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Abstract

The pumping of blood through the heart is due to a wave of muscle contractions that
are in turn due to a wave of electrical activity initiated at the sinoatrial node. At the
cellular level, this wave of electrical activity corresponds to the sequential excitation of
electrically coupled cardiac cells. Under some conditions, the normally-long action
potentials of cardiac cells are extended even further by small oscillations called early
afterdepolarizations (EADs) that can occur either during the plateau phase or
repolarizing phase of the action potential. Hence, cellular EADs have been implicated
as a driver of potentially lethal cardiac arrhythmias. One of the major determinants of
cellular EAD production and repolarization failure is the size of the overlap region
between Ca2+ channel activation and inactivation, called the window region. In this
article, we interpret the role of the window region in terms of the fast-slow structure of
a low-dimensional model for ventricular action potential generation. We demonstrate
that the effects of manipulation of the size of the window region can be understood
from the point of view of canard theory. We use canard theory to explain why enlarging
the size of the window region elicits EADs and why shrinking the window region can
eliminate them. We also use the canard mechanism to explain why some manipulations
in the size of the window region have a stronger influence on cellular electrical behavior
than others. This dynamical viewpoint gives predictive power that is beyond that of the
biophysical explanation alone while also uncovering a common mechanism for
phenomena observed in experiments on both atrial and ventricular cardiac cells.

Author summary

EADs are pathological voltage fluctuations that can occur during the plateau or
repolarizing phase of cardiac action potentials. The EADs of single cells, when
embedded in a network of cardiac tissue, can lead to deadly cardiac arrhythmia.
Because of this, many experimental and theoretical investigations have been conducted
to uncover the biophysical and dynamical origins of EAD genesis. A recurring finding is
that suitable changes in the properties of the inward L-type calcium current are
sufficient for EAD production. A particularly important property of the L-type calcium
current, with respect to EAD production, is the size of its window region. In this work,
we use a novel geometric approach to analyze the role of the window region in cellular

October 16, 2020 1/21



electrical dynamics using a low-dimensional ventricular action potential model. We
illustrate the mechanism underlying window region-induced EADs, and demonstrate
how the number of EADs produced can be predicted, using dynamical systems
techniques together with canard theory. These techniques allow us to explain precisely
why the model reproduces myriad experimental observations while also allowing us to
make the testable predictions that either advancing the activation rate or slowing the
inactivation rate of the L-type calcium current—changes that would reasonably be
expected to increase its active duration and the likelihood of EADs—should, instead,
reduce its active duration and the likelihood of EADs.

Introduction 1

Early afterdepolarizations (EADs) are pathological small oscillations in the membrane 2

potential that can occur in the plateau or repolarization phase of cardiac action 3

potentials (Fig. 1b). These EADs prolong the action potential (AP) and can lead to 4

arrhythmias such as tachycardia or fibrillation [1–5]. The origins of EADs and 5

EAD-induced arrhythmia have been the focus of many experimental and theoretical 6

studies which have been performed in isolated myocytes [4, 6–8] and in cardiac 7

tissue [9–11], and much has been learned from these studies regarding the potential 8

mechanisms underlying the abnormal electrical behavior. It is now clear that one 9

mechanism for EADs is an abnormally broad “window region” in the L-type Ca2+ 10

channels [9, 12,13]. This window region is the range of voltages where the channel 11

activation and inactivation curves overlap (Fig. 2a). If this region is abnormally large, 12

then the Ca2+ current remains active at plateau voltages and thereby contributes to the 13

formation of EADs. 14

Fig 1. EADs in cardiac AP simulations. Cardiac APs can exhibit EADs in
response to changes in the gating properties of L-type Ca2+ channels. (a) A simulated
cardiac AP without EADs. (b) An AP exhibiting two EADs (red arrow markers) has a
significantly prolonged duration.

The importance of the ICa-L window current in EAD production was studied in a 15

hybrid manner through the use of the dynamic clamp technique [14, 15]. This allows for 16

the injection of an ionic current into a cell where the properties of the current are set 17

using a mathematical model (see [16] for review). In the dynamic clamp studies of 18

EADs, the L-type Ca2+ channels were blocked with nifedipine and then a model L-type 19

Ca2+ current introduced using dynamic clamp. Using this approach, EADs evoked by 20

H2O2 were recapitulated by simultaneously shifting both the activation and inactivation 21

curve of model ICa-L to enlarge the window region [14]. In [15] it was shown that 22

opening the window region by translating the model Ca2+ channel activation curve 23

leftward and inactivation curve rightward by the same amount (termed a “symmetric 24

opening” in [15]), reliably produced EADs in otherwise unaltered atrial rabbit and 25

human cardiomyocytes. As was noted in both studies, these results are significant not 26

only because they demonstrate the importance of the window region in EAD 27

production, but also because with this approach the EADs are purely electrical. That is, 28

they do not involve Ca2+-activated Ca2+ release (CICR) from the sarcoplasmic 29

reticulum since there is no Ca2+ entry (the L-type channels have been blocked and the 30

current introduced by dynamic clamp is carried by ions other than Ca2+). This is an 31

important clarifying result, since it has been shown that EADs can be produced 32

through CICR [17,18], and using dynamic clamp as was done in [14,15] allows one to 33

focus in on the purely electrical EADs. 34

In addition to showing that symmetric opening of the window region facilitates 35
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EADs (and symmetric closing eliminates them), [15] showed that EADs could be 36

produced by only translating the channel activation curve leftward or only translating 37

the channel inactivation curve rightward (an “asymmetric opening” of the window). In 38

fact, it was shown that translating the activation curve is more effective than 39

translating the inactivation curve. The intuition behind this result is that it is more 40

important for EAD production to activate the Ca2+ channels at low voltages than to 41

keep them from inactivating at higher voltages. 42

It was also shown in [14] and [15] that narrowing the ICa-L window region can 43

abolish pathological rhythms produced by experimental manipulations that leave the 44

window region unchanged. In [14] it was shown that the EADs produced through 45

hypokalemia, the reduction of the extracellular K+ concentration, [K+]o, could be 46

abolished by narrowing the computer-generated ICa-L window region through either 47

right shifts in the activation curve or left shifts in the inactivation curve. In [15], it was 48

shown that EADs and non-repolarizing APs were produced by increasing the maximal 49

conductance of computer-generated ICa-L, and these rhythms could be countered by 50

symmetric narrowing of the window region. These results make the point that the 51

absolute size of the window region is not what matters; what matters is the size of the 52

window in the context of other cellular parameters. 53

While the dynamic clamp studies together provide a systematic examination of how 54

the size of the window region and the shifts of Ca2+ channel activation/inactivation 55

curves affect purely electrical EADs, they provide no insight into the effects that these 56

manipulations have on the dynamics underlying EADs. The electrical activity of 57

cardiomyocytes is determined by nonlinear interactions of several ionic currents, 58

described mathematically by nonlinear ordinary differential equations. Manipulating 59

the window region changes parameters in these equations that cause EADs to occur, 60

but how? Surely this is a generic property of the electrical system, since it has been 61

demonstrated in both ventricular and atrial myocytes of both rabbits and humans. 62

Because it is generic, it should be obtainable with low-dimensional models that include 63

key ionic currents such as ICa-L and K+ current for repolarization of the AP. Such a 64

model need not contain all the ionic currents found in myocytes, since these differ across 65

species and between ventricular and atrial myocytes, yet the EAD behavior is produced 66

by similar manipulations in each. 67

In this study, we determine why opening the window region facilitates EADs using a 68

low dimensional model for a cardiac AP, consisting of four variables. After 69

recapitulating the experimental results described above, we uncover the dynamic 70

mechanism underlying these results. That is, we show why both symmetric and 71

asymmetric opening of the window produces EADs, and we show why shifting the Ca2+ 72

activation curve is more effective than shifting the inactivation curve. Finally, we show 73

how and why changes in other parameters of the Ca2+ current, such as its maximal 74

conductance and activation/inactivation time constants, affect EAD production. Our 75

mathematical analyses (i) reproduce the results of dynamic clamp experiments and (ii) 76

produce novel predictions that can be tested in future dynamic clamp experiments. 77

