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Abstract

In this article, we report the numerical discovery of multi-mode attractors for reaction-diffusion
systems in which the kinetics feature slow /fast dynamics. Multi-mode attractors (MMASs) are a
class of attractors in which different regions of the spatial domain exhibit different modes of (tem-
poral) oscillation. These modes include spiking modes, bursting modes of many different types
with s small-amplitude oscillations at the end of each burst event, as well as alternating modes
in which various sequences of spiking and bursting are exhibited in alternation. We present the
numerical discovery of MMAs in the context of a spatially-extended pituitary cell model with dif-
fusive coupling and a spatially inhomogeneous applied current. We demonstrate that the MMAs
are robust, occurring on large open parameter sets and for a variety of biophysically-relevant
spatially-inhomogeneous currents, including Gaussian and mollified step profiles. Also, we pro-
vide evidence that the MMAs exhibit new types of maximal spatio-temporal canards. These lie
in the transition intervals between adjacent regions in which the MMA exhibits distinct modes
of oscillation, and they are necessary for the smooth and gradual transitions between bursting
and spiking, as well as between bursting modes with different numbers of small oscillations. Fur-
thermore, we study how the structures of the MMAs change as the amplitude of the diffusivity
decreases and the PDE model limits on a family of uncoupled ODEs, one for each point in the
domain. Also, we show that the MMAs, which are spatially non-uniform, can coexist in the
reaction-diffusion system with other types of attractors which are spatially-uniform. Finally,
we report that the MMAs discovered here are also present in numerical simulations of other
reaction-diffusion systems, especially those that arise in neural and cardiac models.

Keywords multi-mode attractor, spatio-temporal canard, mixed-mode oscillation, reaction-
diffusion, diffusive coupling, bursting, spiking, pituitary lactotroph

Dedication This new class of patterns is presented in honour of Ehud Meron’s 60" birthday.

1 Introduction

We report the numerical discovery of multi-mode attractors (MMAS) of spatially extended systems
in which the kinetics feature a slow/fast structure. The MMAs are a class of attractors of reaction-
diffusion systems in which different parts of the spatial domain exhibit different modes of oscillation,
and they may be periodic or quasi-periodic in time. The spatial transition intervals between the
different modes of activity exhibit spatio-temporal canard dynamics.

A representative MMA, discovered in a spatially extended model for the electrical activity
in pituitary lactotrophs/somatotrophs with spatially inhomogeneous applied current and diffusive



coupling, is shown in Fig.[[] The MMA consists of three modes, each of which occurs in a different
region of the spatial domain: one in which the attractor is in the spiking mode, one in which the
attractor is in a pseudo-plateau bursting mode with one small oscillation per burst event, and a
region in which the attractor is in an alternator mode, alternatively exhibiting spikes and pseudo-
plateau bursts. Since the mode of oscillation in this attractor differs across the three regions, we
refer to this as a 3-mode multi-mode attractor.
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Figure 1: A representative 3-mode MMA, which is period-2 in time, in a spatially extended model for the
electrical activity in pituitary somatotrophs/lactotrophs with spatially heterogeneous applied current and
diffusive coupling. (a) Voltage dynamics of the attractor. In the inner region, the attractor exhibits 1!
pseudo-plateau bursts (olive curve; z = 2). In the outer region, the attractor exhibits 19 spiking (purple
curve; = 40). Between the spiking and bursting regions, there is a region in which the temporal dynamics
alternate between spiking and bursting (black curve; z = 22). The voltage heat map has been projected into
the (z,t) plane; active phases are indicated by the red bands and silent phases by the blue bands. (b) Time
series for representative x values in each of the spiking (top), alternator (middle), and bursting (bottom)
regions.

1.1 Spatially Extended Pituitary Cell Model

In an in vivo setting, somatotrophs and, likely, lactotrophs (which secrete growth hormone and pro-
lactin, respectively) form networks of coupled cells where the coupling is through gap junctions [5].
This provides nearest-neighbor diffusive electrical coupling between the cells that, in the continuum
limit, is described by the diffusion operator. In this limit, and for a linear network of coupled cells,
the partial differential equations (PDEs) have the form

oV o*V
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where V(z,t) is the membrane potential at position = at time ¢, and s(z,t) represents the two
(slow) gating variables for the ionic currents, Iy, intrinsic to the cells (see Appendix [A.1)). The
applied current, I, (), is spatially dependent, reflecting the fact that different cells in the network
are exposed to different levels of neurohormones that serve to activate or inhibit the cells’ electrical
activity. For most of this article (except in Section , we set Lopp(2) to be a Gaussian

2
Iapp(x) = Ibase + (Imax - Ibase) exp <_Zj> ) (12)
where Iy,s is the baseline applied current, I, is the maximal applied current, and o is the
half-width. This is partially motivated by the fact that experiments show portions of the brain
are inhomogeneous media, with localized synaptic currents. For example, auditory cortex EEG
data in certain primates exhibits localized currents (see fig. 2 of [25]). In these experiments, a
multi-electrode array was placed to span -and sample from- all layers of the auditory cortex. It was
reported that the locally generated intracortical synaptic currents exhibited localized maxima at
certain spatial locations, including in the supragranular layers and the granular layer of the cortex.
While the exact functional form of these synaptic currents is unknown, as yet, a Gaussian profile
provides a good first qualitative model for these tapered peaks.
The kinetics of the reaction-diffusion system (|1.1)) are described by the one-parameter family of
x-dependent ordinary differential equations (ODEs),

dv
Cm% = Iapp(x) - IiOIla

ds _ seo(V)—n
dt T ’

(1.3)
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and are based on a minimal model for the electrical activity in pituitary cells [39]. The family of
z-dependent ODEs is obtained from by setting D = 0 (so that all cells are decoupled), and is
a useful auxiliary system for studying the dynamics of the PDE . A key feature of the kinetics
is that it evolves over multiple timescales, with fast voltage dynamics and slow gating dynamics.
Geometric singular perturbation techniques [14], 20} 30] have been used to leverage the slow/fast
structure of such systems and hence uncover the origins and properties of the pseudo-plateau
bursting that evokes hormone release. In the setting of pituitary lactotrophs, the pseudo-plateau
bursting is a canard-induced mixed-mode oscillation [37, 41]. The small-amplitude oscillations
(SAOs) of a 1° attractor arise from local canard dynamics around a folded node singularity [1T], 36,
43], and the large-amplitude oscillations are of relaxation type. There is a rich and robust family
of (15)k(15T1)¢ alternator states between the 1° and 1°*! states, and these are shown over a wide
range of (gx,ga) parameter space in Figures 2, 3, and 5 of [42]. More specifically, the folded node
gives rise to a family of maximal canards, v, for £ = 0,1,..., Smax, €ach pair of which delimits
subsets of the phase space with different numbers of SAOs. The s SAOs of the 1% attractor occur
because the orbit is periodically re-injected into the sector of phase space enclosed by the (s —1)th
and s maximal canards. Consequently, bifurcations of the pseudo-plateau bursts are often related
to bifurcations of the maximal canards (see Appendix .

1.2 Main Contributions

In reporting on the discovery of the MMAs in the context of the continuum pituitary somatat-
roph/lactotroph model (1.1]) with spatially inhomogeneous applied current and diffusive coupling,
we present the following main contributions. First, we establish the existence of a base case 3-mode



MMA which exhibits three regions, each with its own distinct mode of oscillation, including a cen-
tral region in which the cells oscillate in a 1' bursting mode, a middle region in which the cells
exhibit a 1119 alternator mode, and an outer region in which the cells are in the 1° spiking mode.
This base case 3-mode MMA is created by a Gaussian applied current in (1.1), which models a
spatially-localized current. Cells in the center of the line receive a larger applied current than cells
toward the end of the line, and as a result cells in the central region exhibit bursting, whereas cells
toward the outer end of the line are in the spiking mode. We show that the key properties of the
Gaussian applied current, including the base current level, the maximum current amplitude, and
the half-width, determine which cells exhibit which mode. We also use various diagnostics, includ-
ing the action potential duration, to study the dynamics and geometry of this base case 3-mode
MMA.

Next, in the context of this base case 3-mode MMA, we identify the new maximal spatio-
temporal canards that exist within MMAs in the transition intervals between regions of distinct
modes. In particular, we show that the time traces at key spatial locations in the transition
intervals between adjacent modes of the MMAs exhibit features that are highly similar to the
maximal canards known to exist in the single-cell ODE model [42]. These spatio-temporal canards
must exist in the transition intervals between adjacent regions with distinct modes in order for
the number of SAOs to transition continuously in space along the cell line. In particular, we find
that maximal spatio-temporal canards exist in time traces taken at key locations in the transition
intervals between adjacent regions with a 1! bursting mode and a 1'1° alternator mode, as well
as in the intervals between adjacent alternator modes and the 1° spiking mode. For all of these
different types of MMAs, we find that the maximal spatio-temporal canards mediate the loss (or
gain) of SAOs in the active phase.

Then, we illustrate the richness of the n-mode MMAs of by providing examples with n = 4
and 5, as well as by describing a general method for generating n-mode MMAs of different types.
We show that there are n-mode MMAs which exhibit several different types of (1!)*(1°) alternator
modes for positive integers k and ¢, in addition to the basic 1! bursting and 1° spiking modes. Also,
we show that there are n-mode MMAs in which the modes consist of 1° bursting, with s SAOs at
the end of each burst, for various positive integers s, providing a rich tapestry of patterns. For
these MMAs in which adjacent regions have 1571 and 1° bursting modes, maximal spatio-temporal
canards also exist in the time traces at key locations x in the transition intervals, and also here they
mediate the loss (or gain) of SAOs. Throughout this study of general n-mode MMAs, we show that
for understanding how the distinct modes of oscillation are created in different regions along the
line of cells, it is exceptionally useful to have the detailed available knowledge from the single-cell
models [41, 2] about the distinct 1° spiking attractors, 1° bursting attractors and (1°71)%(1%)¢
alternating attractors, as well as about the large regimes in parameter space for which they exist,
and their bifurcations.

Having established the existence and fundamental properties of these different types of general n-
mode MMAs, we turn to a study of their robustness in parameter space, establishing their ubiquity
as attractors of the PDE ([1.1). This is done primarily in the context of the base case 3-mode MMA.
We show that this MMA (and other MMAs) exist in large open sets of parameter space and that they
are robust with respect to the main control parameters of the spatially-localized Gaussian currents.
Moreover, we demonstrate that MMAs can be generated by other types of spatially-dependent
applied currents, not just the spatially-localized Gaussian currents used throughout most of this
study. Specifically, MMAs are also generated by biophysically-relevant step function type currents
in which half the cell line receives one level of applied current and the other half receives a different
level of applied current, mollified bump function currents, and inverse bump function currents,
as well as by spatially-dependent maximal conductivities. For each of these, detailed knowledge



available about parameter dependence in the single-cell model is useful for understanding how the
various MMAs are generated by these different types of spatially-dependent currents.

Furthermore, for the PDE , we carry out a study of the effect of the magnitude of the
spatial coupling. This includes a comparison, over a range of D values, between the geometry
and dynamical structures of the n-mode MMAs of the PDE and the structures and invariant
manifolds of the family of z-dependent ODEs . Also, it includes some analysis of how the
dynamics of the MMAs change in the limit in which D — 0, in which the PDE limits on the
family of z-dependent ODEs .

