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Abstract

The pumping of blood through the heart is due to a wave of muscle contractions that
are in turn due to a wave of electrical activity initiated at the sinoatrial node. At the
cellular level, this wave of electrical activity corresponds to the sequential excitation of
electrically coupled cardiac cells. Under some conditions, the normally-long action
potentials of cardiac cells are extended even further by small oscillations called early
afterdepolarizations (EADs) that can occur either during the plateau phase or
repolarizing phase of the action potential. Hence, cellular EADs have been implicated
as a driver of potentially lethal cardiac arrhythmias. One of the major determinants of
cellular EAD production and repolarization failure is the size of the overlap region
between Ca?*t channel activation and inactivation, called the window region. In this
article, we interpret the role of the window region in terms of the fast-slow structure of
a low-dimensional model for ventricular action potential generation. We demonstrate
that the effects of manipulation of the size of the window region can be understood
from the point of view of canard theory. We use canard theory to explain why enlarging
the size of the window region elicits EADs and why shrinking the window region can
eliminate them. We also use the canard mechanism to explain why some manipulations
in the size of the window region have a stronger influence on cellular electrical behavior
than others. This dynamical viewpoint gives predictive power that is beyond that of the
biophysical explanation alone while also uncovering a common mechanism for
phenomena observed in experiments on both atrial and ventricular cardiac cells.

Author summary

EADs are pathological voltage fluctuations that can occur during the plateau or
repolarizing phase of cardiac action potentials. The EADs of single cells, when
embedded in a network of cardiac tissue, can lead to deadly cardiac arrhythmia.
Because of this, many experimental and theoretical investigations have been conducted
to uncover the biophysical and dynamical origins of EAD genesis. A recurring finding is
that suitable changes in the properties of the inward L-type calcium current are
sufficient for EAD production. A particularly important property of the L-type calcium
current, with respect to EAD production, is the size of its window region. In this work,
we use a novel geometric approach to analyze the role of the window region in cellular
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electrical dynamics using a low-dimensional ventricular action potential model. We
illustrate the mechanism underlying window region-induced EADs, and demonstrate
how the number of EADs produced can be predicted, using dynamical systems
techniques together with canard theory. These techniques allow us to explain precisely
why the model reproduces myriad experimental observations while also allowing us to
make the testable predictions that either advancing the activation rate or slowing the
inactivation rate of the L-type calcium current—changes that would reasonably be
expected to increase its active duration and the likelihood of EADs—should, instead,
reduce its active duration and the likelihood of EADs.

Introduction

Early afterdepolarizations (EADs) are pathological small oscillations in the membrane
potential that can occur in the plateau or repolarization phase of cardiac action
potentials (Fig. 1b). These EADs prolong the action potential (AP) and can lead to
arrhythmias such as tachycardia or fibrillation [145]. The origins of EADs and
EAD-induced arrhythmia have been the focus of many experimental and theoretical
studies which have been performed in isolated myocytes [4,6H8] and in cardiac

tissue [9H11], and much has been learned from these studies regarding the potential
mechanisms underlying the abnormal electrical behavior. It is now clear that one
mechanism for EADs is an abnormally broad “window region” in the L-type Ca?*t
channels [9,/12}[13]. This window region is the range of voltages where the channel
activation and inactivation curves overlap (Fig. 2a). If this region is abnormally large,
then the Ca?* current remains active at plateau voltages and thereby contributes to the
formation of EADs.

Fig 1. EADs in cardiac AP simulations. Cardiac APs can exhibit EADs in
response to changes in the gating properties of L-type Ca?* channels. (a) A simulated
cardiac AP without EADs. (b) An AP exhibiting two EADs (red arrow markers) has a
significantly prolonged duration.

The importance of the Ic,. 1, window current in EAD production was studied in a
hybrid manner through the use of the dynamic clamp technique [14./15]. This allows for
the injection of an ionic current into a cell where the properties of the current are set
using a mathematical model (see [16] for review). In the dynamic clamp studies of
EADs, the L-type Ca?* channels were blocked with nifedipine and then a model L-type
Ca?* current introduced using dynamic clamp. Using this approach, EADs evoked by
H50O5 were recapitulated by simultaneously shifting both the activation and inactivation
curve of model I¢, 1, to enlarge the window region [14]. In [15] it was shown that
opening the window region by translating the model Ca?* channel activation curve
leftward and inactivation curve rightward by the same amount (termed a “symmetric
opening” in [15]), reliably produced EADs in otherwise unaltered atrial rabbit and
human cardiomyocytes. As was noted in both studies, these results are significant not
only because they demonstrate the importance of the window region in EAD
production, but also because with this approach the EADs are purely electrical. That is,
they do not involve Ca?*-activated Ca?T release (CICR) from the sarcoplasmic
reticulum since there is no Ca?* entry (the L-type channels have been blocked and the
current introduced by dynamic clamp is carried by ions other than Ca?*). This is an
important clarifying result, since it has been shown that EADs can be produced
through CICR [17.[18], and using dynamic clamp as was done in [14L]15] allows one to
focus in on the purely electrical EADs.

In addition to showing that symmetric opening of the window region facilitates
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EADs (and symmetric closing eliminates them), [15] showed that EADs could be
produced by only translating the channel activation curve leftward or only translating
the channel inactivation curve rightward (an “asymmetric opening” of the window). In
fact, it was shown that translating the activation curve is more effective than
translating the inactivation curve. The intuition behind this result is that it is more
important for EAD production to activate the Ca?* channels at low voltages than to
keep them from inactivating at higher voltages.

It was also shown in [14] and [15] that narrowing the Ic, 1, window region can
abolish pathological rhythms produced by experimental manipulations that leave the
window region unchanged. In [14] it was shown that the EADs produced through
hypokalemia, the reduction of the extracellular K* concentration, [K*],, could be
abolished by narrowing the computer-generated Ic,. 1, window region through either
right shifts in the activation curve or left shifts in the inactivation curve. In [15], it was
shown that EADs and non-repolarizing APs were produced by increasing the maximal
conductance of computer-generated Ic,.1,, and these rhythms could be countered by
symmetric narrowing of the window region. These results make the point that the
absolute size of the window region is not what matters; what matters is the size of the
window in the context of other cellular parameters.

While the dynamic clamp studies together provide a systematic examination of how
the size of the window region and the shifts of Ca?* channel activation/inactivation
curves affect purely electrical EADs, they provide no insight into the effects that these
manipulations have on the dynamics underlying EADs. The electrical activity of
cardiomyocytes is determined by nonlinear interactions of several ionic currents,
described mathematically by nonlinear ordinary differential equations. Manipulating
the window region changes parameters in these equations that cause EADs to occur,
but how? Surely this is a generic property of the electrical system, since it has been
demonstrated in both ventricular and atrial myocytes of both rabbits and humans.
Because it is generic, it should be obtainable with low-dimensional models that include
key ionic currents such as Ig..;, and KT current for repolarization of the AP. Such a
model need not contain all the ionic currents found in myocytes, since these differ across
species and between ventricular and atrial myocytes, yet the EAD behavior is produced
by similar manipulations in each.

