SoftwareX 13 (2021) 100663

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

EZFF: Python library for multi-objective parameterization and R

uncertainty quantification of interatomic forcefields for molecular

dynamics

Check for
updates

Aravind Krishnamoorthy ?, Ankit Mishra ?, Deepak Kamal”, Sungwook Hong *<,
Ken-ichi Nomura **, Subodh Tiwari ?, Aiichiro Nakano %, Rajiv Kalia?, Rampi Ramprasad ",

Priya Vashishta*®

2 Collaboratory of Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, United States of America
b Georgia Institute of Technology, 771 Ferst Drive, Northwest Atlanta, Atlanta, GA 30332, United States of America
¢ Department of Physics & Engineering, California State University, Bakersfield, CA 93311, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 9 October 2020

Received in revised form 13 January 2021
Accepted 15 January 2021

Keywords:

Molecular dynamics
Interatomic forcefield
Genetic algorithm

Global optimization engines.

Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics
simulations. This is a non-trivial global optimization problem involving quantification of multiple
empirical variables against one or more properties. We present EZFF, a lightweight Python library
for parameterization of several types of interatomic forcefields implemented in several molecu-
lar dynamics engines against multiple objectives using genetic-algorithm-based global optimization
methods. The EZFF scheme provides unique functionality such as the parameterization of hybrid
forcefields composed of multiple forcefield interactions as well as built-in quantification of uncertainty
in forcefield parameters and can be easily extended to other forcefield functional forms as well as MD

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version

Permanent link to code/repository used of this code version

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v0.9.4
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00066
MIT License

git

Python

Message Passing Interface (MPI) libraries
https://ezff.readthedocs.io/en/latest/

cacs@usc.edu

Software metadata

Current software version

Permanent link to executables of this version

Legal Software License

Computing platforms/Operating Systems

Installation requirements & dependencies

If available, link to user manual — if formally published include a reference to
the publication in the reference list

Support email for questions

0.9.4
https://github.com/arvk/EZFF/archive/v0.9.4.zip
MIT License

Linux, 0SX

Message Passing Interface (MPI) libraries
https://ezff.readthedocs.io/en/latest/

cacs@usc.edu

* Corresponding author.
E-mail address: knomura@usc.edu (Ken-ichi Nomura).

https://doi.org/10.1016/j.s0ftx.2021.100663

1. Introduction

Molecular Dynamics (MD) is an important technique in com-
putational chemistry, biology and materials science for simulating

2352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

A. Krishnamoorthy, A. Mishra, D. Kamal et al.

the structure, dynamics and thermodynamic properties at the
atomic scale. While parameter-free ab initio quantum molec-
ular dynamics simulations have been successful in simulating
atomic dynamics in small (<1000s of atoms) systems over brief
timescales (< 100s of ps), modeling realistically complex sys-
tems (over 10° atoms) over chemically and biologically relevant
timescales (~ s to ms) requires the use of classical molec-
ular dynamics simulations, where interatomic interactions are
approximated by empirical/semi-empirical forcefields, which are
sets of parameterized mathematical functions.

The reliability of results from classical MD simulations, and
their predictive power, fundamentally depend upon the quality
of the forcefields used. Therefore, parameterization of forcefields
is a necessary first step in performing high-quality MD simu-
lations. This parameterization process either involves matching
forces and energies for various input clusters as implemented
in the potfit package [1-3] or the identification of an optimal
set of numerical parameters that best approximates experimental
or quantum chemical reference data [4,5] for material systems
under investigation [1]. Further, forcefields must be parameter-
ized to simultaneously reproduce several materials properties,
necessitating multi-objective optimization techniques. The large
number of optimizable empirical parameters (up to several hun-
dred parameters for complex force fields like ReaxFF [6] and
COMB [7]) as well as a non-trivial correlation between these
variables makes forcefield parameterization a highly complex
global optimization problem [8].

Owing to the complexity of handling high-dimensional param-
eter and objective space, most existing parameterization schemes
transform this into more computationally tractable analogues.
One of the earliest schemes, the sequential one-parameter
parabolic interpolation (SOPPI) [9], casts this as a sequence of
one-dimensional local parabolic minimizations, where a single
parameter is optimized to minimize a single weighted sum of sev-
eral objectives. While computationally simple, the SOPPI method
has several significant shortcomings, primarily the propensity
of the algorithm to converge to a neighboring local minimum,
rather than a global minimum as well as poor convergence
characteristics if the optimization is started from a poor initial
guess [8,10]. Further, SOPPI is an inherently sequential method
that cannot take advantage of vast capabilities of today’s highly
parallel supercomputers. Non-deterministic methods like sim-
ulated annealing and differential evolution, as implemented in
packages like potfit, are more robust against convergence to local
minima, but are constrained to optimizing a single weighted sum
of multiple objectives.