Finally, we demonstrate that is bistable, showing that there is also a single-mode 1!
bursting attractor of the PDE that coexists with the various n-mode MMAs of reported on
here in each of the respective regimes of parameter space over which these n-mode MMAs are
found. Moreover, we briefly show that MMAs also exist in three other reaction-diffusion models,
including in a diffusive forced van der Pol PDE, in a biophysically detailed rabbit heart tissue
model that generates early afterdepolarizations, and in a simplified model for the electrical activity
in cardiomyocytes.

1.3 The new MMASs and larger context of spatio-temporal canards

In this section, we describe how the new phenomenon of MMAs for reaction-diffusion PDEs fits
into the larger context of the nascent literature on spatio-temporal canards.

Some of the earliest instances of canards in PDEs were identified as traveling wave solutions
of the PDE, and they were constructed as homoclinic and heteroclinic connections with canard
segments in the traveling wave ODE. Hence, these first occurrences follow directly from classical
theory of canards for ODEs. Such constructions can be found, for instance, in a spruce budworm
reaction-diffusion population model [§]; in a scalar viscous conservation law with nonlinear source
(i.e., advection-reaction-diffusion equation) as often occurs in nozzle flow problems [19]; and in
combustion waves for an autocatalytic reaction where canard solutions of the underlying ODE
separate the slow combustion regime from the explosive one [33]. Jump and entropy conditions
for shocks in coupled advection-reaction-diffusion equations were formulated in terms of canards
[45] in the corresponding traveling wave ODE. These results were applied to shock-fronted traveling
waves in models of wound healing angiogenesis [I18] and (melanoma) tumor invasion [I7]. Moreover,
shock solutions that arise in the steady spherically symmetric outflow from the surface of a star
were identified as canard trajectories in the ODE for the density as a function of the radial variable,
allowing for an explanation of the location of the shock and its sensitivity to parameters [9].

More recently, non-traveling wave canard-type phenomena have been investigated in reaction-
diffusion systems. For instance, diffusion-induced instabilities of small-amplitude phase waves lead-
ing to the initiation of large-amplitude trigger waves were studied in a one-dimensional (1D), two-
component model of the Belousov-Zhabotinsky reaction [6]. There, it was demonstrated that the
trigger waves could be initiated at any point in the excitable medium provided the kinetics were
sufficiently close to a canard point. Rigorous studies of spatio-temporal bifurcation delays associ-
ated with canard solutions in singularly perturbed parabolic PDEs have also been carried out for
several configurations. For example, the subcases of transcritical and pitchfork bifurcations of the
fast subsystem kinetics were treated in [27], and the case of turning points in the linear part of
the kinetics was studied in [I0]. For the reaction-diffusion equations with turning points, sub- and
super-solutions were constructed analytically to prove that there are canard solutions of the PDE
which stay near repelling states for long times. Moreover, it was established that for sufficiently
small diffusivities, the duration of the canard segments can be spatially inhomogeneous.

The next major breakthrough in the spatio-temporal canard phenomenon occurred in a deter-



ministic Amari-type neural field model [3 [I5]. In this system, coherent structures in which the
spatial patterns, in their entireties, display temporal canard behaviour were identified and de-
scribed for generic choices of firing rates and synaptic kernels. Moreover, the existence of complex
spatiotemporal patterns containing canard segments was reported, and a theory for the classifi-
cation of such spatio-temporal canards was derived from interfacial dynamics. Both canards of
folded node and folded saddle types were demonstrated, paving the way for a systematic study of
spatio-temporal MMOs.

Further progress in spatio-temporal canards came in the context of transitions from convective
to absolute instabilities in advection-reaction-diffusion systems of the type encountered in shear
flow problems [4]. It was demonstrated that for Dirichlet boundary conditions, the system evolves
to a trivial steady state. However, when the inlet boundary condition is taken to be a non-zero
constant, 7, the steady state to which the system evolves exhibits extremely sensitive dependence
on 7. This parameter sensitivity was explained by canard segments of the spatial boundary value
problem for the steady states of the PDE.

The MMASs presented in this article contain completely new types of spatio-temporal canards.
In particular, we show that the time traces at certain values of x, located in the transition intervals
between regions of distinct and adjacent modes of the MMA, are maximal spatio-temporal canards.
They mediate the transitions between adjacent 1° and 15%! regions in the MMAs. Indeed, for the
time courses to vary continuously from a 1° mode to a 157! mode as one steps through the cell
locations z in the transition intervals, there must be (at least) one cell location at which the new
small-amplitude oscillation is first created. In this manner, certain fundamental maximal canards
from the family of z-dependent ODEs persist in the PDE with diffusive coupling.

1.4 Relation to Chimera States for Coupled Oscillators

Chimera states were discovered in two models of densely and uniformly distributed identical oscil-
lators subject to finite-range nonlocal coupling, including a non-locally coupled complex Ginzburg-
Landau equation, by Kuramoto and Battogtokh [24] 23]. In chimera states, there are coexisting
domains of mutually synchronized oscillators and domains of desynchronized oscillators with dis-
tributed frequencies. In the former, the oscillators are coherent and phase-locked, and the states
may be either stationary or propagate. In contrast, in the latter, the oscillators are decoherent,
and their phases drift relative to each other and to the phase-locked oscillators [24] 23| 34 2] 1], 28§].

Chimera states have been discovered experimentally, [16l, B8], and are the subject of intensive
further study both theoretically and experimentally, see for example [29] for a recent review and
[46]. Moreover, chimera states have also been found to occur due solely to global coupling (i.e.,
without the non-local coupling originally thought necessary) in an array of coupled Stuart-Landau
oscillators and in a modified complex Ginzburg-Landau equation [32].

In a generalized sense, MMAs have some qualitative features in common with chimera states in
coupled oscillators and in nonlinear reaction-diffusion equations. In the MMAs, as we show here,
there are distinct modes of coherent, phase-locked oscillation coexisting on different regions; there
are parameter regimes in which the coherent states are stationary (as studied here) and regimes
in which they propagate into other coherent states; and, there is bistability with a homogeneous
bursting attractor, just as there is often bistability of an asynchronous chimera state with a spatially-
symmetric synchronous state.

However, in the MMASs studied here, each of the regions contain distinct modes of synchronous
oscillation, and the oscillations are all of the types generated by folded singularities, unlike the types
of coherent states studied to date in chimera states. Of equal import, in MMAs, the transition
intervals between different modes in adjacent regions exhibit maximal spatio-temporal canards, a



feature which does not appear to have been observed yet along the boundaries of different domains
in chimera states. Furthermore, the PDE (1.1) and the PDEs in Section 9.3 have purely local
coupling, so that there is no need to have non-local or global coupling for the MMAs. Finally, for
small D, close to the limit in which the PDE (1.1)) approaches the family of z-dependent ODEs,
the alternator regions exhibit propagating fronts, hence also these are coherent, in contrast with
the incoherence observed in certain domains of chimera states.

1.5 Outline of the Article

This article is organized as follows. In Section [2] the geometric structures and dynamics of the
three modes in the base case 3-mode MMA are presented in detail, along with the maximal spatial
temporal canards in the transition intervals. Section [3| contains the presentation and analysis of
the general n-mode MMAs. In Section [4] the robustness of n-mode MMAs is illustrated.

Next, in Section we present the comparison of the geometric structures of the PDE (1.1)) and
the family of z-dependent ODEs , illustrating this in detail for the base case 3-mode MMA.
Then, in Section [0} there is an examination of how the magnitude of the spatial coupling affects the
geometric structure and dynamics of the MMAs, again focusing on the base case 3-mode MMA.

We follow in Section |7| by presenting the bistability results for the PDE . In Section
the different forms of applied currents are examined, to provide further evidence of how spatial
inhomogeneity induces the attractors of to be of multi-mode type. Finally, in Section EL we
summarize our main results, provide a (partial) list of the many open questions raised by this
discovery of MMAs, and briefly report on the existence of MMASs in three other models.

2 A base case 3-mode MMA with spiking, bursting, and alterna-
tor regions

In this section, we introduce a base case 3-mode MMA of system with D = 1, which consists
of three regions, each with its own distinct mode of behaviour (Fig. [2(a)). In the bursting region
(0 <z £9), the attractor is in a 1! bursting mode (where the bursts have one SAO at the end of
each event and are known as pseudo-plateau bursts). A representative time series of the voltage,
V(x,t), in the bursting region is shown in the top panel of Fig. b). Next, in the alternator
region (16 < = < 22), the attractor is in the alternator mode with the voltage time series switching
between 1! bursts and 1° spikes (Fig. (b), middle). In the spiking region (27 < x < 50), the
attractor is in the spiking mode where it exhibits 1° spikes (Fig. (b), bottom).

In each of these regions, the solution is time-periodic. In the alternator region, the period
is approximately 336 ms and corresponds to the duration of a pair of spike and burst events,
whereas in the spiking and bursting regions, the period is approximately half that. Therefore, in
this base case, the entire 3-mode MMA is period-2, with a total period of approximately 336 ms
corresponding to two successive events.

For a cell at a fixed location z, the action potential duration (APD) is defined to be the amount
of time the cell spends in the active phase (i.e., with V(x,t) > —45 mV). More precisely, for each
x we consider the sets

S5 ={(t,Vin,e): V=45 mV and & > 0},
S, ={(tV,ne): V =-45mV and %—‘t/ <0},

of points at which the voltage is at the threshold (set here at —45 mV) and the solutions pass
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Figure 2: Steady state dynamics of the voltage, V(x,t), of the MMA of with D =1, o = 10,8 = 90
and p = 0.4, corresponding to Iyase &~ —0.0058 mA, Ihax ~ 0.9033 mA and ¢ =~ 97.296. (See Section {4 for
interpretation of the control parameters «, 8 and p in terms of Tpage, Imax and ¢.) The initial conditions were
normalized as described below. (a) Contour plot of the voltage with blue corresponding to hyperpolarization
and red corresponding to depolarization. The dark wine red ledges in the bands of depolarization correspond
to SAOs. (b) Time series of V(x,t) at representative values of x in the 1! bursting region (z = 8; top), 1°11
alternator region (z = 20; middle), and 1° spiking region (x = 35; bottom). (The results are only shown on
the spatial domain [0,50], due to the symmetry.)

through the threshold with increasing and decreasing voltage, respectively, and construct the map
mi: s - %,

to measure the duration of the active phase (Fig. [3[(a) and (b)). Thus, the APD is the first return
time to the voltage threshold, as measured by Hf. These APD measurements vary as functions of
x, due to the nonlinearities in the system and the spatial dependences of the attractors.

The APD profile for the base case 3-mode MMA shown in Fig. [2]is presented in Fig. [3[c) (blue
diamonds and blue circles). In the bursting region (0 < z < 9), the APD profile (blue diamonds) of
the MMA has two branches, which are close to each other (Fig. [3|c), near z = 0). In the alternator
region (16 < 2 < 22), the upper branch (blue diamonds) has longer APD corresponding to the 1!
bursting, which reflects the longer return time (on account of the small oscillation) of the map H?
between the sections 37 and ¥ (recall Fig. [3[a) and (b)). The lower branch (blue circles) has
shorter APD corresponding to the 1° spiking, which reflects the shorter return time of the solution
(as measured by I14) from ¥} to X7 . The third region is the spiking region (27 < z < 50).