In this study, we determine why opening the window region facilitates EADs using a
low dimensional model for a cardiac AP, consisting of four variables. After
recapitulating the experimental results described above, we uncover the dynamic
mechanism underlying these results. That is, we show why both symmetric and
asymmetric opening of the window produces EADs, and we show why shifting the Ca?*
activation curve is more effective than shifting the inactivation curve. Finally, we show
how and why changes in other parameters of the Ca?t current, such as its maximal
conductance and activation/inactivation time constants, affect EAD production. Our
mathematical analyses (i) reproduce the results of dynamic clamp experiments and (ii)
produce novel predictions that can be tested in future dynamic clamp experiments.

The mathematical analysis required to understand the EADs produced by the
low-dimensional model is geometric singular perturbation analysis, also called fast-slow
analysis (see [19] for review and [20] for a more extensive discussion). This takes
advantage of a separation of timescales between those variables that change on a fast
timescale (two variables in our case), and those that change on a much slower timescale
(the other two variables). We used this model previously to demonstrate the dynamical
mechanism of EADs [21], and we and others have used fast-slow analysis to analyze the
dynamical basis of EADs with other low-dimensional models [22H26]. The particular
model used affects the details of the phenomenon, some of which can be quite significant
(e.g., whether APs are produced only through stimulation or produced intrinsically in a
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periodic fashion). However, the use of low-dimensional models rather than more
biophysically accurate models [27-29] is motivated by the generic nature of the EAD
behavior, and the fact that low-dimensional models can be analyzed much more
effectively than high-dimensional models, as we demonstrate here.

Methods
The modified Luo-Rudy I model

The full Luo-Rudy I model [30] includes 6 voltage-dependent transmembrane ionic
currents and a single variable accounting for the intracellular Ca?* level. The inward
currents include a spike-producing Na™ current (Iya,), an L-type Ca?* current (Iga.1),
and a constant conductance background current (I},). The outward currents include a
delayed rectifier KT current (Ik), an extracellular [K™]-dependent KT current (Ik1),
and a high-threshold K current (Ik;). Together, the Luo-Rudy I model contains 8
coupled nonlinear ordinary differential equations.

Our analysis, however, utilizes a reduced Luo-Rudy I model that only contains
elements for the electrical component. This facilitates the mathematical analysis, and
allows us to demonstrate that even a simple model can account for the findings of the
dynamic clamp experiments [14}/15] that are the focus of this study. The modified
model does not include equations for the intracellular Ca?* concentration, because in
the dynamic clamp experiments Ca?* influx was pharmacologically blocked. Also, since
the model Na™ current rapidly inactivates for V' > —40 mV, i.e., Ina ~ 0 when EADs
occur, this current is also excluded.

The modified model contains the following differential equations for the membrane
electrical dynamics:

dVv

Cma = —Icar + Ix + Ix1 + Ixp + Ip) + Istim
dd  do(V)—d
at (V)
df  fu(V) = f )
dt Tf(V)
dzr z(V)—=z
at (V)

with ionic currents given by

Icar = gcad f(V — Vca)
Ix = gk Xi 0o (V) (V = Vi)
Ix1 = gr1 Ki,00(V) (V — Vk1) (2)
Ixp = gip Kp,oo (V) (V = Vi1)
Iy =g, (V-W)

Here, C}, is membrane capacitance and Iy, is a time-dependent mollified square-wave
stimulus current with amplitude 70 uA/cm? and 2 ms duration. Each transmembrane
ionic current is formulated using the standard Hodgkin-Huxley formalism for excitable
membranes [31,/32]. For example, in the expression for the Ca?* current (Ica.r), gca is
the maximal conductance, a parameter; the dynamic variables d and f are the open
fraction of activation and inactivation gates, respectively, of all voltage-gated Ca?*
channels; and (V' — V(,) is the driving force for ion flux, where Vi, is the reversal
potential for Ca2*.
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The « variable, which appears in the expression for Ik, denotes the (slow) activation
of this current. Each of the steady-state activation and inactivation functions, je (V)
for j =d, f,z,X;,Ky, and K, are increasing and decreasing sigmoids, respectively. We
use upper-case letters to denote quantities that adjust instantaneously to variation in V'
and thus remain at quasi-equilibrium. The time constants, 74(V) and 7,(V'), are
bell-shaped, while 7;(V') is strictly increasing. The magnitudes of the time constants
govern how quickly the companion gating variable adapts to changes in V. Small (large)
values of 7;(V), j = d, f, x represent rapid (slow) adaptation. We refer the reader to [30]
for the full model formulation.

All parameter values are identical to those used in [30], with the exception of the
default maximal Ic,.1, conductance, gca, which is set at 0.112 mS/cm? to facilitate
EAD production. Some parameter values are varied to examine robustness of behaviors,
and this is stated explicitly in the text of figures. Under all relevant parameter
variations, the model (absent Igim) possesses a stable equilibrium, Ey, which
functions as the cell rest state. Under parameter sets that are capable of producing
EADs, possesses two additional equilibria, Fs and FE3, which are located at elevated
membrane potentials. The equilibrium F, can be either an unstable or stable spiral in
parameter regions that produce APs with EADs, while F5 is always an unstable saddle
point. The computer programs used to generate the results herein are available at:
[www.math.fsu.edu/~bertram /software/cardiac}

Model ¢, 1, and modifications of its “window region”

The manuscript focuses primarily on model responses to translations in the steady-state
I, activation and inactivation functions, d.o (V) and foo (V'), respectively. The region
where these two curves overlap has been termed the “window region” 9] (see Fig. 2a)
and it has been implicated in the generation of EADs. Figure |2 shows plots of de (V)
and foo (V) under the default parameter set (black curves). In Fig 2a, the window
region is increased by either (or both) translating d (V') leftward or translating foo (V)
rightward. In Fig. 2b, the window region is reduced by translating d, (V') rightward or
translating foo (V) leftward.

Fig 2. Schematic of symmetric broadening and narrowing of the Ic,.1,
window region. (a) A left shift in d. (V') and a right shift in foo (V) (red curves)
increases the area (filled with vertical red lines) under both curves as compared to the
default setting (black curves with area colored with vertical gray lines). (b) A right
shift in deo (V') and a left shift in foo (V') (green dashed curves) narrows the window
region. The default area is colored gray and the reduced area is colored green.

Both doo (V') and foo (V) are sigmoidal in V', and are parameterized by their
steepness and by the value, V', of half-activation and half-inactivation, respectively.
Translation of each curve is accomplished by varying its half-activation/inactivation
value. For clarity and consistency with experimental works, we discuss variation in the
half-activation/inactivation values of the curves with reference to the default parameter
set and denote the direction and magnitude of variation in the half-activation value of
deo (V), for instance, by AV] 5(deo). We similarly denote translations in fo. (V) by
AVi/2(fso). We also note that the enlargement of the window region in Fig. 2a and the
narrowing of the window region in Fig. 2b are symmetric with respect to the direction
and magnitude of the translation in each curve. That is, the translations of both curves
in each panel are equal in magnitude, but opposite in sign (i.e., for Fig. 2a,
A%/Q(foo): 'A‘/I/Q(doo))
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Results

Symmetric enlargement of the model window region can
produce EADs

Previous experimental and mathematical studies of EADs have concluded that most
EADs occur while voltage is within the interval where the activation and inactivation
curves (doo(V)and foo (V'), respectively, in our model) of I¢, 1, overlap, termed the
“window region”. The experimental work [15] showed that symmetric enlargement of the
window region can lead to EADs as well as the inability of the cell to repolarize (see
Fig. 5 of [15]) in response to low-frequency periodic pacing.