The mathematical analysis required to understand the EADs produced by the 78

low-dimensional model is geometric singular perturbation analysis, also called fast-slow 79

analysis (see [19] for review and [20] for a more extensive discussion). This takes 80

advantage of a separation of timescales between those variables that change on a fast 81

timescale (two variables in our case), and those that change on a much slower timescale 82

(the other two variables). We used this model previously to demonstrate the dynamical 83

mechanism of EADs [21], and we and others have used fast-slow analysis to analyze the 84

dynamical basis of EADs with other low-dimensional models [22–26]. The particular 85

model used affects the details of the phenomenon, some of which can be quite significant 86

(e.g., whether APs are produced only through stimulation or produced intrinsically in a 87
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periodic fashion). However, the use of low-dimensional models rather than more 88

biophysically accurate models [27–29] is motivated by the generic nature of the EAD 89

behavior, and the fact that low-dimensional models can be analyzed much more 90

effectively than high-dimensional models, as we demonstrate here. 91

Methods 92

The modified Luo-Rudy I model 93

The full Luo-Rudy I model [30] includes 6 voltage-dependent transmembrane ionic 94

currents and a single variable accounting for the intracellular Ca2+ level. The inward 95

currents include a spike-producing Na+ current (INa), an L-type Ca2+ current (ICa-L), 96

and a constant conductance background current (Ib). The outward currents include a 97

delayed rectifier K+ current (IK), an extracellular [K+]-dependent K+ current (IK1), 98

and a high-threshold K+ current (IKp). Together, the Luo-Rudy I model contains 8 99

coupled nonlinear ordinary differential equations. 100

Our analysis, however, utilizes a reduced Luo-Rudy I model that only contains 101

elements for the electrical component. This facilitates the mathematical analysis, and 102

allows us to demonstrate that even a simple model can account for the findings of the 103

dynamic clamp experiments [14,15] that are the focus of this study. The modified 104

model does not include equations for the intracellular Ca2+ concentration, because in 105

the dynamic clamp experiments Ca2+ influx was pharmacologically blocked. Also, since 106

the model Na+ current rapidly inactivates for V > −40 mV, i.e., INa ≈ 0 when EADs 107

occur, this current is also excluded. 108

The modified model contains the following differential equations for the membrane 109

electrical dynamics: 110

Cm
dV

dt
= −(ICa-L + IK + IK1 + IKp + Ib) + Istim

dd

dt
=
d∞(V )− d
τd(V )

df

dt
=
f∞(V )− f
τf (V )

dx

dt
=
x∞(V )− x
τx(V )

(1)

with ionic currents given by 111

ICa-L = gCa d f (V − VCa)

IK = gK xXi,∞(V ) (V − VK)

IK1 = gK1 K1,∞(V ) (V − VK1)

IKp = gKp Kp,∞(V ) (V − VK1)

Ib = gb (V − Vb)

(2)

Here, Cm is membrane capacitance and Istim is a time-dependent mollified square-wave 112

stimulus current with amplitude 70 µA/cm2 and 2 ms duration. Each transmembrane 113

ionic current is formulated using the standard Hodgkin-Huxley formalism for excitable 114

membranes [31, 32]. For example, in the expression for the Ca2+ current (ICa-L), gCa is 115

the maximal conductance, a parameter; the dynamic variables d and f are the open 116

fraction of activation and inactivation gates, respectively, of all voltage-gated Ca2+ 117

channels; and (V − VCa) is the driving force for ion flux, where VCa is the reversal 118

potential for Ca2+. 119
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The x variable, which appears in the expression for IK, denotes the (slow) activation 120

of this current. Each of the steady-state activation and inactivation functions, j∞(V ) 121

for j = d, f, x,Xi,K1, and Kp, are increasing and decreasing sigmoids, respectively. We 122

use upper-case letters to denote quantities that adjust instantaneously to variation in V 123

and thus remain at quasi-equilibrium. The time constants, τd(V ) and τx(V ), are 124

bell-shaped, while τf (V ) is strictly increasing. The magnitudes of the time constants 125

govern how quickly the companion gating variable adapts to changes in V . Small (large) 126

values of τj(V ), j = d, f, x represent rapid (slow) adaptation. We refer the reader to [30] 127

for the full model formulation. 128

All parameter values are identical to those used in [30], with the exception of the 129

default maximal ICa-L conductance, gCa, which is set at 0.112 mS/cm2 to facilitate 130

EAD production. Some parameter values are varied to examine robustness of behaviors, 131

and this is stated explicitly in the text of figures. Under all relevant parameter 132

variations, the model (1) (absent Istim) possesses a stable equilibrium, E1, which 133

functions as the cell rest state. Under parameter sets that are capable of producing 134

EADs, (1) possesses two additional equilibria, E2 and E3, which are located at elevated 135

membrane potentials. The equilibrium E2 can be either an unstable or stable spiral in 136

parameter regions that produce APs with EADs, while E3 is always an unstable saddle 137

point. The computer programs used to generate the results herein are available at: 138

www.math.fsu.edu/∼bertram/software/cardiac. 139

Model ICa-L and modifications of its “window region” 140

The manuscript focuses primarily on model responses to translations in the steady-state 141

ICa-L activation and inactivation functions, d∞(V ) and f∞(V ), respectively. The region 142

where these two curves overlap has been termed the “window region” [9] (see Fig. 2a) 143

and it has been implicated in the generation of EADs. Figure 2 shows plots of d∞(V ) 144

and f∞(V ) under the default parameter set (black curves). In Fig 2a, the window 145

region is increased by either (or both) translating d∞(V ) leftward or translating f∞(V ) 146

rightward. In Fig. 2b, the window region is reduced by translating d∞(V ) rightward or 147

translating f∞(V ) leftward. 148

Fig 2. Schematic of symmetric broadening and narrowing of the ICa-L

window region. (a) A left shift in d∞(V ) and a right shift in f∞(V ) (red curves)
increases the area (filled with vertical red lines) under both curves as compared to the
default setting (black curves with area colored with vertical gray lines). (b) A right
shift in d∞(V ) and a left shift in f∞(V ) (green dashed curves) narrows the window
region. The default area is colored gray and the reduced area is colored green.

Both d∞(V ) and f∞(V ) are sigmoidal in V , and are parameterized by their 149

steepness and by the value, V , of half-activation and half-inactivation, respectively. 150

Translation of each curve is accomplished by varying its half-activation/inactivation 151

value. For clarity and consistency with experimental works, we discuss variation in the 152

half-activation/inactivation values of the curves with reference to the default parameter 153

set and denote the direction and magnitude of variation in the half-activation value of 154

d∞(V ), for instance, by ∆V1/2(d∞). We similarly denote translations in f∞(V ) by 155

∆V1/2(f∞). We also note that the enlargement of the window region in Fig. 2a and the 156

narrowing of the window region in Fig. 2b are symmetric with respect to the direction 157

and magnitude of the translation in each curve. That is, the translations of both curves 158

in each panel are equal in magnitude, but opposite in sign (i.e., for Fig. 2a, 159

∆V1/2(f∞)= -∆V1/2(d∞)). 160
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Results 161

Symmetric enlargement of the model window region can 162

produce EADs 163

Previous experimental and mathematical studies of EADs have concluded that most 164

EADs occur while voltage is within the interval where the activation and inactivation 165

curves (d∞(V )and f∞(V ), respectively, in our model) of ICa-L overlap, termed the 166