These shortcomings are partially addressed in recent multi-
objective schemes like GARFfield [11], which use evolutionary
algorithms to perform global minimization of a weighted sum
of multiple objectives, using an a priori user-provided weight-
ing scheme. Other schemes such as Multi-objective evolutionary
strategies [12] and MOGA [13] Rotation-invariant Particle Swarm
Optimization with isotropic Gaussian Mutation (RIPSOGM) [8]
have been developed that evolve the entire Pareto Frontier of
multiple forcefield populations at once, without the need to spec-
ify a priori weights for the different objectives. Existing software
frameworks for forcefield optimization are also commonly lim-
ited to the parameterization of a single predefined functional
forcefield form, such as the Forcefield Toolkit (ffTK) [14] and
general automated atomic model parameterization (GAAMP) [15]
frameworks for the CHARMM forcefield, Paramfit [16] for AMBER
forcefields and MOGA [13] for ReaxFF forcefields. However, to the
authors’ knowledge, there is no existing general multi-objective
global optimization framework that is applicable to parameter-
ization of different forcefield functional forms implemented in
different MD engines.

SoftwareX 13 (2021) 100663

Here, we introduce EZFF, a flexible Python-based multi-
objective forcefield optimizer framework for parameterization of
multiple forcefield functional forms, including reactive forcefields
such as ReaxFF and COMB, using different molecular dynam-
ics engines (LAMMPS [17], GULP [18], RXMD [19] etc.) against
multiple user-definable objectives using an a posteriori Pareto-
dominant multi-objective methods that are proven to be effective
for forcefield parameterization [20,21]. In the next section, we
describe the EZFF framework and typical workflow for forcefield
parameterization as well as the different objective functions
currently supported for force field development. In Section 3, we
illustrate the application of EZFF to the development of several
forcefields, including ReaxFF, Stillinger-Weber etc.

2. Software description

The EZFF source code is written entirely in Python 3 to take
advantage of the large user base, and close integration with
large number of scientific libraries for data processing, analy-
sis and optimization. Specifically, EZFF makes use of the open
source Platypus library [22] for performing evolutionary opti-
mization. Through Platypus, EZFF supports an ensemble of ge-
netic algorithms, including NSGA2 [23], NSGA3 [24], Evolutionary
strategies like IBEA, Differential evolution (GDE3), and particle
swarm methods like OMOPSO [25] capable of exploring different
regions in the parameter space for nonconvex, discontinuous,
and multimodal solutions [11], as evident in the several previ-
ous studies that have used hard-coded genetic algorithms for
forcefield training [26-28].

Fig. 1 describes the typical workflow for multi-objective opti-
mization of a classical forcefield using EZFF. The forcefield opti-
mization process begins with three inputs from the user:

1. The functional form of the forcefield to be optimized, as
well as the numerical parameters to be determined are pro-
vided in a forcefield template file. This forcefield template
is identical to a valid forcefield file, where the optimizable
parameters are replaced by named variables enclosed in
double angular brackets ‘<< >>’,

2. The user is also required to provide, in a separate file, the
maximum and minimum permissible values of these pa-
rameters. During global optimization, EZFF generates new
forcefields by randomly sampling each variable within the
provided minimum and maximum bounds.

3. Finally, the user must provide a set of one or more struc-
tural, chemical and energetic properties that the forcefield
must reproduce. Deviation from these ground truths values
define the objectives (i.e. errors) that must be minimized
during the global optimization process.

The inputs are collected together in a single user-defined
Python script (run.py in Fig. 1), which defines functions for the
computation of objectives/errors for the forcefield parameteriza-
tion, as well as other important properties for global optimization
(such as the GA algorithm to be used, population size at each
epoch, number of epochs and parallelization scheme to be used).
Based on the user-defined values, EZFF generates n valid force-
fields based on the template and parameters sampled randomly
from the permissible ranges, where n is the population size. These
different forcefields are evaluated by the user-chosen MD en-
gines, which are spawned in parallel by mpi4py (or sequentially,
if MPI is not available). Each MPI ranks creates its own working
directory with necessary input files, executable and further utility
files as defined by the user (as defined in the run.py script).
Individual forcefields are assigned to all available MPI ranks in
a round robin fashion. Each MPI rank runs an serial instance
of user-defined MD engine such as GULP, LAMMPS, RXMD etc,

A. Krishnamoorthy, A. Mishra, D. Kamal et al.

/ User Input

(Variable Bounds,

\ Forcefield Template,

AN - Objectives/Errors o

v

(77 EZFF script — run.py

¥

(Generate forcefield population 5 <

— - PR
— MPI Communication

« \

Force field Force field
parameter set 1 parameter set 2

MD simulation 2
using MD engine

MD simulation 1
using MD engine

Error computation 1 Error computation 2

S~ 1
MPI Communication

Staged Optimization

g S
T — Converged?//
~ -

SoftwareX 13 (2021) 100663

D

S~
S~

Force field
parameter setn

MD simulation n
using MD engine

Error computation n

J/ Genetic operations \\
- | Crossover/mutation |

\ |
Qarticle velocities/positioy

o~ No

Yes

e e N
(__ optimal force field set)

Fig. 1. EZFF forcefield parameterization workflow. The forcefield parameterization process begins with user specification of forcefield templates and variable bounds
in the EZFF script. These are used to generate an ensemble of forcefield candidates, which are evaluated independently by MPI ranks spawned by the master EZFF
process. The errors (i.e. objectives) computed by these MPI ranks are communicated back to the master process, which performs genetic operations to spawn the

next generation of forcefield candidates.

to produce a simulation corresponding to a specified generated
population. The material properties correspond to each force-
field is then compared to their ground truth values to compute
the error(s) corresponding to each forcefield in the population.
These errors/objectives for each MPI rank is communicated to
the main EZFF thread, which uses Platypus and user-defined
genetic algorithm to perform crossover and mutation operations
and particle displacements to generate the next generation of
forcefield candidates for evaluation.