In between adjacent regions of the base case 3-mode MMA, there are transition intervals over
which the structure of the MMA transitions from one mode to another. The first transition interval
is 9 <« < 16. Here, there is a transition in space from the bursting mode to the alternator mode.
We examine the time series of the attractor sampled at different values of = (Fig. [4]). There is
a location = (x ~ 9) at which the amplitudes of the SAOs in the odd bursts reach a maximum
(Fig.[4[(b)). This marks the right edge of the bursting region and the left edge of this first transition
interval. It corresponds to the time series of a maximal canard in the z-dependent ODE . Then,
as one examines the voltage time traces of the MMA for x 2 9, the amplitudes of the SAOs in the
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Figure 3: Illustration of some useful diagnostics of the base case 3-mode MMA, with the same parameters
as in Fig.[2| (a) For each x € [0, L], the time course of the attractor at that location « is shown as the black
curve T, in the (V, n, e) space (here x = 5 for illustration). For each x, the map I1Z is the map from the point
(red chicken) at which T, crosses the section ¥} (red surface) to the point (blue turtle) at which ', crosses
the section ¥ (blue surface). (b) For each x, the APD is the length of time between the red chicken and the
blue turtle. (c) The APD profiles as functions of = for the 3-mode MMA (blue) of the PDE (L.1)), and for
the limit cycle attractors (red) of the family of z-dependent ODEs . In the blue APD profiles, a burst
or spike event is indicated by an open diamond or circle, respectively. The spike/burst boundaries occur at
the inflection points. (d) First full return time (blue curves) measured by the composite map I15 o I1Z (see

text), and second full return times (red curve) measured by the map (Hf o Hf)Q, which indicates that the
3-mode MMA is a time-periodic solution of (L.1)) with period of approximately 336 ms. Here, and in Figs. @
[7} [13} and [16} the symbols are chosen arbitrarily; there is no significance attached to the particular animals.

odd bursts of the attractor decrease and go below those of the single-mode 1! burster (Figs. c)—
(e), x & 13,14 and x =~ 15). Finally, once one reaches z ~ 16, the odd burst events no longer have
SAOQOs. This value of x marks the right endpoint of this first transition interval, and for z 2 16 the
attractor is in the alternator mode (Fig. Ekf)) In this manner, over the span of this first transition
interval, the odd bursts have become the 1° spiking events, and the even bursts have remained as
1! events. Moreover, the APD provides a clear diagnostic about this loss of the SAO in the odd
burst events, because there is an inflection point at  ~ 16 on the lower branch, exactly where the
SAO disappears.

The spatial derivative of the APD profile provides further insight; Fig. (g) shows the spatial
derivative of the lower (blue) branch of the APD profile from Fig. [3|(c), corresponding to the odd
burst events. There is a minimum at x = 16 with relatively sharp slope. This corresponds to
the inflection point of the APD profile where the diamonds transition to circles, see Fig. (C), and
marks the boundary between the first transition interval and the alternator mode.

Next, we describe the transition from the alternator region to the spiking region (22 < z < 27).
There is a value of z (z ~ 22) for which the SAOs of the even bursts have maximal amplitude.
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Figure 4: Maximal spatio-temporal canards mediate the transition from the bursting mode to the alternator
mode for the base case 3-mode MMA. Time series are shown for (a) x =3, (b) z =9, (¢) z =13, (d) v = 14,
(e) z = 15 and (f) 2 = 16. These illustrate the loss of the SAO in the odd burst events due to the transition
through a maximal spatio-temporal canard. (g) Spatial derivative of the lower APD profile from Fig. c)7
corresponding to the odd burst events in the time series. There is a local minimum at x ~ 16 with relatively
sharp spatial slope, corresponding to the inflection point in the APD profile.

This corresponds to a maximal spatio-temporal canard and is also where the upper APD branch
in Fig. (c) attains its maximum. This marks the right boundary of the alternator region and the
left edge of this second transition interval. As one examines time traces of the MMA for z 2 22,
the even burst SAOs decrease in amplitude (Figs. [f[(a)—(c)) and eventually disappear at z ~ 27
(Fig. (d))7 corresponding to the right boundary of this second transition interval and the left edge
of the spiking region. The spatial derivative of the APD profile for the even burst events (Fig. (e))
reveals that the inflection point is the boundary between this second transition interval and the
spiking modes.

Having discussed the features of the APD profiles for the PDE in each of the three primary
regions as well as in the transition intervals, we discuss how they compare to the APD measurements
for the z-dependent ODEs (Fig. [3|c), red curves). First, the (red) APD profile for the attractors
of consists of a 19 spiking branch (30 < z < 50), a 1! bursting branch (0 < z < 29.4), and
a region of (11)¥(1°)¢ alternator branches (29.4 < x < 30). The transitions between the branches
are mediated by maximal canards of (L.3), see Appendix or [42]. As shown in Fig. [3c), for
large segments of each of the three regions, the (blue) APD curves of the MMA are close to the
(red) APD curves of the spiking attractors of (1.3)). In particular, for most (0 < z < 8) in the
bursting region and for most x (32 < x < 50) in the spiking region, the difference in the APD
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Figure 5: Maximal spatio-temporal canards mediate the transition from the alternator mode to the spiking
mode for the base case 3-mode MMA. Time series for (a) x = 24, (b) x = 25, (¢) z = 26, and (d) = = 27.
Insets: zoom on the active phases of the last two events. These illustrate the loss of the SAO due to the
transition through a maximal spatio-temporal canard. (e) Spatial derivative of the upper APD profile from
Fig. c), corresponding to the even events. The local minimum at x ~ 27 with relatively sharp spatial
slope corresponds to the inflection point in the APD profile, and is the boundary between the alternator and
spiking modes.

measurements between the MMA (blue) and the 1° and 1! attractors of the family of z-dependent
ODEs (red) is less than 0.8 ms. Similarly, for most x (17 < « < 22) in the alternator region, the
APD measurements for the burst events in the alternator mode of the PDE (upper, blue diamonds)
are also within 0.8 ms of the APD measurements for the 1! bursting attractors of . The PDE
and ODE measurements deviate from each other near where there is a loss or gain of a small
oscillation in the active phase, corresponding either to a transition through a maximal canard
of the family of z-dependent ODEs or through a spatio-temporal canard of the PDE. Thus, for
D =1, the MMA of the PDE preserves the spiking and bursting behaviour of the ODE, however,
it stretches the alternator interval of and only preserves the 1'1° rhythms.

Finally, we observe for this base case 3-mode MMA that the APD profile shows that the entire
attractor is a 2-periodic solution of . For each fixed z, we calculate the n'® return times, T}, (z).
More precisely, the first full return time, 77 (x), measured from the composite map Hg o Hf, is the
time taken for an orbit to complete one active phase and one silent phase, where Hf is the map
defined by

., -t

Similarly, the second full return time, T5(x), measured from the composite map (H;j o H?)Q, is the
time taken for an orbit to complete two active phases and two silent phases, and so on. In terms
of the contour plot in Fig. |2, T),(z) is the total horizontal width of n (active) red bands and n
(silent) blue bands. The first and second full return times are shown in Fig. [3(d). The first full
return profile (blue curves) shows the same qualitative information as the APD profile in Fig. (c)
The second full return profile (red curve) is uniform in z. Thus, the base case 3-mode MMA is a
2-periodic solution in time of .
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3 General n-mode MMASs

In this section, we present a series of n-mode MMAs with different types of alternators and with
different types of 1° burst events. First, in Section we present 4-mode MMAs of , which
have spiking and bursting modes, as well as distinct types of (1')*(1°)¢ alternator modes. Then, in
Section we generalize to n-mode MMAs in , including examples with n = 5 and 1° bursts
with different numbers, s, of SAOs. Further, in Section we describe how the minimal periods
of the MMAs which are time-periodic may be determined.

To construct the general n-mode MMAs, we take advantage of the rich structure of the bursting
oscillations of the x-dependent family of ODEs. For the standard parameter set (see Table (1 in
Appendix, the family of z-dependent ODEs contains spiking cells, bursting cells, and cells
that alternate between 1° spikes and 1! bursts. Moreover, within the window of alternator modes,
there are sub-intervals on which the cells exhibit (11)¥1° MMO attractors, k = 1,2,3,.... There are
also sub-intervals on which the cells exhibit 1*(1°)* MMO attractors, £ = 1,2, 3, .... The single-cell
ODE model also possesses parameter regions in which the attractors of the z-dependent family of
ODEs exhibit 1° bursts with various s, which we use in Section

3.1 Four-mode MMAs with different types of alternator modes

The first example of a 4-mode MMA is obtained with a Gaussian applied current for o = 4, 8 = 90
and p = 0.4 (see Appendix , and these correspond to I,se ~ 0.0482 mA, I ~ 0.9033 mA,
and o ~ 71.03 in . All other parameters fixed at their usual values as in the base case studied
in Section [2, The MMA exhibits four different modes of activity, and is period-3 (Fig. @ In the
bursting region (0 < x < 10), the MMA is in the 1! bursting mode. Here, the three branches of the
(blue) APD consist of diamonds and essentially lie on top of each other, since each has one SAO
and they are close to being identical. In the interval 15 < o < 24, the MMA exhibits a (11)219
alternator mode (k = 2) in which one period consists of two 1! bursts followed by a 1° spike. In
this first alternator region, there are three distinct branches of the APD, with the top two branches
(blue diamonds) denoting the bursting oscillations and the bottom branch (blue circles) being the
spiking oscillation. This pattern repeats, so that this mode of the attractor has period 3. In the
interval 24 <z < 27, the MMA exhibits a 11(1%)? alternator mode also of period 3. In this second
alternator region, the APD has one branch of burst events (blue diamonds) and two lower branches
of spiking events (blue circles). Finally, in the spiking region (27 < z < 50), the MMA is in the
19 spiking mode, and the APD consists exclusively of three branches of blue circles in this spiking
region. Overall, this four-mode MMA has 3 events per period, which is the least common multiple
of the periods of the component rhythms.

Each of the blue APD branches contains an inflection point along the segment on which it
is monotonically decreasing, indicating the presence of maximal spatio-temporal canards in the
transition intervals between modes with different numbers of small oscillations. Specifically, in the
transition interval (10 < o < 15) between bursting and (11)21° alternation, there is an inflection
point (at & ~ 15) in the lowermost APD profile corresponding to the loss of a small oscillation in
every third event. There are inflection points at x =~ 25 and = ~ 27. These correspond, in order of
increasing x, to the loss of a small oscillation in the transition from the (1!)21° alternator mode to
the 11(19)2 alternator mode, and to the loss of a small oscillation in the transition from the 11(1°)?
mode to the spiking mode.