“window region”. The experimental work [15] showed that symmetric enlargement of the 167

window region can lead to EADs as well as the inability of the cell to repolarize (see 168

Fig. 5 of [15]) in response to low-frequency periodic pacing. 169

Representative responses of the model cell to symmetric broadening of the ICa-L 170

window region are shown in Fig. 3. Figure 3a shows a sequence of symmetric 171

translations of both the steady-state activation and inactivation curves, which enlarge 172

the window region. The green curves denote the default state of the model window 173

region (∆V1/2(d∞) = ∆V1/2(f∞) = 0 mV), while the black curves denote the largest 174

translation depicted (∆V1/2(d∞) = -3.12 mV and ∆V1/2(f∞) = +3.12 mV). Figure 3b 175

shows color-coded voltage traces of the corresponding model responses to a single 176

stimulus pulse under each translation condition from Fig. 3a. The green voltage trace 177

shows the standard cardiac action potential without alteration. The orange trace shows 178

a slightly prolonged action potential in response to a small symmetric enlargement of 179

the window (∆V1/2 = 1.04 mV), but no EADs. The red trace shows that a larger 180

translation (∆V1/2 = 2.08 mV) elicits two EADs, which prolong the duration of the 181

action potential dramatically. Finally, the black trace shows that a sufficiently large 182

increase in the size of the window region (∆V1/2 = 3.12 mV) leads to repolarization 183

failure, where the cell remains at a depolarized voltage. 184

Fig 3. A sufficiently large symmetric broadening of the window region can
lead to EADs and repolarization failure in response to a stimulus pulse. (a)
An equally-spaced sequence of three color-coded symmetric window broadening
translations in d∞(V ) and f∞(V ) (orange, red, and black curves) are shown alongside
the default curves d∞(V ) and f∞(V ) (green). The magnitudes of each of the
simultaneous changes to both ∆V1/2(d∞) and ∆V1/2(f∞) are shown in the legend. (b)
The color-matched model responses correspond to the manipulations in panel (a).

Left shifts in the activation curve are more effective at 185

facilitating EADs than right shifts in the inactivation curve 186

Using the dynamic clamp technique to inject a model Ca2+ current into a 187

cardiomyocyte, it was shown that simultaneous broadening of the window region by 188

shifting both the Ca2+ current activation and inactivation curves facilitates EAD 189

production and repolarization failure [14,15]. Translations in either the activation or 190

inactivation curves, but not both, were also examined. It was determined that 191

left-translations in the activation curve alone were a more potent driver of EADs and 192

repolarization failure than right-translations in the inactivation curve alone [15]. That 193

is, using equal-in-magnitude translations of each curve in separate trials, 194

left-translations in d∞(V ) more often led to EADs and repolarization failure than did 195

right-translations of f∞(V ). 196

To test this experimental finding with the modified Luo-Rudy model, we first 197

applied left-shifts of the Ca2+ activation curve, d∞(V ), of magnitudes such that the 198

first shift (∆V1/2(d∞) = −1.8 mV) resulted in a longer action potential, the second 199

(∆V1/2(d∞) = −3.6 mV) resulted in an action potential with two EADs, and the third 200
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shift (∆V1/2(d∞) = −5.4 mV) resulted in repolarization failure. That is, the magnitude 201

of the shifts were chosen so that the responses mimicked those of Fig. 3. These are 202

shown in Figs. 4a, 4b. We then applied right shifts of the same magnitude to the Ca2+ 203

inactivation curve, f∞(V ). These translations and the responses are shown in Figs. 4c, 204

4d. In this case, EADs are only produced with the largest translation (∆V1/2(f∞) =5.4 205

mV), and none of the translations result in repolarization failure. Thus, the left shifts in 206

d∞(V ) are more potent than equal right shifts in f∞(V ) at evoking EADs and 207

repolarizaiton failure, as was shown experimentally in [15]. 208

Fig 4. Left shifts in the Ca2+ current activation curve are more effective at
inducing EADs and repolarization block than right shifts in the
inactivation curve. (a) Three equally-spaced left shifts in d∞(V ) (ordered orange,
red, then black) are shown, while leaving f∞(V ) (dashed, black) unchanged. As in
Fig. 3, green denotes the default. The shifts are given in the legend. (b) The model
responses to the left-translations shown in (a) mirror those of Fig. 3b: sufficiently large
translation induces two EADs (red trace) and the largest translations lead to
repolarization failure (black trace). (c) Right shifts in f∞(V ) of equal size to those of
(a). (d) The model responses to increasing ∆V1/2(f∞) are less severe than those of
equally-sized changes in ∆V1/2(d∞): the largest change in ∆V1/2(f∞) produces EADs
(black trace) instead of repolarization failure.

Enlarging the model window region generically leads to EADs 209

and repolarization failure 210

In this section, we quantify the effectiveness of activation/inactivation curve shifts in 211

inducing pathological behavior by examining combinations of the shifts, ∆V1/2(d∞) and 212

∆V1/2(f∞), that produce EADs or repolarization failure. This is organized using a 213

two-dimensional grid in ∆V1/2(d∞) and ∆V1/2(f∞), noting that left-shifts in d∞(V ) 214

induce EADs, while right-shifts in f∞(V ) induce EADs. Moving leftward along the 215

∆V1/2(d∞)-axis (to negative values) in Fig. 5 corresponds to left shifts in d∞(V ), while 216

moving upward along the ∆V1/2(f∞)-axis (to positive values) corresponds to right shifts 217

in f∞(V ). To determine model behavior at each point in the 300 × 300 grid of 218

parameter values, the model was integrated for 10,000 ms at each point using the stable 219

rest state as initial condition. In each case, a supra-threshold pulse of current of 220

amplitude 70 µA/cm2 was applied for 2 ms to initiate an AP. 221

The light green region in Fig. 5, labeled “No EADs”, shows parameter values that 222

produce action potentials without EADs. These solutions may, however, exhibit 223

prolonged action potentials (e.g., orange trace, Fig. 4b). The white region, labeled 224

“Repolarization Failure”, denotes the region of parameter combinations that produce 225

solutions that remain in the depolarized state in response to the stimulus pulse (e.g., 226

black trace, Fig. 4b). The red region denotes those parameter combinations that 227

produce solutions that contain EADs, but return to rest following the pulse (e.g., red 228

trace, Fig. 4b). A dashed curve is superimposed on the figure denoting the path in the 229

(∆V1/2(d∞), ∆V1/2(f∞))-plane used to produce Fig. 3. The sequence of parameter sets 230

shown in Fig. 3 are marked with color-matched disks: the green disk signifies the default 231

parameter set, the red disk (within the blue “�” marker labeled “(b)”) lies within the 232

“EADs” region, and the black disk lies in the “Repolarization Failure” region. 233

The red “EADs” region possesses finer structure than the light green or white 234

regions. Increasingly darker shades of red are used to indicate incremental increases in 235

the number of EADs produced: 6 or more EADs are produced within the darkest shade 236

of red, and some parameter combinations in this region produce solutions with as many 237

as 40 EADs. The diagram shows that variation in the number of EADs elicited in this 238
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Fig 5. Model responses to a single depolarizing pulse over a uniform grid
in the (∆V1/2(d∞), ∆V1/2(f∞)) parameter plane (units in mV). The green
region, labelled “No EADs”, denotes solutions that do not exhibit EADs before
returning to rest. The white region, labelled “Repolarization Failure”, denotes solutions
that can exhibit EADs around an elevated membrane potential, but remain depolarized.
The red region, labelled “EADs”, contains solutions that exhibit EADs and return to
rest at the end of the action potential. Darker shades of red in this region denote
increasing numbers of EADs in response to the pulse. The dashed blue line segment
gives the path in parameter space that corresponds to symmetric window-broadening.
Green, red, orange, and black disks along this path correspond to the specific parameter
values that produce the color-matched window regions and model responses shown in
Fig. 3. Blue � markers labeled 7a, 7b, 7c and 9a, 9b, 9c are parameter sets whose
solutions are viewed in (f , x, V ) phase space in Figs. 7 and 9, respectively. The slope
(>1) of the green curve, which marks the boundary between the “No EADs” and
“EADs” regions, explains why left shifts in d∞(V ) are a more reliable source of EAD
production than right shifts in f∞(V ).

