. Analytical methods

The total solids and volatile solids in the electrolyte were quantified
using APHA standard methods. The COD levels in the electrolyte at
different time were calculated using the COD digester (DRB200, Hach).
The methane content of the biogas produced by TMC was quantified
using gas chromatography (Agilent Technologies 7890A) equipped with
Thermal conductivity detector and Supelco Porapak Q column.

3. Results and discussion
3.1. Electrogenic activity of TMC

The cyclic voltammograms of the TMC bioelectrodes was recorded
from a potential range of —0.8 V to + 0.8 V (vs PRE) at a scan rate of
5 mV/s (shown in Fig. 1). A redox peak at 0.55 mV (vs PRE) in the
cyclic voltammogram increased with addition of glucose as the electron
donor. With addition of 100 pL of glucose (0.1 mM) oxidation current
increased from 0.9913 mA at 0.563 V to 1.059 mA at 0.565 V. Sub-
sequent additions of glucose (100 UL) increased the oxidation current to
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Fig. 1. Cyclic voltammograms of TMC bioelectrodes on bioelectrocatalysis of glucose.

1.13 mA, 1.29 mA and 1.463 mA respectively. The increase in oxidation
current with increasing glucose concentration confirm the electro-
catalytic activity of TMC bioelectrode. The peak at 0.55 mV (vs PRE) in
the cyclic voltammogram is related to key enzymes involved in glucose
oxidations viz. glucose oxidase or glucose dehydrogenase and corro-
borates well with the previous reports (Rathinam et al., 2020).

3.2. Substrate utilization and methane production

Electrosynthesis experiments were conducted with 1% (w/v) VS of
mixed paper and food waste as the feedstock by applying a potential of
—1 mV (vs PRE) for 5 days. The effect of the applied voltage on by
volatile solids reduction and COD removal rate was investigated.
Volatile solids (VS) includes the organic fraction of total solids of a
substrate that are biodegradable (David et al., 2018). Therefore,
tracking their consumption gives a better measure of utilization of the
substrate i.e. food and paper waste. Samples were taken before and
after the electrosynthesis experiment. As depicted by the VS reduction
of the test and control reactors, electromethanogenesis increased the
substrate utilization by 11.2% when compared to control (without ap-
plied voltage). Applying the voltage reduced the volatile solids by
86.3%. Fig. 2A depicts the effect of applied voltage on methane pro-
duction. The electrosynthesis approach also increased the methane
production from 165.4 to 254.2 mLg ™! VS which marked a 53.7% in-
crease when compared with the systems without applied voltage. The
increase in substrate utilization and subsequently methane production
as a result of applied potential can be attributed to the following —
Firstly, the electrons provided by applied external potential can directly
reduce CO, to CH,4 with the help of outer membrane redox proteins of
microbes; Secondly, the applied potential of 1 V can increase hydrogen
production by either supplying electrons to abiotic H* ions in solution
or by providing electrons to hydrogen producing microbes, both re-
sulting in increased hydrogenotrophic methane production. Lastly,
acetogenic methanogens can also take up electrons and increase the
acetogenic methane production. Thus, application of external potential
accelerates the different steps of TAD process and the cumulative effect
increases substrate degradation from hydrolysis step to methanogenesis
step. Our future work will focus in deciphering which of the above-
mentioned mechanism is the major cause of increased methane yield.
for In a similar study conducted with glucose as substrate, Choi et al.,
2017 reported that on applying the potential of 1 V (vs. Ag/AgCl) to the

wastewater inoculum, the methane yield was increased by 30.3% when
compared to control (without applied voltage).