The n'® full return maps, (Hf o Hf)n, were also calculated for the MMA for n = 1,2,3. The
3 full return time (not shown) is the first of these which is constant in x, which confirms that the
MMA is period-3.
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Figure 6: Dynamics of a 4-mode MMA (of period 3) of (1.1)) with a =4, 8 = 90, and p = 0.4, corresponding
t0 Tpase = 0.0482 mA, [1.x ~ 0.9033 mA, and o =~ 71.03 , and all other parameters set at the standard
values. (See Section [4] for the relation between the control parameters a, 8,p and Ihase, Imax, 0.) (a) Voltage
dynamics of the MMA. (b) The APD profiles of the MMA (blue curves) show that it has 4 distinct modes of
activity; burst/spike events are indicated by open diamonds/circles. For 0 < z < 15, the attractor is in the
1! bursting mode. A representative time series (for # = 6; rabbit marker) is shown in (c). For 15 < x < 25,
the attractor is in the (1!)?1° alternator mode. A representative time series (for z = 20; owl marker) is
shown in (d). For 25 < x < 27, the attractor is in the 1*(1°)? alternator mode. A representative time
series (for x = 26; star marker) is shown in (e). For 27 < 2 < 50, the MMA is in the 1° spiking mode. A
representative time series (for = 40; kangaroo marker) is shown in (f). The APD profiles of the family of
z-dependent ODEs (red curves) are also shown for comparison.

Another example of a 4-mode MMA is shown in Fig. [7] for @« = 10,8 = 4, and p = 0.4,
corresponding to Ipase &~ —0.0058 mA, I ~ 0.1292 mA, and o ~ 554.92 in . This second
4-mode MMA consists of a bursting region (0 < x < 17.5) in which the attractor is also in the
1! bursting mode, just as in the above example. However, for this 4-mode MMA, the cells in the
bursting region oscillate with minimal period four (not period one), since the APD has four distinct
branches (blue diamonds) and the SAOs have different heights and durations in each of the four
events per period (see Fig. (b) and (c)). Next, there is a (11)31° region (17.5 < = < 29) in which
the attractor is in this k = 3 alternator mode. The APD has three branches of bursting oscillations
(blue diamonds), each with SAOs of distinct heights and durations, and one branch of spiking (blue
circles). This is followed by a second alternator region (29 < = < 32.5) in which the attractor is in
the (11)2(1°)2 mode (k = 2,/ = 2), and the APD has two (upper) branches of burst events and two
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(lower) branches of spike events per period. Finally, there is a region of 11(1°) alternator modes
(32.5 < 2 < 50) in this 4-mode MMA, and the APD has three branches of spiking events and only

one branch of burst events per period.
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Figure 7: Dynamics of a 4-mode MMA (of period 4) of with & = 10, 8 = 4 and p = 0.4, corresponding
t0 Ipase & —0.0058 mA, Iyax ~ 0.1292 mA, and o ~ 554.92 in (L.2)), with all other parameters fixed at their
standard values. (See Section [4| for the relation between «a, 8,p and Ihase, Imax,0.) (a) Voltage dynamics
of the MMA. (b) APD profiles (blue curves) with burst/spike events indicated by diamonds/circles. The
all-diamond branch corresponds to the 274, 6** and 10" active bursting red bands in (a). The other three
branches possess inflection points where the SAO of the burst disappears. Representative time series from
each of the four regions are shown. Starfish: 1! bursting. Elephant: (1!)31°. Frog: (1!)2(1%)2. Ostrich:
11(10)3.

We conclude this subsection with three observations. First, the 4-mode MMA in Fig. [7] has
period 4, in contrast to the 4-mode MMA of period-3 shown in Fig. [6] This is because each of the
four distinct modes is of period 4. Second, along the monotonicaly decreasing segments of the APD
branches of the 4-mode MMA shown in Fig. [7| there are inflection points (marked by the switches
from diamonds to circles) that correspond to the transition points in space where small oscillations
are lost. Third, the fact that this 4-mode MMA is more complex is expected, based on the known
dynamics of the family of z-dependent ODEs (Fig. [[b), red).
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3.2 n-mode MMAs with different types of 1° bursts

So far, we have studied MMAs of with 3 and 4 modes, which possess 1° spiking, 1 bursting,
and (1°)¥(11)* alternator regions. We now consider n-mode MMAs that emerge in (1.1) when the
applied current is such that the set of attractors of the z-dependent ODEs consists of 1
pseudo-plateau bursts for s =1 up to s = N, for general V.

A representative example of a 5-mode time periodic MMA of is shown in Fig. |8| For each
fixed z, the temporal profile of the solution is a 1° pseudo-plateau burst, where s € {2,3,4,5,6}.
Cells near the left edge of the domain (i.e., near x = 0) exhibit bursts with 6 SAOs. As x is
increased towards the right edge (i.e., towards x = L), the number and amplitudes of the SAOs
continuously change so that s = 2 for the cells near the right edge. Thus, the MMA has a region
of 16 bursts, a region of 1° bursts, and so on down to 12 bursts.
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Figure 8: A 5-mode MMA of which is time-periodic (with a period of approximately 272 ms). Here,
gk = 4.4 nS, and Ipase = —1.5 mA, [hax = 5.5 mA and o = 150 in . (a) The voltage dynamics
show that the cells in the region where the applied current has greatest magnitude (near = 0) have the
greatest number of small oscillations and hence the longest durations. (b) The APD profile of the 5-mode
MMA (blue) compared to the APD measurements of the z-dependent ODEs (red). The number, s, of small
oscillations is indicated by the marker type: pentagram for s = 6, square for s = 5, cross for s = 4, triangle
for s = 3, and asterisk for s = 2. Representative time series for the (c) 1* bursting mode (z = 27) and (d)
13 bursting mode (x = 35). Insets: zoom on the SAOs.

For this 5-mode MMA, the system parameters are such that the attractors of the family of z-
dependent ODEs are 1° pseudo-plateau bursts, where s = 2,3,...,13 (Fig. (b)7 red curves).
Between each pair of 157! and 1° intervals, there exist (extremely thin) alternator regions in which
the attractor of has Farey sequence (1571)%(1%)¢ where k,¢ = 2,3,...,13 (Fig. (b), nearly
vertical red segments). Despite the fact the x-dependent ODEs span all of the modes from the
12 state up to the 1'3 state, this 5-mode MMA of the PDE only exhibits the 12 to 1° bursting
modes and there are no alternator intervals. This is due to choice of the Gaussian applied current.
(With other choices of, for instance, the half-width one can see more distinct modes.) Moreover, in
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the transition intervals between the different bursting regions the dynamics of the maximal spatio-
temporal canards are slightly different from those observed in the 3-mode and 4-mode MMAs. In
particular, some of the SAOs disappear in the merger of two interior SAOs (data not shown). Also,
the APD profile of the 5-mode MMA (Fig. [§(b), blue curve) does not show the inflection points
that were characteristic of the loss/gain of a small oscillation associated with the transition from a
1571 region to a 1° region (cf. blue APD profiles in Figs. @, and . This appears to be due to
the fact that, as the amplitude of the last SAO in each event decreases, the amplitude of the SAO
immediately preceding it is already increasing.

More generally, an n-mode MMA of can easily be constructed. A necessary condition is
that the parameter gx and the control parameters for the Gaussian applied current must be such
that the z-dependent ODEs span the 1° up to 157" modes, where s > 0 and N > 1. Under these
conditions, an n-mode MMA (with n < N) will generically emerge as an attractor of the PDE
. We have found in our simulations that for IV sufficiently large, the inequality n < N is strict
and only the 1° rhythms with smaller s actually manifest in the attractor. The reason why these
particular bursting modes (and how many of them) are present in the n-mode MMA is currently
unknown and the subject of future work.

3.3 A note about the periods of time-periodic n-mode MMASs

In this brief subsection, we emphasize that —for n-mode MMAs which are periodic in time— the
period is determined by the least common multiple of the periods of the modes in the MMA. This
was already observed for 4-mode MMAs in Section where we presented one with period 3 (recall
Fig. |§[) and one with period 4 (recall Fig. . For the former, each of the spiking, bursting, and two
different alternator modes are of period 3. For the latter, each mode is period 4.

In order to show more generally that this is how the periods of n-mode MMAs are determined,
we return to 3-mode MMAs. The base case 3-mode MMA studied in Section [2] is of period 2,
since that is the least common multiple of the periods of the bursting, single alternator, and
spiking modes. Here, we present a 3-mode MMA of period 4. For o = 10,5 = 6, and p = 0.4,
corresponding to Ihage & —0.0058 mA, I = 0.1472 mA, and o = 424.03 in , and all other
parameters fixed at the base case values, this MMA exhibits three regions of activity and the APD
consists of four branches (Fig. [0). For 0 < 2 < 16, the attractor exhibits (1')2(1°)? alternations
with two burst events followed by two spike events in each period. This transitions into a region
of 11(19)3 rhythms (for 16 < 2 < 24) in which each burst is followed by three spikes per period.
The cells on 24 < x < 50 are in the spiking mode. Overall, this 3-mode MMA is period-4, because
that is the least common multiple of the individual modes. For confirmation, we also plotted the
4% fyll return time, Ty(x), and observed it to be constant in = (data not shown). Finally, we note
that spatio-temporal canards mediate the loss/gain of SAOs in the transition intervals, as reflected
by the inflection points on the two upper APD branches.

4 Robustness of the MMASs

In this section, we analyze the robustness of MMAs under variations in the fundamental parameters
of the Gaussian applied current. We focus on the robustness of the base case 3-mode MMA studied
in Section 2 Similar observations can be made about the robustness of the 4-mode and n-mode
MMAs presented in Sections [3.1] and

Recall from that a standard representation for Gaussians, centered at the origin, has the
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Figure 9: A 3-mode MMA (of period 4) of with @ = 10,8 = 6 and p = 0.4, corresponding to
Thase & —0.0058 mA, I =~ 0.1472 mA, and o =~ 424.03. (We again refer to Section [4] for the relation
between «, 8,p and Ipase, Imax,0.) (a) Voltage dynamics over approximately 3 periods. On the interval
0 < z < 16, the attractor is in the (1!)2(1°)2 alternator mode. On the interval 16 < x < 24, the attractor
is in the 11(1%)3 alternator mode. For 24 < x < 50, the MMA is in the spiking mode. (b) The APD profile
of the MMA (blue curves) has four branches; open diamonds and circles indicate burst and spike events,
respectively. The two uppermost APD branches possess inflection points, corresponding to the boundaries
where a SAO vanishes.

form,

4o
where [},,60 is the baseline applied current, I,.x is the maximal applied current, and o is the half-

width of the Gaussian. It turns out to be convenient to measure these three parameters relative to
key values of the applied current determined by the family of x-dependent ODEs (|1.3)), see Fig.

$2
Iapp(x) = Ipase + (Imax - Ibase) exp <_ > y (4.1)
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Figure 10: Representative Gaussian applied current, I,y (), used to generate the base case 3-mode MMA.
It partitions the cells of the family of z-dependent ODEs into regions of distinct activity. Cells in the
bursting region exhibit 1' canard-induced mixed-mode oscillations. Cells in the spiking region exhibit 1°
relaxation oscillations. Cells in the alternator region can exhibit simple 1'1° alternations or have complex
signatures of the form (1!)¥(1°)¢, especially for z such that Lp,(z) & Iy or Lip(x) ~ I;. (For the other
MMASs reported on, the Gaussian applied current is chosen to cross other bifurcations of the z-dependent
ODEs including I, I3, . . ..)