Representative responses of the model cell to symmetric broadening of the I¢,.r,
window region are shown in Fig. [3] Figure 3a shows a sequence of symmetric
translations of both the steady-state activation and inactivation curves, which enlarge
the window region. The green curves denote the default state of the model window
region (AV)/2(de) = AV /2(foo) = 0 mV), while the black curves denote the largest
translation depicted (AV)/2(doo) = -3.12 mV and AV} 5(foo) = +3.12 mV). Figure 3b
shows color-coded voltage traces of the corresponding model responses to a single
stimulus pulse under each translation condition from Fig. 3a. The green voltage trace
shows the standard cardiac action potential without alteration. The orange trace shows
a slightly prolonged action potential in response to a small symmetric enlargement of
the window (AV;/, = 1.04 mV), but no EADs. The red trace shows that a larger
translation (AV /3 = 2.08 mV) elicits two EADs, which prolong the duration of the
action potential dramatically. Finally, the black trace shows that a sufficiently large
increase in the size of the window region (AV}/5 = 3.12 mV) leads to repolarization
failure, where the cell remains at a depolarized voltage.

Fig 3. A sufficiently large symmetric broadening of the window region can
lead to EADs and repolarization failure in response to a stimulus pulse. (a)
An equally-spaced sequence of three color-coded symmetric window broadening
translations in do (V') and foo (V') (orange, red, and black curves) are shown alongside
the default curves doo (V) and foo (V) (green). The magnitudes of each of the
simultaneous changes to both AV} /5(dse) and AV /5(foo) are shown in the legend. (b)
The color-matched model responses correspond to the manipulations in panel (a).

Left shifts in the activation curve are more effective at
facilitating EADs than right shifts in the inactivation curve

Using the dynamic clamp technique to inject a model Ca?* current into a
cardiomyocyte, it was shown that simultaneous broadening of the window region by
shifting both the Ca?* current activation and inactivation curves facilitates EAD
production and repolarization failure [14,[15]. Translations in either the activation or
inactivation curves, but not both, were also examined. It was determined that
left-translations in the activation curve alone were a more potent driver of EADs and
repolarization failure than right-translations in the inactivation curve alone [15]. That
is, using equal-in-magnitude translations of each curve in separate trials,
left-translations in de (V') more often led to EADs and repolarization failure than did
right-translations of foo (V).

To test this experimental finding with the modified Luo-Rudy model, we first
applied left-shifts of the Ca%* activation curve, d.,(V'), of magnitudes such that the
first shift (AV;/3(dse) = —1.8 mV) resulted in a longer action potential, the second
(AVy/2(de) = —3.6 mV) resulted in an action potential with two EADs, and the third
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shift (AV}/2(dee) = —5.4 mV) resulted in repolarization failure. That is, the magnitude
of the shifts were chosen so that the responses mimicked those of Fig. [3] These are
shown in Figs. 4a, 4b. We then applied right shifts of the same magnitude to the Ca?*
inactivation curve, foo (V). These translations and the responses are shown in Figs. 4c,
4d. In this case, EADs are only produced with the largest translation (AV;/s(fs) =5.4
mV), and none of the translations result in repolarization failure. Thus, the left shifts in
doo (V') are more potent than equal right shifts in f. (V) at evoking EADs and
repolarizaiton failure, as was shown experimentally in [15].

Fig 4. Left shifts in the Ca?* current activation curve are more effective at
inducing EADs and repolarization block than right shifts in the
inactivation curve. (a) Three equally-spaced left shifts in d, (V) (ordered orange,
red, then black) are shown, while leaving f. (V) (dashed, black) unchanged. As in
Fig. [3| green denotes the default. The shifts are given in the legend. (b) The model
responses to the left-translations shown in (a) mirror those of Fig. 3b: sufficiently large
translation induces two EADs (red trace) and the largest translations lead to
repolarization failure (black trace). (c) Right shifts in fo (V') of equal size to those of
(a). (d) The model responses to increasing AV; /5(fs) are less severe than those of
equally-sized changes in AV} 5(dwo): the largest change in AV} j5(foo) produces EADs
(black trace) instead of repolarization failure.

Enlarging the model window region generically leads to EADs
and repolarization failure

In this section, we quantify the effectiveness of activation/inactivation curve shifts in
inducing pathological behavior by examining combinations of the shifts, AV} 5(do) and
AV75(fso), that produce EADs or repolarization failure. This is organized using a
two-dimensional grid in AV; 5(ds) and AV 9(foo), noting that left-shifts in doo (V')
induce EADs, while right-shifts in fo (V) induce EADs. Moving leftward along the
AV /5(dso)-axis (to negative values) in Fig. |5 corresponds to left shifts in do(V), while
moving upward along the AV} /5 (foo)-axis (to positive values) corresponds to right shifts
in foo (V). To determine model behavior at each point in the 300 x 300 grid of
parameter values, the model was integrated for 10,000 ms at each point using the stable
rest state as initial condition. In each case, a supra-threshold pulse of current of
amplitude 70 pA/cm? was applied for 2 ms to initiate an AP.

The light green region in Fig. [f] labeled “No EADs”, shows parameter values that
produce action potentials without EADs. These solutions may, however, exhibit
prolonged action potentials (e.g., orange trace, Fig. 4b). The white region, labeled
“Repolarization Failure”, denotes the region of parameter combinations that produce
solutions that remain in the depolarized state in response to the stimulus pulse (e.g.,
black trace, Fig. 4b). The red region denotes those parameter combinations that
produce solutions that contain EADs, but return to rest following the pulse (e.g., red
trace, Fig. 4b). A dashed curve is superimposed on the figure denoting the path in the
(AVi/2(doo), AVij2(foo))-plane used to produce Fig.[3| The sequence of parameter sets
shown in Fig. 3| are marked with color-matched disks: the green disk signifies the default
parameter set, the red disk (within the blue “¢” marker labeled “(b)”) lies within the
“EADs” region, and the black disk lies in the “Repolarization Failure” region.

The red “EADSs” region possesses finer structure than the light green or white
regions. Increasingly darker shades of red are used to indicate incremental increases in
the number of EADs produced: 6 or more EADs are produced within the darkest shade
of red, and some parameter combinations in this region produce solutions with as many
as 40 EADs. The diagram shows that variation in the number of EADs elicited in this
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Fig 5. Model responses to a single depolarizing pulse over a uniform grid
in the (AV;/2(dw), AVy/2(fx)) pParameter plane (units in mV). The green
region, labelled “No EADs”, denotes solutions that do not exhibit EADs before
returning to rest. The white region, labelled “Repolarization Failure”, denotes solutions

that can exhibit EADs around an elevated membrane potential, but remain depolarized.

