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TUNABLE EIGENVECTOR-BASED CENTRALITIES FOR
MULTIPLEX AND TEMPORAL NETWORKS∗

DANE TAYLOR† , MASON A. PORTER‡ , AND PETER J. MUCHA§

Abstract. Characterizing the importances (i.e., centralities) of nodes in social, biological, and
technological networks is a core topic in both network analysis and data science. We present a
linear-algebraic framework that generalizes eigenvector-based centralities, including PageRank and
hub/authority scores, to provide a common framework for two popular classes of multilayer net-
works: multiplex networks (which have layers that encode different types of relationships) and tem-
poral networks (in which relationships change over time). Our approach involves the study of joint,
marginal, and conditional “supracentralities” that one can calculate from the dominant eigenvector
of a supracentrality matrix [Taylor et al., Multiscale Model. Simul., 15 (2017), pp. 537–574; [110]
in this paper], which couples centrality matrices that are associated with individual network layers.
We extend this prior work (which was restricted to temporal networks with layers that are coupled
by adjacent-in-time coupling) by allowing the layers to be coupled through a (possibly asymmetric)
interlayer-adjacency matrix Ã, where the entry Ãtt′ ≥ 0 encodes the coupling between layers t and t′.
Our framework provides a unifying foundation for centrality analysis of multiplex and temporal net-
works, and it also illustrates a complicated dependency of the supracentralities on the topology and
weights of interlayer coupling. By scaling Ã by an interlayer-coupling strength ω ≥ 0 and developing
a singular perturbation theory for the limits of weak (ω → 0+) and strong (ω → ∞) coupling, we
also reveal an interesting dependence of supracentralities on the right and left dominant eigenvectors
of Ã. We provide additional theoretical and practical insights by applying our framework to two
empirical data sets: a multiplex network of airline transportation in Europe and a temporal network
that encodes the graduation and hiring of mathematical scientists at United States universities.

Key words. network science, multilayer networks, data integration, ranking systems, pertur-
bation theory
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1. Introduction. Quantifying the importance of entities in a network is an es-
sential feature of many search engines on the World Wide Web [11,33,62,80], ranking
algorithms for sports teams and athletes [12,15,96], targeted social-network marketing
schemes [53], investigations of fragility in infrastructures [40, 43], quantitative analy-
sis of the impact of research papers and scientists [31], examinations of the influence
of judicial and legislative documents [32, 63], identification of novel drug targets in
biological systems [49], and many other applications. In the most common (and sim-
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Fig. 1. Schematics of two types of multilayer networks. (a) A multiplex network, in which layers
are coupled categorically. (b) A multiplex representation of a discrete-time temporal network, where
we couple the sequence of layers through a directed (time-respecting) chain with “layer teleportation.”
(See section 5.2 for a definition.) Each inset depicts the interlayer-coupling topology, which we
encode (along with interlayer edge weights) in an interlayer-adjacency matrix Ã. We assume that
the interlayer couplings are “diagonal” and “uniform” (see section 2.2), and we take their weights
to be ω ≥ 0. As we illustrate in panels (a) and (b), interlayer coupling can be either undirected or
directed. The dashed gray lines between layers 3′ and 4′ in panel (a) highlight the fact that those
edge weights may differ from those of the solid gray lines.

plest) type of network, called a “graph” or a “monolayer network,” a node represents
an entity (e.g., a web page, a person, a document, or a protein), and an edge encodes
a relationship between a pair of entities. Centrality analysis, in which one seeks to
quantify the importances of nodes and/or edges (and, more generally, of other sub-
graphs as well), has been developed intensively across numerous domains, including
sociology, mathematics, computer science, and physics [19, 33,62,78].

Researchers have developed increasingly comprehensive network representations
and analyses [61, 85] to help with data integration and a variety of applications. A
prominent example is the generalization of graphs to multilayer networks [8,18,55,84].
Moreover, there have been many efforts to extend centrality measures to multiplex
and temporal networks [2,27,38,39,42,54,64,73,82,93,95,98,99,103,104,110,121,123].
Multilayer network centralities have been used in the study of diverse applications,
including social networks [14, 17, 42, 67, 68], transportation systems [22, 48, 105, 116],
economic systems [5, 23, 24], neural systems [6, 20, 48, 124], and signal processing of
geological time series [66]. Moreover, many of these techniques are closely connected to
the study of various dynamical processes (on multilayer networks), including random
walks [25, 33,35,42,72,79], information spreading [17,91], and congestion [22].