In particular, let Iy be such that for each x for which I, (z) < Iy the z-dependent ODE ([1.3))
is in the 1Y spiking mode. Similarly, let I; be such that for each z for which Lpp(x) > Ij the z-
dependent ODE ([I.3)) is in the 1! bursting mode. Also, let § = I; — Iy. This parameter § measures
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exactly the width of the interval (Ip, I1) over which the family of z-dependent ODEs exhibits
alternating states.
Then, we set
Thase = Io—ad, and Iy =11+ 690.

Here, o and 8 measure how deeply the applied current brings the cells into parameter regimes
corresponding to the spiking and bursting modes of , respectively. Also, let p denote the
percentage of the cells in the line of cells which are in the spiking mode, i.e., let p be such that the
cells with = € [L — pL, L] exhibit 1° spiking, based on ; see Fig.

Remark. The half-width of the Gaussian is related to the three parameters p,«, and 3 via

2
o= M [’; (1 —p)] . (4.2)

Variations in each of these three control parameters, p, a, and 3, offer a natural way to measure
how the fundamental properties of the Gaussian impact the robustness of the base case 3-mode
MMA. Considering each of these control parameters separately, we plot in Fig. [11]the modes of the
attractor of the PDE (1.1]) as functions of these control parameters and of the location = € [0, L].
The other system parameters in (1.1]) are kept fixed at the same values as in Section [2. The spatial
regions in which the MMA is in the 1! bursting mode, the 1'1° alternator mode, and the 1° spiking
mode are indicated in blue, green, and red, respectively. We examine the results in each of the
frames in Fig. beginning with frame (a), which shows the robustness of the 3-mode MMA to
variations in p.

All three modes of the MMA persist across the entire range of p values shown in Fig. (a),
where we note that the values of a and 8 used to generate the data shown in Fig. (a) are the
same as those in the base case in Section [2 Moreover, for each fixed p, the spiking region occupies
approximately the same fraction of the spatial domain as predicted from the family of x-dependent
ODEs . For example, for p = 0.4, the spiking region observed in the PDE (1.1]) is approximately
26 < x < 50, which is 48% of the domain, and this is close to the interval 30 < z < 50 over which
the family of z-dependent ODEs is in the spiking mode. Similarly, for p = 0.6, the spiking
region observed in the PDE (1.1 is 18 < « < 50, which is 64% of the domain, and this is close
to the interval 20 < x < 50 over which the family of z-dependent ODEs is in the spiking
mode. These two examples are representative, in that the spiking region in the PDE is close
to the interval observed in for all other values of p in the range simulated. The difference in
measurements between the PDE (1.1)) and the family of z-dependent ODEs is due to the spatial
coupling and will be discussed further in Section [6]

Not only does the width of the spiking region increase with increasing p, as shown in Fig. (a),
but also the location of the alternator region shifts, and the widths of the alternator and bursting
regions decrease. The decreased width of the alternator region may be understood as follows. Recall
from that increases in p are equivalent to (quadratic) decreases in the spread, o, so that the
Gaussian becomes narrower. Consequently, the z locations at which Ly,p(z) = Iy (where the 1°
spikes change stability) and Inpp(z) = I; (where the 1! bursts change stability) shift to smaller
values, and the slopes of the Gaussian at these locations have increased. Thus, the width of the
alternator region decreases.

Next, we study the robustness of the 3-mode MMA under variations in the control parameter
a, with p and 8 kept constant at the same values used in the base case in Section [2 see Fig. (b)
In this case, the MMA also exhibits the same three regions, and the locations of the transition
intervals stay relatively constant, over the range of o shown. That the width of the spiking region

18



Alternatof

0.28 0.36 0.44 0.52 0.6 0.68 0.76 0.84

Alternator

Alternator

10 20 30 40 50 60 70 80 90 100

B

Figure 11: Structure of the MMAs of under variations of the control parameters of the Gaussian
applied current. The MMAs consist of bursting (blue), 1119 alternator (green), and spiking (red) regions.
The base case MMA studied in Section [2|is indicated in each panel by the black dashed line. (a) Increases
in the fraction, p, of the cell line that is initialized in the spiking mode results in MMAs with larger spiking
regions. (b) Changes in the baseline applied current, via a, have little effect on the widths of the three
regions. (c¢) The maximal applied current, controlled by 3, significantly affects the widths of the bursting
and alternator regions.

stays nearly constant reflects the fact that p is fixed so that the cells on 30 < x < 50 are spiking in
. Moreover, increases in « result in more negative baseline applied currents and only slightly
larger spreads, o. This means the x locations at which the 1° and 1' modes change stability in
only vary slightly, which is reflected in the PDE by the nearly horizontal red and blue boundaries.
We note that whilst the qualitative trends observed for increasing o can be interpreted in terms of
the z-dependent ODE , the width of the alternator region in the MMA is substantially larger
than that predicted by the z-dependent ODE and is a result of the diffusive coupling in (L.IJ).

Under variations in 8, with p and « kept constant at the values of the base case in Section
the MMA exhibits either three modes or two modes (Fig. [11jc)). For 8 = 27, the MMA exhibits
three modes: bursting, alternator, and spiking, exactly as in the base case. For these values of [,
the width of the bursting region increases with §. This is expected from because increases
in 8 make the Gaussian applied current taller and steeper, so the width of the alternator region
shrinks. Consequently, a larger portion of the domain (beginning at = = 0) for the x-dependent
ODEs is in the 1! bursting state. In addition, the width of the spiking region saturates (at = ~ 26),
since p is fixed.
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On the other hand, at § = 27, the bursting mode disappears, and for all values of 5 < 27,
the MMA only exhibits two modes: spiking and alternator. This is a structural change from the
base case 3-mode MMA. Moreover, for 8 < 27, the spiking region occupies a larger domain than
is expected from . For example, for 5 = 10 the spiking region occurs on 19 < x < 50 which is
62% of the domain (whereas only 40% of the domain is spiking in the family of z-dependent ODEs
(1.3). For these values of 3, the amplitude of the Gaussian is such that the z-dependent ODE is
only weakly in the bursting mode, i.e., 8 is small enough that many cells in the uncoupled system
(1.3) remain close to the bursting/alternator transition interval.

Robustness of the other n-mode MMAs, for n = 3,4,5,..., may be established in a similar
manner. Moreover, in quantitative studies of these MMAs, it is of interest to examine the Gaussian
applied current with control parameters Ipase, Imax, and o based on the values of I, for s =
0,1,2,..., which are known from the ODE kinetics as the boundaries in parameter space for the
1% bursts.

5 Comparison With the ODE Critical and Slow Manifolds

In this section, we make a qualitative comparison of the structures of the base case 3-mode MMA
of the PDE for D = 1 with the geometric structures that organize the family of z-dependent
ODEs, i.e., the critical and slow invariant manifolds of . We show that the attractor of the
PDE stays close to the geometric structures of the family of z-dependent ODEs for large diffusivities
by comparing the MMA to the critical and slow manifolds of the underlying ODEs at fixed slices

in z (Fig. [12).

5.1 Geometric structures of the family of x-dependent ODEs

We begin with the geometric structures of the x-dependent family of ODEs that exist in the
singular limit (i.e., for € o< Cy,, — 0) for the base case parameter set. For each fixed x, the slow/fast
system possesses a cubic-shaped critical manifold, S°(x), which has outer attracting sheets,
59 ,(z) and SY _(z), and an inner repelling sheet, SY(x) (Fig. [12} left column, blue surface). These
are separated by curves, Li(z) and L_(z), of fold bifurcations of the layer problem (Fig. left
column, red curves). That is, the critical manifold is partitioned as

S0(z) = SfiJr ULy (x)US2(z)UL_(z)U 5’27_(@.

Moreover, there is a folded singularity on Ly (z), which is either a folded node (FN) or a folded
focus (FF), depending on the value of x. In the case of the FN, there is an associated singular
strong canard (Fig. (a); green curve), 72.(z), which (together with L, (x)) encloses the singular
funnel region.

Remark. The curves, Li(x) and L_(x), meet in a cusp bifurcation and form a single continuous
curve, as shown in Figs. [13(a), (c), and (e). Here, our interest is in the region of phase space
centered on the folded singularity, which stays far away from the cusp for the chosen parameter set.
That is, SS’JF(:E) from So’f(x) are well separated in the regions of phase space that we eramine.
(We refer to Figure 8(b) of [41] for more information.)

Fenichel theory [14], 20] and canard theory [36, [43] describe how the geometric objects from the
singular limit (¢ — 0) persist and unfold for sufficiently small perturbations (i.e., for 0 < ¢ < 1).
First, the attracting and repelling sheets, S (z) and SP(z), of the critical manifold persist as
attracting and repelling slow invariant manifolds, Zi(x) and SZ(x), respectively. Moreover, in
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Figure 12: Comparison of the 3-mode MMA (black curves, T',) with the attractor (cyan curves) and
manifolds of the z-dependent ODE in (V) n, e) space for fixed = in the bursting region (top row; x = 5),
alternator region (middle row; x = 17), and spiking region (bottom row; x = 40). Left column: comparison
with the singular limit (C,, — 0 pF) structures, i.e., the critical manifold, S°(z), fold curve, L(z), folded
singularity (FN/FF), and singular strong canard, 72.(z). Right column: comparison with the attracting (blue
surface) and repelling (red surface) slow invariant manifolds of for C}, = 2 pF, computed using pseudo-
arclength continuation [12] 13]. Insets: intersection with a hyperplane through the folded singularity; black
pentagrams and cyan circles correspond to the solutions of the PDE and ODE, respectively, and demonstrate
that the two are close in each of the three regions.
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an O(y/¢) neighbourhood of the FN, S7 | (r) and S;(x) twist around each other and, generically,
intersect n + 1 times, where n > 1 is determined by the eigenvalues of the desingularized reduced
flow at the FN. The first intersection is the primary strong canard, vs.(z), which separates solutions
of that exhibit SAOs from those that do not. The n + 15 intersection is the primary weak
canard, vw(z), and is the local axis of rotation for the twisting. Each of the remaining n — 1
secondary canards (intersections), vi(z), exhibits & SAOs about 7 (z), and separates solutions
with & SAOs from solutions with k£ 4+ 1 SAOs. For the base case parameters and x € [0, L], the
FNs of (whenever they exist) have n = 1, so that the only canards are s (z) and vy (z), and
solutions exhibit, at most, 1 SAO. By varying the parameters gx and/or g4, FNs with almost any
n can be generated (see Figs. 2, 3, and 5 of [42]).

As the perturbation parameter (in our case, C),) is increased, the invariant manifolds, the dy-
namics on the invariant manifolds, and their number of intersections all change. The slow manifolds
become less twisted and, for some suitably large C),, the weak canard of the FN disappears. For
Cp = 2 pF, the slow manifolds, S; | (z) and S (), intersect precisely once for all x € [0, L] (Fig.
right column). That is, only the strong canard of the FN persists for large perturbations.

The parameter regions where canards exist also change as C,, is increased. For instance, for the
parameters used in the base case, the slow invariant manifolds, S , (z) and S;:(z), of the family of
z-dependent ODEs with Cy,, = 2 pF intersect for all z € [0, L] (Figs. [I2d) and (f)). That is, there
is a strong canard for all x € [0, L], even when the underlying folded singularity of the xz-dependent
ODE is a FF.