EZFF provides several modules for each stage of this parame-
terization process (Fig. 2) including function definitions to sup-
port different tasks required for fitting force fields and imple-
menting the parallel workflow interface with different simulation
engines. EZFF is the main module that defines the OptProblem
and Algorithm classes for flexible definition of optimization pa-
rameters (like error function, genetic algorithms, stopping crite-
rion etc.). Module FFIO defines methods to handle I/O operations
on forcefield templates, parameter ranges and EZFF-generated
forcefields. LAMMPS and RXMD software for performing MD to
evaluate the generated forcefields. These modules include func-
tions to spawn and run these MD engines as well as methods to
read data from the execution of these MD programs. In addition,
EZFF also includes custom interfaces to popular Density Func-
tional Theory (DFT) based programs like VASP and QChem to read
ground truth values for energies, forces, frequencies and other
properties. These custom interfaces enable EZFF to import ground
truth values both from popular simulation programs like VASP,
QChem, GULP and LAMMPS, as well as other simulation packages
that provide unique capabilities like RXMD [19] and QXMD [29],
which are not currently accessible via other parsers like ASE [30]
and pymatgen [31].

The errors module defines several common objectives used
to evaluating the quality of forcefields such as atomic positions

(including bond lengths and angles), atomic charges, crystal struc-
ture and lattice constants, vibration energies, elastic constants,
phonon frequencies, bond stretching and dissociation energies.

The utilities module contains functions of generic utility in-
cluding unit conversion and complex force field template gener-
ation such as ReaxFF.

2.1. Installation and compilation

The library is available on the Python Package Index (PyPI) and
can be installed using the command

pip install EZFF

Alternatively, the latest developmental version can be down-
loaded from the publicly available Github repo at https://github.
com/arvk/EZFF and can be compiled by executing setup.py in
the root directory of the EZFF tree (Fig. 2). The user is respon-
sible for ensuring the installation of the two EZFF dependencies
(mpidpy [32,33] and xtal [34]) separately.

2.2. Software functionalities

EZFF provides a lightweight and extensible Python interface
that enables, for the first time, serial and parallel multi-objective
global parameterization of multiple types of simple and com-
plex reactive and non-reactive forcefields such as ReaxFF, COMB,
Stillinger-Weber, Lennard Jones via multiple MD engines.
Uniquely, EZFF also allows for the parameterization of hybrid
forcefields composed of multiple interatomic interactions with
different functional forms.

The modular design of EZFF provides a quick and facile method
to change optimization algorithms during forcefield parameteri-
zation. This enables strategies such as staged optimization, where
diversity preserving genetic algorithms like NSGA-III can be ini-
tially employed to more completely sample the parameters space

A. Krishnamoorthy, A. Mishra, D. Kamal et al.

(a)

EZFF

/
LICENSE

— MANIFEST.in

README . md

docs

examples

ezff

}— errors.py

}— ffio.py

}— interfaces
F— qulp.py
F— qchem.py
L— vasp.py
}— lammps.py
L— rxmd.py

(b)

SoftwareX 13 (2021) 100663

|
|
|
|
|
L— utils

}— convert_units.py
L— reaxff.py

— setup.py
L— tests

EZFF ERROR UTILS/reaxff
Class OptProblem error_phonon_dispersion Class reax_forcefield
evaluate error_structure_distortion read_forcefield_from_file
Optimize error_lattice_constant read_forcefield_from_file
Algorithm error_atomic_charges generate_template
error_energy make_template_geq
make_template_twobody
FFIO make_template_threebody
read_variable_bounds make_template_fourbody
read:forcefiela_template make_formatted_forcefield
generate_forcefield write_gulp_library
INTERFACES
GULP QCHEM VASP LAMMPS RXMD
Class job read_structure read_atomic_structure Class job Class job
run read_energy read_energy run run
write_script_file read_atomic_charges read_phonon_di: | i gt
cleanup cleanup getBox
read_energy write_structure_file write_script_file
read_elastic_modulus read_energy cleanup
read_phonon_dispersion read_elastic_moduli read_energy
read_atomic_charges read_atomic_charges read_atomic_charges
read_structure read_structure

Fig. 2. Organization of EZFF forcefield fitting code. (a) Tree structure of the directory and the files necessary to run EZFF. (b) Module diagram showing definitions
of various classes and internal organization of flow of control.

followed by a second stage where other multi-objective opti-
mization schemes like differential evolution can be used to more
efficiently converge to local minima in the objective phase space.

Optimization algorithms used in EZFF evolve and keep track of
the entire Pareto front at every epoch during optimization. There-
fore, we can perform Pareto-frontal uncertainty quantification for
forcefields generated by EZFF. This Pareto-frontal breakdown of
different forcefields for each epoch provides a natural way to
establish one of the primary sources of uncertainty in molecular
dynamics simulations — namely the uncertainty in forcefield pa-
rameters. This Pareto-frontal uncertainty quantification approach
offers an alternative method to estimate the errors in force-
field parameters [13,35-39], to complement the predominantly
Bayesian approaches employed in other packages used in prior

studies [40].