red region is organized into bands that gradate the transition from “No EADs” to 239

“Repolarization Failure” and that the size of the bands declines corresponding to more 240

EADs. That is, the red “EADs” region is dominated by solutions exhibiting few, rather 241

than many, EADs. This finding predicts that action potentials with relatively few EADs 242

should be more readily observed in experimental settings, as does indeed seem to be the 243

case in published voltage traces from isolated myocytes [7, 14,15]. 244

The finding (both in the model and experimentally) that EADs are produced more 245

effectively by left shifts in d∞(V ) than right shifts in f∞(V ) is evident in Fig. 5. The 246

curve that separates the “No EADs” region from the “EADs” region (green line) is 247

approximately linear with slope s ≈ 1.34. Because the slope is greater than 1, it takes a 248

larger change in ∆V1/2(f∞) than in ∆V1/2(d∞) to move from a parameter combination 249

producing a pure action potential to one producing an action potential with EADs. 250

We can also use the slope of the green EAD boundary curve to make predictions 251

about the potential therapeutic effects of window-shrinking shifts in either d∞(V ) or 252

f∞(V ). Because the slope is greater than 1, the horizontal (rightward) distance from 253

any point in either the “EADs” (red) or “Repolarization Failure” (white) regions to the 254

green boundary between the “EADs” and “No EADs” regions is always smaller than 255

the vertical (downward) distance. Thus, small window-shrinking translations in d∞(V ) 256

should be a more reliable therapeutic target than small window-shrinking translations of 257

f∞(V ) for the elimination of pathological rhythms (EADs or repolarization failure) 258

induced by an enlarged window region. 259

An additional feature of the diagram that would not be readily discernible from 260

either experiments or simulations is that the “EADs” region (bounded between the 261

green and black curves) grows in width for increasing values of ∆V1/2(f∞) but, shrinks 262

in width for decreasing values of ∆V1/2(d∞), even though both of these manipulations 263

enlarge the window region. This feature of the diagram arises from the fact that the 264

slope of the (almost linear) black curve, marking the boundary between the “EADs” 265

and “Repolarization Failure” regions, has an even larger average slope than that of the 266

green boundary curve. This feature of the grid makes the experimentally testable 267

prediction that the transition of a cell from EADs to repolarization failure should also 268

occur for smaller window-enlarging shifts in d∞(V ) than f∞(V ). That is, given a cell 269

exhibiting EADs due to an enlarged window region, small increases in the magnitude of 270

∆V1/2(d∞) should be more likely to lead to repolarization failure than small increases in 271

∆V1/2(f∞). In addition, this predicted disparity between the effects of ∆V1/2(d∞) and 272

∆V1/2(f∞) in producing repolarization failure should be more pronounced than the 273
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disparity observed for the production of EADs shown in Fig. 4. 274

Fast-slow analysis reveals a mechanism for EAD generation 275

We have seen that broadening the ICa-L window region can lead to EADs and 276

repolarization failure. Here we explore why, using a fast-slow analysis. Fast-slow 277

analysis splits a model into (simpler) lower-dimensional subsystems in order to analyze 278

these subsystems semi-independently and stitch together the results. In [21], we showed 279

that (1) possesses a multi-timescale structure. This structure is reflected by the rapid 280

upstrokes and downstrokes of the AP, with long depolarized plateau (Fig. 1b). 281

Specifically, we showed that the 4-dimensional model contains fast variables V and d 282

(voltage and ICa-L activation), and slow variables f and x (ICa-L inactivation and IK 283

activation). The parameter Cm approximately characterizes the timescale separation, 284

with Cm → 0 (termed the singular limit) yielding the decomposition of (1) into separate 285

fast and slow subsystems (see [21] for details). 286

With our (2,2)–fast-slow splitting, the 2-dimensional fast subsystem 287

Cm
dV

dt
= −(ICa-L + IK + IK1 + IKp + Ib)

dd

dt
=
d∞(V )− d
τd(V )

df

dt
= 0

dx

dt
= 0

(3)

is an approximation of the fast motions of (1) (see Fig. 6, double arrows) in which the 288

slow variables, f , and x, are treated as parameters. The time-dependent forcing, Istim, 289

is dropped from the V -equation because Istim ≈ 0 after the stimulus has been applied. 290

The equilibria of (3) (traced out by independent variation in f and x) form a 291

2-dimensional surface, called the critical manifold. Figure 6 shows two views of the 292

EAD-containing voltage trace from Fig. 3b in (f , x, V ) phase space and superimposed 293

on the critical manifold. The critical manifold is comprised of attracting (Sa,+
0 and 294

Sa,−
0 , blue) and saddle-type (Ss

0 , red) sheets that are connected by curves of fold points. 295

Only the upper fold, L (green), falls within the physiologically relevant domain (the 296

lower curve is out of the frame of the figure, so not visible). The stability properties of 297

the critical manifold are determined by linear stability analysis of the fast subsystem. 298

The true equilibria, E1, E2, and E3 of the full system (1) persist as equilibria of the fast 299

subsystem (3). While E2, under this parameter set, is a stable spiral of the full flow (1) 300

(i.e., for Cm = 1 µF/cm2), it becomes a saddle point (located on Ss
0) of the fast 301

subsystem (3) (i.e., for Cm = 0 µF/cm2). We note that there are no Hopf bifurcations 302

in the fast subsystem, so EADs do not arise as oscillations in the fast subsystem as they 303

do in previous works (e.g., [22]). 304

The 2-dimensional slow subsystem 305

0 = −(ICa-L + IK + IK1 + IKp + Ib)

0 =
d∞(V )− d
τd(V )

df

dt
=
f∞(V )− f
τf (V )

dx

dt
=
x∞(V )− x
τx(V )

(4)
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Fig 6. Two views of the EAD-containing voltage trace from Fig. 3b
superimposed on the critical manifold in (f, x, V ) phase space. (a) (x,
V )-dominant view. (b) (f , V )-dominant view. The superimposed solution (black) is
comprised of: 1) a fast upstroke (cyan double arrows) caused by a stimulus pulse
applied at rest (stable equilibrium E1), 2) slow evolution (single arrow) along the upper
attracting sheet of the critical manifold, Sa,+

0 (upper blue surface), during the plateau
phase, 3) oscillatory EADs (unfilled arrows) near the fold curve, L (green), 4) fast
transition (double arrows) toward the lower attracting sheet, Sa,−

0 , and 5) slow return
(single arrow) to E1 along Sa,−

0 . The folded node singularity (FN , purple marker), a
pseudo-equilibrium of the slow subsystem, lies within L; its associated singular strong
canard, γ00 (magenta), a special solution of the slow subsystem, together with L, bounds
the region of solutions of the slow subsystem, that are funneled through the folded node.
Parameter values: ∆V1/2(d∞)= -∆V1/2(f∞)= -2.08 mV.

is an approximation of the slow motions of (1) (see Fig. 6, solid single arrows) in which 306

V and d are assumed to be at quasi-equilibrium. Hence, solutions of the slow subsystem 307

(4) are slaved to the critical manifold. 308

To understand the trajectory of the full model (1), one can concatenate orbit 309

segments from the fast and slow subsystems. This is only an approximation, however, 310

and as we see below neither the fast nor the slow dynamics independently explain the 311