Remark. We refer to [43] for the bifurcation theory of FN canards when € is sufficiently small.
For a case study on how the slow manifolds and associated family of canards unfold and bifurcate
in the unforced pituitary cell ODE model, we point to [{2].

5.2 The MMAs closely follow the slow manifolds in the cores of the main regions

We now compare the geometric structures of the 3-mode MMA of the PDE with D =1 to
the geometric structure of the family of z-dependent ODEs (|1.3)). The slow manifolds, maximal
strong canard, and solutions of the PDE and ODE are shown in a cross-section passing through
the folded node (insets in the right column).

Examining time traces at constant x for each x in the bursting region (0 < z < 9), we see
that the MMA (Figs. [12(a) and (b), black curves, I';) closely follows the mixed-mode oscillatory
attractors (Figs.[12|(a) and (b), cyan curve) of (1.3)). That is, at each fixed value of z, the time trace
of the MMA has a slow segment (lower single arrow) that closely follows S _(z). The time trace of
the MMA passes through the neighbourhood of L_(x) and exhibits a fast transition (double upward
arrows) from a neighbourhood of S9 _ (x) to a neighbourhood of SY | (z). This fast transition injects
the solution into the funnel of the FN. Consequently, at each fixed x in the region, the time trace of
the MMA exhibits a slow drift (upper single arrow) toward the FN, where it executes a single SAO
before returning to the neighbourhood of SO’_(:E). For each z in the bursting region, the time trace
of the 3-mode MMA (black curve) is so close to the attractor of the corresponding z-dependent
ODE (cyan curve) that they are almost indistinguishable.

For all x in the spiking region (27 < = < 50), the MMA exhibits relaxation oscillations with slow
segments that closely follow the attracting sheets of the critical manifold, and with fast transitions
between the upper and lower sheets initiated near the fold curves (Fig. [12|e), I';). In this spiking
region, the folded singularity is a folded focus, however, as noted in Section the slow manifolds
still intersect for large Cy, (including Cy, = 2 pF) in a strong canard (Fig. [[2[f), vsc(z)). We
observe that, for each z in the spiking region, the attractors of the PDE and the z-dependent ODE
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stay outside the rotational sector enclosed by vsc(x), and hence there are no SAOs. Again, the
solutions of the PDE and ODE lie close to each other in the (V,n,e) phase space.

For x values in the alternator region (16 < z < 22), the MMA exhibits a 1! burst followed by a
19 spike. As in the bursting region, the 1' part of the solution is a mixed-mode oscillation with the
SAQ emerging from the canard dynamics around the FN. This 1! part of the MMA again lies close
to the attractor of the z-dependent ODE (1.3]). The 1° part of the MMA does not closely follow
the attractor of . However, it does exhibit relaxation-type oscillations, as in the spiking case.

5.3 Only some modes of the z-dependent ODEs emerge in the MMAs, many
are suppressed

We now compare and contrast the MMA of the PDE (1.1)) and the attractors of the family of
z-dependent ODEs in the transition intervals between different modes of oscillation, where
the maximal spatio-temporal canards arise. We focus on the transition from the bursting mode to
the alternator mode, which is representative.
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Figure 13: Comparison of the base case 3-mode MMA with the attractors of the family of x-dependent
ODEs with C,, = 2 pF. (a) APD measurements of the MMA (blue branches) and of the ODE attractors
(red branches). Inset: zoom on the region featuring alternator modes with complex Farey sequences of the
form (11)*(19)¢. Alternators with k& > 1 (not labelled) exist entirely in the interval between the 1! and 1'1°
branches, and alternators with k = 1,/ > 1 (not labelled) exist entirely in the interval between the 1'1° and
19 branches. Middle row: projection of the MMA (black), ODE attractor (cyan), and strong canard (green)
into the (V,e) plane for x values (b) before, (c) at, and (d) after the first inflection point (at z ~ 16) in the
APD profile. Bottom row: ODE attractors with (e) (k,¢) = (2,1), (f) (k,¢) = (5,4), (g) (k,£) = (1,2), and
(h) (k,¢) = (1,7) for x values in the thin interval between the 1! bursting and 1° spiking intervals of (L.3).
Also shown in all four frames are the strong canard and the trace of the MMA (which is in the spiking mode
for x 2 27, i.e., beyond the inflection point of the upper blue APD curve).

The 3-mode MMA, and the attractor and strong canard of the family of z-dependent ODEs are
shown in Fig. 13| (middle row) in the (V, e) plane for x values around the inflection point at z ~ 16.
For all z in this interval, the even burst events (uppermost black curves) in the period-2 MMA
closely follow the attractor of the z-dependent ODE (cyan curves). The odd events (lowermost
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black curves), however, do not closely follow the ODE attractor. More specifically, to the left of
the inflection point, the odd events in the MMA exhibit one SAO in which the orbit has a small
upward voltage deflection before rapidly transitioning to a hyperpolarized state (Fig. (b)) At
successively larger values of x, the SAOs in the odd burst events decrease in magnitude until they
disappear at the inflection point at  ~ 16 (Fig. (c)) For even larger values of x to the right of
the inflection point, the odd events in the MMA spend progressively less time following the ODE
attractor (i.e., they peel away from the ODE attractor at larger and larger values of e) and simply
transition to hyperpolarization without SAOs (Fig. (d)) This sequence for the MMA is similar to
the sequence of ‘jump-back’ and ‘jump-away’ canards (i.e., ‘ducks without heads’ and ‘ducks with
heads’, respectively) associated with the exponentially close family of canard solutions that can be
observed around a maximal canard by variation of initial conditions (see also Figure 13 of [42]). It
provides further numerical evidence of the existence of a maximal spatio-temporal canard for some
x in the transition interval. A similar jump-back/jump-away canard-like sequence is observed for
the MMA in the transition from the alternator region to the spiking region.

The other location where the MMA of the PDE and the attractors of the family of x-dependent
ODEs differ significantly from each other is the z-interval where the ODEs exhibit exotic (11)¥(1°)¢
mixed-mode oscillations. As shown in the inset of Fig. (a), the 1'1° alternator occupies the
largest a-interval. Exotic (11)*(1°)¢ alternators with k& > 2 (Figs. e) and (f)) exist entirely in
the thin z-interval between the 1' bursting branch and the 1'1° alternator branch. Similarly, the
interval between the 1'1° alternator branch and the 1° spiking branch is filled with exotic (11)*(19)¢
alternators with k£ = 1 and ¢ > 2 (Figs. [L3{g) and (h)).

Numerically, the exotic (1')*(19) alternator modes of the family of z-dependent ODEs are not
seen in the MMA of the PDE (for D sufficiently large) because the simpler 1!, 111°, and 1° states
exist on wider z-intervals in the domain of the PDE, are more robust and stable, and essentially
drive the more exotic alternators out due to the diffusive coupling. The survival of these (1')*(1°)¢
alternator modes depends on the parameters (most prominently D and C,,) and the relative widths
of the intervals on which they exist in the family of z-dependent ODEs.

In short, in the cores of the main regions of the distinct modes, the MMA of the PDE (|L.1))
closely follows the geometric structures of the underlying family of z-dependent ODEs, even at
large diffusivities. The key similarities and differences highlighted here for the base case 3-mode
MMA are representative of n-mode MMASs that exhibit inflection points in their APD profiles, such
as those reported on in Sections [3] and ] The comparison for n-mode MMAs with no inflection
points in the APD profiles (such as the 5-mode MMA in Fig. [§]) is more complicated, and is the
subject of ongoing work.

6 Variations in the Diffusivity

In this section, we show that there is a wide range of diffusivities over which the fundamental
structure of the 3-mode MMA stays qualitatively the same as in the base case with D = 1. In
addition, we show that as the diffusivity becomes smaller and smaller, the dynamics in the alternator
region become much more complex.

The APD curves are qualitatively the same as in the base case with D = 1 over a broad range of
diffusivities (at least 0.01 < D < 2) for the 3-mode MMA with these parameters (Fig.[14)). For the
APD profiles in Fig. the branches are again close to those of z-dependent ODEs in the centres
of the three regions. In particular, for all x in the spiking region, the blue and red APD curves are
still almost coincident. In addition, for x in the centre of the alternator region, the upper (blue)
APD branch (1! bursting) stays close to the z-dependent ODE (red) branch, and the lower (blue)
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APD branch (19 spiking) has shorter durations. Finally, for a large portion (from 0 < x < 8) of
the bursting region, the blue APD branch lies close to the red APD branch.

(a)gof

%

APD (ms)

Figure 14: APD profiles of the base case 3-mode MMA (blue curves) for various diffusivities showing
two distinct branches. In all panels, an open diamond/circle indicates a burst/spike event. The APD
measurements for the family of z-dependent ODEs (red curves) is the same across all panels.

In the transition intervals between the adjacent regions, the APD curves of this 3-mode MMA
of the PDE (1.1]) also differ here for small values of D from those for the ODE , as was the
case with D = 1 in Section In particular, for the locations = in the bursting region close to
the transition interval between the bursting and alternator regions, the APD curve splits into two
branches which remain close to each other (Figs. [14|(a) and (b)). This again reflects the fact that
one period of the attractor consists of two burst events, and the durations of the odd and even
bursts are slightly different. For smaller D still, the two branches begin to show oscillations in the
APD measurements (Figs. [14{(c) and (d), near x ~ 16).

For smaller diffusivities, D, the spatial structure of the MMASs becomes increasingly complex
(the branches of the APD curves cross each other more and more). A representative example, with
D = 0.0005, is shown in Fig. Here, the voltage dynamics of the MMA (Fig. a)) possess
traveling wave structures, which radiate out from a common source at x ~ 35. For 0 < x < 35, the
active and silent phases are backward propagating, moving to smaller x values in time. These back-
propagating fronts have numerous regions of complex (and seemingly aperiodic) Farey sequences
(Fig. (b), solid blue curves). For 35 < x < 50, the activity consists entirely of forward propagating
1Y spikes (Fig. (b), open blue circles).

Based on our simulations, it is currently unknown whether the MMAs of the PDE ([1.1)) will
converge to attractors of the family of x-dependent ODEs (|1.3]).

7 Bistability

Having introduced and studied an array of n-mode MMAs of and demonstrated their robust-
ness in Sections as well as having compared them to the various bursting and alternator states
of the family of z-dependent ODEs and studied the effects of the diffusivity, D, in Sections
we now show numerically that the PDE with Gaussian ,pp(x) is (at least) bistable. Over a large
regime of parameter space, there also exists a time-periodic single-mode attractor, which consists
entirely of 1! bursting (Fig. . It is periodic because the first full return times of the composite
map ITJ o 14 are uniform in = (not shown). Most interestingly, the amplitudes of the SAOs in the
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Figure 15: The structure of the MMA becomes increasingly complex in the limit as D — 0. Here,
D = 0.0005. (a) The voltage dynamics consist of backward propagating waves of (1!)¥(1°)¢ activity and
forward propagating waves of 1° spiking activity. (b) The APD measurements for 20 successive events in
the MMA show the complexity of the spatial structure of the attractor.

single-mode attractor vary with position (Figs. [L6{(b), (c) and (d)).