Illustrative examples

We present 2 examples to demonstrate the unique capabilities
of EZFF in parameterizing reactive and non-reactive forcefields.
In the first example, we demonstrate the parameterization of
a hybrid forcefield, consisting of multiple functional forms. The
second example covers the optimization of reactive forcefields for
modeling accurate metal-polymer interfaces

Example 1: Optimization of Hybrid Forcefields for Layered
Two-dimensional Materials

Two-dimensional and layered materials are being actively in-
vestigated for their unique electronic structure and mechani-
cal and transport properties arising out of their quantum con-
finement along one dimension. In the case of layered transi-
tion metal dichalcogenides like MoS, interatomic interactions
can broadly be divided into strong covalent interactions between
nearest-neighbor Mo and S atoms, and longer-range van der
Waals interactions between MoS, sheets along the c axis (Fig. 3).

These interactions are well described by an in-plane Stillinger—
Weber interaction between Mo and S atoms combined with out-
of-plane Lennard Jones interactions between S atoms in adjacent
MoS; layers. Specifically, this system can be described by a hybrid
forcefield that includes:

The total potential energy of the given system of N atoms

located at [ry, 1y,

..., ry] in the SWFF can be written as

Esw (r1,12,...Txy) = sz(hj) + Z V3(rij, Tk, i)

i<j i<j<k

where r;j = |rj — 1;|. The 2-body term, V, is defined as

B
Vy (rj) =A r—4—1 exp

i

rU — Teut

The two-body term is defined by 3 optimizable parameters, A,
B and y.

The 3-body term, V3 around a central atom i is given by
three optimizable parameters, A, y; and y, and has the following
functional form. Geometric parameters, including interaction cut-
off distances, rcy, 'eur1 and reyz and equilibrium angles, 6, are held
fixed during parameterization.

Y1 Y2
V3 (ry, Tk, Ox) = A exp -
’ ! rij — Tar1 Tik —

> (cos @ — cos 6p)?

Teut2

Interactions between adjacent MoS, layers, « and B, are de-
scribed by Lennard Jones interactions between sulfur atoms at r1,

r2, r3
ELJ(l“;‘,r‘;,...rf,rg,...)
12 6
o2 o
:Za —_— —2x Vrirx_rjﬁ‘
ij r —Tf‘ i _rjﬂ’
<14

cut

This longer-range non-bonded interaction is defined by three
optimizable parameters, ¢, o and rCL{,t.

These parameterizable variables and permissible ranges are
defined in the forcefield template and parameter ranges files
as shown in Fig. 4. Fig. 5 presents complete script to perform
parameterization task.

Fig. 6 shows that by using NSGA-III along with EZFF quickly
identifies a set of forcefields that simultaneous optimizes all 4
objectives considered in this example.

Example 2: Optimization of ReaxFF forcefields for Al-polymeric
materials using RXMD

Understanding the electronic properties at metal-organic in-
terfaces are becoming increasingly crucial as electronic devices
like batteries and capacitors move towards smaller scales and
higher efficiency. But the experimental exploration of interfacial
electronic properties is mired with challenges owing to their im-
mense chemical and morphological complexity [41-43]. To side-
step this difficulty, the community currently uses first-principles
computations on highly simplified models of interfacial struc-
tures to access these properties [44,45]. But, the understanding
of electronic processes is currently limited by the ideal nature
of the interfacial structures used in these simulations. While
generation of realistic interface structures using first-principle

A. Krishnamoorthy, A. Mishra, D. Kamal et al.

(a)

OO‘OOO
ol O O O
QQ Q Q

K O/ Covalent
00 o oo "™

v S-S

4 van der Waals

SoftwareX 13 (2021) 100663

O (@)
09 e e e°
02020 0 00
OQ.@O@,O.@O.@,O
OQ.@O.@,O@O@O
0 Q 0 o
3.16 A

Fig. 3. Crystal structure and interactions in MoS,. (a) The layered MoS, crystal is held together by strong in-plane covalent Mo-S interactions and relatively weaker
S-S van der Waals interactions. (b) The honeycomb crystal structure of MoS2 has a lattice constant of 3.16 A. The unit cell for MoS, is indicated by thin black lines.

Forcefield Template

E = A.exp(rh

sw2
s1
Mo
Mo
s2
Mo

sl .00
.00
.00
.00

.00

.317 0
191 0
.317 0
0
0

s1 1
Mo !
s2
s2

.317
.191

coooo
W s W

sw3

Parameter Ranges

0.9495 1.5825
0.34125 0.56875

B 55 29.025 48.375
5.21475 8.69125
0.273 0.455

6.39 10.65

o 3.594 5.99

1o 0.42375 0.70625
o 13.9875 23.3125
5 9.13935 15.2323

Mo S1 sl 3.191 3.191 4.317 0 0 0 0

S1 Mo Mo <<I_ 2 G 3.191 3.191 4.317 0 0 0 0 = 0 61.5102.5

Mo S2 S2 3.191 3.191 4.317 0 0 0 0 M 0.828 1.38

52 Mo Mo 3.191 3.191 4.317 0 0 0 0 L SMoMo 21.716 36.1933

e Mo 1.78275 2.97125

. 0.0237 0.0395

L e , 2.685 4.475

ato atom (A B/eps o] S Jma ax ac L 4-5 7-5

lennard epsilon
S1 s2 10

|
“
I
:

Fig. 4. Inputs for EZFF forcefield parameterization. The forcefield template file is characterized by the presence of named variables (green, enclosed in dual angular
brackets, <<>>), which will be replaced by numerical values during the optimization process. The minimum and maximum permissible values for these variables are
provided in a separate parameter ranges file, as shown above.. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

based methods remains intractable due its complexity, structure
generation using MD simulations utilizing reactive forcefields like
ReaxFF [6,46] remains a feasible option. Here, we attempt to
generate a ReaxFF forcefield using EZFF which can accurately
capture the interaction between Aluminum (which is a common
electrode) and C — H — O based organic molecules/polymers to
facilitate easy creation of realistic Al-organic interfaces.

