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THE WAITING-TIME PARADOX
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Suppose that you are going to school and arrive at a bus stop. How

long do you have to wait before the next bus arrives? Surprisingly, it

GIOVANNI is longer—possibly much longer—than what you might guess from

AGE: 10 looking at a bus schedule. This phenomenon, which is called the
waiting-time paradox, has a purely mathematical origin. In this article,
we explore the waiting-time paradox, explain why it occurs, and
discuss some of its implications (beyond the possibility of being late
for school).

YOUNG REVIEWER:

HOW LONG DO YOU HAVE TO WAIT FOR THE NEXT
BUS?

Suppose that you live in a city and take a bus to go to school. Because
buses come frequently in your neighborhood, perhaps you do not
need to pay close attention to the bus schedule. Maybe you just go
to the closest bus stop and ride the next bus (see Figure 1A). However,
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Figure 1

(A) You arrive at the bus
stop to wait for the next
bus. (B) You look at the
schedule and see that
there are 10 buses each
hour. This is an average
of one bus every 6
minutes. The first three
buses after 9:00 are
scheduled to arrive at
9:01, 9:06, and 9:09. We
highlight these three
times in yellow. The
inter-event times—in
other words, the times
between consecutive
buses—are 5 minutes
(between the first and
second buses) and 3
minutes (between the
second and third
buses). [Panel A was
drawn by Iris Leung.]

WAITING-TIME
PARADOX

A mathematical
phenomenon about
times that seems like it
may not make sense
but is in fact correct. In
the waiting-time
paradox, if an event
occurs at a time that
we pick uniformly at
random, the average
waiting time until the
next event is typically
larger than half of the
inter-event time. The
waiting-time paradox is
also called the “bus
paradox” and the
“inspection paradox.”
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if you arrive and have no idea when the next bus is coming, how long
do you have to wait for the next bus?

Suppose that 10 buses come each hour (see Figure 1B), so one bus
comes every 6 minutes on average. If the most recent bus leaves
right before you arrive, you may have to wait 5 or 6 minutes for the
next bus. If the most recent bus leaves a few minutes before you
arrive, maybe the next bus will come in only 1 minute. Or maybe 4
minutes, or perhaps 2 minutes? An educated guess for your “waiting
time” is 3 minutes, which is half the time between buses on average.
However, this reasoning is incorrect. Typically, you must wait longer
than 3 minutes. Your expected waiting time can be even longer than 6
minutes. This phenomenon is called the waiting-time paradox [1, 2].
A paradox is a something that seems like it does not make sense but
actually turns out to be correct. Many people think of the waiting-time
paradox as a paradox because a typical waiting time at a bus station
is longer than half of the average interval of time between buses
(which is 3 minutes in the example above). The waiting-time paradox
Is @ mathematical phenomenon and has nothing to do with buses.
What is this phenomenon and how does it fool us? Keep reading to
find out!

WHY DOES THE WAITING-TIME PARADOX OCCUR?

To understand why the waiting-time paradox occurs, consider the bus
schedule in Figure 2A. In this schedule, which is simpler than the one
in Figure 1, buses arrive at either 4-minute or 12-minute intervals.
The original bus schedule in Figure 1B has various irregular-looking
numbers, and there are several different intervals between bus arrivals.
In general, when a situation looks complicated, it is useful to simplify
it before applying mathematical reasoning. People who work with
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Figure 2

Comparison between
the naive guess of an
average waiting time
and the actual average
waiting time. (A) A
simplified bus schedule.
(B) Naive guess about
the probabilities of
getting 4-minute and
12-minute inter-event
times. This guess is
based on the incorrect
idea that a 4-minute
inter-event time is
more likely than a
12-minute one
because it occurs more
often. (C) Showing the
inter-event times in 1
hour as a pie chart can
help us understand why
this is not correct. (D)
The actual probability
of getting a 12-minute
inter-event time is
larger than the
probability of getting a
4-minute one because
there are 36 red slices
but only 24 blue slides
in the pie chart in (C).

INTER-EVENT TIME

The amount of time
between two
consecutive events,
such as the arrivals of
two buses at a bus stop
or two conversations of
a person with other
people.

