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Autonomous active, elastic filaments that interact with each other to achieve cooperation and synchrony underlie many critical
functions in biology. The mechanisms underlying this collective response and the essential ingredients for stable synchronization
remain a mystery. Inspired by how these biological entities integrate elasticity with molecular motor activity to generate sustained
and stable oscillations, a number of synthetic active filament systems have been developed that mimic oscillations of these biological
active filaments. Here, we describe the collective dynamics and stable spatiotemporal patterns that emerge in such biomimetic
multi-filament arrays, under conditions where steric interactions may impact or dominate the collective dynamics. To focus on the
effect of steric interactions, we study the system using Brownian dynamics simulations, without considering long-ranged hydrodynamic
interactions. The simulations treat each filament as a connected chain of self-propelling colloids. We demonstrate that short-range
steric inter-filament interactions and filament roughness are sufficient - even in the absence of inter-filament hydrodynamic interactions
- to generate a rich variety of collective spatiotemporal oscillatory, traveling and static patterns. We first study the collective dynamics
of two- and three-filament clusters and identify parameter ranges in which steric interactions lead to synchronized oscillations and
strongly occluded states. Generalizing these results to large one-dimensional arrays, we find rich emergent behaviors, including
traveling metachronal waves, and modulated wavetrains that are controlled by the interplay between the array geometry, filament
activity, and filament elasticity. Interestingly, the existence of metachronal waves is non-monotonic with respect to the inter-filament
spacing. We also find that the degree of filament roughness significantly affects the dynamics – specifically, filament roughness gen-
erates a locking-mechanism that transforms traveling wave patterns into statically stuck and jammed configurations. Our simulations
suggest that short-ranged steric inter-filament interactions could combine with complementary hydrodynamic interactions to control
the development and regulation of oscillatory collective patterns. Furthermore, roughness and steric interactions may be critical to
the development of jammed spatially periodic states; a spatiotemporal feature not observed in purely hydrodynamically interacting
systems.
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1 Introduction1

The emergence of oscillations in single or arrayed elastic fila-2

mentous structures, such as the graceful rhythmic movements3

of ciliary beds, is a common motif in biology1–5. A striking ex-4

ample is ciliary arrays in the mammalian respiratory tract, in5

which individual filaments communicate through direct interac-6

tions and through the surrounding fluid to generate metachronal7

traveling waves crucial for mucociliary clearance. In these sys-8

tems, emergent collective oscillations and waves are strongly af-9

fected by multiple effects, including the elasticity of the under-10

lying filamentous structures, modes of activation due to molecu-11

lar motors, coupling between neighboring filaments, and bound-12

aries6–18. Due to the complexity and many-body nature of these13

systems, disentangling the contributions of each of these effects14

to the system dynamics is highly challenging.15

Inspired by the manner in which these biological active fila-16

mentous carpets integrate elasticity with biological motor activ-17

ity to generate sustained oscillations, a number of reconstituted18

or synthetic active filament systems have been developed19–31.19
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Here activity is imbued either by motors acting externally on fila- 20

ments to generate elastic forces19–21, or by using internally pro- 21

pelled filaments constructed of beads that are powered by surface 22

chemical reactions or responses to external fields. At a conceptual 23

level, within this class of synthetic systems, oscillations arise due 24

to the interplay between geometry, filament elasticity, and activ- 25

ity. These oscillatory patterns are mainly due to non-linear buck- 26

ling instabilities through which active energy pumped into the 27

system is continuously dissipated by viscous dissipation. Mecha- 28

nisms underlying the onset and sustaining of oscillations in these 29

bio-inspired and biomimetic synthetic cilia are thus very different 30

from biological cilia and flagella. However, these simple driving 31

mechanisms generate cilia-like responses, and are thus ideal for 32

use in micron-sized pumping and propelling devices. As a result, 33

instabilities in active filament systems have been the subject of 34

several recent theoretical and computational inquiries. Contin- 35

uum as well as discrete agent-based models have been used to 36

investigate the emergence of oscillations in single filaments, and 37

coupling-induced synchronization in systems of two rotating fila- 38

ments32,33,35–37,40–46. 39

However, an equally important set of problems – the collective 40

behaviors of many elastic active filaments – have yet to be in- 41

vestigated in detail. In this case, key questions are as follows: 42

First, how do autonomously beating individual filaments alter 43

their oscillatory dynamics in response to interactions with their 44

neighbors? In particular, under what conditions do such systems 45
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exhibit stationary states characterized by propagating spatiotem-46

poral patterns and waves? Second, how are the properties of fil-47

ament waveforms regulated by the geometric, elastic, and active48

aspects of the collective system?49

In these low Reynolds number viscous environment charac-50

terizing the fluid flows generated by the moving filaments, ac-51

tively driven, collective systems, two types of inter-filament in-52

teractions are expected to play a crucial role in addition to sin-53

gle filament properties such as elasticity and activity. The first54

type comprises fluid-mediated medium- and long-range elasto-55

hydrodynamic interactions47 that alter the viscous drag on fila-56

ments and couple to their spatiotemporal response. Recent an-57

alytical studies36–38 have analyzed the onset of synchronization58

of clusters, arrays, and carpets of active filaments grafted to a59

rigid impenetrable planar wall. Full multi-filament and filament-60

wall hydrodynamic interactions were considered using singularity61

methods built on slender body theory. Stable, oscillatory states in62

which filaments oscillated with the same frequency with a vary-63

ing phase angle were determined to bifurcate from a stationary64

state. Other computational studies and phenomenological mod-65

els that used the simpler resistivity approximation to treat fluid-66

mediated interactions48–52 have also demonstrated that hydrody-67

namic interactions can lead to stable collective and synchronized68

responses. Similarly, models for systems of two or more rotat-69

ing cilia have elucidated the role of hydrodynamic interactions70

in yielding in-phase or out of phase stable states53,54. However,71

to focus on hydrodynamic effects, many of these studies consider72

models in which elasticity is neglected or highly simplified and73

contact (steric) interactions are neglected51,55. Moreover, fila-74

ment roughness is not considered in these systems when the fila-75

ments are treated as lines with zero thickness.76

The second type of interaction includes short-range effects,77

such as steric interactions, screened electrostatic interactions, and78

frictional effects from filament roughness. Recent studies suggest79

that steric interactions and collective fluid mechanical effects both80

play important roles in biologically relevant multi-filament arrays,81

such as in the passive arrayed brush-like structures in the glycoca-82

lyx47 and active ciliary carpets in the mucociliary tract56. These83

studies also identify important roles of surface-attached features84

and networked structures. For instance, Button et. al.56 proposed85

a Gel-on-Brush model of the mucus clearance system, in which86

the periciliary layer is occupied by membrane-spanning mucins87

and large mucopolysaccharides that are tethered to cilia and mi-88

crovilli. They hypothesize that the tethered macromolecules pro-89

duce inter-molecular repulsions, which stabilize the layer against90

compression by an osmotically active mucus layer.91

Here in this article, we use agent-based Brownian Dynamics92

(BD) simulations to investigate the roles of (non-viscous) steric93

interactions in emergent collective dynamics in filament clusters.94

To focus on how steric interactions enable or hinder synchronized95

and collective states, we neglect long-ranged hydrodynamic inter-96

actions in our BD simulations. We consider each filament to in-97

teract with its neighbors via a steric potential with an interaction98

length-scale σ that is comparable to, but may differ from, the in-99

trinsic geometric filament thickness — the segment length `0. By100

adjusting the ratio of these two scales, we vary the inter-filament101
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Fig. 1 (a) Typical arrangement of clamped, active filaments in the 1D ar-
ray used in the simulations. Filaments are arranged along the x axis, with
each filament parallel to the y direction in the undeformed state. Each
active filament of length L is comprised of Nm connected spherical self-
propelling beads (discs), with each pair separated by distance ∆ in the
undeformed state. (b) Schematic of smooth (left) and rough (right) fila-
ment structures. Both filaments are comprised of beads with the same
bead size (diameter) `0; however the smooth filament has a larger effec-
tive steric interaction lengthscale σ > `0. The intrinsic elasticity of the fila-
ments (set by the parameters B and KE) are the same in both cases; how-
ever, the overlapping spheres make the effective surface of the smooth
filament less corrugated than that of its rough counterpart. Active tan-
gential compressive forces called follower forces 33 act along the filament
backbone and are indicated as red arrows. (c) Schematic of the local
hydrodynamics that is included in the model. Segments of the deforming
filament experience a viscous drag force as they move. The drag on a
test bead that moves with velocity drα/dt is illustrated; the drag force is
evaluated using resistive force theory (RFT) 37 and is linear in the local fil-
ament velocity and proportional to the mobility µ−1. Components normal
and tangential to the local filament tangent may be deconstructed into
components along the x and y directions as shown in the sketch. Note
that hydrodynamic interactions between different filaments are neglected
in this model.

interactions between the regimes of smooth (σ > `0) or rough fila- 102

ments (σ = `0). Thus, we study the combined effects of excluded 103

volume and filament roughness on collective behaviors of active 104

filament arrays. These geometries are directly motivated by col- 105

loidal chains comprised of connected self-propelling or activated 106

colloidal spheres that have been studied in recent experiments 107

22,26. In some of these systems, the forces animating the colloidal 108

chain are imposed externally by electrical or magnetic fields. In 109

other cases, the beads comprising the chain are each chemically 110

modified such that they self-propel when immersed in a suitable 111

medium. The geometry we study is also relevant to the brush-like 112

structure in mucocilia56. The mechanisms by which cilia beat and 113

oscillate are very different from those considered in this work. 114

Nonetheless, at an abstract level, the interplay between activity, 115

elasticity, and dissipation provides the underlying mechanism that 116

enables the initiation and sustainment of stable collective states. 117

The layout of the article is as follows. We first introduce our 118

computational model for an active filament system in §2; in brief, 119

we analyze small filament clusters (2-3 filaments) or large peri- 120

odic arrays (300 filaments) immersed in a viscous fluid at con- 121

stant temperature (Figure 1(a)). Each filament or chain com- 122

prises elastically coupled active beads that confer bending and 123
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extensional rigidities, and is geometrically fixed at one end. The124

other end is free, and this degree of freedom allows each fila-125

ment to independently and autonomously oscillate or move in a126

plane via active buckling instabilities. The intrinsic frequency and127

amplitude of beating by individual filaments is controlled by the128

interplay between the filament geometry, elasticity, fluid dissipa-129

tion, and activity. In the absence of inter-filament interactions,130

adjacent filaments beat with the same frequency but are gener-131

ally out of phase. We conclude this section by summarizing re-132

sults for the dynamics of a single filament, and commenting on133

the role of hydrodynamics in this context. In §3, we analyze the134

collective dynamics and emergent steric-driven coupling in small135

clusters comprising 2 or 3 smooth filaments. Building on this, we136

then analyze the dynamics of large arrays comprised of smooth137

filaments in §4. We next probe the effect of filament roughness138

within the framework of the steric model introduced in §2, by set-139

ting σ ≈ `0, resulting in large gradients of the excluded-volume140

potential between adjacent filaments. Effectively, beads in neigh-141

boring filaments interlock as they move, resulting in higher effec-142

tive friction coefficients and significantly reducing their tangen-143

tial velocities. This extra friction results in qualitatively different144

collective dynamics in comparison to the smooth filaments. Fur-145

thermore, this modality of collective motion is unique and does146

not occur in systems for which hydrodynamics is the only mode of147

inter-filament interactions. The final set of results (§5) explores148

relaxing the hard constraint (clamped base) by implementing a149

softer constraint (pivoting base). We conclude in §6 and high-150

light features that are relevant to previous studies and serve as151

motivation for future experimental and computational work. We152

briefly discuss current research that incorporates hydrodynamic153

interactions and provides an appropriate starting point – when154

combined with this work – to study the effects of hydrodynamic155

and steric interactions in tandem in these simple model systems.156

We note that coupled fluid flow and filament deformation, includ-157

ing non-local coupling due to fluid incompressibility, comprises a158

complicated highly non-linear problem, especially in the multi-159

filament systems studied here.160

Our investigation of a model system of filaments comprised of161

self-propelling active units reveals novel and important aspects162

of emergent dynamics in the limit where short-range repulsive163

interactions and/or filament roughness dominate. For example,164

our simulations demonstrate that steric interactions enable and165

mediate stable oscillatory patterns such as metachronal waves or166

finite-ranged wavetrains. Depending on the spacing and geomet-167

ric coupling between neighboring filaments, wavetrains may ap-168

pear, vanish, and even eventually re-appear. Roughness at the169

filament scale provides a crucial locking-mechanism that dramat-170

ically changes the form and wave-speed of metachronal waves.171

Moreover, our results demonstrate that the anchoring mechanism172

at the base of the filament can determine the class of emergent173

spatiotemporal patterns. Relaxing the strength of the geometric174

constraint at the base and allowing for flexible pivoting results175

in jammed static shapes, even though the system itself remains176

active and dynamic.177

2 Computational Model 178

The active filament carpet/array comprises N two-dimensional 179

active filaments (chains) arrayed uniformly in one dimension 180

along the ex direction and initially aligned along the ey direction 181

as illustrated in Figure 1(a). The spacing between the filaments, 182

∆, is treated as an adjustable parameter in the simulations. We 183

consider sparse carpets comprised of only a few filaments (N = 2 184

and N = 3) and then a larger carpet with (N = 300) more fila- 185

ments. 186

As mentioned earlier, to focus on the role of steric interactions, 187

we do not consider hydrodynamic interactions and the wall only 188

serves to keep the base of the filament fixed. Note that in a sys- 189

tem with full hydrodynamic effects included, fluid flow generated 190

by beating filaments will alter the motion of the filament37,40,41. 191

In our case, we neglect these induced fluid flows and consider, 192

to leading order, just the Stokes drag in the form of viscous re- 193

sistive force theory expressions on the beads comprising the fila- 194

ment as they move. Thus each bead in the filament experiences a 195

Stokes drag force antiparallel to the direction of its motion, with 196

a constant of proportionality that depends on the bead size and 197

viscosity of the ambient fluid. 198

In the following, we introduce potentials that are used to cal- 199

culate extensional, bending, and steric forces. Dimensional po- 200

tentials are starred; all potentials are scaled with kBT with T the 201

thermodynamic temperature of the ambient fluid. 202

2.1 Interaction potentials 203

Each active filament is a collection of Nm polar, active spheres 204

(disks) of effective diameter σ in 2D as shown in Figure 1(b). The 205

coordinate of the α th sphere is denoted by rα and it is connected 206

to the neighbouring spheres of the same filament via extensional 207

and bending potentials as illustrated in Figure 1(c)). 208

The extensional force between adjacent beads is derived from 209

the total potential U∗E given by 210

U∗E
kBT

=
κE`

2
0

2kBT

Nm−1

∑
α=1

Φ
α
E , where Φ

α
E =

( |rα+1− rα |
`0

−1
)2

. (1)

The value of κE is maintained at a value large enough that the ac- 211

tual distance between each polar particle is nearly `0, making the 212

chain nearly inextensible. The overall length of the undeformed 213

filament is thus `= (Nm−1)`0. 214

The overall resistance to bending is implemented via a three- 215

body bending potential motivated by the energy for a thin elastic 216

continuous curve in the noise-less limit, 217

U∗B(s, t) =
κ

2

∫ `

0
C 2(s)ds (2)

where C is the curvature measured along the centerline of the 218

curve. We discretize (2) for our model filaments by approximat- 219

ing the curvature at bead α using C ≈ |db/ds| ≈ |bα+1−bα |/`0, 220

where bα = (rα−1−rα )/|rα −rα−1| is the unit bond vector that is 221

anti-parallel to the local tangent. 222

In the continuous limit (`0 → 0, Nm → ∞, Nm`0 → constant), 223

bα identifies with the tangent vector t of the continuous model at 224

arclength s = α`0; thus (bα+1−bα )/σ ≈ dt/ds. Discretizing (2) 225
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Parameter Interpretation Scaled value
`0 Distance between beads 1

kBT Energy 1
KE Extensional modulus 2 ×104

ε Energy scale in WCA 1
D Translational diffusivity 1
µ Mobility 1
σ Range of WCA potential 4, 1

Table 1 List of parameters held constant in the simulations and their val-
ues in dimensionless units.

using B≡ κ/`0, we write226

U∗B
kBT

=
B

2kBT

Nm−1

∑
α=1

Φ
α
B , where Φ

α
B =

( |bα+1−bα |
`0

)2
. (3)

We account for excluded-volume (steric) interactions between227

beads in neighboring filaments via a short-range repulsive WCA228

(Weeks-Chandler-Anderson) interaction potential. Here, we have229

chosen filament lengths and rigidity values such that overlap be-230

tween beads in the same element does not occur. With rαβ ≡231

|rα − rβ | as the distance between a pair of spheres (α ,β) belong-232

ing to different filaments, the net overall steric potential summed233

over all segments (beads) is234

U∗WCA
kBT

=
ε

kBT

Nm−1

∑
α=1

Φ
α
WCA (4)

where235

Φ
α
WCA = ∑

β 6=(α,α−1,α+1)
4



(

σ

rαβ

)12

−
(

σ

rαβ

)6

+1 (5)

if rαβ < 2
1
6 σ and u(r) = 0 otherwise. The index β refers to pairs236

of beads in the same filament as well as in neighboring filaments,237

thus incorporating all possible steric interactions. In (4), ε = kBT .238

The effect of the steric interactions encoded in the interaction239

potentials (4) and (5) depends on the softness of the interaction240

potential and also on the fine structure and roughness of the inter-241

acting filament. The former effect is controlled by the power-law242

exponents in the WCA, while the latter can be varied by changing243

the ratio `0/σ . Thus the length-scale σ effectively sets the nature244

and the scale of the steric excluded volume interactions.245

Each disc comprising the filament is self-propelling with a ve-246

locity v0bα , in the direction of the local tangent bα of the fila-247

ment. This causes local compression, generating follower forces248

of magnitude F that follow the local target of the filament. In the249

continuous and over-damped limit, this yields a uniform active250

force per unit length. Since v0 is a constant for each bead on the251

filament, the quantity v0 = µF is also constant for each realiza-252

tion and can be interpreted as the magnitude of the active force253

exerted by each bead. We note that the magnitude of the total254

force for a straight unbent filament ∼ v0Nm/µ, so the effective255

force density f = F/`0 ∼ (v0Nm/µ)/(Nm`0).256

2.2 Equations of motion 257

We evolve the position rα of each bead α using Brownian dynam- 258

ics, with the forces accounting for extensional, bending, steric, 259

and thermal effects described above. We render equations dimen- 260

sionless by scaling quantities as follows. We use `0 as the unit of 261

length, the diffusive relaxation time `2
0/D as unit of time, and kBT 262

as the unit of energy. In the over-damped limit, the equations of 263

motion can be written as 264

drα

dt
=−

(
µkBT

D

)(
κE`

2
0

2kBT
∇∇∇Φ

α
E +

B
2kBT

∇∇∇Φ
α
B

)

265

−
(

µkBT
D

)(
ε

kBT
∇∇∇Φ

α
WCA

)
+

(
`0

D
µF
)

bα +

√

2
`2

0
D

ζζζ
∗
α

Here ζζζ
∗
α is a delta-correlated noise with zero mean acting on the 266

disc. With the units of length, time, and energy defined above, the 267

mobility µ = D/kBT = 1 in dimensionless form. Other parameters 268

in the dimensionless (reduced) units are listed in Table 1. The 269

equations of motion in dimensionless form then reduce to 270

drα

dt
=−

(
κE

2
∇∇∇Φ

α
E +

B
2

∇∇∇Φ
α
B +∇∇∇Φ

α
WCA

)
+F bα +

√
2 ζζζ
∗
α (6)

Interpreting the time derivative in the Ito-Stratanovich sense, we 271

solve Eq. (6) using a time-stepper based on the Euler-Maruyama 272

scheme. Theory32 shows that the behavior of an isolated ac- 273

tive filament depends on a single effective activity parameter 274

β ≡ f `3/κ. In our case the force density f is related to the force 275

on a bead F by f = F/`0, so that 276

β ≡ f `3

κ
=

F(Nm−1)3

B
. (7)

2.3 Simulation conditions and parameters 277

We present simulations for two limiting cases in §3. The first 278

set considers smooth filaments, with scaled value σ = 4; that is, 279

the interaction diameter of the filament is about four times larger 280

than the bond length `0 (Fig. 1). This prevents the geometric 281

interlocking of neighbouring filaments when they slide past each 282

other, and thus attenuates the sliding resistance due to the surface 283

structure of the filament arising from the bead-spring model. The 284

second set of simulations considers rough filaments with σ ' 1 285

(§4); as shown below, the corrugated filament surface resists rel- 286

ative tangential sliding and thus qualitatively alters the collective 287

filament dynamics. 288

For all simulations, we keep the filament contour length con- 289

stant: we set the number of beads Nm = 40 and set a large exten- 290

sional spring constant κE = 2× 104kBT/`2
0 so that the filament is 291

practically inextensible. Since the filament dynamics is sensitive 292

to its bending rigidity, B, we consider three values of B, and thus 293

three values of β (Table.2, Eq. 7). To mimic situations in which 294

active filaments are connected by linkers (rigid or flexible) to a 295

substrate, we usually specify that one end of the active filament 296

is clamped rigidly at s = 0 (except for Figs. 9 and 10, in which 297

we allow the end of the filament attached to the wall to freely 298

pivot). We initialize simulations with each filament in a straight 299

configuration, for which the active forces are oriented toward the 300
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β Amax/`0 ω`2
0/D

192 20 1.4×10−2

384 16.5 1.75×10−2

768 14 2.1×10−2

Table 2 Amplitude Amax and frequency ω of oscillations of an isolated
filament for three values of the activity number, β (defined in Eq. 7).

Fig. 2 (a) Fourier transform F (ω) of the end-end distance Lee indicating
distinct frequency peaks at (1) β = 192, (2) β = 384, and (3) β = 768. (b)
The trajectory of the end-segment of a filament with β = 192. Amax de-
notes the maximum displacement of the end-segment along the x direc-
tion, averaged over many oscillatory cycles. Note the figure of 8 patterns
due to geometric symmetries in the problem. (c)) Typical configurations of
an isolated filament during an oscillatory cycle (indices represent times)
for dimensionless activity strength β = f (Nm− 1)3`3

0/B = 384. Note that
`0 = 1 in reduced (simulation) units. The roughness parameter σ is not
relevant for the single filament case.

clamped base, causing a compressive stress along the filament.301

We emphasize however that our boundary condition confers re-302

strictions to the filament position and conformation at s= 0. Since303

hydrodynamics is ignored and we do not solve for fluid velocities,304

we do not simulate an actual wall.305

For sufficiently large active force magnitude f , since the direc-306

tion of F is aligned to the local unit vector along the arc-length of307

the filament and directed toward the clamped end, each filament308

undergoes a buckling transition and eventually nonlinear oscilla-309

tions33,35,36. The follower force mechanism couples the filament310

configuration to the active force. Steric interactions between311

neighboring filaments significantly alter filament orientations and312

thereby the active-follower forces. Thus, filaments within a carpet313

undergo different dynamics than the intrinsic beating motions of314

isolated filaments.315

2.4 Behavior of an isolated filament316

Just as a single bead constitutes the irreducible unit element of a317

filament, a single chain/filament constitutes the appropriate unit318

element to analyze multi-filament clusters and arrays. Here we319

summarize our previous simulation results (finite noise) and the320

analytical results in the continuum, noiseless limit.321

In previous investigations of a similar system32,33, we studied 322

the spatiotemporal stable dynamics of a single noisy filament un- 323

der two conditions - clamped at s = 0 and free at s = L, or pivoted 324

at s = 0 and free at s = L. In33, we allowed the follower force 325

direction to deviate from the tangent vector. Here, as shown in 326

equations (1)-(6), we have removed this degree of freedom and 327

thus the only element of stochasticity is due to thermal diffusion 328

of the beads comprising the filament. 329

2.4.1 Previous results for noisy active filaments 330

In the case of a single clamped filament, the spatiotemporal re- 331

sponse obtained from equations (1)-(6) depends solely on the 332

dimensionless parameter β . Roughness does not play a role in 333

this limit, as it is relevant only when multiple filaments interact- 334

ing sterically. For β < βc, the filament remains nearly straight 335

with small amplitude fluctuations in the contour due to noise, 336

with βc ≈ 76.2 (consistent with the exact value determined by 337

a linear stability analysis in the noiseless limit D = 032). For 338

β > βc, the straight filament yields to an oscillating state. When 339

β � βc, interplay between active energy injected into the oscil- 340

lating filament, the elasticity of the filament, and dissipation in 341

the ambient fluid sets the frequency of oscillation and the maxi- 342

mum amplitude of the oscillations. Scaling arguments then pro- 343

vide estimates for the frequency of oscillations33 ω ∼ κ/(η`4) β
4
3 344

where η is the viscosity of the ambient fluid. Furthermore, the 345

oscillating filament has a well-defined amplitude whose maxi- 346

mum value Amax varies monotonically with β for the range of 347

parameters we consider. Since the filament is clamped at one 348

end, the lateral motion of the filament is maximal at the free end 349

with the tip executing a figure-of-eight pattern, with amplitude 350

∼ (Nm− 1)`0/β
1
3 . The filament tip has width σ , and thus moves 351

a distance ∼ Amax ≡ (Nm − 1)`0/β
1
3 . Since we ignore hydrody- 352

namic coupling between the filaments, two filaments separated 353

by a distance ∆ > Amax will behave predominantly as isolated fil- 354

aments. The extent of steric coupling is quantified by geometric 355

dimensionless parameters δ and δmax: 356

δ ≡ ∆−σ

`0
, (8)

δmax ≡ Amax−σ

`0
=

[
(Nm−1)

β
1
3
− σ

`0

]
. (9)

For β � 1, we see that two filaments are closely spaced if δ ∼ 1 357

and loosely spaced when δ ∼ δmax. In Figure 2(a)-(c) we present 358

the oscillatory dynamics of a clamped filament in the limit δ � 359

δmax. For sufficiently large activity (β = 192) the filament under- 360

goes regular oscillatory motion (Fig 2(a,b)), with a peak in the 361

power spectrum at a frequency that depends on β (Figure 2(a)). 362

Moreover, the end-segment of the filament oscillates between 363

two maximum values, whose amplitude is denoted by Amax Fig- 364

ure 2(b)). In the present work, the drag force acting on the fil- 365

aments is calculated with local Resistive Force Theory (RFT), and 366

thus hydrodynamic interactions (HI) between different parts of 367

the filament are neglected. 368
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2.4.2 Non-local hydrodynamics in single filaments369

We also computationally and theoretically analyzed an isolated370

active filament that is pivoted at s = 0. In this scenario, beyond371

a critical value β ≈ 20.19, the filament undergoes a rotating in-372

stability32. Simulations with local RFT drag as well as non-local373

hydrodynamics yield filament dynamics that are qualitatively sim-374

ilar33.375

We have also previously studied the effects of anisotropic bead376

mobility and long-ranged, non-local hydrodynamic interactions377

between filament segments (see ESM Appendix C33. There, we378

used a hybrid simulation technique in which molecular dynamics379

simulations for the filament were combined with a mesoscale hy-380

drodynamic simulation method, multi- particle collision dynamics381

(MPC), for the ambient fluidic environment. We found that in-382

cluding non-local hydrodynamic interactions for the driven active383

filament leads to slightly smaller lateral amplitudes and increases384

the beating frequency. Beating patterns with hydrodynamics in-385

teractions are qualitatively similar to non-hydrodynamic simula-386

tion results. The frequency scaling with active force density, and387

the critical active force required for oscillations are the same in388

both cases. Such qualitative similarities in oscillations are re-389

ported in similar analytical models as well34. The results for criti-390

cal onset of oscillations and the emergent frequency compare well391

with the exact calculations with full hydrodynamics36,37. The lat-392

ter calculation also include a no-slip rigid wall to which the fila-393

ment is grafted36,37.394

3 Small clusters of smooth filaments395

An array with N� 1 filaments may be understood as a hierarchi-396

cal network, comprising of filament pairs, filament triplets, and so397

on. Therefore, to understand the emergence of synchronization398

at small scales, we first study a two-filament pair and a three-399

filament bundle to identify coordination and synchronization at400

small scales, followed by a large carpet (N = 300) to learn how401

these behaviors extend to larger scales. Except where mentioned402

otherwise we consider smooth filaments with σ = 4`0.403

3.1 Two-filament pairs404

We first consider two filaments with bases that are clamped and405

separated by a distance ∆ along the x axis. The clamped boundary406

implies that both the position and the angle at the end s = 0 are407

fixed. The available space between two active filaments is then408

given by δ = (∆−σ)/`0. Since the isolated filament dynamics is409

governed by the activity number β , we compare the oscillatory410

dynamics of the filaments for three values, β = 768, 384, and411

192. Based on the simulation results, we observe three different412

class of oscillations, depending on the values of δ and Amax. For413

for 1 < δ � δmax both filaments oscillate synchronously. However,414

the synchronized oscillations are disrupted at higher separation,415

1� δ < δmax. Interestingly, synchronization re-emerges when δ416

is increased further, δ ' δmax. The details of this analysis are417

explained in SI§I and Fig.S1.418

3.2 Three-filament clusters419

We next study a group of three filaments (N = 3), with each sep- 420

arated by δ at the base. This arrangement breaks the symme- 421

try of the constituent filaments, since the central filament experi- 422

ences steric hindrance on both sides while the end filaments each 423

have a neighbor only on one side. Similar to the analysis for two- 424

filaments, we study the system for three values of β , as a function 425

of the basal separation δ . 426

3.2.1 Tightly packed filaments (δ ' 1): synchronization 427

All filaments interact strongly at δ ' 1. Computing the Lee wave- 428

form and the end-point trajectory of each filament shows that the 429

waveform is similar for both the end-filaments while it differs for 430

the middle filament (in both amplitude and frequency, Fig 3(a)). 431

The maximum amplitude of Lee(t) attained by the middle filament 432

is roughly half that of the end-filaments and the associated fre- 433

quency is almost double. The reason for this difference is evident 434

from the end segment trajectories (Fig. 3(b)), which show that 435

the oscillation of the middle filament is occluded by the steric hin- 436

drance due to both end-filaments. This leads to a low-amplitude, 437

symmetric pattern for the middle filament. For the end-filaments, 438

the oscillations are obstructed only in one direction, which leads 439

to asymmetric patterns. This asymmetry manifests as an addi- 440

tional low-frequency mode in the Lee waveform. 441

3.2.2 Intermediate packing (1 < δ < δmax): disruption and 442

trapping 443

At intermediate spacing, the filaments have space to deform with- 444

out contact, and we observe a disruption of regular oscillations 445

for all three filaments. Since the deformation depends on the 446

filament softness (∼ 1/β), it is especially pronounced for soft fil- 447

aments with β = 768, where the oscillatory pattern is highly sen- 448

sitive to δ at this range as highlighted in Fig 3(c)-(h). 449

At δ = 7, the Lee(t) time series shown in Fig. 3(c) shows neither 450

regular oscillations nor synchronization, and the end-segment tra- 451

jectory does not exhibit a clear pattern (Fig. 3(b)), especially for 452

the middle filament. 453

We observe a similar trend in the dx/dt vs x pattern at this spac- 454

ing (SI§1-B). The regular oscillation is recovered when δ = 10, 455

while the end-point trajectories of all three filaments are asym- 456

metric but similar (Fig 3(f)). However, for δ = 12 (Fig 3(h)), 457

the end-segment trajectory of the middle filament is qualitatively 458

different compared to the end filaments. While the end-filament 459

oscillation switches from symmetric to asymmetric patterns and 460

back, the centre filament always oscillates asymmetrically. The 461

direction of this asymmetry switches over time, thus resulting 462

in an overall symmetric, butterfly-like pattern over a large time 463

(Fig 3(g-h)). 464

However for stiffer filaments with β = 384 and 192 (SI§1-B), 465

we do not observe such a disruption in oscillations as for soft fil- 466

aments. In this case, the middle filament is trapped either below 467

or the end filaments, restricting its oscillatory amplitude without 468

disrupting the regular oscillations. When the separation is further 469

increased to δ ' δmax, the filaments do not interact except for the 470

maximally bent (minimum Lee) configurations. At this separa- 471

tion, we observe a reemergence of synchronized oscillations in all 472

the filaments for all values of β (SI§1-C). 473
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Fig. 3 Dynamics of three clamped filaments. The time evolution of the end-end length Lee and the end-segment trajectory are shown for inter-filament
separations δ = 1 ((a) & (b)), δ = 7 ((c) & (d)), δ = 10 ((e) & (f)), and δ = 12 ((g) & (h)). All the filaments have activity number β = 768 so that δmax = 10.
The green curves in the second row correspond to the trajectories when noise is negligible. We note that the discreteness of the simulation scheme
results in the green curves not being completely smooth. We also note the similarities in (f) and (h), with a more pronounced asymmetry toward one of
the end filaments for δ = 12.

Fig. 4 The x component of the mean contact force that acts on the middle
filament in a three-filament cluster. (a) Here β = 384 (i) δ = 1, (ii) δ = 8
and (iii) δ = 17 ( δmax' 16.5). Plots for β = 192 are qualitatively similar.

3.3 Going from N ∼ O(1) to N� 1: Anticipating the effect of474

contact forces475

To anticipate how this time-dependent nature of the steric inter-476

actions will effect the collective behavior of N � 1 filaments, we477

measure the components fx and fy and magnitude | f | of the con-478

tact forces,479

〈 fx〉=
1

Nm

Nm

∑
α=1

(FEx
α ··· ex), 〈 fy〉=

1
Nm

Nm

∑
α=1

(FEx
α ··· ey) (10)

derived from the pairwise WCA potential, acting on the middle480

filament as a function of time for the soft filament with β = 384481

(Fig. 4). For small basal separation (δ = 1), the middle filament482

is always in contact with the neighboring filaments and 〈 fx〉 ex-483

hibits regular, albeit noisy, oscillations (Fig. 4(i)). When the basal484

distance is increased δ ' 10, the periodicity in 〈 fx〉 weakens and485

the pattern is more noisy (Fig 4(ii)), which is consistent with the486

observed destruction of regular oscillations. At large basal dis-487

tances (δ ' 17) the filament interacts with its neighbors only for 488

a short time during the oscillation cycle, which manifests as reg- 489

ular pulses in 〈 fx〉 pattern (Fig 4 (iii)). Such periodic pulses lead 490

to a highly synchronized response over this range of distances. 491

4 Periodic array of smooth filaments 492

We now consider a larger system with N = 300 filaments arranged 493

on a one-dimensional lattice. As above, we consider smooth fila- 494

ments with uniform spacing δ . We apply periodic boundary con- 495

ditions in the x direction such that the periodic images of the 496

end filaments (1st and 300th) are also separated by δ , so that in 497

the absence of spontaneous symmetry breaking, all filaments are 498

identical. We choose an intermediate filament rigidity value, with 499

β = 384. 500

4.1 Tightly packed filaments (δ ' 1): Slow metachronal 501

waves 502

Under tight packing, steric interactions act on each filament 503

throughout its oscillation cycle, which leads to a high degree of 504

inter-filament coordination (Fig 5 (a)) (see MOVIE-1 in ESM). As 505

in the small clusters studied above, we quantify the spatiotem- 506

poral behavior of the system via the end-end length Lee of each 507

filament as a function of time. We plot this information in a kymo- 508

graph in Fig.5 (b), where the spatial points are the basal position 509

of each filaments. The color code indicates Lee of each filament 510

with basal anchoring at x. The kymograph (Fig 5 (b)) indicates 511

a phase-lag synchronization in beating between filaments sepa- 512

rated by large distances. This manifests as metachronal waves, 513

propagating in a specific (+x) direction, similar to the travel- 514

ing waves observed in many biological systems. Due to the high 515

inter-filament coordination, waveforms of each filament are sim- 516

ilar (Fig 5 (c)). 517

However, the waveform and amplitude of Lee are significantly 518
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Fig. 5 Collective dynamics of clamped filaments. (a) Snapshot of a section of N = 300 closely packed (δ = 1) clamped filaments undergoing synchro-
nized beating at β = 384. Videos of corresponding simulation trajectories are shown in MOVIE-1 in the ESM. (b) Kymograph of the end-end distance
Lee of clamped filaments for δ = 1. The color code indicates the end-end length Lee. The 0 on the y-axis corresponds to the left end of the filament
array. The slanted line indicates propagation of a stable waves in the +x direction. (c) Typical oscillatory pattern of individual filaments for δ = 1. The
filament-filament interaction significantly reduces the filament oscillatory amplitude and frequency compared to isolated filaments. (d) Comparison of
the oscillatory frequency of an individual filament inside the carpet, quantified via the Fourier transform of the end-end distance (Lee) time-series, for
the tightly packed condition δ = 1 (red) and for isolated filaments with no inter-filament interactions δ � δmax (purple), at β = 384.

Fig. 6 Kymographs of force components due to inter-filament repulsive
interactions on sections of a filament, in a dense array of N = 300 smooth
filaments with δ = 1. (a) The x component, (b) y component, and (c)
magnitude | f |.

Fig. 7 (a) Kymograph of the end-end length Lee in system of N = 300
clamped filaments for the spacing parameter δ = 5 with β = 384. Videos
of corresponding simulation trajectories are shown in MOVIE-2 in the
ESM. The 0 on the y-axis corresponds to the left end of the filament
array. The disordered pattern in the kymograph indicates a lack of syn-
chronization in filament oscillations. (b) Typical waveform of Lee of an
individual filament from the same arrangement, indicating the disorder in
oscillations.
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Fig. 8 Collective dynamics of sparsely packed filaments. (a) Kymograph of the end-end length Lee in a system of N = 300 clamped filaments for
the spacing parameter δ = 11 with β = 384. Videos of corresponding simulation trajectories are shown in MOVIE-3 in the ESM. The 0 on the y-axis
corresponds to the left end of the filament array. The thin, slanted patterns correspond to fast-moving waves translating in both the directions. A blown-
up version of the kymograph is shown on the right. (b) Snapshot of a section of filament array, indicating a phase-lag synchronization. (c) Individual
filament oscillation frequencies in a sparsely packed carpet δ = 11 (red) and for isolated filaments δ � δmax.

different from those of an isolated filament. Fig 5(d) compares519

the Fourier transforms of the Lee time-series for isolated filaments520

and those within the carpet, demonstrating that the steric inter-521

actions significantly reduce the oscillation frequency.522

Since our results indicate that steric interaction between the523

filaments plays a crucial role in the emergence of cooperative os-524

cillations, we analyze the dynamics of inter-filament forces acting525

on a filament due to inter-filament interactions. Fig. 6 shows ky-526

mographs of the components and magnitude of the steric forces.527

Since the oscillatory motion alters the local ‘contact’ of a filament528

in the array, the contact forces also exhibit spatiotemporal dy-529

namics similar to Fig. 5(b). The striped pattern in Fig 6 indicates530

a contact propagation from the basal to the distal end of the fil-531

ament. However, the periodicity in the pattern is almost double532

for the Fy component compared to the Fx component, which is533

specific to the filament oscillatory dynamics.534

4.2 Intermediate separation: Irregular beating535

Increasing the inter-filament spacing leads to disordered filament536

dynamics (Fig. 7 (a) and ESM MOVIE-2); the kymograph shows a537

lack of phase-lag synchronization or coordinated oscillations of538

spatially separated filaments. The lack of coordination results539

from irregularities in the beating patterns of individual filaments540

induced by interactions with their neighbors (Fig 7 (b)). Thus, the541

disappearance of coordinated beating at intermediate filament542

separations described above for N = 3 extends to large systems543

with N� 1.544

4.3 Large separation: Emergence of fast metachronal waves545

When the inter-filament spacing is further increased (δ > δmax/2),546

the contact interaction becomes ‘pulse’-like and the individual fil-547

aments beat with a higher frequency, close to that of an isolated548

filament. Interestingly, we observe the reemergence of waves549

at these large separations (Fig 8 and ESM MOVIE-2). However,550

the wave propagation is qualitatively different than observed for551

tightly packed filaments, where filaments are in continuous con-552

tact with their neighbors. At large separations, the filaments553

which are initially oscillating independently, coordinate their os- 554

cillatory phase through the ‘pulse’-like interactions. This results 555

in nucleation of independent waves moving in either directions, 556

at different regions in the array of filaments. Two oppositely mov- 557

ing waves meet at a ‘node’ where they annihilate (c.f Fig 8 (a)), 558

leading to a saw-tooth pattern in the kymograph. Also, the speed 559

of wave propagation, which is closely linked to the individual fila- 560

ment beating frequency, is higher compared to the tightly packed 561

filaments. 562

A closer examination of the configuration (Fig 8 (b) and 563

MOVIE-3) indicates that the filaments exhibit a phase-lagged 564

synchronization, with a much larger phase difference compared 565

to δ ' 1. Analysis of the frequency spectrum of Lee oscilla- 566

tions identifies multiple harmonics in the oscillation waveform 567

(Fig. 8(c)). However, the oscillation frequency of individual fila- 568

ments at this separation closely matches with that of an isolated 569

filament (Fig. 8(c)). 570

5 Periodic array of rough filaments 571

The previous section discusses the collective dynamics of active 572

filaments for which the individual beads have an effective inter- 573

action diameter σ = 4`0 that is larger than the equilibrium sepa- 574

ration between neighboring beads `0. This arrangement ensures 575

relatively low resistance to tangential sliding between adjacent 576

filaments in tightly packed configurations and mimics steric in- 577

teractions between brush-grafted filaments as in the mucociliary 578

tract56. In this section, we discuss filaments in which the effective 579

interaction diameter is comparable to the equilibrium inter-bead 580

distance (σ ≈ `0), resulting in large gradients of the excluded- 581

volume potential between adjacent filaments and mimicking fil- 582

aments with corrugated micro-scale roughness57–59. Effectively, 583

beads in neighboring filaments interlock as they move, resulting 584

in higher effective friction coefficients and significantly reducing 585

their tangential velocities. 586

Additionally, we explore the role of the geometric constraint 587

at the base in sustaining and stabilizing oscillations. Surprisingly, 588

relaxing the hard clamped boundary condition by the softer pivot- 589
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Fig. 9 Collective dynamics of rough filaments (σ/`0 = 1), with β = 384
and clamped at the base. (a) Typical configuration for tight packing (δ =

1), exhibiting regions with synchronized oscillations. (b) Kymograph of
the end-end distances of the filaments. Vertically aligned stripes indicate
synchronized oscillations. (c) Typical oscillatory pattern of an individual,
rough filament at δ = 1 (red). The oscillatory pattern qualitatively differs
from that observed for smooth filaments with σ/`0 = 4 (blue).

type condition that allows for rotation leads to a new pattern -590

stable actively jammed structures.591

5.1 Rough filaments with clamped bases592

Fig 9 and (ESM-MOVIE-4) present the collective dynamics of593

N = 300 clamped active rough filaments. To highlight the effect of594

inter-filament interactions, we focus on tight packing with δ = 1.595

The activity parameter is β = 384. As in the case of smooth fil-596

aments, excluded volume interactions alter the phase of oscilla-597

tion of individual filaments (in the array), leading to collective598

oscillatory patterns (Fig 9(a)). However, the patterns qualita-599

tively differ from those exhibited by smooth filaments at δ = 1600

(Fig. 5(b)). Instead of forming long-ranged metachronal waves601

that travel across the entire array, the interlocking of neighboring602

rough filaments results in clusters of synchronously oscillating fil-603

aments with negligible phase differences among filaments within604

a cluster. These clusters are separated by smaller regions of fil-605

aments that oscillate with a constant phase shift, forming short-606

ranged metachronal waves.607

The kymograph in Fig 9(b) illustrates this behavior, and indi-608

cates a complex collective dynamics of the filaments. The vertical609

stripes in the kymograph indicate groups of filaments with syn-610

chronized oscillations, while the curved regions in the stripes cor-611

respond to shifting in the location of synchronized clusters along 612

the array. Fig. 9(c) shows the typical oscillatory pattern of indi- 613

vidual filaments via their end-end length, Lee, which reveals the 614

modification in oscillatory pattern of individual filaments due to 615

crowding. 616

5.2 Rough filaments with a pivoted bases 617

We now consider filaments with a pivoted boundary condition at 618

their bases, meaning rotation about the anchoring point is not 619

energetically penalized. Our previous work showed that indi- 620

vidual filaments with pivoted boundary conditions undergo ro- 621

tational motion with a constant frequency (see 32,33,43). Here, 622

we examine how inter-filament interactions change this behavior 623

by simulating an array of such filaments at δ = 1 (N = 300) and 624

δ = 0.3 (N = 600) keeping the domain size the same. As before pe- 625

riodic boundary conditions are applied to the lateral ends. Note 626

that since we do not account for excluded volume interactions 627

between the filaments and anchoring surface in our simulations, 628

and filaments are either clamped or pivoted at the point s = 0, 629

the pivoted boundary condition would enable smooth filaments 630

to slide past each other and point downward. However, for rough 631

filaments, sliding is sufficiently restricted at small separations that 632

this inversion does not occur. We therefore focus on rough fila- 633

ments in the following. 634

Figures 10 (a-c) and ESM Movie 5 provide a mechanistic pic- 635

ture of the dramatic changes in collective spatiotemporal patterns 636

triggered by softening the boundary conditions at the base from 637

a hard (clamped) condition to a less restrictive pinned condition. 638

Considering the results shown in Figs 10(a,b) with ESM-Movie5, 639

we make the following observations. Relaxing the boundary con- 640

dition quenches the traveling metachronal waves and wavetrains 641

seen previously; instead, we observe periodically spaced jammed, 642

static clusters (bundles) of filaments. Moving between these 643

jammed bundles and reflecting off them are un-jammed filaments 644

that oscillate. Since the net force inside a static structure must be 645

zero, each jammed cluster has a nearly symmetric shape; further- 646

more, the distance between the static clusters depend on both 647

geometric properties of the array (filament length L and spacing 648

parameter δ , as well as the activity β). For fixed activity and 649

length L, decreasing δ results in closer, thicker, and lower aspect 650

ratio bundles (c.f Fig. 10(a) vs. 10(b)). 651

Focusing more on the intermediate δ = 1, case we plot in 652

Fig 10(c), (i) and (ii) the force distributions in the bundles, (iii) 653

the kymograph of the filament end-end length dynamics, and (iii) 654

the trace of the free end of a representative oscillating filament 655

(dashed blue line) compared with a static filament inside the bun- 656

dle (red). We examine and interpret each of these figures in more 657

detail below. 658

To understand the mechanism that drives rough filaments with 659

pivoted boundary conditions to form jammed clusters, we ana- 660

lyze the inter-filament forces within jammed clusters. Fig 10(a,b) 661

maps the net magnitude of the excluded-volume force (|FEx|, 662

eq. 5) on each bead within the clustered configurations - here 663

Fig. 10(a) illustrates the force map for δ = 1. The map indi- 664

cates that the interaction force is largest near the middle of the 665

jammed cluster, where cluster undergoes maximum compression 666
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Fig. 10 Collective dynamics of rough filaments with pivoted boundary conditions at the filament bases. Typical configuration for packing densities,
(a)δ = 1.0 with N = 300 filaments, and (b) δ = 0.3 with N = 600 filaments. Periodic boundary conditions are applied at the lateral boundaries, so the
first and the 300th (for δ = 1.0) or the 600th (for δ = 0.3) filament are neighbors. In both cases the filaments form jammed, static clusters, interspersed
among groups of oscillating filaments. Here the colour maps indicate magnitude of total contact forces (F ) on each monomer measured from the WCA
interaction potential, for a configuration with pivoted boundary conditions with β = 384. (c) (i) The x component and, (ii) the y component of the total
contact forces on each bead for the configuration with δ = 1. Note that we show most but not all of the array. (iii) Kymograph of the end-end distance of
the filaments for the δ = 1.0 case. Horizontal stripes indicate the static clusters. (iv) End-end length of a dynamic filament with δ = 1, which oscillates
between two static clusters (blue) and a static filament (red).

due to the active forces.667

In addition to the total force, the symmetric internal force dis-668

tribution is evident upon examination in Figs 10(c)(i)&(ii), of in-669

dividual x and y components of the forces respectively. We ob-670

serve that the x component of the contact force is marginally671

higher compared to the y component, as the compression due672

to the outer filament acts mainly along the x direction. This673

is reminiscent of stresses borne by an arch - the distribution of674

compressive forces suggests that filaments can relax and unravel675

only by further compression given the direction of the active force676

thus vertically stabilizing the cluster. Lateral stabilization comes677

from the momentum impulses imparted to a cluster along the x-678

direction as unjammed oscillating filaments fit against the edge.679

Finally, there is also a geometric component due to the connected680

bead filament. Closer examination of the arrangement of ac-681

tive beads within the jammed cluster shows a nearly hexagonal682

packed structure that also resists sliding of beads strongly. Both683

these are signatures of roughness playing a dominant role. We684

note also that low to moderate noise can cause co-moving steri-685

cally interacting filaments to further align as we found in dense686

nematic suspensions60. This increased tendency to align com-687

bined with the increased bending stiffness of the bundled cluster688

stabilizes it from collapsing.689

Moving next to the kymograph in Fig.10(c)-(iii), we observe690

yellow horizontal stripes corresponding to static clusters and691

slanted patterns corresponding to the small regions of oscillat- 692

ing filaments in between static clusters. Note that not al fila- 693

ments moving between adjacent bundles behave similarly - fil- 694

aments may move and then get stuck, keep periodically orscil- 695

laing and sometimes dislodge jammed filaments from the bun- 696

dles. Fig 10(c) (blue dashed line) shows the typical oscillatory 697

pattern of the un-jammed filaments, which is similar to that of 698

filaments with clamped boundary conditions at roughly similar δ 699

(δ = 1.3 for the pivoting case and δ = 1 for the clamped case). 700

In Fig 10(c)-(iv), the red solid line emphasizes that filaments 701

trapped inside the bundle (well into the interior) are almost non- 702

moving. The end-end length Lee is invariant in time for such fila- 703

ments and roughly equal to the filament length. 704

Beyond δ = 2.0, we find that the clusters are very sparse since 705

the filaments have more space in between and can rotate past 706

each other. This response is an artefact caused due to the lack of 707

an actual physical barrier preventing filaments from completely 708

sliding and moving around the pivot. 709

6 Summary and Perspectives 710

6.1 Summary 711

We have shown that purely short-ranged contact interactions are 712

sufficient to drive coordinated beating among large arrays of ac- 713

tive filaments, in which individual filaments beat due to compres- 714

sive elastic instabilities. Moreover, such filament arrays exhibit 715
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a rich panoply of emergent behaviors, depending on the inter-716

filament spacing, the many-body nature of the filament-filament717

interaction, and how filaments are attached to a surface.718

Of particular interest, large arrays of smooth, tightly packed719

filaments exhibit highly coordinated oscillations that manifest720

as propagating metachronal waves. Coordination and hence721

metachronal waves diminish as the inter-filament spacing in-722

creases, but then reemerge at large inter-filament separations on723

the order of (but less than) the oscillation amplitude. Notably, the724

form of the metachronal waves is qualitatively different at small725

and large inter-filament spacing.726

To understand the origin of the spatiotemporal patterns and727

stable states, we have systematically studied the dynamics of728

small clusters containing two or three filaments in addition to the729

large arrays. In the small tightly packed clusters of smooth fila-730

ments, coordination results in highly synchronized oscillations.731

Analogous to the large arrays, synchronization decreases with732

increasing inter-filament spacing but then reemerges at spac-733

ing comparable to the oscillation amplitude. The form of the734

metachronal waves in large arrays can be understood from the735

changes in amplitude and waveform exhibited by the small clus-736

ters at different spacing.737

We also find that the nature of spatiotemporal patterns and738

type of stable state qualitatively differ depending on whether the739

filament-filament interaction is smooth or rough (corrugated) and740

how the filament is attached at its base. Rough filaments inter-741

lock with their neighbors at tight packing, which inhibits filament742

sliding motions. For rough filaments that are clamped at their743

base, this results in finite-size highly synchronized clusters, sepa-744

rated by regions of filaments undergoing asynchronous meeting.745

In contrast, rough filaments that freely pivot at their base form746

finite size static clusters with a size and shape that depends on747

the control parameters.748

6.2 Future extensions749

Three possible avenues for further work are evident. First, our re-750

sults provide the foundation to study spatiotemporal patterns in751

active filament systems with full hydrodynamic interactions, par-752

ticularly for colloidal active filaments such as chains comprised753

of self-propelling, polar particles, or a bed of colloidal chains im-754

mersed in an active fluid such as a bacterial suspension. In the755

case of a single filament, previous work using multi-particle col-756

lision (MPC) algorithms (Appendix in33) suggests that hydrody-757

namic interactions play a minor role, as the extra viscous friction758

in a 2D system for relative motions between filament segments759

has a logarithmic dependence on separation. For very small gaps760

these interactions are subdominant compared to the excluded vol-761

ume constraint. Further, results in the noise-less limit37 suggest762

that for a single active filament clamped to a no-slip flat surface,763

hydrodynamic interactions quantitatively, but not qualitatively,764

change the onset of oscillations, frequencies and amplitudes.765

However, for multiple filaments hydrodynamic interactions are766

anticipated play an important role in triggering and sustaining767

elastic instabilities, as predicted for noise-less smooth active fil-768

ament clusters and arrays with full hydrodynamics interactions,769

but in the absence of steric interactions36–39. Sangini et al. 37
770

suggests the existence of two unstable modes, in which the fil- 771

aments respectively beat in-phase or anti-phase. Combining the 772

results from Sangini et al. 37 with our analysis here, we hypoth- 773

esize that hydrodynamic interactions and steric interactions offer 774

two alternate mechanisms to stable states. Phase variations that 775

lead to wavetrains or metachronal waves are expected to be af- 776

fected by both physical mechanisms; with the relative importance 777

determined by the physical system. For example, hydrodynamic 778

interactions may dominate in biological settings, while steric in- 779

teractions may need to be considered in the context of active col- 780

loidal chains. 781

Second, our results suggest a route to understanding synchro- 782

nization and collective behavior using reduced dimensional mod- 783

els. Current studies, focused on interactions between rotating 784

colloids using extensions of the Kuramoto theory45,46, can per- 785

haps be extended to studies of synchronization between arrays 786

of oscillating elastic filaments. The numerical results presented 787

here demonstrate that propagation of metachronal waves in fil- 788

ament arrays can arise purely via short-ranged contact interac- 789

tions. While the present study is limited to a specific model for 790

the self-regulated beating dynamics of the constituent filaments, 791

most mechanisms that generate stable, self-regulated beating mo- 792

tions require coupling between the internal active force and the 793

filament. Thus, the scope of our prediction extends beyond the 794

particular mechanism (follower force) studied here, and can be 795

tested in other classes of models or biomimetic systems. 796

Finally, our computational model can be combined with 797

advanced numerical techniques combining MPC with high- 798

resolution Galerkin methods to analyze viscoelastic interactions 799

between small filament clusters. These extensions will allow us to 800

study the transport and capture of small particles by filamentous 801

sticky beds61, or investigate the role of viscoelasticity62 in me- 802

diating inter-filament interactions in addition to steric effects ex- 803

plored in this paper. Viscoelastic effects introduce fluid relaxation 804

time scales and also a means to temporarily store energy. Such 805

simulations would be interesting, and especially guide the design 806

and understanding of biomimetic active multi-filament systems 807

immersed in non-Newtonian fluids and open new modalities of 808

particle transport and flow control. 809
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