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Two dimensional active fluids display a transition from turbulent to coherent flow upon decreasing the
size of the confining geometry. A recent experiment suggests that the behavior in three dimensions is
remarkably different; emergent flows transition from turbulence to coherence upon increasing the
confinement height to match the width. Using a simple hydrodynamic model of a suspension of extensile
rodlike units, we provide the theoretical explanation for this puzzling behavior. Furthermore, using
extensive numerical simulations supported by theoretical arguments, we map out the conditions that lead to
coherent flows and elucidate the critical role played by the aspect ratio of the confining channel. The
mechanism that we identify applies to a large class of symmetries and propulsion mechanisms, leading to a
unified set of design principles for self-pumping 3D active fluids.
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Active matter describes systems whose constituent
particles consume energy to drive motion or generate
forces [1–14]. Being continuously driven far from equi-
librium, active materials can exhibit spectacular spatiotem-
poral behaviors not possible in equilibrium systems. One
such example is “self-pumping” flow, in which confining
an active fluid leads to a spontaneous coherent flow,
enabling advected material transport in the absence of
any external driving such as a pressure gradient [15].
Harnessing coherent spontaneous flow at scales relevant
to practical devices would enable converting particle-scale
chemical energy into macroscopic productive work, and
thus has tremendous potential for practical applications.
However, the mechanisms that drive and control self-
pumping of confined active fluids are insufficiently under-
stood to design such devices.
Spontaneous flow has been reported in diverse active

fluids, including suspensions of microswimmers [16–23],
cell monolayers [24,25], and active gels built from sub-
cellular components [26–29]. At the microscopic level,
some of these systems have polar symmetry [16,18–23],
and others have nematic symmetry [24–29]. Nevertheless, a
unifying feature of all these systems is that they are
composed of force dipoles in a fluid. In this work, we
show that flow generated by force dipoles together with
flow alignment and confinement give rise to system-size
dependent length scales in the structure of the flow, which
can be harnessed to induce coherent flows in diverse
systems. In particular, we uncover the underlying physics
of aspect-ratio-dependent coherent flows observed in dilute
isotropic suspensions of extensile microtubule bundles
powered by ATP-driven molecular motors [29].
Most previous theoretical studies of active matter, with a

few notable exceptions[16,30], have considered models
with polar self-propelled constituents [8,19,21,31–39], or

mutually aligning nematic constituents [1–14,26].
Therefore, at least one of these ingredients—self-propul-
sion or aligning interactions—is often thought to be
required for spontaneous flows. However, experiments
by Wu et al. [29] demonstrated emergent flows in meter
long channels with no orientational order, i.e., well below
the isotropic-nematic (IN) transition density of the micro-
tubule bundles. Moreover, the coherence of the flow was
nonmonotonic as the size of the channel was varied,
occurring only in channels with low aspect ratio cross
sections: 1=2 ≤ H=W ≤ 2, with H and W the height
and width of the channel. This transition to spontaneous
flow is thus an intrinsically 3D behavior, which cannot be
explained by 2D models of active nematics [40–43].

Here, we show that a minimal theoretical description of
extensile microtubules below their IN transition, which
includes only the force-dipole and flow-aligning character
of the bundles, exhibits a transition to self-pumping flow
that depends critically on dimensionality. We then reveal
the physical origins of this behavior by formulating the
aspect ratio dependence in terms of a confinement-induced
length scale in the structure of the flow. Finally, we propose
design principles for generating self-pumping flows in
active fluids. The simplicity of our model implies that
these design principles apply to a wide variety of seemingly
disparate active matter systems.
Model.—Consider N noninteracting ellipsoids, each of

length l and diameter b suspended in a fluid in d
dimensions. The center of mass of ellipsoid i,  ri, evolves
as ∂t  ri ¼  uð  riÞ þ