PROBABILITY
THEORY

A subject in
mathematics about
topics that are related
to “probability,” which is
a numerical description
of how likely it is for an
outcome to occur. A
“probability
distribution” is a
mathematical function
that gives the
probabilities of all
possible outcomes of
something.
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mathematics do this all of the time. The waiting-time paradox also
occurs in the simplified bus schedule, and the simplification makes it
easier to understand what is going on.

A key concept that we need to consider is the inter-event time, which
is the time between two consecutive buses. The schedule in Figure
2A indicates that, in each hour, six buses arrive immediately after an
inter-event time of 4 minutes (blue) and three buses arrive immediately
after an inter-event time of 12 minutes (red). In our scenario, recall that
you have arrived at the bus stop without knowing when the next bus
will arrive. In the language of probability theory, we say that you arrive
at the bus stop at a time that has been chosen uniformly at random.
Do you think that you are more likely to have a 4-minute inter-event
time or a 12-minute one? If you get a 4-minute inter-event time, you
will not wait very long for the next bus. However, if you geta 12-minute
one, you may have to wait a long time. As we mentioned above, six
inter-event times are 4 minutes long and three inter-event times are
12 minutes long.

Think about it this way: perhaps you are likely to get a 4-minute
inter-event time because there are six of them each hour, but
12-minute inter-event times occur only three times each hour. The
former occurs with a probability of 6/(6 + 3) = 2/3, which is about
0.67, so this situation occurs about 67% of the time (see Figure 2B).
The latter occurs with a probability of 3/(6 + 3) = 1/3, so this situation
occurs about 33% of the time. Unfortunately, this is wishful thinking.
Arriving at a bus stop uniformly at random is like spinning a wheel with
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UNIFORMLY AT
RANDOM

A probability
distribution in which
each possible outcome
is equally likely

to occur.

HISTOGRAM

A diagram that shows
the counts of items in
several ranges of
numbers to compare
the count of the items
in each range. For
example, a histogram
can show children with
the age ranges 0—-4
years, 5-9 years, 10-14
years, and so on. The
height of the bar for the
age range 10-14 years
indicates the number of
people who are
between 10 and 14
years old.
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the numbers O through 59 on each “slice” of the wheel (so there are 60
slices in total), stopping it with your finger, and looking at the slice that
your finger is touching. If your finger points to 33, it means that you
arrive at the bus stop at 10:33. In this case, you need to wait 3 minutes
for the next bus, which arrives at 10:36. The wheel gives a way to help
us understand the notion of “uniformly at random.” Each minute on the
wheel is colored, with blue corresponding to a 4-minute inter-event
time and red corresponding to a 12-minute one. In Figure 2C, we see
that there are 24 blue minutes and 36 red minutes. From this picture,
we also see that we are more likely to geta 12-minute inter-event time
(this occurs with a probability of 0.60) than a 4-minute one (this occurs
with a probability of 0.40) (see Figure 2D).

Although only three of the nine inter-event times (so there is a
probability of 1/3 of getting one) are 12 minutes long, it is still more
likely (specifically, the probability is 0.60) to get one of these than one
of the 4-minute inter-event times. Why is this the case? The answer
comes from a simple fact: a long inter-event time is long, and a short
one is short. A long inter-event time occupies 12 numbers of a game
wheel, but a short one occupies only four numbers. The three long
inter-event times together cover 12 x 3 = 36 of the 60 minutes. By
contrast, the six short ones together cover only 4 x 6 = 24 minutes.
Consequently, the rareness of an inter-event time in a bus schedule
does not imply that it is rare to encounter that inter-event time. By
doing some more calculations with the bus schedule in Figure 2A,
we see that the naive guess for how long you should expect to wait
(half of the average inter-event time) is 3 minutes and 20 seconds,
but the actual average waiting time is 4 minutes and 24 seconds. In
the schedule in Figure 1B, the naive guess for the average waiting
time is 3 minutes and the actual waiting time on average is 3 minutes
and 40 seconds. Suppose that all inter-event times are 6 minutes
long, meaning that buses arrive precisely every 6 minutes. In this case,
there is no longer a waiting-time paradox, because the naive guess
and the actual average waiting time are both 3 minutes long. For the
waiting-time paradox to occur, we need to have a mixture of at least
two inter-event times, such as 4 minutes and 12 minutes.