Further, COD levels were monitored to consider the soluble meta-
bolites produced by the TMC (Fig. 2B). COD values includes the amount
of substrate as well as the metabolites produced by the microbial
electrocatalysis process in the electrolyte. Thus, COD values could
correlate the rates of metabolism as well as microbial interspecies in-
teraction in the TMC. As shown in Fig. 2B, COD levels increased in the
first 3 days in both cases with and without applied voltage. Subse-
quently, the COD levels started decreasing as methane levels started
increasing. The initial increase in the COD (during first 3 days) is
caused by the hydrolysis and acidification of the complex solid wastes
which increases the concentration of soluble metabolites in solution.
The initial COD increase was higher when the external voltage was
applied indicating faster microbial metabolism in the bottles with ap-
plied voltage compared to bottles without applied voltage. The decrease
in COD after day 3 is due to utilization of the soluble metabolites for
methanogenesis. The results of COD utilization rates with applied oxi-
dation potential corroborate well with the substrate utilization (in
terms of VS reduction) and methane production rates. On applying the
oxidation potential, the COD removal rate from day 3 to day 5 was
increased by 68.4% indicating that the electromethanogenesis process
(by applying external potential) was more efficient in COD removal as
compared to conventional methanogenesis. These results clearly in-
dicate that this approach is promising for treatment of solid and liquid
wastes with high COD levels including domestic and industrial ef-
fluents.

3.3. Biofilm formation

SEM analysis revealed that the electrodes with applied external
voltage had a denser biofilm formation when compared with the con-
trol. SEM images showed that the applied voltage drives biofilm for-
mation by promoting the formation of TMC biofilms on the electrode
surface leading to improved microbial electrocatalysis (Rathinam et al.,
2018). The external voltage serves as a driving force for biofilm for-
mation which offers advantage to the TAD system. The denser biofilm
also helps in biogas upgradation (i.e. increasing methane fraction of
biogas) due to the physical separation of the organic matter oxidation
from microbial methane production. Bioelectrosynthesis process en-
hances the rate of oxidation of electron donor leading to enhanced
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Fig. 2. (A) Effect of applied voltage on biomethane production. (There was no methane production in food and paper waste without TMC - data not shown) (B) COD
changes during TAD of food and paper waste in the presence and absence of an applied external potential. (C) Nyquist Plots for bioelectrodes formed with and

without applied external voltage.

production of electrons (Dou et al., 2018). In addition, the denser
biofilm also lessens the exposure of the methanogenic consortium to
inhibitory compounds that may be present in the waste substrate
(Villano et al., 2011).

3.4. Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy is a reliable technique to
decipher the kinetics of biofilm formation as well as biofilm char-
acteristics. Nyquist plots can provide insights on the solution resistance
of the electrolyte (depends on microbial cell density, composition, and
metabolites) and charge transfer resistance at the electrode—electrolyte
interface (depends of the adherence of cells to the electrode/electrolyte
interface). Fig. 2C shows Nyquist plots of the electrodes with TMC in
phosphate buffered anaerobic culture medium. The results showed that
the solution resistance of the electrolyte increased from 2 Q to 8 Q on
applying the external voltage when compared with the control. In-
creased solution resistance indicates higher solubilization of substrate,
higher microbial density resulting in higher metabolite production in
the presence of external potential. Further, charge transfer resistance
also increased from 60 Q to 90 Q on applying the external voltage in-
dicating enhanced biofilm formation. The improved biofilm formation
as indicated by increase in charge transfer resistance allows main-
tenance of high concentration of active microbes near or onto the
electrode, especially the ones having lower growth rates (such as the
methanogenic archaea), which in turn can improve synergism between
different microbial groups in TMC resulting in increased methane

production. This result on the role of applied voltage on improved cell
density in the electrolyte and improved biofilm formation corroborate
well with our previous report on the bioelectrosynthesis for enhanced
lignocellulosic degradation in Geobacillus strain WSUCF1 (Rathinam
et al., 2020).

4. Conclusion

This study reported a novel and facile strategy for accelerating the
anerobic digestion process for enhanced substrate utilization as well as
product yield. The use of applied external voltage positively promoted
the adherence of biofilm onto the electrodes. This will be a promising
strategy for incommodity engineering applications such as biovalor-
isation of food and paper wastes to biofuels and value-added com-
pounds. Further attempts will be made to improve the process yield and
cutdown the operational costs using bioelectrochemical reactor con-
figurations with new electrode materials and electrode functionalizing
strategies.
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