We consider two types of multilayer networks (see Figure 1): (1) multiplex net-
works, in which layers represent different types of relationships; and (2) temporal
networks, in which layers represent different time instances or time periods. We ex-
tend the mathematical framework of supracentrality matrices, which we (along with
other collaborators) developed recently [110] to generalize eigenvector-based central-
ities (e.g., PageRank [11, 33, 80], eigenvector centrality [10], and hub and authority
scores [57]) to multilayer representations of discrete-time temporal networks. Our ap-
proach involves coupling centrality matrices that are associated with individual layers
of a network into a larger supracentrality matrix and studying its dominant eigenvec-
tor1 to obtain joint, marginal, and conditional centralities (see section 3.2) to quantify
the importances of nodes, layers, and node-layer pairs. In this article, we generalize

1Technically, we study the eigenvector that is associated with the largest positive eigenvalue λmax

of an irreducible nonnegative matrix. Because the other eigenvalues have magnitudes that are less
than or equal to λmax, we refer to this eigenvalue and its eigenvectors as “dominant.”
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the supracentrality framework of [110] to multiplex networks, which integrate data
sets that encode different types of relationships by coupling them as layers of a single
multilayer network.

Generalizing centrality measures to multiplex networks and temporal networks
are active areas of research [8,18,44,45,55] (see our discussion in section 2.3), and our
supracentrality framework is relevant for such efforts.2 Our original formulation of
supracentrality in [110] focused on temporal networks (see [111] for our more recent
work), and it assumed a specific type of multilayer representation with adjacent-in-
time coupling. We now extend supracentrality matrices to a broader class of multilayer
networks by coupling layers via an interlayer-adjacency matrix Ã, where Ãtt′ ≥ 0 en-
codes the (possibly asymmetric) coupling between layers t and t′. We assume diagonal
interlayer coupling (see section 2.2 and [55]), as we only connect instantiations of the
same entity (i.e., node) across different layers. We also assume that all nodes exist
in all layers and that the interlayer coupling is uniform, so all edges between layers
t and t′ have the same weight ωÃtt′ ≥ 0. Multilayer networks with both diagonal
and uniform interlayer coupling are said to be layer-coupled [55]. The value of ω
determines how strongly the layers influence each other. We will show that Ã and ω
significantly affect supracentralities and are useful “tuning knobs” to consider when
calculating and interpreting supracentralities.

To gain insight into the effects of Ã and ω, we use singular perturbation theory to
analyze the dominant eigenspace of supracentrality matrices in the limits of weak (ω →
0+) and strong (ω → ∞) coupling. We show that these limits yield layer decoupling
and a type of layer aggregation (which is a form of data fusion), respectively. There
are many scenarios in which one couples matrices into a larger supramatrix , including
the detection of multilayer community structure using a supramodularity matrix [74,
119] and the study of random walks and diffusion on multilayer networks via supra-
Laplacian matrices [35, 89]—and our perturbative approach reveals insights about
the utility of matrix coupling as a general technique for multimodal data integration.
Specifically, our singular perturbation theory in section 4 makes no explicit assumption
that the block-diagonal matrices that we consider are centrality matrices, so our
results also characterize the dominant eigenspaces of layer-coupled matrices in other
applications, including ones that are unrelated to networks.

Our results in section 4 characterize the decoupling and aggregation limits of
supracentrality matrices. We illustrate that the limiting dominant eigenspace of a
supracentrality matrix depends on a complicated interplay between many factors, in-
cluding (1) the dominant eigenvectors of the centrality matrix of each layer; (2) the
dominant eigenvectors of the interlayer-adjacency matrix; and (3) the spectral radii
of the layers’ centrality matrices. In the ω → ∞ limit, the dominant eigenspace
of a supracentrality matrix depends on a weighted average of the layers’ centrality
matrices, with weights that are related to the dominant eigenspace of Ã. A key fac-
tor in the ω → 0+ limit is whether the layers’ individual centrality matrices have
identical or different spectral radii. In the latter scenario, we identify and charac-
terize an eigenvector-localization phenomenon in which one or more layers dominate
the decoupling limit. Our layer-aggregation and decoupling limits are reminiscent of
prior research on supra-Laplacian matrices [35, 101], but our coupling matrices and
qualitative results both differ from such prior work.