EADs. The fast and slow motions are denoted using single and double arrows, 312

respectively. A sufficiently strong stimulus pulse applied to the rest state, E1(on Sa,−
0 ), 313

triggers a rapid excursion toward Sa,+
0 (cyan double arrows denote that this motion is 314

the result of a depolarizing pulse). Once near Sa,+
0 , the solution moves slowly as it 315

follows Sa,+
0 closely during the plateau phase, toward the fold, L. The oscillations that 316

occur near L are the EADs. Once several of these have occurred, the trajectory moves 317

rapidly toward Sa,−
0 . It then follows Sa,−

0 closely as it moves slowly back towards the 318

rest state, E1. 319

The unfilled arrows along the oscillatory EAD portion of the solution indicate that 320

this motion is neither strictly fast nor slow. Indeed, it is precisely at the fold curve L 321

where the fast-slow approximation breaks down. That is, the fold marks the transition 322

boundary between the non-overlapping regions of validity for the fast and slow 323

subsystem approximations. 324

Without a fast subsystem mechanism for the generation of EADs, we turn to further 325

inspection of the slow subsystem. The general procedure for this analysis can be found 326

in the review article [33] and the details for the particular case of the slow subsystem (4) 327

can be found in [21]. Here, we summarize the key elements. Solutions of the slow 328

subsystem, when initiated on Sa,+
0 , flow toward the fold curve. Upon reaching the fold, 329

these solutions typically transition to the fast subsystem dynamics, so the trajectory 330

quickly moves from the top sheet Sa,+
0 to the bottom sheet Sa,−

0 . However, there may 331

exist distinguished points on the fold curve called folded node singularities [34] (Fig. 6; 332

purple marker, “FN”) at which solutions can cross from Sa,+
0 to Ss

0 , remain governed 333

by the slow subsystem dynamics, and follow Ss
0 for long times. Such solutions are 334

known as singular canards. Given the presence of a folded node singularity, there is a 335

special singular canard that acts as a boundary along Sa,+
0 between solutions that, upon 336

reaching the fold, either funnel through to the folded node or transition to the fast 337

dynamics. This special singular canard is called the singular strong canard (Fig. 6; γ00 , 338

magenta). 339

For Cm > 0, singular canards become solutions of the full model (1) with similar 340

properties, i.e., they remain near Ss
0 for long times on the slow time scale [33,35]. These 341

solutions are called canards and they are the basis for EADs, as demonstrated in [21]. 342
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Canards explain the emergence and number of EADs 343

Many features of the slow flow persist in the flow of the full system of equations 344

provided there is sufficient timescale separation between fast and slow variables. 345

Theoretical justification for this persistence is provided by Fenichel theory [36,37]. 346

Specifically, Fenichel theory guarantees that the attracting and saddle-type sheets of the 347

critical manifold, outside the vicinity of the fold curve, perturb smoothly to nearby slow 348

manifolds under the flow of the full system, with their local attraction properties 349

perturbing smoothly as well. In turn, the (slow) flow on these sheets is a smooth 350

perturbation of the slow subsystem flow. 351

Near the folded node, the relationship between the slow subsystem flow and that of 352

the full system is more intricate, and is described by canard theory [33–35,38]. In 353

particular, canard theory holds that in the neighborhood of the folded node, under the 354

full system flow, the attracting and saddle-type sheets perturb to slow manifolds that 355

(approximately) twist around the weak eigendirection of the folded node [33,39]. This 356

twisting allows the slow manifolds to be partitioned into rotational sectors, each of 357

which oscillates around the weak eigendirection of the folded node a fixed number of 358

times. The boundaries between different rotational sectors are curves called maximal 359

canards. The first maximal canard, the boundary between the rotational sector that 360

does not oscillate near the folded node (the left half of the upper attracting sheet) and 361

the sector that oscillates once, is called the primary maximal canard. 362

Maximal canards have been shown to be objects of key importance in determining 363

whether, and what kinds of potentially erratic, EAD rhythms are evoked in 364

low-dimensional variants of the Luo-Rudy model in response to changes in ion channel 365

expression and chemical composition of the cellular environment [21,24,25]. The 366

primary maximal canard (γ0) is the perturbed analog of the slow subsystem singular 367

strong canard (γ00) and is, therefore, the boundary between standard action 368

potentials—to its left—and those that exhibit EADs or repolarization failure—to its 369

right. A solution that enters the rotational sector between the primary maximal canard, 370

γ0, and the maximal canard, γ1, exhibits one canard-induced EAD; a solution that 371

enters the rotational sector between maximal canards γ1 and γ2 exhibits two 372

canard-induced EADs; so, in general, a solution that enters the rotational sector 373

between γn and γn+1 exhibits n canard-induced EADs. 374

Figure 7 shows key structures in phase space for responses that exhibit no EADS 375

(Fig. 7a), EADs (Fig. 7b), and repolarization failure (Fig. 7c). Parameter values for 376

these behaviors are marked with � in Fig. 5 labeled 7a, 7b, and 7c. Each panel shows 377

the critical manifold and its stability properties along with the first three maximal 378

canards (γ0, magenta; γ1, cyan; γ2, orange), computed using numerical continuation 379

and bifurcation software AUTO [40] and methods developed in [41] which are described 380

for this system in [21]. Also superimposed are portions of the solution segment of the 381

full system (Γ, black) following an impulse-producing stimulus. 382

In Figure 7a, the solution segment (Γ, black) evolves closely along the critical 383

manifold, and since it lies to the left of the primary maximal canard it does not exhibit 384

EADs. Instead, it returns to the repolarized rest state to complete the action potential. 385

However, the close proximity of Γ to γ0 extends the duration of the plateau phase of the 386

action potential evident in the orange traces of Fig. 3b and Fig. 4b. We note that the 387

equilibrium, E2, is unstable for this choice of parameters (∆V1/2(d∞) = -∆V1/2(f∞) = 388

-1.83 mV). 389

A solution segment with two EADs is shown in Fig. 7b (red). The solution segment 390

(Γ, black) lies to the right of γ0 (magenta) and between γ1 (cyan) and γ2 (orange), so 391

that two small oscillations are produced, as predicted by canard theory. The 392

equilibrium, E2, is stable for this parameter set (∆V1/2(d∞) = -∆V1/2(f∞) = -2.08 393

mV), but Γ simply does not enter its basin of attraction. However, E2 possesses a pair 394

October 16, 2020 11/21



Fig 7. Maximal canard locations in (f ,x,V ) phase space mediate the
transition from standard action potentials to repolarization failure and
determine EAD number under symmetric ICa-L window region
enlargement. (a) Local phase space for marker 7a in the “No EADs” region of Fig. 5
(∆V1/2(d∞) = -∆V1/2(f∞) = -1.83 mV). The pulse-induced solution segment, Γ (black),
lies to the left of the primary maximal canard, γ0 (magenta), and does not exhibit
EADs. (b) Local phase space of marker 7b in the 2 EAD band of the “EADs” region of
Fig. 5 (∆V1/2(d∞) = -∆V1/2(f∞) = -2.08 mV). The solution segment lies within the
rotational sector between maximal canards γ1 (cyan) and γ2 (orange) and exhibits two
EADs. (c) Local phase space for marker 7c in the “Repolarization Failure” region of
Fig. 5 (∆V1/2(d∞) = -∆V1/2(f∞) = -2.33 mV). The solution segment spirals toward

stable equilibrium E2, failing to return to rest. Attracting (Sa,+
0 , blue) and saddle-type

(Ss
0 , red) sheets of the critical manifold meet at the fold curve, L (green). Parameter

values used are listed in each panel.

of complex conjugate eigenvalues (λ± ωi) which, in the vicinity of E2, predict an 395

oscillatory period (2π/ω) of ≈ 340 ms. The duration of the first and second EADs are 396