For a wide range of initial conditions, all solutions were observed to converge to one of two attrac-
tors: the base case MMA with three regions (Fig.|2) or the single-mode bursting attractor (Fig. .
We verified this by performing 100 simulations of subject to with the randomized ini-
tial conditions, ug(z) = (=75 + 95X (x), X (x), X (z)), where, for each fixed x, X(x) ~ U(0,1) is a
uniformly distributed continuous random variable on the unit interval. Moreover, we observed the
same type of bistability for all p,a, and 8 shown in Fig. [I1]

The presence and persistence of the single-mode bursting attractor is not predicted by the family
of z-dependent ODEs . In fact, the attractors of the family of z-dependent ODEs are identical
for the single-mode bursting attractor and for the base case 3-mode MMA; compare Figs. (c) and
[L6](b), which have the same (red) APD profiles for the z-dependent ODEs but different (blue) APD
profiles for the attractor of the PDE.

8 Spatial Inhomogeneity Facilitates MMAs

Until this point, we have focused exclusively on the MMAs of the PDE generated by Gaussian

applied currents , which model localized currents. In this section, we show numerically that

MMAs are also observed for several other types of applied current profiles, which reinforces the

notion that spatial heterogeneity is a key factor that facilitates the emergence of MMAs in .
First, we study mollified (decreasing) step currents of the form

Imax — 1 -
Lopp () = Tpase + 25202 <1 + tanh <x°p I)) . (8.1)

Under variations of the control parameters Ilp,se and Ipax (which are distinct from those of the
Gaussian), the PDE exhibits all of the behaviours reported previously, including the n-mode MMAs,
maximal spatio-temporal canards mediating the transitions, robustness with respect to parameter
changes, as well as bistability with single-mode bursting attractors. For representative illustrations,
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Figure 16: Single-mode time periodic 1! bursting attractor (with period approximately 170 ms) of
with the same parameter set as in Figs. [2| and (a) The voltage dynamics show that the SAOs (dark
wine red segments) persist for all . (b) APD profiles of the single-mode attractor (blue diamonds) and the
z-dependent ODE (red), cf. panel (c) of Fig.|3| (c) Voltage series at x = 5. (d) Voltage series at z = 40.

we show 3-mode and 5-mode MMAs (see Fig. . These and other n-mode MMAs are produced by
constructing the applied current based on the knowledge of the attractors of the x-dependent
ODEs , just as was done in the case of the Gaussian applied current in Sections |2[ and

Second, MMAs are also observed for other applied current profiles I,y (), including sigmoids
and mollified bumps, as well as for spatially varying conductances, gk (z) and ga(z). To understand
the PDE dynamics in these cases, it is also useful to compare to the known dynamics of the single-
cell ODE model, for which the boundaries in parameter space of the 1° bursting and (1°71)%(1%)¢
alternating modes are well known, see Fig. 5 of [42].

9 Discussion

In this section, we summarize our results, present a partial list of open questions, and discuss
MMASs in the context of three other reaction-diffusion systems.

9.1 Summary

In this article, we have introduced the novel pattern formation phenomenon of Multi-Mode Attrac-
tors observed numerically in a model of pituitary lactotroph cells coupled spatially via diffusion.
The n-mode MMAs consist of distinct modes of oscillation in n different regions of the spatial
domain. In particular, we have presented 3-mode and 4-mode MMAs in which there are 3, respec-
tively 4, different regions, each exhibiting its own mode of oscillation. The different modes include

27



-20
-40
-60

50

8000 8200 8400 8600 8800 9000
t (ms)
(b)°
-20
1
2
. -40
3
4 -60
50
7500 8000 8500 9000

t (ms)

Figure 17: MMAs with (a) 3 modes and (b) 5 modes, obtained by simulating with mollified step
currents (8.1)). (Here, 2o = 20 and p = 10.) The 3-mode MMA in panel (a) has a 1! bursting region
(0 < 2 <19), a 1911 alternator region (20 < z < 27), and a 1° spiking region (28 < z < 50). The same
parameters were used as in Fig. [2] i.e., gx = 6.1 nS, @ = 10 and 8 = 90, so that Ip.se ~ —0.0058 mA and
Imax =~ 0.9033 mA in (8.1). For the 5-mode MMA in panel (b), the attractor exhibits 1* bursting oscillations
with s varying with z (with s = 6 near x = 0 and s = 2 near x = L). The same parameters were used as in
Fig. [§] i.e., gx = 4.4 nS, Ihase = —1.5 mA, and I, = 5.5 mA. The width of the alternator region is larger
for larger values of p, due to the step from Ip,s to Inax being more gradual for larger p.

19 spiking, 1! bursting (with one SAO at the end of the active phase), as well as various types
of (11)*(19)¢ alternators, with k,¢ = 1,2,.... We have also presented the existence of 3-, 4-, 5-,
and n-mode MMASs in which the modes consist of 1° bursts with s = 1,2, 3,... small-amplitude
oscillations, with s increasing from one region to the next.

The n distinct regions in n-mode MMAs are generated by applied currents that vary spatially.
We have extensively studied Gaussian applied currents as a model for spatially-localized currents,
for which the maximum amplitude is at one end of the line of cells and the amplitude decreases
in space. We have also studied mollified step function applied currents, in which half of the cells
receive one level of constant current and the other half a different level of constant current. In all
cases, it is the spatial variation in the applied current which is responsible for the existence of the
n distinct modes of oscillation, and we have used the known mixed-mode oscillatory dynamics of
single cells and how they vary with applied current to generate the n-mode MMAs.

By carrying out a complete analysis of the base case 3-mode MMAs, we have also discovered
that there exist new types of maximal spatio-temporal canards in this (and other) reaction-diffusion
models. These maximal spatio-temporal canards lie in the transition intervals between adjacent
regions of distinct modes. In particular, by examining how the time traces of the voltage (at
constant values of ) change as one varies the location x, we have studied how SAOs are lost in the
transition intervals between adjacent regions of 1! bursting, 1'1° alternation, and 1° spiking. In
each transition interval, there is a unique value of x such that along the time series at that location
the profile of the MMA is a maximal spatio-temporal canard. (Visually, the time trace at this
unique location resembles the position of the wool thread in knitting when one pulls it over the tip
of the needle!) This is an exciting new type of spatio-temporal canard, complementing those that
were found recently in an Amari-type integral differential equation, in which it was shown that the
entire solution in space can exhibit a temporal oscillation of canard type [3].

Furthermore, we have shown that the n-mode MMAs with maximal spatio-temporal canards
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in the transition intervals are robust, by systematically studying them over broad portions of
parameter space. Variations in the fraction p of the cells that are in the 1° spiking state, as
measured based on the (uncoupled) single cell dynamics , directly impact in an approximately
linear manner the width of the region in which the MMA of the PDE is in the spiking
mode. Also, increases in the maximum amplitude of the Gaussian applied current directly result
in increases in the number of cells (near the location of maximal current) being in the 1' bursting
mode. Moreover, as the steepness of the Gaussian is decreased, more of the middle region exhibits
alternating modes, with the number of (1')*(1°)¢ alternator modes with different k and ¢ increasing
as the slope becomes less steep in the region between the spiking and bursting regions. This
systematic study was carried out explicitly for the base case 3-mode MMA, and (data not shown)
the trends are similar for the 4-mode, 5-mode, and higher mode MMAs of this type.

For all aspects of the MM As summarized so far, the action potential duration (APD) was shown
to be a useful diagnostic. At each location x in the domain, the APD measures the length of time
for which the voltage is above threshold (V' = —45 mV in our case). We have shown that the
APD curves can be used to identify the types of the modes of oscillation that exist in the different
regions, the number of different (and more exotic) types of alternators that exist in n-mode MMAs,
the periods of the oscillations in the distinct regions of the MMA, the period of an overall MMA of
the PDE (1.1)), as well as the location of the boundary between different modes of the MMA, via
inflection points of the APD.

In addition to establishing all of these properties of the MMAs, we have also established the
bistability of the model . In particular, we reported that there is a 1-mode MMA which
co-exists with the different types of 3-mode, 4-mode, and 5-mode MMAs, for all of the various
parameter regimes reported here. In conjunction with this bistability, we have also analyzed how
the form of the initial data influences which attractor is attained. We also found (data not shown)
instances in which the reaction-diffusion system can exhibit more than two attractors.

Finally, we carried out computational studies of two other important aspects of the geometric
structures of the n-mode MMAs. These studies included how the geometric structures of the n-
mode MMAs of the PDE ({1.1)) compare to the geometry of the slow invariant manifolds (and their
intersections) which are known from the study of the single pituitary lactotroph cell model
for each x in the domain, see [42]. For each region in which the MMA exhibits a different mode, we
showed that the time traces of the voltage at points x in the domain are very close to the steady
states of the corresponding z-dependent ODE over a wide range of = locations in the center of
each region. The differences between the two curves from the PDE and the ODE appear near the
boundaries of the regions and in the transition intervals between the regions and are caused by
the diffusive coupling. Moreover, the intersections of the slow manifolds in the z-dependent ODEs
provide a good guide as to the type of the mode that one sees in an MMA at that same location.
Furthermore, these computational studies also included an investigation of how the structures of the
base case 3-mode MMA change as the diffusivity, D, becomes smaller. We find that the dynamics
observed in the base case with D = 1 persist over a broad range of diffusivities (0.01,2.0), at least.
Also, we find that the D — 0 limit appears not to be a regular perturbation of the D = 0 case
(recall Fig. , in which the cells at each location z are decoupled, and in which the PDE model
reduces to the family of uncoupled z-dependent ODEs.

9.2 Open Questions about MMAs in (|1.1))

This study raises many questions, which we are currently investigating. First, can one predict more
quantitatively how the number of modes and the locations of their different regions depend on the
spatial variation of the applied current? For example, for MMAs such as that shown in Fig. [§
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can the number of modes that are observed in the MMA and their locations be determined more
quantitatively from the parameters of the applied current? Also, for the base case MMA shown
in Fig. [2| can one predict the width of the 1119 alternator region, which is much wider than what
is expected based on the family of z-dependent ODEs. More generally, which of the (151)%(1%)¢
alternators from the ODE persist under diffusive coupling in the PDE , and how are the
widths of the spatial regions in which they appear determined? Second, can one develop a rigorous
existence theory for these n-mode MMAs? Third, can one devise a method to determine their
stability? and to determine why the system exhibits bistability between the n-mode MMAs and
the single-mode 1! attractor? Fourth, what can one say about the dynamics of the n-mode MMAs
in the limit as D — 07 Fifth, are there infinite-dimensional analogs in the PDE (|L.1)) of the slow
invariant manifolds S, (z) and S, (x) that are known to exist in the finite-dimensional phase spaces
of each of the z-dependent ODEs with applied current I,pp(x)? If so, what do these manifolds
look like? how do they determine the existence and structure of the n-mode MMAs? and do they
intersect in maximal spatio-temporal canards? Sixth, beyond the diffusive pituitary cell model
studied here (and the three models discussed briefly in Section below, which also possesses
n-mode MMAs), how general is the class of reaction-diffusion models that exhibit n-mode MMAs?

Additional questions arise from the comparison of the MMA results here with some of the
many results known for chimera states in coupled oscillators and reaction-diffusion models. First,
the results for suggest to examine bursting-, spiking-, and alternating modes in the coherent
domains of chimera states in coupled oscillators, as well as to examine the boundaries between such
coherent domains and incoherent domains, among other things to see if canards can also occur
there. Second, as pointed out by an anonymous reviewer, the fact that the MMAs and spatio-
temporal canards arise in locally-coupled systems such as may provide further impetus to
search for chimera states in systems with only local coupling or diffusive coupling.