The red region, labelled “EADs”, contains solutions that exhibit EADs and return to
rest at the end of the action potential. Darker shades of red in this region denote
increasing numbers of EADs in response to the pulse. The dashed blue line segment
gives the path in parameter space that corresponds to symmetric window-broadening.
Green, red, orange, and black disks along this path correspond to the specific parameter
values that produce the color-matched window regions and model responses shown in
Fig. [3] Blue ¢ markers labeled 7a, 7b, 7c and 9a, 9b, 9c are parameter sets whose
solutions are viewed in (f, , V') phase space in Figs. m and |§|, respectively. The slope
(>1) of the green curve, which marks the boundary between the “No EADs” and
“EADs” regions, explains why left shifts in d. (V') are a more reliable source of EAD
production than right shifts in fo (V).

red region is organized into bands that gradate the transition from “No EADs” to
“Repolarization Failure” and that the size of the bands declines corresponding to more
EADs. That is, the red “EADs” region is dominated by solutions exhibiting few, rather
than many, EADs. This finding predicts that action potentials with relatively few EADs
should be more readily observed in experimental settings, as does indeed seem to be the
case in published voltage traces from isolated myocytes |7}|14},/15].

The finding (both in the model and experimentally) that EADs are produced more
effectively by left shifts in do (V') than right shifts in foo (V) is evident in Fig. The
curve that separates the “No EADs” region from the “EADs” region (green line) is
approximately linear with slope s ~ 1.34. Because the slope is greater than 1, it takes a
larger change in AV} /5(fo) than in AV)/5(ds) to move from a parameter combination
producing a pure action potential to one producing an action potential with EADs.

We can also use the slope of the green EAD boundary curve to make predictions
about the potential therapeutic effects of window-shrinking shifts in either d. (V) or
foo(V). Because the slope is greater than 1, the horizontal (rightward) distance from
any point in either the “EADs” (red) or “Repolarization Failure” (white) regions to the
green boundary between the “EADs” and “No EADSs” regions is always smaller than
the vertical (downward) distance. Thus, small window-shrinking translations in d (V)
should be a more reliable therapeutic target than small window-shrinking translations of
foo (V) for the elimination of pathological rhythms (EADs or repolarization failure)
induced by an enlarged window region.

An additional feature of the diagram that would not be readily discernible from
either experiments or simulations is that the “EADs” region (bounded between the
green and black curves) grows in width for increasing values of AV; /5(fs) but, shrinks
in width for decreasing values of AV} /3(ds ), even though both of these manipulations
enlarge the window region. This feature of the diagram arises from the fact that the
slope of the (almost linear) black curve, marking the boundary between the “EADs”
and “Repolarization Failure” regions, has an even larger average slope than that of the
green boundary curve. This feature of the grid makes the experimentally testable
prediction that the transition of a cell from EADs to repolarization failure should also
occur for smaller window-enlarging shifts in do (V') than foo (V). That is, given a cell
exhibiting EADs due to an enlarged window region, small increases in the magnitude of
AV 5(dso) should be more likely to lead to repolarization failure than small increases in
AVi2(foo). In addition, this predicted disparity between the effects of AV;/5(doo) and
AV /5(fs) in producing repolarization failure should be more pronounced than the
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disparity observed for the production of EADs shown in Fig. [

Fast-slow analysis reveals a mechanism for EAD generation

We have seen that broadening the Ic,.1, window region can lead to EADs and
repolarization failure. Here we explore why, using a fast-slow analysis. Fast-slow
analysis splits a model into (simpler) lower-dimensional subsystems in order to analyze
these subsystems semi-independently and stitch together the results. In [21], we showed
that possesses a multi-timescale structure. This structure is reflected by the rapid
upstrokes and downstrokes of the AP, with long depolarized plateau (Fig. 1b).
Specifically, we showed that the 4-dimensional model contains fast variables V' and d
(voltage and Ic,.1, activation), and slow variables f and = (I¢a.1, inactivation and Ik
activation). The parameter C,, approximately characterizes the timescale separation,
with Cy, — 0 (termed the singular limit) yielding the decomposition of into separate
fast and slow subsystems (see [21] for details).

With our (2,2)—fast-slow splitting, the 2-dimensional fast subsystem

dv
e —(Icar + Ik + Ix1 + Ixp + It)

dd  do(V) —d
dat (V)

df
dt
dx

dt

Cnm

=0
=0

is an approximation of the fast motions of (see Fig. [6] double arrows) in which the
slow variables, f, and x, are treated as parameters. The time-dependent forcing, Istim,
is dropped from the V-equation because Ism ~ 0 after the stimulus has been applied.
The equilibria of (traced out by independent variation in f and z) form a
2-dimensional surface, called the critical manifold. Figure [f] shows two views of the
EAD-containing voltage trace from Fig. 3b in (f, x, V) phase space and superimposed
on the critical manifold. The critical manifold is comprised of attracting (S{'* and

Sy’ , blue) and saddle-type (S§, red) sheets that are connected by curves of fold points.

Only the upper fold, L (green), falls within the physiologically relevant domain (the
lower curve is out of the frame of the figure, so not visible). The stability properties of
the critical manifold are determined by linear stability analysis of the fast subsystem.
The true equilibria, F1, Fs, and Fj3 of the full system persist as equilibria of the fast
subsystem . While Es, under this parameter set, is a stable spiral of the full flow
(ie., for Cy, = 1 uF/cm?), it becomes a saddle point (located on S§) of the fast
subsystem (i.e., for Cy, = 0 uF/cm?). We note that there are no Hopf bifurcations
in the fast subsystem, so EADs do not arise as oscillations in the fast subsystem as they
do in previous works (e.g., [22]).

The 2-dimensional slow subsystem

0=—carL+ Ix + Ix1 + Iy + L)

) V) —d
Td(V)

Ao fulV) - (1)

dt Tf(V)

dr 2 (V)—=z

a - Tx(v)

October 16, 2020

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305



Fig 6. Two views of the EAD-containing voltage trace from Fig. 3b
superimposed on the critical manifold in (f,z, V') phase space. (a) (z,
V)-dominant view. (b) (f, V)-dominant view. The superimposed solution (black) is
comprised of: 1) a fast upstroke (cyan double arrows) caused by a stimulus pulse
applied at rest (stable equilibrium E4), 2) slow evolution (single arrow) along the upper
attracting sheet of the critical manifold, S " (upper blue surface), during the plateau
phase, 3) oscillatory EADs (unfilled arrows) near the fold curve, L (green), 4) fast
transition (double arrows) toward the lower attracting sheet, Sg’~, and 5) slow return
(single arrow) to E; along Sg'~ . The folded node singularity (FN, purple marker), a
pseudo-equilibrium of the slow subsystem, lies within L; its associated singular strong
canard, 7J (magenta), a special solution of the slow subsystem, together with L, bounds

the region of solutions of the slow subsystem, that are funneled through the folded node.