≈ 386 ms and ≈ 340 ms, respectively. 397

Figure 7c shows a case in which there is repolarization failure since the trajectory 398

enters the basin of attraction of E2 and remains depolarized. The spiraling reflects the 399

fact that E2 is a stable spiral equilibrium of the full system. 400

This analysis suggests that the responses of the model cell to window-enlarging 401

manipulations are determined by how the manipulations affect the maximal canards in 402

phase space. Pathological oscillatory dynamics are brought about by manipulations that 403

translate the maximal canards leftward (in the increasing x-coordinate direction) 404

relative to the solution trajectory, so that the solution trajectory enters the funnel 405

region to the right of the primary maximal canard. Enlargement of the ICa-L window 406

region can make this happen, leading to EADs or repolarization failure. 407

Why left shifts of the ICa-L activation curve are more effective 408

than right shifts of the inactivation curve at evoking EADs 409

We have shown that maximal canards mediate the transition from standard action 410

potentials, through EADs, to repolarization failure in phase and parameter space under 411

symmetric window enlargement. We now examine why left-shifts in the ICa-L activation 412

curve are more effective than right shifts in the inactivation curve at producing EADs 413

and repolarization failure. This should be explainable in terms of the primary maximal 414

canard, which is the border (in phase space) of the funnel region for EADs. What 415

effects do equally sized shifts of the activation curve d∞(V ) and inactivation curve 416

f∞(V ) have on the primary maximal canard? 417

Figure 8a shows a phase-space view with the critical manifold and the primary 418

maximal canard γ0 (magenta) prior to a shift in the activation/inactivation curves. 419

When the Ca2+ channel activation curve is left shifted by 3.6 mV (∆V1/2(d∞)= −3.6 420

mV) the primary maximal canard moves leftward in phase space, as indicated in the 421

figure. An equal right shift in the inactivation curve (∆V1/2(f∞)= 3.6 mV) also moves 422

γ0 leftward, but not as far. The figure also includes a portion of the trajectory during 423

the action potential plateau (Γ, black) with and without a shift in either the activation 424

or inactivation curve. It is apparent that the shift in these curves has very little effect 425

on this portion of the trajectory (the three black segments are very close together), 426

however with the shift in the activation curve the trajectory enters the funnel and will 427

exhibit EADs, while with the equal shift of the inactivation curve it will not. Thus, the 428

reason that EADs are facilitated more by left shifts in the activation curve than right 429
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shifts in the inactivation curve is that the primary maximal canard is affected more by 430

the former maneuver than the latter. 431

To make these arguments more precise, in Fig. 8b we introduce a quantity, δ, that 432

measures the signed distance between a point on the pulsed solution Γ (that also lies on 433

the slow manifold corresponding to Sa,+
0 ) and the primary maximal canard, γ0, as a 434

function of the shift magnitude, |∆V1/2|, in either d∞(V ) (purple curve) or f∞(V ) 435

(orange curve). Positive values of δ indicate that Γ lies to the left of γ0 (no EADs), 436

while negative values of δ indicate that Γ lies to the right of γ0 (EADs or repolarization 437

failure). Zeros of δ indicate that Γ coincides with γ0 and is the boundary between 438

action potentials with and without EADs; zeros correspond to points on the green 439

boundary curve in Fig. 5. The locations of the zeros of δ are unaffected by the point on 440

Γ (that coincides with the slow manifold) from which the measurements are made. 441

In agreement with Fig. 8a (and Fig. 5), we find that δ decreases more rapidly for left 442

shifts in d∞(V ) (purple curve) than for right shifts in f∞(V ) (orange curve), 443

corresponding to more rapid leftward movement of γ0 toward Γ under left-shifts in 444

d∞(V ). As a result, δ crosses zero (near |∆V1/2| ≈ 3.45 mV) as |∆V1/2| increases 445

toward 3.6 mV for d∞(V ), while δ remains greater than 0 over the same range of 446

|∆V1/2| for f∞(V ). 447

Fig 8. Left shifts in the Ca2+ channel activation curve move the primary
maximal canard further than equal right shifts in the inactivation curve.
(a) Three primary maximal canards corresponding to default (γ0, right, magenta),
right-shifted f∞(V ) (middle, magenta), and left-shifted d∞(V ) (left, magenta)
conditions are superimposed on the critical manifold of the default parameter set. Also
shown is a portion of the trajectory during the plateau phase of an action potential (Γ,
black) for each condition. These three trajectory segments are almost identical, but the
one corresponding to left-shifted d∞(V ) enters the funnel and will subsequently exhibit
EADs. (b) The distance, δ, between Γ and γ0 declines faster with left shifts in d∞(V )
than with right shifts in f∞(V ).

A left shift in the ICa-L activation curve narrows the parameter 448

range for EADs by constricting the maximal canards 449

One peculiar observation from Fig. 5 is that the EAD sector (in red) is narrow at the 450

bottom and wider at the top. This means that with a large left-shift in d∞(V ) the 451

range of right-shifts in f∞(V ) that can produce EADs becomes smaller. Why is this? 452

To address this question, we examine the maximal canards in phase space for three 453

values of ∆V1/2(d∞) (� markers in Fig. 5). The first panel of Fig. 9 shows the situation 454

when the left-shift in d∞(V ) is not large enough to evoke EADs. In this case, the 455

trajectory segment lies to the left of γ0 and thus outside the funnel. In the second panel, 456

with a larger left shift, the trajectory lies between γ1 (cyan) and γ2 (orange), so two 457

EADs are produced. In the third panel, the trajectory spirals into the equilibrium 458

E2and there is repolarization failure. 459

What is important to observe in Fig. 9 is that the spacing between the maximal 460

canards gets smaller for large left shifts in d∞(V ). Thus, there is a constriction of the 461

region in phase space where EADs, rather than repolarization failure, are evoked. 462

Constriction of the phase space region where EADs are evoked also occurs with right 463

shifts in f∞(V ), but the rate and severity are less pronounced. This too corroborates a 464

prediction from canard theory. In the singular limit, the ratio of the eigenvalues of the 465

folded node, µ := λw/λs < 1, can be used to estimate how densely the secondary 466

maximal canards (γ1, γ2, etc.) accumulate near the primary maximal canard (γ0) in the 467

full system flow (see Propositions 3.5 and 3.6 of [38]). We find that µ decreases more 468

October 16, 2020 13/21



Fig 9. Maximal canards shift leftward and constrict with increasing left
shifts in d∞(V ). (a) At a value of ∆V1/2(d∞) (= -3.35 mV) where no EADs are
produced (corresponding to � marker 9a in Fig. 5) the trajectory lies outside the funnel
region for EADs. (b) With a somewhat greater shift in d∞(V ) (∆V1/2(d∞)= -3.6 mV),
corresponding to the � marker 9b in Fig. 5, the trajectory enters the region between γ1
(cyan) and γ2 (orange) and two EADs are produced. The maximal canards have shifted
leftward and are closer together than in the first panel. (c) With an even greater
left-shift in d∞(V ) (∆V1/2(d∞)= -3.85 mV) the trajectory is attracted to equilibrium
E2and there is repolarization failure. With this greater shift the maximal canards are
even more constricted.

rapidly for left shifts in d∞(V ) than for right shifts in f∞(V ), which predicts that the 469

maximal canards will accumulate more densely on the primary maximal canard under 470

left shifts d∞(V ), as we observe. It is for this reason that the EAD region in Fig. 5 is 471

narrow at the bottom and wider at the top. 472

Decreasing the size of the window region can compensate for 473

pathological conditions that promote EADs 474

While broadening the ICa-L window can lead to pathological electrical rhythms, it is 475

also plausible that pathological conditions can be compensated for by narrowing the 476

window. In vitro experiments with isolated cardiomyocytes and cardiac tissue have 477

shown that simulating hypokalemia by reducing the extracellular K+ concentration in 478

the bath reliably elicits EADs [8,11,42,43]. In [21], we showed that simulating 479

hypokalemia (by reducing the parameter [K+]o) in the model (1) also elicits EADs, due 480

to a canard mechanism similar to that described above. In [14] it was shown that 481

narrowing the ICa-L window in dynamic clamp experiments can overcome the effects of 482

low extracellular K+ and eliminate the EADs. Can this also be explained by the model? 483

To investigate, we reduced the extracellular K+ concentration parameter [K+]o over 484

a range of values, which has the effect of increasing the K+ Nernst potentials, VK and 485

VK1, while decreasing the maximal conductances, gK and gK1. We also translated the 486

Ca2+ activation curve d∞(V ) over a range of values so as to evaluate the combined 487

effects of these maneuvers. The top panels of Figure 10 show the result. The green 488

marker labelled b1 (Fig. 10a) shows that with the default [K+]o(= 5.4 mM) and no shift 489

in d∞(V ) a standard action potential is produced (Fig. 10b). In fact, for any shift in 490

d∞(V ) a standard action potential is produced. For lower values of [K+]o (simulating 491

hypokalemia), EADs become possible if d∞(V ) is left shifted. For a sufficiently low 492

value of [K+]o, EADs occur even with no left-shift in d∞(V ). This is the case with 493

[K+]o = 2.0 mM shown with the red marker labelled b2 in Fig. 10a. With this 494

parameter combination two EADs are produced, greatly extending the duration of the 495

action potential (Fig. 10b). However, if d∞(V ) is then right shifted (∆V1/2(d∞) = 0.75 496

mV), to the orange point labelled b3 (Fig. 10a) the EADs are eliminated, yielding an 497

action potential of almost-normal duration (Fig. 10b). Thus, right shifts in d∞(V ) can 498

eliminate the EADs brought about by hypokalemia in model simulations. 499

Figures 10c and 10d show a similar scenario, but in this case left-shifts in f∞(V ) are 500

used to narrow the Ca2+ current window. Starting from the default value of [K+]o and 501

with no shift (green point d1), simulated hypokalemia brings the system into the EAD 502

region (red point d2). Applying a left-shift to f∞(V ) of ∆V1/2(f∞)= −0.75 mV 503

eliminates the EADs (orange point d3). Thus, both window-narrowing maneuvers 504

produce the desired result of eliminating hypokalemia-induced EADs. Because the EAD 505

region is smaller in Fig. 10a than in Fig. 10c, it would generally be more successful in 506

the model to eliminate EADs in conditions of hypokalemia with shifts in d∞(V ) than 507
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Fig 10. Narrowing the Ca2+ current window by shifting d∞(V ) or f∞(V )
eliminates hypokalemia-induced EADs in the model. (a) Model responses in
the (∆V1/2(d∞), [K+]o) parameter plane. The green marker (b1) denotes the default
condition, the red marker (b2) denotes the hypokalemia condition, and the orange
marker (b3) denotes the d∞(V )-shifted hypokalemia condition. (b) Voltage time courses
for the color-matched markers (b1), (b2), and (b3) of panel (a). (c) Model responses in
the (∆V1/2(f∞), [K+]o) parameter plane. The green marker (d1) denotes the default
condition, the red marker (d2) denotes the hypokalemia condition, and the orange
marker (d3) denotes the f∞(V )-shifted hypokalemia condition. (d) Voltage time courses
for the color-matched markers (d1), (d2), and (d3) of panel (c).

with shifts in f∞(V ), as observed experimentally in [14]. 508

Given the importance of excess ICa-L in the production of EADs, it is not surprising 509

that when the Ca2+ current conductance was increased during dynamic clamp 510

experiments there was an increase in EAD production and repolarization failure. These 511

effects were eliminated when the ICa-L window was symmetrically narrowed [15]. We 512

demonstrate that the model (1) recapitulates both the increase in propensity of 513

repolarization failure with an increase in gCa and the rescue of a standard action 514

potential with appropriate symmetric narrowing of the ICa-L window. 515

In Fig. 11, the conversion of an action potential (green) to repolarization failure (red) 516

in response to an increase in gCa (to 0.18 mS/cm2) is illustrated. By symmetrically 517

narrowing the ICa-L window with ∆V1/2(d∞)= 1 mV and ∆V1/2(f∞)=−1 mV, there is 518

recovery of an action potential response to the stimulus. In a physiological setting, this 519

and the previous result suggest that dynamic regulation of the ICa-L window can be 520

very effective at overcoming pathological conditions leading to EADs and repolarization 521

failure. 522

Fig 11. Symmetric narrowing of the model window region abolishes ICa-L

amplitude-induced repolarization failure. Repolarization failure is promoted by
increasing the conductance of the ICa-L current (red). Narrowing the window recovers
the action potential response (orange). Green: (gCa, ∆V1/2(d∞), ∆V1/2(f∞)) = (0.112,
0, 0); orange: (gCa, ∆V1/2(d∞), ∆V1/2(f∞)) = (0.18, 0, 0); red: (gCa, ∆V1/2(d∞),
∆V1/2(f∞)) = (0.18, 1, -1)

Changes in Ca2+ channel time constants are predicted to 523

eliminate hypokalemia-induced EADs 524

We have shown that the model reproduces many of the experimental results obtained 525

with dynamic clamp in [14] and [15]. We have also shown that the EADs induced under 526

these manipulations can be explained mathematically as canard-induced oscillations. 527

We now extend our analysis by using the model to make predictions about the 528

anti-arrhythmic effects of altering kinetic properties of the Ca2+ current. Specifically, 529

we examine model responses to changes in the time constants of ICa-L activation, τd(V ), 530

and inactivation, τf (V ), under simulated hypokalemia. 531

To examine the effects of changing Ca2+ current time constants we multiply the 532

voltage-dependent timescale functions by scaling parameters, α and β. Then the 533
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activation and inactivation variables change in time according to: 534

dd

dt
=
d∞(V )− d
ατd(V )

df

dt
=
f∞(V )− f
βτf (V )

(5)

Values of a scaling parameter larger than 1 make the corresponding time constant larger 535

and thus slow the rate of adjustment of the corresponding gating variable to the 536

variations in V ; values of a scaling parameter less than 1 hasten this adjustment. 537

The model responses to independent variation in α and β are shown in Figure 12. 538

For reference, the blue � marker in the two EADs band of the red “EADs” region of 539

Fig. 12 denotes the baseline hypokalemia condition ([K+]o = 2.0 mM) in the absence of 540

time constant manipulations. Two dashed blue arrows, one pointing leftward toward 541

decreases in α alone and the other pointing upward toward increases in β alone, show 542

separate manipulations that predict the elimination of hypokalemia-induced EADs. The 543

EAD-eliminating decreases in α correspond to more rapid activation of ICa-L in 544

response to a depolarizing stimulus while the EAD-eliminating increases in β 545

correspond to delayed inactivation of ICa-L during an actio potential. These results 546

seem counterintuitive, since the first manipulation makes ICa-L turn on faster and the 547

second makes it turn off slower in response to a stimulus. Why would manipulations 548

that are expected to prolong the influence of a depolarizing current shorten action 549

potentials and reduce the likelihood of EADs? 550

Fig 12. Model responses to variation in scaling parameters of Ca2+ channel
activation (α) and inactivation (β) timescales under simulated hypokalemia.
The blue � marker denotes the hypokalemia condition of Fig. 10 and the blue dashed
arrows highlight two separate dynamic clamp manipulations predicted to eliminate
hypokalemia-induced EADs.