ReaxFF is a class of semi-empirical bond-order-based force-
fields for describing reactive dynamics involving bond breaking
and formation and are well suited to describe highly hetero-
geneous material systems. ReaxFF forcefields are composed of
several hundred parameterizable variables that describe vari-
ous 2-body, 3-body and 4-body interactions between different
atomic species, which makes global optimization of these poten-
tials highly challenging. Recently, Hong and van Duin parame-
terized a new ReaxFF forcefield for Al/C/H/O materials against
interaction energies between organic radicals and Al [47]. How-
ever, this work fails to capture the interaction energy between
fully saturated organic molecules and the Al surface correctly
resulting in unrealistic interface structures. Therefore, we use
EZFF to reparameterize the ReaxFF forcefield from Hong and van
Duin to better reproduce interaction energies between an Al (111)
surface and two representative saturated organic molecules, CHy
and G, Hg. Specifically, EZFF is used to parameterize only variables

controlling the Al-C and Al-H 2-body interactions to most accu-
rately reproduce the DFT-computed interaction energy between
Al and CH4/C2H5.

Fig. 7 shows the full run.py script to perform forcefield param-
eterization using the RXMD [19] as the MD engine to evaluate
the quality of different ReaxFF forcefield. The script uses the
Indicator-Based Evolutionary Algorithm (IBEA) to optimize the
ReaxFF parameters over 100 epochs against two objectives — de-
viations from DFT-computed energies for the Al-CH,4 and Al-C,Hg
systems respectively.

Figs. 8a and 8b show that IBEA converges rapidly within 100
epochs producing optimal forcefields that replicate the adsorp-
tion energy profiles for both CH, and C;Hg molecules and Fig. 9
shows that the adsorption energy profiles from the optimized
forcefields are in much better agreement with the DFT values
than those generated from the original forcefield from Hong and
van Duin.

3. Impact

Parameterization of interatomic forcefields is a highly time-
consuming and cumbersome process, whose complexity, along
with the lack of general best-practices guidelines has led the
process of forcefield construction to be considered an ‘art’. EZFF
attempts to improve the process of forcefield parameterization by

A. Krishnamoorthy, A. Mishra, D. Kamal et al.

: import ezff
: from ezff.interfaces import vasp, gulp
: import numpy as np

2

3

4:

5: bounds = ezff.read_variable_bounds (

6: template = ezff.read_forcefield_template ()
7
8

9: gt_disp_GM = vasp
10: gt_relax_structur,
11: gt_cll = 260.0 #G

13: def my_error_function (variable_values):

SoftwareX 13 (2021) 100663

, verbose=False)

16: path = str(myrank)+

17: relaxed_job = gulp.job (path=path)

18: relaxed_job.structure = gt_relax_structure

19: relaxed_job.forcefield = ezff.generate_forcefield(template, variable_values, FFtype =)
20: relaxed_job.options[] = True

21: relaxed_job.options[] = True

22: relaxed_job.options[1 = True

23: relaxed_job.options[1 = True
24: relaxed_job.options[1=
25: relaxed_job.options[1=
26: relaxed_job.run () read

p job files

2 # Re it f 2d d

28: disp_GM = relaxed_job.read_phonon_dispersion ()

29: md_relaxed_moduli = relaxed_job.read_elastic_moduli ()

30: md_relaxed_structure = relaxed_job.read_structure ()

31: relaxed_job.cleanup () # FI XED JOB

32: # Co. e 4 errors LP

33: error_abc, error_ang ezff.error_lattice_constant (MD=md_relaxed_:

ructure, GT=gt_relax_structure)

34: a_lattice_error = np.linalg.norm(error_abc[0]) # r in ’a’

35: c_lattice_error = np.linalg.norm(error_abc[2]) # E

36: md_cll = md_relaxed_moduli[0][0,0]

37: modulus_error_cll = np.linalg.norm(md_cll - gt_cll)

38: phon_error_GM = ezff.error_phonon_dispersion (MD=disp_GM, GI=gt_disp_GM, weights=)
39: return [a_lattice_error, c_lattice_error, modulus_error_cll, phon_error_GM]

41: pool = ezff.Pool()

42: problem = ezff.OptProblem(num_errors=4, variable_bounds=bounds, error_function=my_error_function, template=template)

43: algorithm = ezff.Algorithm(problem,
44: ezff.optimize (problem, algorithm, iterations = 100)
45: pool.close()

, population = 256, pool = pool)

Fig. 5. Complete script (run.py) for preforming parameterization of a hybrid Stillinger-Weber and Lennard-Jones forcefield using EZFF.