We illustrate our framework with applications to two empirical, multimodal net-

2In principle, one can also use supracentrality matrices of higher dimensionality to study networks
that are both multiplex and temporal, but we do not examine any such examples in this paper.
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work data sets. First, we study the importances of European airports in a multi-
plex network in which layers represent different airlines [13]. We find, for example,
that supracentralities in the weak-coupling limit are dominated by the Ryanair layer;
among all layers, this one has the most edges, and its associated adjacency matrix
has the largest spectral radius. For intermediate coupling strengths, we observe a
centrality “boost” (i.e., an increase relative to the centralities of other nodes) for
airports that are central both with respect to the Ryanair layer and with respect to
a network that is associated with an aggregation of the network layers (specifically,
the one that we obtain by summing the layers’ adjacency matrices). We study these
phenomena by comparing marginal node centralities to the nodes’ intralayer degrees
and total degrees (which quantify, respectively, the number of edges of a node in each
layer and a node’s total number of edges across all layers). Our second focal example,
which we construct using data from the Mathematics Genealogy Project [88, 107],
is a temporal network that encodes the graduation and hiring of mathematicians at
mathematical-science Ph.D. programs in the United States [75,110]. Extending [110],
we explore the effects of causality by implementing time-directed interlayer coupling
along with layer teleportation (see Figure 1(b) and our discussion in section 5.2),
which we define analogously to node teleportation in PageRank [33]. (See our recent
book chapter [111] for further exploration of layer teleportation.) As in previous find-
ings for causality-respecting centralities [29, 37], our approach boosts the centralities
of node-layer pairs whose edges occur earlier in time (allowing them to causally in-
fluence more nodes). In the present paper, this phenomenon manifests as a boost in
marginal layer centrality for older time layers. Our numerical experiments highlight
the importance of exploring a diverse set of interlayer-coupling architectures Ã and
strengths ω to identify application-appropriate parameter choices.

Our paper proceeds as follows. In section 2, we present background information
on eigenvector-based centralities, multiplex and temporal networks, and generalizing
centralities for such networks. In section 3, we present our supracentrality framework.
In section 4, we analyze the weak-coupling and strong-coupling limits. In section 5,
we study the two empirical data sets. We conclude in section 6 and give the proofs
of our main mathematical results in the appendices. We present further numerical
investigations in the supplementary materials.

2. Background information. We now discuss eigenvector-based centralities
in section 2.1, multiplex and temporal networks in section 2.2, and extensions of
eigenvector-based centralities to multiplex and temporal networks in section 2.3.

2.1. Eigenvector-based centrality measures. We start with a definition.

Definition 2.1 (monolayer network). Let G(V, E) be a monolayer (i.e., single-
layer) network with nodes V = {1, 2, . . . , N} and a set E ⊂ V × V × R+ of positively
weighted edges, where (i, j, wij) ∈ E if and only if there exists an edge from i to j with
weight wij. We also encode this network (which is a weighted graph) by an N × N
adjacency matrix A with entries Aij = wij if (i, j, wij) ∈ E and Aij = 0 otherwise.

One of the most popular approaches for quantifying the importances of nodes V
in a network is to calculate the dominant eigenvector of a network-related matrix and
interpret the eigenvector’s entries as a proxy for importance [33,78].

Definition 2.2 (eigenvector-based centrality). Let C = C(A) be a “centrality
matrix” that we obtain via some function C : RN×N 7→ R

N×N of the adjacency matrix

D
o
w

n
lo

ad
ed

 0
1
/2

4
/2

1
 t

o
 1

3
1
.1

7
9
.1

5
6
.3

8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CENTRALITY FOR MULTIPLEX AND TEMPORAL NETWORKS 117

A for a network G(V, E). Consider the right eigenvector u, which is the solution to

(2.1) Cu = λmaxu ,

where λmax ∈ R is the largest positive eigenvalue of C. Each entry ui specifies the
eigenvector-based centrality that is associated with the function C for node i ∈ V. We
refer to this eigenvalue and its associated eigenvectors as “dominant.”

Different choices of C(A) yield different notions of centrality, and some are more
useful than others. The following are among the most popular eigenvector-based
centralities.

Definition 2.3 (eigenvector centrality [10]). With the choice C(EC) = A, (2.1)

yields eigenvector centralities {u
(EC)
i }.

Definition 2.4 (hub and authority scores [57]). With the choices C(HS) = AA∗

and C(AS) = A∗A, (2.1) yields hub scores {u
(HS)
i } and authority scores {u

(AS)
i },

respectively. The symbol ∗ denotes the transpose operator.3

Remark 2.5. Hub scores and authority scores are, respectively, the left and right
dominant singular vectors of A.

Definition 2.6 (PageRank [33,80]). Consider the choice C(PR) = σ(D−1A)∗+
(1 − σ)N−111∗, where D is the diagonal matrix with entries Dii =

∑

j Aij. The
quantity σ ∈ (0, 1) is a “node” teleportation parameter (we will assume that σ = 0.85
in this paper), and 1 is a length-N vector of ones (such that 11∗ is an N ×N matrix

of ones). Using this choice in (2.1), we obtain PageRank centralities {u
(PR)
i }.

Remark 2.7. Our definition of PageRank assumes that each edge has at least
one out-edge. If there exist “dangling nodes” (which lack out-edges), one can add
self-edges (either just to such nodes or to all of the nodes).