The answer again lies in the fast-slow analysis and, in particular, the location of the 551

primary maximal canard γ0 with respect to the location of the pulsed solution Γ in 552

phase space. As we discussed earlier, and showed in detail in [21], the primary maximal 553

canard moves far to the left of the singular strong canard as parameters are changed 554

that move the system away from the singular limit. When the time constant for d is 555

decreased or that for f is increased, this has the effect of further separating the 556

timescales of fast and slow variables. That is, it moves the system closer to the singular 557

limit. As a result, γ0 moves rightward towards γ00 , and in the process crosses Γ, so that 558

Γ now falls outside of the funnel region so no EADs are produced. 559

Discussion 560

Recent studies using the dynamic clamp experimental technique have demonstrated 561

that the ICa-L window region, the voltage range over which the activation and 562

inactivation curves overlap, plays an important role in regulating myocyte electrical 563

rhythms [14,15]. They showed that EADs and repolarization failure are facilitated by 564

window broadening, and that conditions promoting these pathological electrical 565

behaviors could be overcome by narrowing the window. In this manuscript we 566

demonstrated that a 4-dimensional variant of the Luo-Rudy I model [30] can reproduce 567

and explain these findings. The low dimensionality of the model allowed us to perform a 568

fast-slow analysis, enabling our ability to view the EADs as canard-induced phenomena. 569

In particular, we showed that the EADs produced under changes in the size of the 570
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window region are canard-induced oscillations and that the canards can be used to 571

explain many of the effects of different manipulations reported in [14] and [15]. With 572

this technique, we demonstrated that it is even possible to explain why a particular 573

number of EADs is elicited under a given parameter regime. 574

The size of the ICa-Lwindow region is determined by the configuration of both the 575

activation and inactivation curves. Hence, enlarging the window region can be 576

accomplished by shifts in either or both curves. Dynamic clamp experiments in [15] 577

showed that both simultaneous and independent window-enlarging shifts in the 578

activation and inactivation curves are capable of producing EADs. Figures 3 and 4 579

replicate these findings. But why does enlarging the window region lead to EADs and 580

repolarization failure? The biophysical explanation is that the enlarged window allows 581

for sustained activation of the current, and indeed this is true. But why does the voltage 582

oscillate to give EADs rather than just give an extended plateau? This is best explained 583

mathematically. In the model, there is a twisted funnel region in phase space whose 584

position changes with the configuration of the ICa-L window region. Smaller window 585

regions keep this funnel away from where solutions are injected following a depolarizing 586

pulse so that solutions do not experience twist-induced oscillations, while larger window 587

regions move the funnel toward or across where solutions are injected which leads to 588

EAD oscillations. Hence, the pro-arrhythmic potency of one manipulation over another, 589

as is shown in Fig. 4 for left shifts in the activation curve versus right shifts in the 590

inactivation curve, can be explained by tracking the respective movements of the curve 591

(primary maximal canard) that bounds the funnel region for oscillations (Fig. 7). 592

Why is it useful to cast the window region in terms of canards and twisted slow 593

manifolds? The reason is predictability. Knowledge of the size of the Ca2+ current 594

window is only useful within the context of other biophysical parameters. We 595

demonstrated this by showing that the window size for EADs is highly dependent on 596

the external K+ concentration (Figs. 10a,10c). Also, changing the number of Ca2+ 597

channels in the cell’s membrane affects whether the window region is appropriate for 598

EADs or repolarization block, as we demonstrated in Fig. 11. So knowing the size of the 599

window region is insufficient for knowing whether EADs or repolarization block will 600

occur. Knowing the geometric structure of the model, in particular the phase space 601

locations of the maximal canards, provides much more precise information and allows us 602

to interpret in a straight-forward way what happens when d∞(V ) or f∞(V ) are shifted 603

and the window region modified. It also allows us to predict which changes in 604

biophysical parameters (and their magnitudes) elicit EADs or repolarization block. 605

The predictive capacity of the fast-slow analysis was also demonstrated by our 606

finding that increasing the rate of Ca2+ channel activation or decreasing the rate of 607

inactivation under hypokalemia conditions can eliminate EADs (Fig. 12). This 608

prediction emerges naturally from the analysis, but is not at all obvious from 609

biophysical arguments alone. While the effects of time constant manipulations were not 610

considered in the two dynamic clamp studies that are the focus of this work [14,15], 611

another study [44] did test the effects of such manipulations, but only in the case of 612

H2O2-induced EADs. The latter study found that manipulating the time constants of 613

Ca2+ channel activation and inactivation had small effects on existent EADs, although 614

the direction of the effects are in agreement with the predictions made here for 615

small-magnitude manipulations. The computer-generated Ca2+ current used in [44] 616

contains a voltage-dependent inactivation curve with incomplete inactivation, which 617

produces a persistent “pedestal” current. The major finding of [44] was that a larger 618

pedestal current (reduced inactivation) promoted both H2O2- and hypokalemia-induced 619

EADs. We found that the addition of such a pedestal current in the present model led 620

to an increase in the number of EADs induced under hypokalemia conditions. 621

There have been many computational models of cardiac APs developed since the 622
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original Luo-Rudy model [30]. Most of these models contain more detailed descriptions 623

of transmembrane ionic currents and intracellular ion handling as experiments have 624

continued to uncover important features of the intracellular and membrane biophysics of 625

cardiac cells. For this reason, these models are often high dimensional. For example, 626

one well-regarded model contains more than 40 dynamic variables [29]. Many of these 627

models have been shown to produce EADs under parameter regimes that represent the 628

same kinds of manipulations tested in the current work. In addition, some of these 629

models can also produce EADs through biophysical mechanisms that are not present in 630

the Luo-Rudy model, such as maladaptive calcium-induced calcium release [17,18,45] or 631

reactivation of the late Na+ current [46,47]. The central role played by canards in the 632

present minimal model, and others, highlights the plausibility for such a central role for 633

canards in these more complex models. It is quite possible that EADs in a 634

high-dimensional model are due to a twisted slow manifold, even though demonstrating 635

that would be very difficult due to the high dimensionality. It is also possible that 636

canards are responsible for the EADs generated by maladaptive CICR. Indeed, we 637

speculate that a single dynamical mechanism—canards—may be responsible for many 638

instances of EADs generated through either a purely electrical mechanism or through 639

CICR. 640

Cellular EADs have been linked to tissue-level arrhythmias, but the precise 641

relationship between the prolongation of cellular action potential duration (APD) and 642

the lethality of tissue level arrhythmia is not well understood. For instance, Torsades de 643

pointes, a tissue-level tachycardic arrhythmia caused by cellular APD prolongation 644

(observed as long QT syndromes) can either occur as a transient tissue behavior that 645

spontaneously self-extinguishes or a sustained dysrhythmia that devolves into full 646

ventricular fibrillation and heart failure. The canard mechanism, shown in this work to 647

underlie cellular EADs, provides a new potential line of inquiry for investigating the 648

propagation and synchronization of cellular rhythms at the tissue-level. 649
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45. Wilson D, Ermentrout B, Němec J, Salama G. A model of cardiac ryanodine
receptor gating predicts experimental Ca2+-dynamics and Ca2+-triggered
arrhythmia in the long QT syndrome. Chaos. 2017;27(9). doi:10.1063/1.5000711.

46. Sato D, Clancy CE, Bers DM. Dynamics of sodium current mediated early
afterdepolarizations. Heliyon. 2017;3. doi:10.1016/j.heliyon.2017.

47. Horvath B, Banyasz T, Jian Z, Hegyi B, Kistamas KC, Nanasi PP, Izu LT,
Chen-Izu Y. Dynamics of the Late Na+ current during cardiac action potential
and its contribution to afterdepolarizations. J Mol Cell Cardiol. 2013;64.
doi:10.1016/j.yjmcc.2013.08.010.

October 16, 2020 21/21