(a) (b)
12, 35
10 i 30 i
< <
2 g 1 8% 1
S =
x X200]
s O il Y15
£, =]
5 4 1 510 1
oo | &gl |
0 . 0]
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
(c) (d)
7 23
6 22]
s TE2.1 4
8’ ¢ &‘19
E 21
G 3 2
:, 218
5 ~§1.7
g1 216
o 4 Y15
—1 I I I I 1.4

Fig. 6. Quality of forcefields during optimization. (a-d) show the computed error
for each of the four objectives used for parameterizing the hybrid Stillinger—
Weber and Lennard-Jones forcefield. At each epoch, the mean (dark line) and
standard deviation (light fill) of the 20 best forcefields on the Pareto front are
plotted. The NSGA2 algorithm converges quickly to produce good forcefields
within 50 epochs.

providing a simple workflow, in an easy-to-understand scripting
language to optimize a wide range of empirical forcefields of
varying levels of complexity. The highly parallelized parameter-
ization process enables rapid prototyping and testing of multi-
ple forcefields before performing production molecular dynamics
simulations. The parameterization of hybrid forcefields opens
doors for the direct parameterization of interatomic interactions
for highly heterogeneous material systems, including those con-
taining interfaces between two distinct phases. This would foster
an ensemble of exploratory studies into the rich and largely

unexplored space of interfacial properties which are rather exotic
compared to bulk materials.

4. Conclusions

In this paper, we described EZFF, a lightweight and flexible
Python library for multi-objective global parameterization of dif-
ferent types of interatomic forcefields for molecular dynamics
simulations. The highly parallelized and scalable framework will
enable quick prototyping of several forcefield function forms,
as well as hybrid forcefields composed of multiple interatomic
interactions. EZFF also admits staged optimization strategies us-
ing multiple optimization algorithms for generating high-quality
forcefields with built-in Pareto-frontal uncertainty quantification,
thus greatly simplifying the currently cumbersome process for
construction and validation of forcefields.

The EZFF codebase is meant to continuously evolve in future
releases, welcoming suggestions and contributions from users.
Future versions will include capability to use dynamic properties
(mean square displacements, and various correlation functions)
as objectives in the parameterization process, enabling fitting of
forcefields to dynamic material properties.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

Mishra, Kamal, Ramprasad, and Tiwari were supported by the
Office of Naval Research through a Multi-University Research Ini-
tiative (MURI) grant NO0O014-17-1-2656. Nakano and Kalia were
supported by the FMR Artificial Intelligence Driven Cybermanu-
facturing of Quantum Material Architectures by the National Sci-
ence Foundation under Award 2036359. Krishnamoorthy, Hong,

A. Krishnamoorthy, A. Mishra, D. Kamal et al.

: import ezff
: from ezff.interfaces import gulp, vasp
: from ezff.utils.reaxff import reax_forcefield

Define ground truths
: structure_ch4 =
: energy_ch4 = vasp.read_energy (’'ground truths/chd’)
: structure_c2hé6 =
9: energy_c2h6 = vasp.read_energy (' ground_truths/c2hé’)

OGS W

11: def my_error_function(rr):

SoftwareX 13 (2021) 100663

vasp.read_atomic_structure (’ground_truths/chd’)

vasp.read_atomic_structure (' ground_truths/c2h6’)

12: path = str(pool.rank)

133

14: # Calculate CH4 structure

5% ch4_job = gulp. job(path = path)

16: ch4_job.structure = structure_ch4

17: ch4_job.forcefield = ezff.generate_forcefield(template, rr, FFtype = 'reaxff’
18: ch4_job.options[’pbc’] = True

19: ch4_job.options [’ relax_atoms’] = False

20 chd4_job.options [’ relax_cell’] = False

21 # Run gulp calculation

22 ch4_job.run (command='gulp’)

23: # Read output from completed GULP job and clean-up
24 ch4_md_energy = chd4_job.read_energy ()

25: ch4_job.cleanup ()

26:

27: # Calculate C2H6 structure

28: c2h6_job = gulp.job(path = path)

29: c2h6_job.structure = structure_c2hé

30: c2h6_job.forcefield = ezff.generate_forcefield(template, rr, FFtype = ’'reaxff’
31 print (c2h6_job.forcefield(0])

323 c2h6_job.options(’pbc’] = True

33: c2h6_job.options [’ relax_atoms’] = False

34: c2h6_job.options[’relax_cell’] = False

35: # Run gulp calculation

36: c2h6_job.run (command='gulp’)

37: # Read output from completed GULP job and clean-up
38: c2h6_md_energy = c2h6_job.read_energy ()

39: c2h6_job.cleanup ()

40:

41: # Calculate errors

42: ch4_error = ezff.error_energy(ch4_md_energy, energy_chéd-energy_ch4[-1], weights = "uniform’)
43: c2h6_error = ezff.error_energy(c2hé6_md_energy, energy_c2hé-energy_c2h6[-1], weights = ‘uniform’
44:

45: return [ch4_error, c2hé_error]

46:

47:

48: pool = ezff.Pool()

49:

50: if pool.is_master():

51: # Generate forcefield template and variable ranges
52 FF = reax_forcefield('AlLCHO.£f£f’)

53: FF.make_template_twobody ('Al’,’C")

54: FF.make_template_twobody ("Al’, H’)

55 FF.generate_templates()

56:

57: # Read template and variable ranges
58: bounds =
59: template =

61: problem =
62: algorithm = ezff.Algorithm(problem,
63: ezff.optimize (problem, algorithm, iterations =
64: pool.close()

ezff.OptProblem(num_errors=2, variable_bounds=bounds, error_function=my_error_function,
"NSGAII’, population
100, write_forcefields = 1)

ezff.read_variable_bounds ('param_ranges’, verbose=False)
ezff.read_forcefield_template(’' ff.template.generated’)

template=template)
= 239, pool = pool)

Fig. 7. Complete script (run.py) for preforming parameterization of a ReaxFF forcefield for the polymer-Al system using EZFF.