Parameter values: AV]/5(doo)= -AV)/2(foo)= -2.08 mV.

is an approximation of the slow motions of (see Fig. |§|, solid single arrows) in which
V and d are assumed to be at quasi-equilibrium. Hence, solutions of the slow subsystem
are slaved to the critical manifold.

To understand the trajectory of the full model , one can concatenate orbit
segments from the fast and slow subsystems. This is only an approximation, however,
and as we see below neither the fast nor the slow dynamics independently explain the
EADs. The fast and slow motions are denoted using single and double arrows,
respectively. A sufficiently strong stimulus pulse applied to the rest state, Ej(on Sy~ ),
triggers a rapid excursion toward S i+ (cyan double arrows denote that this motion is
the result of a depolarizing pulse). Once near Sy "+, the solution moves slowly as it
follows Sg o+ closely during the plateau phase, toward the fold, L. The oscillations that
occur near L are the EADs. Once several of these have occurred, the trajectory moves
rapidly toward Sg’~. It then follows Sy~ closely as it moves slowly back towards the
rest state, E.

The unfilled arrows along the oscillatory EAD portion of the solution indicate that
this motion is neither strictly fast nor slow. Indeed, it is precisely at the fold curve L
where the fast-slow approximation breaks down. That is, the fold marks the transition
boundary between the non-overlapping regions of validity for the fast and slow
subsystem approximations.

Without a fast subsystem mechanism for the generation of EADs, we turn to further
inspection of the slow subsystem. The general procedure for this analysis can be found
in the review article [33] and the details for the particular case of the slow subsystem
can be found in [21]. Here, we summarize the key elements. Solutions of the slow
subsystem, when initiated on Sg "+ flow toward the fold curve. Upon reaching the fold,
these solutions typically transition to the fast subsystem dynamics, so the trajectory
quickly moves from the top sheet S "+ to the bottom sheet Sy’ . However, there may
exist distinguished points on the fold curve called folded node singularities [34] (Fig. [6}
purple marker, “/'N”) at which solutions can cross from Sj * to S§, remain governed
by the slow subsystem dynamics, and follow S§ for long times. Such solutions are
known as singular canards. Given the presence of a folded node singularity, there is a
special singular canard that acts as a boundary along Sy "+ between solutions that, upon
reaching the fold, either funnel through to the folded node or transition to the fast
dynamics. This special singular canard is called the singular strong canard (Fig. @ W,
magenta).

For C), > 0, singular canards become solutions of the full model with similar
properties, i.e., they remain near S§ for long times on the slow time scale [33}35]. These
solutions are called canards and they are the basis for EADs, as demonstrated in [21].
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Canards explain the emergence and number of EADs

Many features of the slow flow persist in the flow of the full system of equations
provided there is sufficient timescale separation between fast and slow variables.
Theoretical justification for this persistence is provided by Fenichel theory [36437].
Specifically, Fenichel theory guarantees that the attracting and saddle-type sheets of the
critical manifold, outside the vicinity of the fold curve, perturb smoothly to nearby slow
manifolds under the flow of the full system, with their local attraction properties
perturbing smoothly as well. In turn, the (slow) flow on these sheets is a smooth
perturbation of the slow subsystem flow.

Near the folded node, the relationship between the slow subsystem flow and that of
the full system is more intricate, and is described by canard theory [33H35.[38]. In
particular, canard theory holds that in the neighborhood of the folded node, under the
full system flow, the attracting and saddle-type sheets perturb to slow manifolds that
(approximately) twist around the weak eigendirection of the folded node [33,39]. This
twisting allows the slow manifolds to be partitioned into rotational sectors, each of
which oscillates around the weak eigendirection of the folded node a fixed number of
times. The boundaries between different rotational sectors are curves called mazimal
canards. The first maximal canard, the boundary between the rotational sector that
does not oscillate near the folded node (the left half of the upper attracting sheet) and
the sector that oscillates once, is called the primary mazimal canard.

Maximal canards have been shown to be objects of key importance in determining
whether, and what kinds of potentially erratic, EAD rhythms are evoked in
low-dimensional variants of the Luo-Rudy model in response to changes in ion channel
expression and chemical composition of the cellular environment [21}24,25]. The
primary maximal canard () is the perturbed analog of the slow subsystem singular
strong canard (1) and is, therefore, the boundary between standard action
potentials—to its left—and those that exhibit EADs or repolarization failure—to its
right. A solution that enters the rotational sector between the primary maximal canard,
70, and the maximal canard, 71, exhibits one canard-induced EAD; a solution that
enters the rotational sector between maximal canards 7; and 7s exhibits two
canard-induced EADs; so, in general, a solution that enters the rotational sector
between ~,, and ,,+1 exhibits n canard-induced EADs.

Figure [7] shows key structures in phase space for responses that exhibit no EADS
(Fig. 7a), EADs (Fig. 7b), and repolarization failure (Fig. 7c). Parameter values for
these behaviors are marked with ¢ in Fig. [5]labeled 7a, 7b, and 7c. Each panel shows
the critical manifold and its stability properties along with the first three maximal
canards (70, magenta; 1, cyan; 7ys, orange), computed using numerical continuation
and bifurcation software AUTO [40] and methods developed in |41] which are described
for this system in [21]. Also superimposed are portions of the solution segment of the
full system (I, black) following an impulse-producing stimulus.

In Figure 7a, the solution segment (I", black) evolves closely along the critical
manifold, and since it lies to the left of the primary maximal canard it does not exhibit
EADs. Instead, it returns to the repolarized rest state to complete the action potential.
However, the close proximity of I' to 7y extends the duration of the plateau phase of the
action potential evident in the orange traces of Fig. 3b and Fig. 4b. We note that the
equilibrium, E», is unstable for this choice of parameters (AV] 2(doo) = -AV12(foo) =
-1.83 mV).

A solution segment with two EADs is shown in Fig. 7b (red). The solution segment
(T, black) lies to the right of vy (magenta) and between ~; (cyan) and v (orange), so
that two small oscillations are produced, as predicted by canard theory. The
equilibrium, Es, is stable for this parameter set (AV)/3(doo) = -AV) j2(foo) = -2.08
mV), but I simply does not enter its basin of attraction. However, E2 possesses a pair
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Fig 7. Maximal canard locations in (f,z,V) phase space mediate the
transition from standard action potentials to repolarization failure and
determine EAD number under symmetric /c,.1, window region
enlargement. (a) Local phase space for marker 7a in the “No EADs” region of Fig.
(AVi/2(des) = -AV2(foo) = -1.83 mV). The pulse-induced solution segment, I' (black),
lies to the left of the primary maximal canard, 79 (magenta), and does not exhibit
EADs. (b) Local phase space of marker 7b in the 2 EAD band of the “EADs” region of
Fig. |5 (AV} j2(doo) = -AVi2(foo) = -2.08 mV). The solution segment lies within the
rotational sector between maximal canards v; (cyan) and -, (orange) and exhibits two
EADs. (c) Local phase space for marker 7c in the “Repolarization Failure” region of

Fig. |5 (AV}2(doo) = -AVi2(foo) = -2.33 mV). The solution segment spirals toward

stable equilibrium E», failing to return to rest. Attracting (Sg o+, blue) and saddle-type

(5§, red) sheets of the critical manifold meet at the fold curve, L (green). Parameter
values used are listed in each panel.

of complex conjugate eigenvalues (A & wi) which, in the vicinity of Es, predict an
oscillatory period (27 /w) of ~ 340 ms. The duration of the first and second EADs are
~ 386 ms and ~ 340 ms, respectively.