Remark 2.8. It is also common to compute PageRank centralities from a left
eigenvector [33]. In the present paper, we use a right-eigenvector formulation to
be consistent with the other eigenvector-based centralities. One can recover the left-
eigenvector formulation by taking the transpose of the matrix C in (2.1).

Remark 2.9. There are other possible teleportation strategies for PageRank, such
as ones with a local bias or emphasis on other features [33]. In such cases, one replaces
the matrix 11∗ by u1∗, where the vector u encodes the biases.

In most applications, it is important to choose the function C to ensure that
centralities are unique and strictly positive. It is common to use the following two
theorems to guarantee these important features.

Theorem 2.10 (Perron–Frobenius theorem for nonnegative matrices [4]). Let
C ∈ R

N×N be an irreducible square matrix with nonnegative entries. It follows that C
has a simple largest positive eigenvalue λmax and that its right and left eigenvectors are
positive and unique. Moreover, if C is aperiodic, then λmax > |λi| for any λi 6= λmax.

Theorem 2.11 (equivalence of strong connectivity and irreducibility [4]). Con-
sider the (possibly weighted and directed) network that is associated with a nonnegative
square matrix C. (That is, C is the adjacency matrix of the associated network.) The

3In this paper, we define T to be the number of layers, so we use the notation ∗ for the transpose
operator to avoid confusion. The symbol ∗ is often used to indicate the conjugate transpose operator.
This is also a correct interpretation in the present paper, because the matrices that we study have
real-valued entries.
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matrix C is irreducible if and only if the associated network is strongly connected (i.e.,
if and only if there exists a path from any origin node to any destination node).

One typically seeks a centrality matrix that is irreducible (or, equivalently, a ma-
trix for which the associated network that is defined by the weighted edges {(i, j, Cij)}
is strongly connected). Ensuring irreducibility is an important consideration when in-
troducing new types of centrality (including ones with both positive and negative
edges [28]). For example, the term (1 − α)N−111∗ in Definition 2.6 implies that

C(PR) is positive (i.e., C
(PR)
ij > 0 for every i, j ∈ V), which ensures that C(PR) is

irreducible, regardless of whether the network with adjacency matrix A is strongly
connected [33].

Before continuing, we highlight an eigenvector-based centrality measure that uses
both right and left eigenvectors and therefore does not exactly fit Definition 2.2. One
defines the so-called dynamical importance of a node in terms of the change of the
dominant eigenvalue of A under removal of that node from the associated network
[92] (see also [115]). In practice, as shown in [92], one can approximate dynamical
importance to first order (provided that one does not lose strong connectivity when
removing the node) with an expression that depends on the dominant right and left
eigenvectors of A. Other eigenvector-based centralities that involve two or more
eigenvectors have been obtained through matrix perturbations that arise from the
analysis of dynamical processes, including the spread of infectious diseases [109,112],
percolation [92, 113], and synchronization [114]. Such analysis of perturbations of
dynamical systems on networks is also related to notions of eigenvalue and eigenvector
elasticities [36, 50, 51].

2.2. Multiplex and temporal networks. The different layers of a multilayer
network can encode different types of connections and/or interacting systems [55],
including interconnected infrastructures [41], categories of social ties [59], networks
at different instances of time [118], and many others. By considering the various
possibilities for interactions between nodes within and across layers, one can obtain
a taxonomy of multilayer networks [55]. We focus on two popular situations: multi-
plex networks, in which different layers represent different types of interactions, and
temporal networks, in which layers represent different time instances or time periods.

We give formal definitions that are salient for multiplex and temporal networks.
In both types of multilayer networks, it is convenient to refer to a node i in a layer t
as a node-layer pair (i, t).

Definition 2.12 (uniformly and diagonally coupled multiplex network). Let
G(V, {E(t)}, Ẽ) be a multilayer network with nodes V = {1, . . . , N} and T layers, with
interactions between node-layer pairs encoded by the sets {E(t)} of weighted edges,
where (i, j, wt

ij) ∈ E(t) if and only if there is an edge (i, j) with weight wt
ij in layer

t. The set Ẽ = {(s, t, w̃st)} encodes the topology and weights that couple separate
instances of the same node between a layer pair (s, t) ∈ {1, . . . , T} × {1, . . . , T}.
Equivalently, one can encode a multiplex network as a set {A(t)} of adjacency ma-

trices, such that A
(t)
ij = wt

ij if (i, j, wt
ij) ∈ E(t) and A

(t)
ij = 0 otherwise, along with

an interlayer-adjacency matrix Ã with components Ãst = w̃st if (s, t, w̃st) ∈ Ẽ and

Ã
(t)
ij = 0 otherwise.