APPLICATIONS AND EXTENSIONS

The waiting-time paradox applies to much more than just waiting for
buses. Inter-event times are important in many situations. Consider
the “event” of talking to a classmate at school. The inter-event times
are the amounts of time between conversations with classmates (see
Figure 3A). One inter-event time may be 2 minutes, and the next one
may be 11 minutes. In social activities, unlike in bus schedules, there
are often large variations in inter-event times. In Figure 3B, we show
a histogram of inter-event times for a student in a school in France
[3]. In the histogram, we list the times from left to right in increasing
order. The height of each bar in the histogram indicates the number
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Figure 3

Inter-event times for a
student socializing in a
school. (A) The
inter-event times for a
student named Chloe.
Chloe talks to three
different students, with
inter-event times of 6
minutes and 3 minutes.
(B) A histogram of the
inter-event times for a
student in a school in
France. This example
comes from the
“Primary School” data
set in the SocioPatterns
project [3]. We selected
the student with the
largest number of
events and calculated
all of that student’s
inter-event times. The
bars in this picture
indicate the number of
inter-event times of
each duration for that
student. The histogram
shows that there are
large variations in
inter-event times. Most
of them are short, but
some of them are very
long.

BIASED SAMPLING

Biased sampling occurs
when one selects (or,
to phrase it more
technically, one
“samples”) items, such
as long inter-event
times or a person with
many friends, from a
collection of items
more often than other
items as a result of the
selection rules.
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of times that each inter-event time occurs. Most inter-event times are
short (such as 20 or 40 seconds), but a small number of them are large
(such as between 200 and 400 seconds).

In our example of the waiting-time paradox with buses, we saw
that even if there are only three long inter-event times among nine
total inter-event times, we are more likely to get one of the long
inter-event times than one of the short ones. This is an example of
biased sampling. Another famous example of biased sampling is the
friendship paradox [4, 5]. According to the friendship paradox, your
friends tend to have more friends than you do. However, there is
no reason to be upset, because this also is a purely mathematical
phenomenon. If you have 20 friends in your school, many of them are
likely to be popular people. For example, if Alice has just one friend,
it is unlikely that you are Alice’s only friend; it is more likely to be
someone else. By contrast, if Bob is friends with half of the students
in your school, then it is very likely that you are one of Bob's friends.
Waiting for the next bus and counting the number of friends may seem
to have nothing to do with each other. However, from a mathematical
perspective, you are likely to have a friend like Bob for basically the
same reason that you are likely to catch a bus after a long inter-event
time. Suppose that there are six students who each have four friends
and three students who each have 12 friends. If you are friends with
just one of these 10 students, then your friend is likely to be a person
with 12 friends, even though there are only three students with 12
friends among the 6 + 3 = 9 students. These numbers are exactly
the same as the ones that we used in Figure 2 to demonstrate the
waiting-time paradox. This illustrates that the waiting-time paradox
and the friendship paradox have the same mathematical origin. Both
are consequences of biased sampling.

An understanding of the waiting-time paradox is useful in many
situations, such as for understanding how quickly a disease spreads
in a population [6]. In university courses and scientific research,
the waiting-time paradox shows up often in topics like probability
theory, queuing theory, and network analysis. As we have seen,
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mathematics provides a way to unify seemingly different ideas and
to see when they are closely related. This is true not just with the
waiting-time paradox and the friendship paradox, but also with many
other things.
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YOUNG REVIEWER

GIOVANNI, AGE: 10

| was born in California and then lived in the Southwest for almost half my life, but
now | am living in Virginia. | usually play videogames at home, but | also do other
things. | really like art and sketching. | won the state fair art contest. | want to be an
architect or engineer when | grow up. | also like writing stories, and | am working on
a story or book called “Within Our Walls.”
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