Figure 7c shows a case in which there is repolarization failure since the trajectory
enters the basin of attraction of E5 and remains depolarized. The spiraling reflects the
fact that Fs is a stable spiral equilibrium of the full system.

This analysis suggests that the responses of the model cell to window-enlarging
manipulations are determined by how the manipulations affect the maximal canards in
phase space. Pathological oscillatory dynamics are brought about by manipulations that
translate the maximal canards leftward (in the increasing x-coordinate direction)
relative to the solution trajectory, so that the solution trajectory enters the funnel
region to the right of the primary maximal canard. Enlargement of the Ic,.1, window
region can make this happen, leading to EADs or repolarization failure.

Why left shifts of the /¢, 1, activation curve are more effective
than right shifts of the inactivation curve at evoking EADs

We have shown that maximal canards mediate the transition from standard action
potentials, through EADs, to repolarization failure in phase and parameter space under
symmetric window enlargement. We now examine why left-shifts in the Ic, 1, activation
curve are more effective than right shifts in the inactivation curve at producing EADs
and repolarization failure. This should be explainable in terms of the primary maximal
canard, which is the border (in phase space) of the funnel region for EADs. What
effects do equally sized shifts of the activation curve do, (V) and inactivation curve
foo(V) have on the primary maximal canard?

Figure 8a shows a phase-space view with the critical manifold and the primary
maximal canard 7y (magenta) prior to a shift in the activation/inactivation curves.
When the Ca?* channel activation curve is left shifted by 3.6 mV (AV; j5(doo)= —3.6
mV) the primary maximal canard moves leftward in phase space, as indicated in the
figure. An equal right shift in the inactivation curve (AV)/3(fe)= 3.6 mV) also moves
o leftward, but not as far. The figure also includes a portion of the trajectory during
the action potential plateau (I', black) with and without a shift in either the activation
or inactivation curve. It is apparent that the shift in these curves has very little effect
on this portion of the trajectory (the three black segments are very close together),
however with the shift in the activation curve the trajectory enters the funnel and will
exhibit EADs, while with the equal shift of the inactivation curve it will not. Thus, the
reason that EADs are facilitated more by left shifts in the activation curve than right
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shifts in the inactivation curve is that the primary maximal canard is affected more by
the former maneuver than the latter.

To make these arguments more precise, in Fig. 8b we introduce a quantity, J, that
measures the signed distance between a point on the pulsed solution I' (that also lies on
the slow manifold corresponding to Sy ’+) and the primary maximal canard, g, as a
function of the shift magnitude, |AV} 5|, in either doo (V') (purple curve) or foo (V)
(orange curve). Positive values of ¢ indicate that T' lies to the left of v (no EADs),
while negative values of ¢ indicate that ' lies to the right of vy (EADs or repolarization
failure). Zeros of ¢ indicate that I' coincides with 7o and is the boundary between
action potentials with and without EADs; zeros correspond to points on the green
boundary curve in Fig. 5l The locations of the zeros of § are unaffected by the point on
I (that coincides with the slow manifold) from which the measurements are made.

In agreement with Fig. 8a (and Fig. , we find that § decreases more rapidly for left
shifts in doo (V') (purple curve) than for right shifts in foo (V) (orange curve),
corresponding to more rapid leftward movement of vy toward I' under left-shifts in
doo(V'). As aresult, § crosses zero (near |AV] 5| ~ 3.45 mV) as |AV] 5| increases
toward 3.6 mV for do(V), while ¢ remains greater than 0 over the same range of
|AV1/2| for foo(V)

Fig 8. Left shifts in the Ca%?t channel activation curve move the primary
maximal canard further than equal right shifts in the inactivation curve.
(a) Three primary maximal canards corresponding to default (v, right, magenta),
right-shifted fo (V) (middle, magenta), and left-shifted doo (V') (left, magenta)
conditions are superimposed on the critical manifold of the default parameter set. Also
shown is a portion of the trajectory during the plateau phase of an action potential (T,
black) for each condition. These three trajectory segments are almost identical, but the
one corresponding to left-shifted do. (V') enters the funnel and will subsequently exhibit
EADs. (b) The distance, d, between I" and 7o declines faster with left shifts in do (V)
than with right shifts in foo (V).

A left shift in the Ic,. 1, activation curve narrows the parameter
range for EADs by constricting the maximal canards

One peculiar observation from Fig. [5|is that the EAD sector (in red) is narrow at the
bottom and wider at the top. This means that with a large left-shift in do (V') the
range of right-shifts in fo, (V') that can produce EADs becomes smaller. Why is this?
To address this question, we examine the maximal canards in phase space for three
values of AV /5(ds) (¢ markers in Fig. [5]). The first panel of Fig. |§| shows the situation
when the left-shift in do, (V) is not large enough to evoke EADs. In this case, the
trajectory segment lies to the left of vy and thus outside the funnel. In the second panel,
with a larger left shift, the trajectory lies between v, (cyan) and 72 (orange), so two
EADs are produced. In the third panel, the trajectory spirals into the equilibrium
Esand there is repolarization failure.

What is important to observe in Fig. [0]is that the spacing between the maximal
canards gets smaller for large left shifts in do (V). Thus, there is a constriction of the
region in phase space where EADs, rather than repolarization failure, are evoked.
Constriction of the phase space region where EADs are evoked also occurs with right
shifts in foo (V'), but the rate and severity are less pronounced. This too corroborates a
prediction from canard theory. In the singular limit, the ratio of the eigenvalues of the
folded node, p := Ay /As < 1, can be used to estimate how densely the secondary
maximal canards (71, 72, etc.) accumulate near the primary maximal canard (7o) in the
full system flow (see Propositions 3.5 and 3.6 of [38]). We find that p decreases more
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Fig 9. Maximal canards shift leftward and constrict with increasing left
shifts in do. (V). (a) At a value of AV)/5(ds) (= -3.35 mV) where no EADs are
produced (corresponding to ¢ marker 9a in Fig. |5) the trajectory lies outside the funnel
region for EADs. (b) With a somewhat greater shift in do. (V') (AV}/2(dso)= -3.6 mV),
corresponding to the ¢ marker 9b in Fig. [5] the trajectory enters the region between ~;
(cyan) and ~o (orange) and two EADs are produced. The maximal canards have shifted
leftward and are closer together than in the first panel. (¢) With an even greater
left-shift in doo (V') (AV)/2(doo)= -3.85 mV) the trajectory is attracted to equilibrium
Esand there is repolarization failure. With this greater shift the maximal canards are
even more constricted.

rapidly for left shifts in d, (V') than for right shifts in f.,(V'), which predicts that the
maximal canards will accumulate more densely on the primary maximal canard under
left shifts doo(V'), as we observe. It is for this reason that the EAD region in Fig. [5| is
narrow at the bottom and wider at the top.

Decreasing the size of the window region can compensate for
pathological conditions that promote EADs

While broadening the Ic, 1, window can lead to pathological electrical rhythms, it is
also plausible that pathological conditions can be compensated for by narrowing the
window. In vitro experiments with isolated cardiomyocytes and cardiac tissue have
shown that simulating hypokalemia by reducing the extracellular KT concentration in
the bath reliably elicits EADs [8l|11}[42L/43]. In [21], we showed that simulating
hypokalemia (by reducing the parameter [K*],) in the model also elicits EADs, due
to a canard mechanism similar to that described above. In [14] it was shown that
narrowing the Ic,.1, window in dynamic clamp experiments can overcome the effects of
low extracellular K* and eliminate the EADs. Can this also be explained by the model?

To investigate, we reduced the extracellular K* concentration parameter [K*], over
a range of values, which has the effect of increasing the K™ Nernst potentials, Vi and
Vk1, while decreasing the maximal conductances, gk and gki. We also translated the
Ca?T activation curve do.(V) over a range of values so as to evaluate the combined
effects of these maneuvers. The top panels of Figure [10] show the result. The green
marker labelled bl (Fig. 10a) shows that with the default [K™],(= 5.4 mM) and no shift
in doo (V) a standard action potential is produced (Fig. 10b). In fact, for any shift in
d (V) a standard action potential is produced. For lower values of [K*], (simulating
hypokalemia), EADs become possible if do (V) is left shifted. For a sufficiently low
value of [K*],, EADs occur even with no left-shift in do (V). This is the case with
[K*], = 2.0 mM shown with the red marker labelled b2 in Fig. 10a. With this
parameter combination two EADs are produced, greatly extending the duration of the
action potential (Fig. 10b). However, if do (V') is then right shifted (AV;/5(deo) = 0.75
mV), to the orange point labelled b3 (Fig. 10a) the EADs are eliminated, yielding an
action potential of almost-normal duration (Fig. 10b). Thus, right shifts in d (V') can
eliminate the EADs brought about by hypokalemia in model simulations.

Figures 10c and 10d show a similar scenario, but in this case left-shifts in fo. (V') are
used to narrow the Ca?* current window. Starting from the default value of [K*], and
with no shift (green point d1), simulated hypokalemia brings the system into the EAD
region (red point d2). Applying a left-shift to foo (V') of AV} 3(foo)= —0.75 mV
eliminates the EADs (orange point d3). Thus, both window-narrowing maneuvers
produce the desired result of eliminating hypokalemia-induced EADs. Because the EAD
region is smaller in Fig. 10a than in Fig. 10c, it would generally be more successful in
the model to eliminate EADs in conditions of hypokalemia with shifts in do (V') than
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Fig 10. Narrowing the Ca?* current window by shifting de. (V) or foo (V)
eliminates hypokalemia-induced EADs in the model. (a) Model responses in
the (AV/2(ds), [KT],) parameter plane. The green marker (b1) denotes the default
condition, the red marker (b2) denotes the hypokalemia condition, and the orange
marker (b3) denotes the do (V')-shifted hypokalemia condition. (b) Voltage time courses
for the color-matched markers (bl), (b2), and (b3) of panel (a). (c) Model responses in
the (AVi/2(fs), [KT]o) parameter plane. The green marker (d1) denotes the default
condition, the red marker (d2) denotes the hypokalemia condition, and the orange
marker (d3) denotes the foo(V')-shifted hypokalemia condition. (d) Voltage time courses
for the color-matched markers (d1), (d2), and (d3) of panel (c).

with shifts in foo(V), as observed experimentally in [14].

Given the importance of excess I, 1, in the production of EADs; it is not surprising
that when the Ca2® current conductance was increased during dynamic clamp
experiments there was an increase in EAD production and repolarization failure. These
effects were eliminated when the Ic, 1, window was symmetrically narrowed [15]. We
demonstrate that the model recapitulates both the increase in propensity of
repolarization failure with an increase in gc, and the rescue of a standard action
potential with appropriate symmetric narrowing of the I¢,.1, window.

In Fig. the conversion of an action potential (green) to repolarization failure (red)
in response to an increase in g, (to 0.18 mS/cm?) is illustrated. By symmetrically
narrowing the Ig, 1, window with AV} /5(de)= 1 mV and AV} j5(foo)=—1 mV, there is
recovery of an action potential response to the stimulus. In a physiological setting, this
and the previous result suggest that dynamic regulation of the Ic,.;, window can be
very effective at overcoming pathological conditions leading to EADs and repolarization
failure.

Fig 11. Symmetric narrowing of the model window region abolishes Ic,.1,
amplitude-induced repolarization failure. Repolarization failure is promoted by
increasing the conductance of the Ic, 1, current (red). Narrowing the window recovers
the action potential response (orange). Green: (gca, AV1/2(dso), AV1/2(foo)) = (0.112,
0, O), orange: (gCaa A‘/I/Q(doo)> A‘/I/Q(foo)) = (0'187 0, 0)7 red: (gCa; AV1/2(doo)7
AVI/Q(]COO)) = (0.18, 1, -1)

Changes in Ca?t channel time constants are predicted to
eliminate hypokalemia-induced EADs

We have shown that the model reproduces many of the experimental results obtained
with dynamic clamp in [14] and [15]. We have also shown that the EADs induced under
these manipulations can be explained mathematically as canard-induced oscillations.
We now extend our analysis by using the model to make predictions about the
anti-arrhythmic effects of altering kinetic properties of the Ca?* current. Specifically,
we examine model responses to changes in the time constants of I¢, 1, activation, 74(V),
and inactivation, 7;(V'), under simulated hypokalemia.

To examine the effects of changing Ca?* current time constants we multiply the
voltage-dependent timescale functions by scaling parameters, o and 8. Then the
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activation and inactivation variables change in time according to:

dd  do(V)—d

dt ata(V)
Ao fu(V)— )
dt Bry(V)

Values of a scaling parameter larger than 1 make the corresponding time constant larger
and thus slow the rate of adjustment of the corresponding gating variable to the
variations in V; values of a scaling parameter less than 1 hasten this adjustment.

The model responses to independent variation in « and 8 are shown in Figure
For reference, the blue ¢ marker in the two EADs band of the red “EADs” region of
Fig. [12| denotes the baseline hypokalemia condition ([K*], = 2.0 mM) in the absence of
time constant manipulations. Two dashed blue arrows, one pointing leftward toward
decreases in « alone and the other pointing upward toward increases in  alone, show
separate manipulations that predict the elimination of hypokalemia-induced EADs. The
EAD-eliminating decreases in « correspond to more rapid activation of Ic,.p, in
response to a depolarizing stimulus while the EAD-eliminating increases in 3
correspond to delayed inactivation of Ic, 1, during an actio potential. These results
seem counterintuitive, since the first manipulation makes Ic, 1, turn on faster and the
second makes it turn off slower in response to a stimulus. Why would manipulations
that are expected to prolong the influence of a depolarizing current shorten action
potentials and reduce the likelihood of EADs?

Fig 12. Model responses to variation in scaling parameters of Ca?t channel

activation («) and inactivation () timescales under simulated hypokalemia.

The blue ¢ marker denotes the hypokalemia condition of Fig.[10]and the blue dashed
arrows highlight two separate dynamic clamp manipulations predicted to eliminate
hypokalemia-induced EADs.

The answer again lies in the fast-slow analysis and, in particular, the location of the
primary maximal canard 7y with respect to the location of the pulsed solution I' in
phase space. As we discussed earlier, and showed in detail in |21], the primary maximal
canard moves far to the left of the singular strong canard as parameters are changed
that move the system away from the singular limit. When the time constant for d is
decreased or that for f is increased, this has the effect of further separating the
timescales of fast and slow variables. That is, it moves the system closer to the singular
limit. As a result, 7o moves rightward towards 70, and in the process crosses I', so that
T" now falls outside of the funnel region so no EADs are produced.

Discussion

Recent studies using the dynamic clamp experimental technique have demonstrated
that the Ic,.1, window region, the voltage range over which the activation and
inactivation curves overlap, plays an important role in regulating myocyte electrical
rhythms [14}|15]. They showed that EADs and repolarization failure are facilitated by
window broadening, and that conditions promoting these pathological electrical
behaviors could be overcome by narrowing the window. In this manuscript we
demonstrated that a 4-dimensional variant of the Luo-Rudy I model 30| can reproduce
and explain these findings. The low dimensionality of the model allowed us to perform a

fast-slow analysis, enabling our ability to view the EADs as canard-induced phenomena.

In particular, we showed that the EADs produced under changes in the size of the
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window region are canard-induced oscillations and that the canards can be used to
explain many of the effects of different manipulations reported in [14] and [15]. With
this technique, we demonstrated that it is even possible to explain why a particular
number of EADs is elicited under a given parameter regime.

The size of the Ic,.r,window region is determined by the configuration of both the
activation and inactivation curves. Hence, enlarging the window region can be
accomplished by shifts in either or both curves. Dynamic clamp experiments in [15]
showed that both simultaneous and independent window-enlarging shifts in the
activation and inactivation curves are capable of producing EADs. Figures [3] and [4]
replicate these findings. But why does enlarging the window region lead to EADs and
repolarization failure? The biophysical explanation is that the enlarged window allows
for sustained activation of the current, and indeed this is true. But why does the voltage
oscillate to give EADs rather than just give an extended plateau? This is best explained
mathematically. In the model, there is a twisted funnel region in phase space whose
position changes with the configuration of the Ic,.1, window region. Smaller window
regions keep this funnel away from where solutions are injected following a depolarizing
pulse so that solutions do not experience twist-induced oscillations, while larger window
regions move the funnel toward or across where solutions are injected which leads to
EAD oscillations. Hence, the pro-arrhythmic potency of one manipulation over another,
as is shown in Fig. [4 for left shifts in the activation curve versus right shifts in the
inactivation curve, can be explained by tracking the respective movements of the curve
(primary maximal canard) that bounds the funnel region for oscillations (Fig. [7]).

Why is it useful to cast the window region in terms of canards and twisted slow
manifolds? The reason is predictability. Knowledge of the size of the Ca?* current
window is only useful within the context of other biophysical parameters. We
demonstrated this by showing that the window size for EADs is highly dependent on
the external Kt concentration (Figs. 10a,10c). Also, changing the number of Ca?*
channels in the cell’s membrane affects whether the window region is appropriate for
EADs or repolarization block, as we demonstrated in Fig. So knowing the size of the
window region is insufficient for knowing whether EADs or repolarization block will
occur. Knowing the geometric structure of the model, in particular the phase space
locations of the maximal canards, provides much more precise information and allows us
to interpret in a straight-forward way what happens when d (V') or foo (V) are shifted
and the window region modified. It also allows us to predict which changes in
biophysical parameters (and their magnitudes) elicit EADs or repolarization block.

The predictive capacity of the fast-slow analysis was also demonstrated by our
finding that increasing the rate of Ca?* channel activation or decreasing the rate of
inactivation under hypokalemia conditions can eliminate EADs (Fig. . This
prediction emerges naturally from the analysis, but is not at all obvious from
biophysical arguments alone. While the effects of time constant manipulations were not
considered in the two dynamic clamp studies that are the focus of this work [144[15],
another study [44] did test the effects of such manipulations, but only in the case of
H502-induced EADs. The latter study found that manipulating the time constants of
Ca?*t channel activation and inactivation had small effects on existent EADs, although
the direction of the effects are in agreement with the predictions made here for
small-magnitude manipulations. The computer-generated Ca®* current used in [44]
contains a voltage-dependent inactivation curve with incomplete inactivation, which
produces a persistent “pedestal” current. The major finding of [44] was that a larger
pedestal current (reduced inactivation) promoted both HoOs- and hypokalemia-induced
EADs. We found that the addition of such a pedestal current in the present model led
to an increase in the number of EADs induced under hypokalemia conditions.

There have been many computational models of cardiac APs developed since the
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original Luo-Rudy model [30]. Most of these models contain more detailed descriptions
of transmembrane ionic currents and intracellular ion handling as experiments have
continued to uncover important features of the intracellular and membrane biophysics of
cardiac cells. For this reason, these models are often high dimensional. For example,
one well-regarded model contains more than 40 dynamic variables [29]. Many of these
models have been shown to produce EADs under parameter regimes that represent the
same kinds of manipulations tested in the current work. In addition, some of these
models can also produce EADs through biophysical mechanisms that are not present in
the Luo-Rudy model, such as maladaptive calcium-induced calcium release [17,/18,/45] or
reactivation of the late Na™ current [46,47]. The central role played by canards in the
present minimal model, and others, highlights the plausibility for such a central role for
canards in these more complex models. It is quite possible that EADs in a
high-dimensional model are due to a twisted slow manifold, even though demonstrating
that would be very difficult due to the high dimensionality. It is also possible that
canards are responsible for the EADs generated by maladaptive CICR. Indeed, we
speculate that a single dynamical mechanism—canards—may be responsible for many
instances of EADs generated through either a purely electrical mechanism or through
CICR.

Cellular EADs have been linked to tissue-level arrhythmias, but the precise
relationship between the prolongation of cellular action potential duration (APD) and
the lethality of tissue level arrhythmia is not well understood. For instance, Torsades de
pointes, a tissue-level tachycardic arrhythmia caused by cellular APD prolongation
(observed as long QT syndromes) can either occur as a transient tissue behavior that
spontaneously self-extinguishes or a sustained dysrhythmia that devolves into full
ventricular fibrillation and heart failure. The canard mechanism, shown in this work to
underlie cellular EADs, provides a new potential line of inquiry for investigating the
propagation and synchronization of cellular rhythms at the tissue-level.
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