ffiffiffiffiffi
2κ

p
 ηTð  riÞ, where  uð  rÞ is the fluid

velocity at position  r, ηTα is a stochastic Gaussian white
noise, and κ is the translational diffusion constant. Let the
axis of orientation of this ellipsoid,�ν̂i be defined along its
axis of symmetry (length). In low Reynolds number flows,
the time evolution of ν̂i is given by [44,45]
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∂tν̂i ¼ Ωð  riÞ · ν̂i þ λðI − ν̂iν̂iÞ · Eð  riÞ · ν̂i
þ

ffiffiffiffiffiffiffi
γ=2

p
ðI − ν̂iν̂iÞ ·  ηRð  riÞ; ð1Þ

where Ωαβ ¼ 1
2
ð∂βuα − ∂αuβÞ and Eαβ ¼ 1

2
ð∂βuα þ ∂αuβÞ

represent spatial variations in the flow, λ ¼ ½ðl2 − b2Þ=
ðl2 þ b2Þ�,  ηR is a Gaussian white noise, and γ is the
rotational diffusion constant.
Suppose the ellipsoids are active, pushing outward along

their axes with a force f and generating low Reynolds
number flows around them. The emergent flow  u is then a
solution of the driven Stokes equation, η∇2  uð  rÞ −  ∇p ¼
f
P

i ν̂i½δð  r −  ri − l=2ν̂iÞ − δð  r −  ri þ l=2ν̂iÞ�, [46] where
η is the coefficient of viscosity and the mechanical pressure
p is such that flows are incompressible:  ∇ ·  u ¼ 0.
We can coarse grain this microscopic model to derive the

dynamical description of this fluid on long length scales.
This gives the dynamics of the coarse-grained nematic
order, Q ¼ hν̂ ν̂−ðI=dÞi, to be of the form (see
Supplemental Material for derivation [47–50])

∂tQþ  u ·  ∇Qþ Q ·Ω −Ω · Q ¼ −γQþ κ∇2Q

þ λ

�
2

d
Eþ Q · Eþ E · Q −

2

d
trðQ · EÞI

�
; ð2Þ

with η∇2  u −  ∇p ¼ α  ∇ · Q and α ¼ fl=2. Note that our
model is purely kinematic. Including passive nematic
stresses in the Stokes equation would yield the Leslie-
Erickson model for liquid crystals below the IN transition
to linear order in Q. This would decrease the effective
activity [51], but not qualitatively change the phenomenol-
ogy discussed here.
Mechanism for spontaneous flow.—Since γ > 0, the

only homogeneous state admitted by the model is
Q ¼ 0,  u ¼ 0. Consider fluctuations about this stationary
isotropic state, Qαβð  rÞ ¼

R
d  kQ̃αβð  kÞe−i  k:  r, and uαð  rÞ ¼R

d  kũαð  kÞe−i  k:  r. The effective dynamics of the flow
is given by ∂tũβ ¼ ðiαk̂ν=ηkÞðδβμ − k̂βk̂μÞ∂tQ̃μν. Up to
linear order in perturbations, ∂tQ̃αβ ¼ −ðγ þ κk2ÞQ̃αβ−
ðiλ=dÞðkαũβ þ kβũαÞ. Eliminating Q̃αβ, the effective
linear dynamics of the flow is given by ∂tũβ ¼
ð−γ − κk2 þ λα=dηÞũβ. Thus, the stationary isotropic state
is destabilized by long wavelength perturbations if
αλ > dηγ, i.e., if the ellipsoids are rodlike (λ > 0) and
the forces exerted by them are sufficiently extensile
(α > 0), or if the ellipsoids are discoidal (λ < 0) and the
forces exerted by them are sufficiently contractile (α < 0)
[8,19–22,30,52,53].
In this Letter, we will focus on extensile rodlike ellipsoids,

to be consistent with experiments [29]. The phenomenology
of contractile discoidal objects is identical, so we will not
consider them separately. The emergence of spontaneous
flows in a suspension of extensile rodlike objects can be
ascribed to the followingmicroscopicmechanism: (1) rodlike
objects orient along the extensional axis of shear flows