(a)

(b)

12 7
~10p 1 ~ O 1
S g sy :
= £ 4
])
O
e 3
5 5 2
] Gy

0 .
0 20 40 60 80
Epochs

100

20 40 60 80
Epochs

o

100

Fig. 8. Quality of ReaxFF forcefields during genetic optimization. (a) and (b) show the computed error in the adsorption energy profile respectively for the Al-CH,
and Al-G,Hg systems. At each epoch, the mean (dark line) and standard deviation (light fill) of the 20 best forcefields on the Pareto front are plotted. The IBEA
algorithm employed here converges quickly to produce good forcefields within 50 epochs.

Nomura, and Vashishta were supported as part of the Compu-
tational Materials Sciences Program funded by the U.S. Depart-
ment of Energy, Office of Science, Basic Energy Sciences, under
Award DE-SC0014607.This work used the Extreme Science and

Engineering Discovery Environment (XSEDE), which is supported
by National Science Foundation grant number ACI-1548562 and
The Partnership for Advance Computing Environment (PACE) at
Georgia Institute of Technology.

A. Krishnamoorthy, A. Mishra, D. Kamal et al.

(a)

Energy (V)

1 1.5 2 25 3 3.5 4
CH,4 Adsorption distance (A)

(b)

Energy (eV)

SoftwareX 13 (2021) 100663

Al
., O CH
! o qo%0 i
Y °e._.%°0
°, oA
[] |
o C I
e %o
Original
Optimized

1.5 2 25 3 35 4
CyHg Adsorption distance (A)

Fig. 9. Adsorption energy profile of optimized ReaxFF forcefield. Al-molecule interaction energies from the optimized forcefield (100th epoch) are in closer agreement
with the DFT ground truth values than those from the original forcefield from Hong and van Duin.

References

(1
[2]

3]

[4

[5]

6

[7]

(8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

Brommer P, Gahler F. Potfit: effective potentials from ab initio data.
Modelling Simulation Mater Sci Eng 2007;15(3):295-304.

Brommer P, Gahler F. Effective potentials for quasicrystals from ab-initio
data. Phil Mag 2006;86(6-8):753-8.

Brommer P, et al. Classical interaction potentials for diverse materials from
ab initio data: a review of potfit. Modelling Simulation Mater Sci Eng
2015;23(7):074002.

Furman D, et al. Reactive force field for liquid hydrazoic acid with
applications to detonation chemistry.] Phys Chem C 2016;120(9):4744-52.
Furman D, Kosloff R, Zeiri Y. Effects of nanoscale heterogeneities
on the reactivity of shocked erythritol tetranitrate. J Phys Chem C
2016;120(50):28886-93.

van Duin ACT, et al. ReaxFF: A reactive force field for hydrocarbonds.]
Phys Chem A 2001;105(41):9396-409.

Shan TR, et al. Charge-optimized many-body potential for the
hafnium/hafnium oxide system. Phys Rev B 2010;81(12).

Furman D, et al. Enhanced particle swarm optimization algorithm: Ef-
ficient training of ReaxFF reactive force fields.] Chem Theory Comput
2018;14(6):3100-12.

Vanduin ACT, Baas JMA, Vandegraaf B. Delft molecular mechanics - a new
approach to hydrocarbon force-fields - inclusion of a geometry-dependent
charge calculation.] Chem Soc Faraday Trans 1994;90(19):2881-95.
Senftle TP, et al. The ReaxFF reactive force-field: development, applications
and future directions. NP] Comput Mater 2016;2.

Jaramillo-Botero A, Naserifar S, Goddard WA. General multiobjective force
field optimization framework, with application to reactive force fields for
silicon carbide.] Chem Theory Comput 2014;10(4):1426-39.

Larentzos JP, et al. Parameterizing complex reactive force fields using mul-
tiple objective evolutionary strategies (MOES). Part 1: ReaxFF models for
cyclotrimethylene trinitramine (RDX) and 1, 1-diamino-2, 2-dinitroethene
(FOX-7). J Chem Theory Comput 2015;11(2):381-91.

Mishra A, et al. Multiobjective genetic training and uncertainty
quantification of reactive force fields. NP] Comput Mater 2018;4(1):42.
Mayne CG, et al. Rapid parameterization of small molecules using the force
field toolkit.] Comput Chem 2013;34(32):2757-70.

Huang L, Roux B. Automated force field parameterization for nonpolariz-
able and polarizable atomic models based on ab initio target data.] Chem
Theory Comput 2013;9(8):3543-56.

Betz R, Walker RC. Paramfit: A program for automated forcefield parameter
generation using a genetic algorithm. In: Abstracts of papers of the
American Chemical Society. 2012, p. 243.

Plimpton S. Fast parallel algorithms for short-range molecular-dynamics.]
Comput Phys 1995;117(1):1-19.