9.3 MMAs in a Forced van der Pol PDE & in Cardiac Electrical Activity

We have also numerically observed MMAs and the attendant maximal spatio-temporal canards in
the spatially-heterogeneous, forced van der Pol PDE system,

up = v — f(u) + & Dugy,
vy = e(a(z) —u+ beosh), (9.1)

015260.).

Here, (u,v,60) = (u(x,t),v(z,t),0(t)) with z € Rand t > 0, f(u) = %US —u, b > 0 is the amplitude
of the time-periodic forcing, w > 0 is the forcing frequency, and the threshold a(x) is spatially
heterogeneous. For the case of D = 0, in which the PDE reduces to a family of z-dependent ODEs,
this model is known to possess folded nodes, folded saddles, and folded saddle-nodes of type I. The
various canards generated by these folded singularities in this forced ODE, including the primary
strong and weak canards and the secondary canards, have been studied in [7]. Formulas were
derived in the (a,b) parameter plane for the curves of primary maximal canards. We used this
knowledge of the canards and their bifurcations in the z-dependent ODEs to construct (Gaussian
and sigmoidal) functions a(z) that produced different types of n-mode MMAs in the PDE for
a range of values of the diffusivity D. A representative example is shown in Fig.

Another context in which the MMAs and their associated maximal spatio-temporal canards
naturally arise is in cardiac tissue models. In this context, the s small oscillations in the 1% bursting
modes are labelled as early afterdepolarizations, and they are correlated with cardiac arrhythmias.
For instance, Liu et al. [26] studied a biophysically detailed 1D cable model (of length L) for the
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Figure 18: An 8-mode MMA of period-3 of the diffusive forced van der Pol PDE (9.1) for ¢ = 0.01,b =

0.01,D = 1, and Gaussian threshold a(z) = 0.9924 + 0.004 exp (—%). Each mode is a combination of

relaxation oscillations and mixed-mode oscillations of 1° type for s = 1,2,3, and 4. (a) Heat map of the
u-component of the MMA. (b)—(i) Time series of the different modes, zoomed in on a neighbourhood of
u = 1 (where folded node canards of the z-dependent family of ODEs are localized). In (b) z = 3, (¢) = = 5,
(d) x =8, (e) z =10.5, (f) x =15, (g) = = 20.5, (h) = = 24, and (i) « = 35.

electrical activity in rabbit heart tissue. The model, which consists of 26 (ordinary and partial)
differential equations, takes the form

oV
ot
where the ionic currents, I, are described using a Hodgkin-Huxley formalism (with associated
gating variables), and I,pp(x,t) is the stimulus current. Spatial heterogeneity arises from two

sources. First, the conductance, gxs, of the slow component of the delayed rectifier potassium
current is a spatial step function,

grs1, 0<z<1iL
ng(l') :{ * 2

Cm—r = —lion + Lapp(7,t) + DV?V, (9.2)

9K s2, %L <z S L7

so that half of the cells in the cable have a maximum [x, conductance of gxs; and the other half
have a maximum [, conductance of ggso; this models repolarization and APD heterogeneities.
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Second, a stimulus pulse of magnitude 50 #A cm~2 and 7 ms duration was applied every PCL ms
to only 2.5% of the domain

0, 0<z< 3L,

Iapp(',r7 t) = 50

WE

[H(t—k-PCL)—H (t— (k-PCL+7))], 3L<a2<L,
k=1

where H(-) denotes the Heaviside function and 7 was typically 1 ms. For appropriate choices of the
stimulus period (PCL), Liu et al found what appear to be MMAs in the PDE . In particular,
they reported a 2-mode MMA consisting of a 1'1° alternator region and a 1° region of regular
action potentials (see Fig. 2B of [26]). Similarly, they reported two types of 3-mode MMAs; one
with a 1112 alternator region, a 1! region, and a 1° region (see Fig. 2C of [26]) and another with
12 region, a 1! region, and a (1)21° alternator region (see Fig. 2D of [26]), as well as other MMAs.

We have also observed MMASs in preliminary simulations of a simplified reaction-diffusion model
for early afterdepolarizations in cardiomyocytes. The EADs that arise in the kinetics of this sim-
plified model (which consists of only 3 ODEs and is based on [31]) have been demonstrated to
be canard-induced [21], [40]. By using our knowledge of these canards in the ODEs, we are able
to construct heterogeneities (with the same functional forms as in [26]) such that MMAs exist on
large open regions of parameter space in this simplified PDE model for EADs. The MMAs in this
system are time periodic as they are entrained to the periodic forcing.
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A Pituitary Cell Model

A.1 The Initial-Boundary Value Problem

We consider a line of diffusively-coupled pituitary lactotrophs, based on the model of [39], in which
there is nearest neighbour coupling along the line of length L. The model equations are

oV 0%V
Cm o = Lpp(@) = (Ica + I + T4+ Ip) + Do

on  ne(V)—n

g -~ 7 (A1)
Je _ex(V)—ce
ot Te ’

where V(z,t) denotes the membrane potential of the cell at position x along the cell line at time ¢;
n(z,t) denotes the gating variable for the activation of the delayed rectifier potassium current, I,
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and e(x, t) the gating variable for the inactivation of the A-type potassium current, 4. The kinetics
of are based on a minimal model for the electrical activity in a pituitary lactotroph [39]. The
intrinsic ionic current, [ion, consists of calcium, delayed-rectifier potassium, A-type potassium and
leak currents, which are defined via Ohm’s law by

Ica = goameo(V)(V — Vi),
Ik = ggn(V — Vi),
Iy = gaas(V)e(V — Vi),
I, = gr(V = Vk).
The steady state activation and inactivation functions are sigmoids of the form
1 1

, ue{m,n,a} and ex(V)= .
1+ exp <7V“szv> 1+exp (—Vs_e%)

The applied current, I,pp (), is spatially dependent. Our choice of standard parameter set is taken
from [42] and is listed in Table [I| With this choice of parameters, and in the absence of diffusion
and with Ipp(z) = 0, each cell is a 1° spiking cell.

Uoo (V) =

Param  Value | Param Value Param Value Param Value
Cm 2 pF JK 6.1 nS ga 5 nS 9Ca 2 nS
qgr, 0.3 nS Vea 50 mV Vi —75 mV Vin —20 mV
Va -5 mV Va —20 mV Ve —60 mV Sm 12 mV
Sn 10 mV Sa 10 mV Se 5mV Tn 40 ms
Te 20 ms L 50 D 1 nS

Table 1: Standard parameters for (1.1)); see [42] for their biological interpretation.

For the initial-boundary value problem, we impose zero-flux boundary conditions,

V2(0,t) =0 and V,(L,t)=0, (A.2)
and employ initial profiles of the form
u(z,0) =up(x), ue{V.n,e}. (A.3)

The specific choices are detailed in the main text.

Remark. The base case 3-mode MMA shown in Fig.[qwas obtained as the time asymptotic solution
of (1.1)) subject to the zero-flux boundary conditions (A.2)) with the initial condition

up(x) =Tz N{V =—-20 mV},

where Ty, denotes the set of attractors of the family of x-dependent ODEs (1.3|), with the Gaussian
applied current having the same control parameters Inase, Imax, and o. More specifically, on 0 <
x < 50 the initial data was chosen so that the cells with 30 < x < 50 are set initially to exhibit
spiking oscillations, and the cells for 0 < x < 30 are set initially to exhibit either alternating or
bursting rhythms, according to the steady states of the x-dependent ODFEs. With this initial data,
the transient dynamics reflect these initial rhythms locally. The first band of active phases shows
that approximately 40% of the domain is in the spiking mode and the remaining 60% exhibits a
small oscillation before termination of the active phase. As the solution of the PDE evolves in
time, the spiking part of the domain appears to invade the bursting part and the two modes occupy
approximately equal portions of the spatial domain. FEventually, the solution exhibits the MMA
shown in Fig. [2
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All numerical simulations of the PDE subject to the boundary conditions with initial
conditions were performed using balanced symmetric Strang operator splitting [35]. Centered
finite differences were used for the Laplacian and boundary conditions, and the time stepping was
performed using the fourth-order Runge-Kutta method. The results obtained from centered fi-
nite differences were compared with those obtained from spectral methods (with Chebyshev basis
functions), and were found to be in excellent agreement in all cases. We also verified our numer-
ical results independently using Crank-Nicolson. Moreover, each simulation was run for at least
8000/ VD ms to guarantee convergence to the attractor.

A.2 Construction of the Spatially Inhomogeneous Applied Current

To construct n-mode MMAs in the PDE (1.1)), it has been especially useful to have detailed knowl-
edge of the bifurcation structure of the family of z-dependent ODEs , as well as the maximal
canards which mediate the bifurcations. Here, for the sake of completeness, we provide a more
complete description of the bifurcation structure of the kinetics ODEs.

For the parameter set listed in Table[l|and in the absence of any applied current, the cells in the
z-dependent ODE ([1.3]) are 1° spiking cells. The spatial variation in the applied current, Ipp(z),
can then induce bifurcations. The Gaussian I,pp(x) used in Section [2| is constructed so that it
crosses two distinct bifurcations of system (see Fig. . Let Iy and I; denote the applied
current values at which the 1° spiking orbits and 1! bursting orbits change stability, respectively,
in the single cell ODE model. Then, in system , the cells with I, (z) > I; exhibit 1! pseudo-
plateau bursting attractors. Similarly, the cells with Ipp(2) < Iy exhibit spiking attractors, and
cells with Iy < Lpp(x) < I; exhibit attractors with alternating signatures that can be simple (e.g.,
191! rhythm) or can be complex. More specifically, cells in the alternator region with L,p(z) ~ Iy
exhibit (19)¥11 attractors for k € N, whilst cells in the alternator region with Li,,(z) ~ I exhibit
19(1H* attractors for k € N. The stability plateaus of the complex signatures, (1°)¥1! and 1°(11)*,
are substantially smaller than that of the simple 191! alternator; see Fig. 2(b) of [42]. That is, in
the ODE, the alternator region is dominated by a stable 1°1' alternator. Similar statements apply
for the 1° bursting modes and the associated (1571)%(1%)¢ alternator modes, for s = 1,2, .. ..

In terms of the slow invariant manifolds and maximal canards, bifurcations of the pseudo-
plateau bursting occur in two distinct ways [42]. That bifurcation theory may be applied directly
to the family of z-dependent ODEs . In the first case, parameter variations (such as changes
in the maximal conductance of the delayed rectifier potassium channels or the applied current)
cause twisting of the attracting and repelling slow manifolds, S,(z) and S,(z), of system .
This twisting can lead to a tangency between S,(x) and S,(x) that then perturbs to a pair of
transverse intersections. In this way, new maximal canards and hence additional small oscillations
are generated. In the second case, the structure of the slow manifolds essentially remains fixed with
respect to parameter variations (such as changes in the maximal conductance of A-type potassium
channels), whereas the position of the pseudo-plateau bursting attractor moves relative to the
maximal canards. In this scenario, bifurcations occur when the bursting orbit crosses a maximal
canard resulting in the loss or gain of a small oscillation.
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