[Fig. 1(a)], while (2) shear flows generated by extensile rods
have an extensional axis that coincides with the rod
orientation [Fig. 1(b)]. If the relevant active timescale,
τa ¼ 3η=λα, is shorter than the timescale for loss of order
due to rotational diffusion, τr ¼ 1=γ, flows and nematic
order at hydrodynamic scales arise spontaneously [21,30].
Thus, a positive reinforcement between shear alignment and
extensile active flows destroys the isotropic state and
generates the spontaneous flows discussed hereafter.
In the rest of this Letter, we explore how confining walls

can structure the spontaneous flows that are generated by
the active shear alignment instability described above (see
Supplemental Material [47] for full equations and numeri-
cal method [54–56]). The simplest theoretical setup that
can sustain coherent flows is a 2D active fluid confined in a
channel of width W. Above the flow alignment instability,
strong confinements give rise to unidirectional coherent
flows. As the width of the channel is increased, the flow
becomes undulatory and finally turbulent. This is true
regardless of anchoring at the walls (Supplemental Material
[47]), and the steady states observed are similar to those
discussed in the literature [15,42,57] for flows arising from
the instability of orientationally ordered systems [15,46].
However, this phenomenology does not trivially extend
to 3D.
Self-pumping in 3D.—To study the emergence of self-

pumping flows in 3D, we assume a simple channel
geometry with no slip walls at y ¼ 0, W and z ¼ 0, H
[Fig. 1(c)], and no preferential anchoring (Neumann
boundary conditions on Q). The minimum channel
dimensions that give rise to spontaneous flows are pre-
dicted by the stability analysis [solid white lines in
Figs. 2(d) and 2(e)]. In channels with square cross sections,
strong confinements above the instability yield self-pumping
flows that are uniform along the length of the channel

FIG. 1. (a) A slender rod aligns with the extensional axis of a
shear flow; (b) flow field produced by an extensile rod; (c) con-
finement geometry for coherent flows; (d) confinement geometry
for vortex size measurement.
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[Fig. 2(a)]. The nematic order is high near the walls and low
in themiddle of the channel, while the nematic director forms
anoblique anglewith thewalls (SupplementalMaterial [47]),
in agreement with experiments [29]. An alternate pathway to
this uniform self-pumping state is through the destabilization
of a weakly ordered nematic state by a combination of
fluctuations in the degree of nematic order and splay
deformations, as shown by the stability analysis in [58].
The phenomenology observed on increasing both the chan-
nel dimensions commensurately is analogous to the behavior
of a 2D confined system—the flows develop components
perpendicular to the channel axis at weaker confinements
[Fig. 2(c)], and gradually lose their self-pumping nature
[diagonals of Figs. 2(d) and 2(e)].
Increasing the channel dimensions incommensurately

reveals an intriguing behavior that is unique to 3D. Starting
from a strongly confined system with a symmetric cross
section and uniform coherent flow [Fig. 2(a)], increasing
either channel dimension destroys the self-pumping nature
of the flow [Fig. 2(b)]. An analogy to 2D systems would

suggest that the emergent flows continue to lose coherence
as the channel dimensions are increased [53]. However,
starting from a channel with a high aspect ratio cross
section [e.g., Fig. 2(b)], increasing the size of one
dimension to lower the aspect ratio restores self-pumping
[Fig. 2(c)]. This is because weakening the confinement
allows the flows to satisfy incompressibility by spilling into
the third (z) dimension rather than by forming closed loops
in the (xy) plane (Supplemental Material [47]). Note that
the flows in this case are not uniform along the channel
axis, and resemble the flows observed in experiments [29].
To understand this novel effect of confinement in a 3D

system, we consider a simpler confinement geometry: a
pair of walls separated by a distance H [Fig. 1(d)]. The
emergent flows in this case are composed of swirling
vortices, with a vortex size that increases with confinement
size H [Figs. 3(a) and 3(b)]. A similar increase of vortex
size with the confinement length scale has been reported in
suspensions of microscopic swimmers [59], and in insta-
bilities of nematically ordered systems [58].
Our results show that coherent flows in channels emerge

when the vortices generated by one pair of opposing walls
are curtailed by the other pair of walls. Comparing the vortex
sizes in Fig. 3(d) with the boundaries of the phase diagram
for coherent flow in Figs. 2(d) and 2(e) supports this
argument: for all confinement geometries with coherent
flows, the confinement length in each dimension is smaller
than the size of the vortex induced by confinement in the other
dimension. Since the vortex size increases with confinement
length, this condition simplifies to the following condition for

FIG. 2. Net flow along the channel varies nonmonotonically on
monotonically increasing the cross-sectional area of the channel
along the representative path (shown by arrows) in (d). (a)–
(c) Instantaneous flow profiles to demonstrate the behavior
shown by arrows in (d); when both the width and height of
the channel are equal to 5 (a), the emergent flow is coherent and
pumps fluid across the channel. When the width is increased to 20
(b), the flow loses coherence, and the average flow across the
channel, huxi drops to zero. When the height is also increased to
20 (c), coherence is restored. (d),(e) Heat maps of average flow
across the channel as a function of its dimensions for activity
magnitude α ¼ 5 (d) and α ¼ 7 (e). The solid white line
corresponds to the transition from stationary to flowing states
predicted by the linear stability analysis. The dashed white lines
encompass the region of coherent flows predicted by vortex sizes
computed in [Fig. 3(d)].

FIG. 3. (a),(b) Flow profile of an active fluid confined between
two walls, showing that the vortex size increases with the
separation between the walls, H. (c) The average velocity
correlations as a function of distance in the horizontal plane,
showing that the minimum of the correlation function shifts to the
right (i.e., vortex size increases), as the distance between the walls
is increased. At large values of H (e.g., H ¼ 50), there is no well
defined vortex size. (d) Vortex size as a function of channel
height. At small channel heights, the vortex size is larger than the
channel height, but as the height increases, the vortex size falls
below the height.
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coherent flow: the larger confinement dimension has to be
smaller than the size of the vortex induced by the smaller
confinement dimension. For example, consider a channelwith
width W and height H, such that W ≥ H. For one pair of
channel walls separated byH in the z direction, the vortex size
in the xy plane is lðHÞ. We now introduce a new set of walls
separated byW in the y direction. IfW > lðHÞ, at least one
vortex can form in the xy plane, so the emergent flowswill not
be net pumping. On the other hand, ifW < lðHÞ, there is not
enough space to form a full vortex, so the flows are net
pumping. Since W ≥ H, coherent flow requires lðHÞ > H.
Note that it is possible to have lðHÞ < H [Fig. 3(d)] at large
H. Therefore, there exists a maximum confinement length
scale beyond which coherent flows cannot be obtained. For
small activities (e.g., α ¼ 5), the confinement height at which
lðHÞ ¼ H is nearly equal to the height at which there ceases
to be awell-defined vortex size [Figs. 3(c) and 3(d)]. For larger
activities (e.g., α ¼ 7), lðHÞ ¼ H at a confinement height
smaller than the height at which the minimum of the velocity
correlation function disappears [Fig. 3(d)].
Experiments on bacterial suspensions confined in 2D

channels have reported a similar requirement for existence of
spontaneous flows; coherent flows were obtained when the
width of the channel was smaller than the intrinsic bulk
vortex size, while full vortices and no coherent flows resulted
when the width of the channel was larger than this emergent
length scale [18]. Note, however, that even 3D channels with
square cross sections fundamentally differ from 2D chan-
nels: to obtain coherent flows, it is not sufficient that each
confinement dimension is smaller than a bulk length scale.
Rather, each confinement dimension has to be smaller than
the corresponding confinement-induced length scale.
The negative velocity correlations and well-defined

vortex sizes in our numerical results [Fig. 3(c)] arise from
a complex nonlinear coupling between active flows and
hydrodynamic screening. However, we can understand
their system-size dependence by considering the following
simple model. We approximate the nonlinear effects of
flow on the dynamics of the nematic order as a stochastic
Gaussian white noise Γαβ, so that ∂tQαβ ¼ −γQαβþ
κ∇2Qαβ þ

ffiffiffiffiffiffi
ΔΓ

p
Γαβ. Let us compute the velocity correla-

tions in the isotropic system confined within walls sepa-
rated by H. Let  rjj denote position in the xy plane, and z
denote position along the confinement dimension. Then,
the velocity correlations in the unconfined directions are of
the form (Supplemental Material [47])

lim
j  rjj−  r0jjj→∞

huαð  rjj;z;tÞuαð  r0jj;z;tÞi0

¼
ffiffiffi
2

p
π2α2ΔΓ

γη2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

j  rjj−  r0jjj

s
exp

�
−
πj  rjj−  r0jjj

H

�
: ð3Þ

Thus, the velocity correlation length in the isotropic state is
H=π. Above the flow alignment instability, the nonlinear

dynamics give rise to a nontrivial dependence on confine-
ment not captured by this simple analysis.
Conclusions.—In summary, we have shown that an

isotropic suspension of extensile rodlike units develops
spontaneous flows due to a hydrodynamic instability that
couples extensile activity and shear alignment. The size of
the vortices generated by this instability depends on the
strength of confinement, and coherent flows arise when
each confinement dimension is smaller than the size of
vortices induced by confinement in the other dimension.
This requirement results in aspect-ratio-dependent self-
pumping, as observed in recent experiments [29].
Crucially, the minimal nature of our model establishes
that this phenomenon is generic to all shear-aligning
extensile 3D active systems.
The range of channel sizes that allow net pumping

flows can be tuned by controlling material parameters
such as activity and diffusion rates, to regulate the
velocity correlations. However, the nature of the flow
depends on a competition between spontaneous flows
generated by the flow alignment instability and destabi-
lization of these flows due to the generic hydrodynamic
instability [46,58], and thus arise only in a “sweet spot”
of material parameters. If activity or system size is too
small, the system is below the flow alignment instability
and there are no flows; if the activity or system size is too
large, the flows are turbulent. If the material parameters
are such that the correlation length lðHÞ is smaller than
the confinement size H for all activities high enough to
generate spontaneous flows, emergent flows can never be
coherent.
Our numerical solutions suggest that the aspect-ratio

dependence of coherent flows can be roughly predicted by
examining the effect of confinement in each dimension
independently. This simple deconstruction is surprising,
since active systems are typically highly sensitive to
boundaries. Moreover, while the predicted aspect-ratio-
dependence of coherent flow is consistent with existing
experiments [29], experiments have not yet observed an
upper limit to the overall size of the channel cross section
that allows coherent flow. Since this maximum size arises
due to the predicted sublinear dependence of vortex size on
the confinement length scale lðHÞ [Fig. 3(d)], experimen-
tally measuring the size of the largest vortices as a function
of confinement dimensions would be the next step toward
testing the hydrodynamic theory. To maximize the general-
ity of our conclusions, the hydrodynamic theory we
presented here contains only the minimal ingredients for
generating the behavior observed in experiments. The
theory that most accurately models the experimental system
may have additional features. For example, active forces
resulting from higher-order gradients of the nematic order
could lead to additional instabilities in highly confined
geometries [60], and contribute to the loss of coherence
observed in high-aspect-ratio channels.
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Note added.—We note that recently, a related insightful but
complementary paper appeared that also describes numeri-
cal computation of flow states in 3D channels [53]. There,
the authors report a loss of coherence of flows when the
width of the channel is increased at fixed height, yielding a
phenomenology analogous to that of confined 2D active
fluids. Our work provides a more comprehensive under-
standing of the dependence of coherent flow on channel
aspect ratio, and thus shows that confined 3D active fluids
are fundamentally different from confined 2D active fluids.
Further, the analytical investigations described here eluci-
date the interplay between the system-size dependence of
the correlation length and coherent flow. Finally, our work
shows that the aspect ratio dependence of coherent flows
depends on material parameters, and thus is not an
immutable constraint.
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