Gale JD. GULP: A computer program for the symmetry-adapted simulation
of solids.] Chem Soc Faraday Trans 1997;93(4):629-37.

Nomura K, et al. A scalable parallel algorithm for large-scale reac-
tive force-field molecular dynamics simulations. Comput Phys Comm
2008;178(2):73-87.

Zitzler E, Thiele L. An evolutionary approach for multiobjective opti-
mization: The strength Pareto approach. TIK Report, Zurich, Switzerland:
Computer Engineering and Networks Laboratory (TIK), ETH Zurich; 1998.
Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evo-
lutionary algorithm. TIK Report, Zurich, Switzerland: Computer Engineering
and Networks Laboratory (TIK), ETH Zurich; 2001, p. 21.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]
[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

Hadka D. Project-platypus/platypus: A free and open source python library
for multiobjective optimization. 2019 [cited 2019 29 2019]; Available from:
https://github.com/Project-Platypus/Platypus.

Srinivas N, Deb K. Muiltiobjective optimization using nondominated
sorting in genetic algorithms. Evol Comput 1994;2(3):221-48.

Deb K, Jain H. An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach. Part
I: Solving problems with box constraints. IEEE Trans Evol Comput
2014;18(4):577-601.

Sierra MR, Coello CAC. Improving PSO-based multi-objective optimization
using crowding, mutation and epsilon-dominance. Evol Multi-Criterion
Optim 2005;3410:505-19.

Wang JM, Kollman PA. Automatic parameterization of force field by sys-
tematic search and genetic algorithms.] Comput Chem 2001;22(12):1219-
28.

Larsson HR, van Duin ACT, Hartke B. Global optimization of param-
eters in the reactive force field ReaxFF for SiOH.] Comput Chem
2013;34(25):2178-89.

Handley CM, Deeth R]. A multi-objective approach to force field optimiza-
tion: Structures and spin state energetics of d(6) Fe(Il) complexes.] Chem
Theory Comput 2012;8(1):194-202.

Shimojo F, et al. QXMD: An open-source program for nonadiabatic
quantum molecular dynamics. SoftwareX 2019;10:100307.

Larsen A Hjorth, et al. The atomic simulation
Python library for working with atoms.] Phys:
2017;29(27):273002.

Ong SP, et al. Python materials genomics (pymatgen): A robust,
open-source python library for materials analysis. Comput Mater Sci
2013;68:314-9.

Dalcin L, Paz R, Storti M. MPI for Python.] Parallel Distrib Comput
2005;65(9):1108-15.

Dalcin L, et al. MPI for Python: Performance improvements and MPI-2
extensions.] Parallel Distrib Comput 2008;68(5):655-62.

Krishnamoorthy A. USCCACS/xtal: xtal is an umbrella package for various
tools used to manipulate atomic trajectories. 2019 [cited 2019 October 28,
2019]; Available from: https://github.com/USCCACS/xtal.

Xiaowang Z. Uncertainty quantification and reduction of molecular dynam-
ics models. In: Stephen MF, Peter H Jan, editors. Uncertainty quantification
and model calibration. Rijeka: IntechOpen; 2017, p. 89-111.

Cailliez F, Pernot P. Statistical approaches to forcefield calibration and
prediction uncertainty in molecular simulation.] Chem Phys 2011;134(5).
Moore AP, et al. Understanding the uncertainty of interatomic potentials’
parameters and formalism. Comput Mater Sci 2017;126:308-20.
Angelikopoulos P, Papadimitriou C, Koumoutsakos P. Bayesian uncertainty
quantification and propagation in molecular dynamics simulations: A high
performance computing framework.] Chem Phys 2012;137(14):144103.
Longbottom S, Brommer P. Uncertainty quantification for classical effective
potentials: an extension to potfit. Modelling Simulation Mater Sci Eng
2019;27(4):044001.

Frederiksen SL, et al. Bayesian ensemble approach to error estimation of
interatomic potentials. Phys Rev Lett 2004;93(16):165501.

Demirkan K, et al. Reactivity and morphology of vapor-deposited
al/polymer interfaces for organic semiconductor devices.] Appl Phys
2008;103(3).

Lazzaroni R, et al. The chemical and electronic-structure of the in-
terface between aluminum and conjugated polymers. Electrochim Acta
1994;39(2):235-44.

environment—a
Condens Matter

A. Krishnamoorthy, A. Mishra, D. Kamal et al.

[43] Faupel F, et al. Metal diffusion in polymers and on polymer surfaces. In:
Gupta D, editor. Diffusion processes in advanced technological materials.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2005, p. 333-63.

[44] Heimel G, et al. The interface energetics of self-assembled monolayers on
metals. Acc Chem Res 2008;41(6):721-9.

[45] Chen LH, et al. Charge injection barriers at metal/polyethylene interfaces.
J Mater Sci 2016;51(1):506-12.

SoftwareX 13 (2021) 100663

[46] Li Y, et al. Scalable reactive molecular dynamics simulations for
computational synthesis. Comput Sci Eng 2018;1.

[47] Hong S, van Duin ACT. Atomistic-scale analysis of carbon coating and its
effect on the oxidation of aluminum nanoparticles by ReaxFF-molecular
dynamics simulations.] Phys Chem C 2016;120(17):9464-74.