See Figure 1(a) for a pedagogical example of a small multiplex network. The
multiplex coupling in Definition 2.12 is “diagonal” because we only allow coupling
between a node in one layer and that same node in other layers, and it is “uniform”
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because the coupling between two layers is identical for all nodes in those two layers.
A multilayer network with both of these conditions is called “layer-coupled” [55]. Our
choice to represent interlayer couplings via Ã is a generalization of the special, but
common, case in which the interlayer edge weights are identical for all layer pairs (i.e.,
ω̃st = ω for all s and t). Although there are many other coupling strategies [9, 55],
we focus on uniform and diagonal coupling because it is one of the simplest and most
popular coupling schemes. The interlayer-adjacency matrix Ã already allows a great
deal of flexibility, and (as we will describe in section 3) these restrictions impose
matrix symmetries that we can exploit to derive results when the layers are coupled
either very weakly or very strongly.

We use a similar multilayer network representation to study temporal networks.

Definition 2.13 (discrete-time temporal network). A discrete-time temporal
network consists of nodes V = {1, . . . , N} and a sequence of network layers. We de-
note the network either by G(V, {E(t)}) or by a sequence {A(t)} of adjacency matrices

such that A
(t)
ij = wt

ij if (i, j, wt
ij) ∈ E(t) and A

(t)
ij = 0 otherwise.

Definition 2.13 makes no explicit assumptions about how the layers are coupled.
That is, a discrete-time temporal network consists of a set of nodes and an ordered
set of layers. It is common, however, for temporal networks to also include coupling
between layers, such as by representing them (as we do) as a multiplex network with
a diagonal interlayer coupling that respects the arrow of time.

2.3. Extensions of centrality to multiplex and temporal networks. There
has been a recent explosion of research on centrality measures for multilayer net-
works [18, 55]. Much of this work is related to work on generalizing network prop-
erties such as node degree [7, 21, 68, 105] and shortest paths, with the latter leading
to generalizations of notions like betweenness centrality [14, 67, 99, 100] and closeness
centrality [68, 100]. However, of particular relevance to the present paper are gen-
eralizations of eigenvector-based centralities to multiplex networks. Salient notions
that have been generalized include eigenvector centrality [7, 21, 23, 24, 98], hub and
authority scores [58, 90, 102, 116], and PageRank [25, 42, 79]. These extensions have
employed various strategies; we briefly discuss several of them.

One strategy is to represent a multiplex network as a tensor and use tensor de-
compositions [58, 122]. Another strategy is to define a system of centrality depen-
dencies in which large-centrality elements (nodes, layers, and so on) connect to other
large-centrality elements, and one simultaneously solves for multiple types of cen-
trality [90, 102, 116] as a fixed-point solution of the system of (possibly nonlinear)
dependencies. For example, [90] and [116] defined centralities for both nodes and lay-
ers such that highly ranked layers have highly ranked nodes and highly ranked nodes
are in highly ranked layers. In a third strategy, which is the one that most closely
resembles our present approach, one constructs a supramatrix of size NT × NT for
N nodes and T layers, such that the dominant eigenvector of the supramatrix gives
the centralities of the node-layer pairs {(i, t)}. For example, [23, 24, 94, 98] construc-
ted a supramatrix by using the Khatri–Rao product between a matrix that encodes
interlayer connections and a block matrix that has the layers’ adjacency matrices as
its (block) columns. Another approach involves computing one or more centralities
independently for each layer and then using a consensus ranking [86]. One can also
generalize monolayer centrality measures to construct multilayer “versatility” mea-
sures [22].

There have also been many efforts to generalize centralities to temporal networks.
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There are extensive discussions of such efforts in [65] and [110]. To add to these lists,
we briefly highlight several contributions that appeared recently or were not men-
tioned in [110]. Arrigo and Higham [3] introduced a method to efficiently estimate
temporal communicability (a generalization of Katz centrality), which has been ap-
plied to a variety of applications, including in neuroscience [69] and the spread of
infectious diseases [16, 70]. Huang and Yu [46] extended a measure called dynamic-
sensitive centrality to temporal networks. References [30,47,87] introduced variants of
eigenvector centrality for temporal networks. We highlight [30] in particular, because
it explored connections between continuous and discrete-time calculations of tempo-
ral centralities. Nathan, Fairbanks, and Bader [76] introduced an efficient algorithm
for computing a centrality in streaming graphs. Although methods for streaming and
continuous-time networks are important (see, e.g., [1] for a generalization of PageRank
to such situations), we restrict our attention to discrete-time temporal networks, es-
pecially because we seek to further bridge the literatures on temporal and multiplex
networks.

In section 3, we introduce a new construction, which is based on a Kronecker
product, for a supracentrality matrix. This construction generalizes our previous
work [110], where we introduced a supracentrality framework for temporal networks
and assumed adjacent-in-time coupling (i.e., that Ãtt′ = 1 for |t− t′| = 1 and Ãtt′ =
0 otherwise). Our new formulation introduces an interlayer-adjacency matrix Ã,
allowing our framework to flexibly cater to either multiplex or temporal networks.
Note that some multilayer representations of temporal networks are not multiplex.

For example, one can connect node-layer pair (i, t) to {(j, t+1)} for j ∈ {j : A
(t)
ij 6= 0},

which yields a supra-adjacency matrix with identity matrices on the block diagonal
and the layers’ adjacency matrices on the off-diagonal blocks that lie directly above
the diagonal blocks. These interlayer edges are nondiagonal, because they connect
nodes in one layer to different nodes in a neighboring layer. This formulation, which
is connected mathematically [29] to matrix-iteration-based centrality measures for
temporal networks [37,38,39], has been used to study time-dependent functional brain
networks [117]. Additionally, multilayer networks with nondiagonal edges were used
in [118] to study disease spreading on temporal networks. One can also to choose to
study multiplex and temporal networks without interlayer coupling by independently
considering each layer in isolation.

3. Supracentrality framework for multiplex and temporal networks.
We now present a supracentrality framework that provides a common mathematical
foundation for eigenvector-based centralities in layer-coupled multiplex and temporal
networks. In section 3.1, we define supracentrality matrices. In section 3.2, we define
joint, marginal, and conditional centralities; we prove their uniqueness and positivity
under certain conditions. In section 3.3, we give a pedagogical example to illustrate
these types of centralities.

We summarize our key mathematical notation in Table 1. We use the subscripts
i, j ∈ V to enumerate nodes, the subscripts s, t ∈ {1, . . . , T} to enumerate layers, and
the subscripts p, q ∈ {1, . . . , NT} to enumerate node-layer pairs.

3.1. Supracentrality matrices. We first define a supracentrality matrix, in a
way that generalizes the definition in [110], for networks that are either multiplex or
temporal.

Definition 3.1 (supracentrality matrix [110]). Let {C(t)} be a set of T centrality
matrices for a multilayer network whose layers have a common set V = {1, . . . , N} of
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Table 1

Summary of our mathematical notation for objects of different dimensions.

Typeface Class Dimension

M matrix NT ×NT

M matrix N ×N

M matrix T × T

v vector NT × 1
v vector N × 1
v vector T × 1

Mij scalar 1
vi scalar 1

nodes, and suppose that C
(t)
ij ≥ 0. Let Ã, with Ãij ≥ 0, be a T×T interlayer-adjacency

matrix that encodes the interlayer couplings. We define a family of supracentrality
matrices C(ω), which are parameterized by the interlayer-coupling strength ω ≥ 0, of
the form

C(ω) = Ĉ+ ωÂ =













C(1) 0 0 . . .
0 C(2) 0 . . .

0 0 C(3) . . .
...

...
. . .

. . .













+ ω















Ã11I Ã12I Ã13I . . .

Ã21I Ã22I Ã23I . . .

Ã31I Ã32I Ã33I . . .
...

...
...

. . .















,

(3.1)

where Ĉ = diag[C(1), . . . ,C(T )] and Â = Ã ⊗ I denotes the Kronecker product of Ã
and I.

Remark 3.2. For layer t, the matrix C(t) can be any matrix whose dominant
eigenvector is of interest. We focus on centrality matrices, such as those that are
associated with eigenvector centrality (see Definition 2.3), hub and authority scores
(see Definition 2.4), and PageRank (see Definition 2.6). Additionally, one can scale
each C(t) by a layer-specific weight. (Such a scaling has the potential to benefit both
multilayer community detection [81] and layer-averaged clique detection [77].) One
can easily incorporate such weighting into (3.1) by redefining the centrality matrices
{C(t)} to include the weights.

The supracentrality matrix C(ω) of size NT ×NT encodes the effects of two dis-

tinct types of connections: the layer-specific centrality entries {C
(t)
ij } in the diagonal

blocks relate centralities between nodes within layer t, and entries in the off-diagonal
blocks encode coupling between layers. The supramatrix Â = Ã⊗ I implements uni-
form and diagonal coupling: the matrix I encodes diagonal coupling, and any two
layers t and t′ are uniformly coupled, because all interlayer edges between them have
the identical weight wÃtt′ . The choice of undirected, adjacent-in-time interlayer cou-
pling (i.e., Ãtt′ = 1 if |t− t′| = 1 and Ãtt′ = 0 otherwise) recovers the supracentrality
matrix that we studied in [110]. In the present paper, we generalize that notion of a
supracentrality matrix by using an interlayer-adjacency matrix Ã, which allows us to
implement a wide variety of interlayer coupling topologies. In the context of multiplex
networks, we hypothesize that different choices of Ã will have different benefits. In the
context of temporal networks, we will study (see section 5.2) the effects of letting Ã

encode a directed, time-respecting chain with “layer teleportation” (see (5.1)). This
yields supracentrality results that we will contrast with those in [110].
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3.2. Joint, marginal, and conditional centralities. We now study supra-
centralities in the form of joint, marginal, and conditional centralities.

The defining feature of eigenvector-based centrality measures is that one com-
putes and studies a dominant eigenvector of a centrality matrix. We study the right
dominant-eigenvalue equation

(3.2) C(ω)v(ω) = λmax(ω)v(ω) ,

where we interpret entries in the right dominant eigenvector v(ω) as centrality mea-
sures for the node-layer pairs {(i, t)}. The vector v(ω) has a block form: its first N
entries encode the joint centralities for layer t = 1, its next N entries encode the joint
centralities for layer t = 2, and so on. Therefore, as we now describe, it can be useful
to reshape the block vector v(ω) into a matrix.

Following [110], we use the concepts of joint, marginal, and conditional centralities
to develop our understanding of the importances of nodes and layers from the values
of v(ω).

Definition 3.3 (joint centralities of node-layer pairs [110]). Let C(ω) be a supra-
centrality matrix given by Definition 3.1, and let v(ω) be its right dominant eigenvec-
tor. We encode the joint centrality of node i in layer t via the N × T matrix W(ω)
with entries

(3.3) Wit(ω) = vN(t−1)+i(ω) .

Remark 3.4. We refer to Wit(ω) as a “joint centrality” because it reflects the
importance of both node i and layer t.

Definition 3.5 (marginal centralities of nodes and layers [110]). Let W(ω) en-
code the joint centralities of Definition 3.3. We define the marginal layer centrality
(MLC) xt(ω) and marginal node centrality (MNC) x̂i(ω) by

(3.4) xt(ω) =
∑

i

Wit(ω) , x̂i(ω) =
∑

t

Wit(ω) .

Definition 3.6 (conditional centralities of nodes and layers [110]). Let the set
{Wit(ω)} be the joint centralities of Definition 3.3; and let {xt(ω)} and {x̂i(ω)},
respectively, be the marginal layer and node centralities of Definition 3.5. We define
the conditional centralities of nodes and layers by

(3.5) Zit(ω) = Wit(ω)/xt(ω) , Ẑit(ω) = Wit(ω)/x̂i(ω) ,

where Zit(ω) gives the centrality of node i conditioned on layer t and Ẑit(ω) gives the
centrality of layer t conditioned on node i.

The quantity Zit(ω) indicates the importance of node i relative to other nodes in
layer t. By contrast, the joint node-layer centrality Wit(ω) measures the importance
of node-layer pair (i, t) relative to all node-layer pairs.

We now present a new theorem that ensures the uniqueness and positivity of the
above supracentralities.

Theorem 3.7 (uniqueness and positivity of supracentralities). Let C(ω) be a
supracentrality matrix given by (3.1). Additionally, suppose that Ã is an adjacency
matrix for a strongly connected graph and that the sum

∑

t C
(t) is an irreducible

nonnegative matrix. It then follows that C(ω) is irreducible and nonnegative and has
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1

2

3

1 2 3 4 5 6

4

MLC

MNC

layer index

n
o

d
e

 in
d

e
x

0.1615 0.1578 0.1554

0.0961 0.0959 0.0958

0.1468 0.1504 0.1511

0.1188 0.1185 0.1225

0.5231 0.5226 0.5248

0.1930 0.1923 0.1925

0.3008 0.3064 0.3123

0.1930 0.1923 0.1925

0.3131 0.3068 0.3009

0.9999 0.9978 0.9981

1.0524

1.2072

1.0260

1.2807

Fig. 2. Joint node-layer centralities {Wit(ω)} of Definition 3.3 (white cells), with correspond-
ing marginal layer centralities (MLCs) {xt(ω)} and marginal node centralities (MNCs) {x̂i(ω)} of
Definition 3.5 (gray cells), for the multiplex network in Figure 1(a). These computations are for
diagonally and uniformly coupled (i.e., layer-coupled) eigenvector centralities in which the layers’
centrality matrices are given by Definition 2.3 with ω = 1.

a simple largest positive eigenvalue λmax(ω) with corresponding left eigenvector u(ω)
and right eigenvector v(ω), which are unique and consist of positive entries. Moreover,
the centralities {Wit(ω)}, {xt(ω)}, {x̂i(ω)}, {Zit(ω)}, and {Ẑit(ω)} are positive and
well-defined.

Proof. See Appendix A.

Remark 3.8. If we also assume that C(ω) is aperiodic, then λmax(ω) is larger in
magnitude than the other eigenvalues.

3.3. Pedagogical example that illustrates different coupling regimes. In
Figure 2, we illustrate the concepts of joint and marginal centralities for the multiplex
network in Figure 1(a). This network has N = 4 nodes and T = 6 layers, and we
study the interlayer-adjacency matrix Ã that we showed in the inset of Figure 1(a).
We set Ãtt′ = 1 for all depicted interlayer couplings, except for the coupling of layers
3 and 4, for which we set Ã34 = Ã43 = 0.01. With these interlayer edge weights, the
interlayer-coupling network that is associated with Ã has two natural communities
of densely connected nodes. For this experiment (and our other experiments), we
typically find that conditional node centralities provide the most useful insights.

In Figure 3(a), we plot the conditional centralities {Zit(ω)} of node-layer pairs for
three different choices of the interlayer-coupling strength ω. These choices represent
three centrality regimes (which we illustrate in Figure 3(b)) that we observe by ex-
ploring centralities across a range of ω values. In the top two panels of Figure 3(b), we
plot the MNC and MLC values versus ω. In the bottom panel, we quantify the “sensi-
tivity” of the joint and conditional centralities to perturbations of ω. Specifically, we
consider ω in the interval [10−2, 104] discretized by ωs = 10−2+0.2s for s ∈ {0, . . . , 30}.
We plot the magnitudes ‖W(ωs)−W(ωs−1)‖F of the changes of the joint centralities
and the magnitudes ‖Z(ωs)−Z(ωs−1)‖F of the changes of the conditional centralities,
where ‖ · ‖F denotes the Frobenius norm. We identify three regimes for which the
conditional centralities are robust. (See the shaded regions in the bottom panel of
Figure 3(b).) Specifically, the peaks in Figure 3(b) indicate values of ω where con-
ditional centralities are most sensitive to perturbations of ω; other choices for ω are
more robust to perturbations of ω. Interestingly, the peaks and troughs for the curves
for ‖W(ωs)−W(ωs−1)‖F and ‖Z(ωs)−Z(ωs−1)‖F do not coincide. We focus on ro-
bust values of Z(ω), because we generally find that conditional centralities provide the
most interpretable and insightful results among our supracentralities. See section 3.2
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to each other. This pattern arises directly from the layer-coupling scheme in
Figure 1(a), where these two sets of layers correspond to two communities
in the interlayer-adjacency matrix. (Recall that the coupling between layers
3 and 4 is 100 times weaker than the other couplings.) In section SM1 of
the supplementary materials, we show that the curve ‖Z(ωs) − Z(ωs−1)‖F
becomes unimodal as we increase the coupling between layers 3 and 4.

We classify the strong-coupling and weak-coupling regimes by considering whether
or not the observed supracentralities are strongly correlated with those of either as-
ymptotic limit (i.e., either ω → 0+ or ω → ∞). The intermediate regime arises from
an interplay between (1) the topologies and edge weights of the layers and (2) the
interlayer couplings, so these multilayer centralities provide insights that cannot be
observed by studying the network layers in isolation or in aggregate. This example
also illustrates that it is important to explore various coupling strengths ω and vari-
ous interlayer-adjacency matrices Ã to identify supracentralities that are appropriate
for a given application. See [106] for our MATLAB and Python code that computes
supracentralities and reproduces Figure 3 and our other experiments in this paper.

4. Limiting behavior for weak and strong coupling. We construct singular
perturbation expansions to analyze the limiting behaviors of (3.2) when the interlayer-
coupling strength ω is very small (i.e., layer decoupling) or very large (i.e., layer
aggregation). These results provide insights into our supracentrality framework and
can aid in the selection of appropriate parameter values.

4.1. Layer decoupling in the weak-coupling limit. We first study supra-
centralities in the ω → 0+ limit. We did not study this limit in our previous work [110]
on temporal centralities. We analyze how the eigenvalues and eigenvectors of C(ω) for
small ω are determined by the eigenvalues and eigenvectors of the individual layers’
centrality matrices C(t).

Lemma 4.1 (layer decoupling at ω = 0). Let µ
(t)
i , v(i,t), and u(i,t) denote the

eigenvalues and corresponding right and left eigenvectors of the N × N centrality

matrices C(t) for t ∈ {1, . . . , T}. It follows that each µ
(t)
i is an eigenvalue of the

associated supracentrality matrix C(0) = diag[C(1), . . . ,C(T )] with corresponding left
eigenvector u(i,t) = e(t) ