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Machine learning forecasting of active nematics†
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Active nematics are a class of far-from-equilibrium materials characterized by local orientational order

of force-generating, anisotropic constitutes. Traditional methods for predicting the dynamics of active

nematics rely on hydrodynamic models, which accurately describe idealized flows and many of the

steady-state properties, but do not capture certain detailed dynamics of experimental active nematics.

We have developed a deep learning approach that uses a Convolutional Long-Short-Term-Memory

(ConvLSTM) algorithm to automatically learn and forecast the dynamics of active nematics. We demon-

strate our purely data-driven approach on experiments of 2D unconfined active nematics of extensile

microtubule bundles, as well as on data from numerical simulations of active nematics.

Introduction

Active nematics are far-from-equilibrium materials with local
orientational order, whose anisotropic constituents consume
energy at the particle scale to generate forces and motions.1–7

Being driven away from equilibrium, active nematics have the
potential to transform materials science by enabling a new
class of materials with capabilities currently found only within
living organisms. Uniformly aligned active nematics are inher-
ently unstable. Instead, in steady state they exhibit chaotic
turbulent-like dynamics that lack long-range order or the ability
to drive net material transport ((Fig. 1) ref. 1, 5 and 8–19). Long-
term practical applications of active nematics require developing
adaptive control strategies that transform their turbulent
dynamics into stable flows that generate productive work.20

The recent development of light-controlled molecular motors
paves the way toward this possibility.21,22 A first step toward this
long-term goal is the ability to forecast the temporal evolution of
the active nematic dynamics.

One plausible path toward forecasting active nematic
dynamics involves developing a quantitative predictive theore-
tical model of active nematics. In such a case, one could use the
experimentally measured director and velocity fields as initial
conditions and forecast the subsequent dynamics. However,
this path is fraught with significant challenges. Existing conti-
nuum models capture many structural and dynamical features

of active nematics in a statistical sense,1,2,4,5,7,12,14,19,23–38 but
they fail to account for certain physical aspects of the experi-
mental dynamics.39 For example, in existing continuum
theories defects can propagate through molecular reorientation
of the director field, while in cytoskeletal active nematics,
defects avoid crossing material lines defined by the director
field because their motion is constrained by the long spatial
extent of the constituent fibers.39 Furthermore, theoretical
models of active nematics require numerous input parameters,
such as the magnitude of the active stress and the nematic
elasticity. These are not known a priori and are challenging to
measure experimentally.

To overcome these challenges, we describe an alternate
path toward forecasting active nematic dynamics that involves

Fig. 1 Example of an unconfined 2D active nematic system consisting of
extensile microtubules. Left: Image of the optical retardance obtained
using a PolScope. A circular view of interest is set in this study. Right: The
corresponding orientation field (red lines), +1

2 defects (red disk with line
indicating orientation), and �1

2 defect (blue tricuspoids). See the data
subsection in the main text for explanations of orientation field visualization
and defect detection.
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Deep Learning (DL).40 This method does not require any
knowledge of the underlying physics, and only leverages the
symmetries of the system. Our DL framework automatically
constructs a deep neural network that capture the dynamics of
an experimental active nematic system. Our model forecasts
future movements for time scales long enough to capture key
physical events such as defect nucleation and annihilation.
This is an essential first step toward rational design of devices
that harness the tantalizing capabilities of active nematics, and
provides the basis for a closed-loop feedback control strategy.
More broadly, by demonstrating the possibility of forecasting
the dynamics of a complex active material, our results and
those of a complementary independent work41 extend the
applications of machine learning in a significant new direction.

Deep Learning, a subfield of Machine Learning, has trans-
formed a broad range of scientific disciplines by enabling
understanding, exploring, and interpreting large-scale datasets.
Typical DL models are deep artificial neural networks com-
prised of many layers of simple non-linear neurons. Each layer
learns to transform its input (starting with the raw input) into a
more abstract and composite representation. This allows very
complex functions to be effectively decomposed and learned if
the models have enough layers. The key aspect of DL is that
these representations are not designed by human experts;
instead, they are automatically learned from raw data using
a general-purpose learning procedure. The DL process can
disentangle these representations and decide their places in a
model to optimize the model’s performance. Long-Short-Term-
Memory (LSTM) networks are one DL model family,42 suitable
for classifying, processing, and making predictions based
on time series data. A ConvLSTM enables temporal-spatial
modeling,43 by incorporating convolution operations into the
LSTM to extract spatial information from inputs.44 Our fore-
casting model is based on a ConvLSTM model, and uses eight
consecutive frames of an active nematics to predict its future
movements. Crucially, we demonstrate that the model can
forecast key events in the dynamics, and could thus provide
predictions for a closed-loop feedback control strategy.

Methods
Data

Experimental data. The training dataset contained five
videos, each consisting of retardance and orientation fields,
produced by PolScope microscopy of 2D active nematics of
extensile microtubule bundles.11,38,45 The time interval between
two consecutive frames was two seconds. We observed in the
experiments that crucial dynamical events like defect nucleation
occurred within 8 video frames. Hence, we divided each video into
sub-sequences of 16 consecutive frames (the first 8 frames as the
input to the model and the last 8 frames as the outputs of the
model). Two consecutive sub-sequences have 6 frames in overlap
(i.e., the last 6 frames of a sub-sequence are the first 6 frames of
the sub-sequence succeeding it). Based on the limited amount of
available data, we separated the sub-sequences into two groups

with a size ratio of B10 : 1 for training and testing subsets,
respectively. In particular, we used all the available videos to
create 4000 sub-sequences to train the model and another 400
to test it. The training sub-sequences came from the early
segments of the videos and the test sub-sequences came from
the late segments of the videos, with no frame overlap between
the training set and the test set. A total ofB44 000 video frames
were used in this study. With larger data sets, the percentage
of sub-sequences needed for training would decrease; for
example, with ten times more sub-sequences one could use
50% for training and 50% for testing. In this way, the percen-
tage used for testing would increase significantly and the
accuracy could be expected to also rise because of the increased
number of sub-sequences used for training.

The original size of each frame was 1040 � 1040 pixels.
We divided each frame into four 520 � 520 views, and then
downsized each view into 128 � 128 pixels. The size of a typical
topological defect was about 7 � 7 pixels in the downsized
views. A circular view of interest was used in this study. The
orientation ground truth was measured by a PolScope.45 The
visualizations of the nematic were made by integrating along
the orientation vectors, while accounting for the nematic
symmetry. The orientation field of a typical 2D active nematic
in a chaotic steady state is continuous almost everywhere,
except at few isolated points known as topological defects –
the comet shaped +12 defects and the trefoil-like �1

2 defects
(highlighted in the visualizations). The defect ground truth was
obtained by our defect detection method (see details in the
Appendix).

Simulation data. Simulation data was obtained by numeri-
cally solving the hydrodynamic equations for a simplified active
nematics model (see the APPENDIX). A total of 9900 frames of
simulation data were used, with 9000 frames used for training
and the remaining 900 frames used for testing. The frames
had a box size of 200 � 200 and were separated in time by
Dt = 10, where both lengths and times are in non-dimensional
simulation units. The solutions were computed on a 128 �
128 grid. In total, we compiled 900 training sequences and
90 test sequences.

Due to the nematic symmetry of the system, the range of an
orientation vector is between [0, 1801]. A vector along 01 is the
same as a direction vector of 1801, although their orientation
degrees differ. Hence, we map the orientation angle q into a
nematic order parameter field as [Qxx, Qxy] = [cos2(q) � 1

2, cos(q)�
sin(q)]. To increase model robustness, we performed data
augmentation by creating additional data sets via random
rotations of the circular view of interest.

Stacked ConvLSTM for forecasting active nematic movements

Fig. 2 shows the architecture of our DL model for forecasting
active nematics dynamics. It stacks four ConvLSTM layers,
which allows the model to capture long-range temporal depen-
dencies. The sizes of the hidden states in the stacked
ConvLSTM layers are 32, 64, 64, and 128, respectively. Their
corresponding convolutional kernel sizes are 7� 7, 5� 5, 5� 5,
and 5 � 5, respectively. The hidden states of all ConvLSTM cells
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are concatenated before being passed to a convolution layer to
produce one output frame, which effectively forms a densely
connected layer.46 When used to forecast movements, an out-
put frame (i.e., one prediction) is fed back as the next input to
the bottom ConvLSTM in the model to produce the next
predicted frame. We trained the model to take eight frames
in history as the input and forecast eight future frames, by
minimizing the mean-squared-error (MSE) loss. The model
could have been trained with more than eight input frames,
but this would require substantially more memory. In practice,
the trained model can then be used to forecast more than eight
future frames (Fig. 4, 5 and 9), though the accuracy of the
model decays with number of frames into the future. The
model was implemented using Pytorch.47 The Adam training
algorithm48 was used with a learning rate of 0.001 and a step
decay rate of 0.5 every 30 epochs.

Experiment results
An example of forecasting

Fig. 3 shows an example of active nematic movement forecasting.
Nematics typically contain localized regions of orientational

disorder known as defects. There are two topological defect
types (+12 and �1

2), which are defined by their topological
winding number.49,50 The +12 defect is motile, and defects play
a crucial role in the overall dynamics of active nematics.
We therefore mark the defects in the ground truth and the
forecasting results.

Accuracy of forecasting

We characterize the forecasting fidelity (F) by comparing
the predicted nematic director field and the ground truth,
F = hcos(2g)i, where g A [0,p/2] is the absolute angular differ-
ence between a location in a ground truth frame and its
prediction, and the h i operation denotes an average over test
data at a given timepoint. tc is the characteristic time it takes
for a +12 defect to move a distance equal to its core size
(Appendix Fig. 11). We elaborate further on defects in the next
section. In the simulations, this time scale is proportional to
the ratio of the viscosity and activity (i.e., tc p Z/a).24 From here
on all the times are in units of the characteristic time, tc.

The model performs well in forecasting early time frames but
decays over time (Fig. 4). The error increases faster in the regions
further away from the center. This spatial dependence of uncer-
tainties in forecasting arises mainly because materials outside the
circular view of interest, whose motions cannot be directly fore-
casted by the model, continually move into the view of interest.

Fig. 2 The stacked ConvLSTM model for forecasting active nematic
movements. (A) The model contains four ConvLSTMs that are stacked
together to capture relatively long-range temporal dependencies.
Ci
t encodes the long term memory and represents the state of the LSTM

cell in i-th layer at the t-th frame. hit encodes the short term memory
(i.e., the hidden state also known as output) of the LSTM cell in the i-th
layer at the t-th frame. The outputs (h1t ,h

2
t ,h

3
t , and h4

t ) of all four ConvLSTMs
are channel-wise concatenated before feeding to a 1 � 1 convolutional
(CNN) layer to produce a forecasted frame. (B) Detailed schematic of one
ConvLSTM cell. The input to the cell at time t is concatenated with its
hidden state at time t-1, and then is passed through a convolutional (Conv)
layer. The symbol s indicates the Sigmoid function. Both # and " are
element-wise operators. (C) In action, the model is unrolled along the time
axis to map an input sequence (from time t-8 to t-1) to an output one (1st,
2nd, 3rd, . . .). The forecasted frame at one time point is treated as the input
of the next time point.

Fig. 3 A example of active nematic dynamics forecasting, with a nuclea-
tion event highlighted in the boxes. The columns from left to right
correspond to t/tc = 0.7, 6.7 and 8.7, respectively, where tc is the
characteristic time for a +1

2 defect to move a distance equal to its core
size. Top row: Optical retardance images from the experiment. Middle
row: The forecasted orientation fields. Bottom row: The ground truth of
the orientation fields. The blue tricuspoids and red dishes (lines for
orientations) indicate the �1

2 and +1
2 defects, respectively. The rectangles

in the middle row highlight a pair of predicted defect nucleation events,
which correspond to the ground-truth observation of nucleation events
highlighted in the bottom row.
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Predicting defect events

Defect generation and motions are the critical physical processes
that underlie the turbulent-like dynamics of active nematics.
Therefore, in evaluating the performance of the model, we have
focused on its ability to describe defect behaviors. In active
nematics, the +12 defects are motile due to the active forces,
whereas the �1

2 defects, due to their three-fold symmetry, do not
experience a net force and are stationary on average. In our
samples, the average speed of microtubules in the sample is
about 1 mm s�1. The +12 defects move with a speed of B4 mm s�1

and have a mean diameter of B12 mm (see Appendix); hence
tc E 12/4 = 3 s. The defects stay in frame forB50 seconds (B16tc)
before either annihilating (explained below) or moving outside of
the frame. The framerate is 2 s per frame, so 1 frameE 0.7tc. Our
model forecasts the number of defects in the system with an
initial accuracy of B98% for both +12 and �1

2 defects in the 0.7tc
forecasted frame. The accuracies drop gradually to B50% for
both +12 and �1

2 defects in the 10tc (Fig. 5).
Notably, this model can forecast key defect events, such as

nucleation (Fig. 6 and Movie S1, ESI†), annihilation (Fig. 7 and
Movie S2, ESI†), and splitting (Fig. 8 and Movie S3, ESI†).
Nucleation occurs when a region with uniform nematic order
undergoes bending due to active forces to form one +12 defect
and one �1

2 defect (Fig. 6 and Movie S1, ESI†). Annihilation
occurs when one +12 defect and one �1

2 defect combine to create
a uniform nematic locally (Fig. 7 and Movie S2, ESI†). Splitting
occurs when the nematic near a +12 defect itself undergoes
bending to result in two +12 defects and one �1

2 defect (Fig. 8
and Movie S3, ESI†). The corresponding movies of these defect
events are included in the Appendix.

Simulation results

Finally, to test the generality of the DL framework for predicting
active nematics dynamics, we tested the same approach on

numerically simulated data of an active nematic. We used a
minimal nemato-hydrodynamical model (see Methods and the
Appendix) with parameters set to simulate active nematics
dynamics in the turbulent regime. We numerically solved the
equations using a multigrid solver, and calculated the orienta-
tion field (Qxx and Qxy) from the simulation trajectories in the
steady state. We trained our DL model using the same approach
as described for the experimental data (Methods).

Similar to the experimental results, the forecasting fidelity of
the DL model for the simulation data decreases as a function of
time (Fig. 9). To enable semi-quantitative comparison between
forecasting experimental and simulation dynamics, we rescale
the temporal evolution with the characteristic time of the
corresponding dataset. For the simulation set, we find 1 frame
E1.4tc. The +12 defects move at about 5 units per frame and
survive about 25 frames (B35tc) before annihilating. To the
extent that the space and timescales match between experi-
ments in theory, we see that the forecasting fidelity for the
simulation data is somewhat higher, and remains accurate over
a longer timescale, in comparison to the experimental data.

Fig. 4 The forecasting fidelity of experimental data as a function of time
in units of the characteristic time, tc. The thick blue line shows the overall
forecasting fidelity of the whole view, while the symbols show the spatial
distribution of the forecasting fidelity. The colors of the symbols corre-
spond to the colors of the regions (A1 – orange ring, A2 – purple ring, and
A3 – the blue region) in the circular doman of the data, as indicated in the
inset. The rings A1 and A2 have a width of 104 mm while the disc A3 has a
radius of 208 mm.

Fig. 5 The overall performance of defect forecasting on the experimental
data. Plotted are the number of defects in the viewed region that are
detected in the data and forecasted by the model as a function of time,
in units of the characteristic time, tc. An analogous plot is shown for
simulation data in Appendix Fig. 12.

Fig. 6 Forecasting defect nucleation. The columns (from left to right) are
regions in the forecasted frames at t/tc = 0.7, 6 and 8, respectively. The first
row shows the ground truth retardance images. The second row shows
the forecasted orientation fields corresponding to the rectangular regions
in the first row. The blue tricuspoids and red dishes (lines for orientations)
indicate the �1

2 and +1
2 defects of interest, respectively. See Movie S1 in the

APPENDIX for details.
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Similarly, the prediction of defect density is accurate out
to longer timescales for the simulation data (see Appendix
Fig. 12). This performance increase can be understood at least
in part because the simulation data is accurate to within
roundoff error and is noise-free.

Discussion and conclusions

We present a data-driven approach to construct and train a
ConvLSTM-based deep learning model to forecast the move-
ments of 2D active nematics. The trained model is capable of
forecasting key defect events such as creation, annihilation,

and splitting, as validated against experiment. To test the
generality of the approach, we have also shown its applicability
to data from a hydrodynamic simulation. In a future study, we
plan to characterize its performance on simulated data by
varying the hydrodynamic parameters or adding noise.

Our model only relies on the symmetry of the system, and
hence the structure of our model can also be applied to other
kinds of anisotropic soft matter, such as colloidal liquid
crystals, polar active matter self-propelled rods (e.g. ref. 6, 51
and 52), and active-nematics-based vesicles and emulsions
(e.g. ref. 11 and 53–55). When applied to a new system, the
model may need to be retrained using the data collected from
the new system, and the size of the model may also need to be
adjusted. It is possible that transfer learning can be used to
quickly adapt a model trained in one system to a new system.

While the forecasting accuracy decays over time, this work
demonstrates that deep learning is a viable approach for
forecasting details of the turbulent dynamics of active nematics
over time intervals corresponding to the displacement of a
defect by several defect diameters. This marks an essential step
toward the ability to implement feedback control strategies to
generate desirable behaviors in active nematic systems.
We found that the forecasting errors first accumulate in the
following two types of regions: (1) local areas around defects
(Fig. 10 and Movie S4, ESI†); (2) boundary regions where
uncertainty arises due to materials outside of the viewing area
crossing the boundary into the viewing area (Fig. 4, 10 and
Movie S4, ESI†). These errors subsequently propagate to other
areas in the later forecasted frames. Identification of these
error sources paves the way for improving data-driven fore-
casting algorithms.

Recent years have seen the emergence of machine learning
approaches to study active matter systems (ref. 56). Thus far,
efforts have focused on identification and tracking of particles
(e.g. ref. 57 and 58), classifying the collective dynamics of

Fig. 7 Forecasting defect annihilation. The columns (from left to right) are
regions in the data and forecasted frames at t/tc = 0.7, 2, and 4,
respectively. The top row shows the ground truth retardance images.
The bottom row shows the forecasted orientation fields corresponding to
the rectangle regions in the first row. The blue tricuspoids and red
dishes (lines for orientations) indicate the �1

2 and +1
2 defects of interest,

respectively. See Movie S2 in the APPENDIX for details.

Fig. 8 Forecasting defect splitting. A +1
2 defect splits into two. The

columns (from left to right) are regions in the data and forecasted frames
at t/tc = 4.7, 6.7, and 8, respectively. The top row shows the regions in the
ground truth retardance images. The bottom row shows the forecasted
orientation fields corresponding to the rectangle regions in the first row.
The blue tricuspoids and red dishes (lines for orientations) indicate the �1

2

and +1
2 defects of interest, respectively. See Movie S3 in the APPENDIX for

details.

Fig. 9 Forecasting fidelity of computational active nematic dynamics
(solid lines) and on experimental data from Fig. 4 for comparison (dashed
lines) as a function of time normalized by the characteristic time, t/tc. The
thick blue line shows the overall forecasting fidelity of the whole region,
while the symbols show the spatial distribution of the forecasting fidelity.
The colors of the symbols correspond to the colors of the regions
(A1 – orange ring, A2 – purple ring, and A3 –inner blue region) in the
circular doman of the data, as indicated in the inset.
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flocks/swarms (e.g. ref. 59–63), or the automatic identification
of different dynamical phases (e.g. ref. 64). Most closely related
to our objective, machine learning has been applied to train a
relatively simple model to predict the simulated dynamics
of chaotic systems produced by a computational model.65

In comparison, our work demonstrates that machine learning
can be used to train complicated models to forecast complex
dynamics in experiments. While we were in the final stages of
completing this manuscript, a related preprint appeared, which
also describes a deep learning approach to forecast the
dynamics of active nematics.41 In comparison to their
approach, our model stacks multiple ConvLTSMs with a larger
convolutional view followed by dense connections, which
potentially could capture large-scale temporal-spatial depen-
dencies in active nematics motions. We empirically found this
architecture to be useful for handling the chaotic nature of
active nematics dynamics in our experiments. In addition, our
model is purely data-driven and does not rely on knowledge of
the topology of the defects or the elastic energy structure of the

material. This feature avoids potential errors and uncertainties
associated with using the algorithmically predicted defects in
refining the predicted frames. However, we note that the total
number of defects predicted by our algorithm for the experiments
decays over time (see Fig. 5), whereas it does not in the predictions
from the algorithm of ref. 41. One possible reason for this
difference in performance is that ref. 41 includes a model of the
nematic in their sharpening algorithm, whereas our model is
purely data-driven. This difference between the two approaches
highlights that the model architectures and training protocols
may be tuned to optimize particular performance goals.
We hypothesize that the decay in the predicted number of defects
is mainly due to two factors. First, we do not have enough training
data to cover some local dynamics scenarios, which cause the
forecasting errors to emerge and accumulate in local areas and
then propagate into neighboring regions over time (Fig. 10).
Second, the nematic director outside of our model’s circular view
is artificially treated as horizontal, which produces biases that
spread into the view of the model.

Fig. 10 An example of the spatiotemporal accumulation and propogation of errors in forecasting experimental active nematics. The rows (from top to
bottom) are at t/tc = 3.3, 6.7 and 10, respectively. The first column shows the ground truth orientation fields. The second column shows the forecasted
orientation fields. The blue tricuspoids and the red dishes (with lines for orientations) indicate the�1

2 and +1
2 defects, respectively. The third column shows

the corresponding spatial distributions of the forecasting fiedlity. The last column shows the contour plots of the corresponding box areas in column 3, in
which the dark red areas surrounded by the solid line has forecasting fidelity less than 0.8 and the areas surrounded by the dashed lines have forecasting
fidelity less than �0.5. See Movie S4 in the APPENDIX for details.
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In the future, we plan to increase the forecasting accuracy of
our approach by (a) improving the architecture of our model to
address the hypothesized error sources; and (b) collecting more
training data under a variety of experimental conditions to
further improve the robustness and generalizability of the
trained model. Our goal is to develop a model that can provide
reliable guidelines for accurately controlling the behaviors of
an active nematic system in an experiment.

Conflicts of interest

There are no conflicts to declare.

Appendix
Experiment procedure

The active nematics were prepared following previously pub-
lished protocols.11,15 Briefly, microtubules were polymerized
from tubulin purified from bovine brain66 at a concentration of
8 mg mL�1 in the presence of GMPCPP to stabilize the MT
lengths. A truncated kinesin-1 motor proteins (K401-BCCP-HIS)
was purified from E. Coli using immobilized metal affinity
chromatography.67 Motor clusters were formed by mixing
5 mL biotinylated kinesin (0.7 mg mL�1) with 5.7 mL of strepta-
vidin (0.34 mg mL�1) and incubating for 30 min. The active
mixture was composed of polyethylene glycol (0.8% w/v 20 kDa)
as a depletion agent, phosphoenol pyruvate (26 mM), pyruvate
kinase/lactic dehydrogenase (PK/LDH) and ATP (1.4 mM) as an
energy regeneration system, and glucose (6.7 mg mL�1), glu-
cose oxidase (0.08 mg mL�1), glucose catalase (0.4 mg mL�1)
and Trolox (2 mM) as an oxygen scavenging system. All compo-
nents were mixed in M2B butter (80 mM PIPES, pH 6.8, 1 mM
EGTA, 2 mM MgCl2). Kinesin motor clusters (0.017 mg mL�1

K401) and microtubules (1.6 mg mL�1) were added to the active
mixture just before the experiment. A flow chamber 18 � 3 �
0.06 mm was made using double sided tape sandwiched
between two glass slides. One slide was treated to be hydro-
phobic using Aquapel. The other slide was passivated with an
acrylamide coating.68 To form an active nematic, oil (HFE 7500)
stabilized with a fluorosurfactant (1.8% w/v, RAN Biotech) was
flowed in to fill the whole chamber. Then the aqueous active
mixture was flowed in while wicking out the oil, leaving a thin
layer of oil on the hydrophobic surface for the microtubules to
sediment to. The creation of the nematic was aided by centrifu-
ging for 5 minutes at 1000 rpm (Sorvall Legend RT #6434).
Images were acquired on an inverted Nikon Ti Eclipse with an
Andor Clara camera using LC-PolScope microscopy.

Computation of the defect core size

We define defect cores as contiguous regions having the value
of scalar order parameter S r 0.5Smax (see Fig. 11). These
regions were extracted from the data using a floodfill algo-
rithm. The scalar order parameter S was obtained from the

Q-tensor: S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tr Q2ð Þ

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qxx

2 þQxy
2

p
. In the simulations,

the Q-tensor was directly available. In experiments, the Q-tensor

was computed by coarse graining the molecular tensor
obtained from the measured orientation field. We define the
defect core size d as the diameter of the defect core area
averaged over the sample A, assuming a circular core:

dh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Ah i=p

p
.

Characteristic time

We define the characteristic time tc as the time it takes for a +12
defect to travel a distance equal to its core size. The defect
velocity is known to be proportional to aR/Z,24 where R is the
core size, and thus tc B Z/a. In both simulations and experi-
ments, we compute the defect core size by finding the average
area of the contiguous regions that have the scalar order
parameter S r 0.5Smax (see Appendix section ‘‘Computation
of the defect core size’’). The defect velocities are computed by
tracking +12 defects over their lifetimes. The average defect

Fig. 11 Illustration of the measurement of defect core size from experi-
mental data. (a) Orientation field (red lines) of a sample frame super-
imposed on a heatmap of the computed scalar order parameter S.
(b) Zoomed-in plot of the dashed region from the left panel. The color
bar is the same for both the panels. Defect cores are defined as contiguous
regions with S r0.5Smax, shown here with the green boundaries. (Inset)
Histogram of the defect core areas. The average defect core size d is
defined as the diameter associated with the mean core area A, assuming a
circular core, dh i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Ah i=p

p
.

Fig. 12 The overall performance of defect forecasting on the simulation
data. Plotted are the number of defects in the viewed region that are
detected in the data and forecasted by the model as a function of time, in
units of the characteristic time, tc. The number of defects in the forecasted
frames only slightly decreases from the ground truth for the simulation
data, as opposed to the larger decay observed in the prediction for the
experimental data (see Fig. 5).
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diameter in the experiments is found to be 12 microns, with
defect speedB4 mm s�1. This gives tc = 3 s. The framerate of the
data is 0.5 frames second�1. This means that one frame E0.7tc
in experiments. A similar calculation for the simulation data
yields that one simulation frame is rougly 1.4 tc. The defects last
for B14 tc in the experiments before annihilating/moving out
of the field of view, and B35 tc in the simulations.

Movie S1 (S1.gif): This movie demonstrates an example of
the forecasted defect nucleation process. Left column: the first
eight frames are the input orientation fields. The forecasting
results start at the 9th frame. Middle column: the ground truth
retardance image sequence. Right column: the ground truth
orientation field sequence. Top row: the whole view of the
model. Bottom row: zoom in to the rectangle area in the top
row to highlight the defect nucleation event. The green tricus-
poids and red arrows indicate the forecasted �1

2 and +12 defects,
respectively. The scale bar is 100 mm.

Movie S2 (S2.gif): This movie demonstates an example of the
forecasted defect anihilation process. Left column: the first
eight frames are the input orientation fields. The forecasting
results start at the 9th frame. Middle column: the ground truth
retardance image sequence. Right column: the ground truth
orientation field sequence. Top row: the whole view of the
model. Bottom row: zoom in to the rectangle area in the top
row to highlight the defect anihilation event. The green tricus-
poids and red arrows indicate the forecasted �1

2 and +12 defects,
respectively. The scale bar is 100 mm.

Movie S3 (S3.gif): This movie shows an example of the defect
splitting process. Left column: the first eight frames are the
input orientation fields. The forecasting results start at the 9th
frame. Middle column: the ground truth retardance image
sequence. Right column: the ground truth orientation field
sequence. Top row: the whole view of the model. Bottom row:
zoom in to the rectangle area in the top row to highlight the
defect splitting event. The red arrows indicate the forecasted +12
defects, respectively. The scale bar is 100 mm.

Movie S4 (S4.gif): This movie shows an example of the
temporal-spatial accumulation and propogation of forecasting
errors. Left column: the ground truth orientation fields. Middle
column: the forecasted orientation fields. Right column: the corres-
ponding temporal-spatial distributions of the forecasting fiedlity,
which is calculated as cos(2g), where g is the absolute angular
difference between the ground truth and the forecasting result in a
location. The green tricuspoids and red arrows indicate the fore-
casted �1

2 and +12 defects, respectively. The scale bar is 100 mm.

Detection of defects in orientation fields

The signed winding number
1

2p

H @y
@x

� dx, where y is the location
orientation, is calculated for every location in an orientation
field using a pre-defined window-size.69 The winding number is
zero everywhere except at singular points.15,17

Hydrodynamic theory of active nematics

We use a simplified form of the Beris–Edwards equations70,71

for nematic hydrodynamics, extended to include active

stresses.1,2,23–26,28,35–37,72–74 The hydrodynamic fields are the
velocity -u and the second rank tensor order parameter Q with
components Qij, with their dynamical equations of motion
being

@tQþ~u � rQ ¼ O �Q�Q � Oð Þ þ lE þDrH

where O ¼ 1

2
ðru� ruð ÞT Þ, E ¼ 1

2
ðruþ ruð ÞT Þ, and l is the

flow alignment parameter. Lastly, H = �dF/dQ, with

F ¼ a2

2
Q2 þ a4

4
Q4 þ K

2
rQð Þ2

being the free energy of a passive nematic under the one-
constant approximation,70 and Dr is the coefficient of rotational
diffusion. a2 = (1 � r) and a4 = (1 + r)/r2 are parameters
responsible for bulk orientational order for densities r 4 1,
and K is the elastic modulus of the nematic.

The dynamics of the fluid are assumed to be incompressible,
and are solved in the Stokes limit, with viscous forces balanced by
substrate friction and active stresses:

Zr2-u � GMx0075-; � r�(aQ) = 0

r�-u = 0

Here, Z is the viscosity, G is the strength of the substrate
friction, and a 4 0 is the strength of the extensile activity.
These equations are solved in a large square domain with
periodic boundary conditions. To ensure numerical stability,
we use a semi-implicit finite-difference time-stepping scheme
based on a convex splitting of the nematic free energy.75

To solve the Stokes equation with incompressibility, we imple-
ment a Vanka-type box-smoothing algorithm on a staggered
grid.76 The solution at each time step is found using
Gauss-Seidel relaxation iterations, and the rate of convergence
to the solution is accelerated by using a multigrid method. The
simulation codes are all in-house and are written in C. In non-
dimensional units, we set K = 1, Z = 1 and Dr = 1. For the
simulations, we use r = 1.3, l = 1, a = 0.2 and G = 0.03.
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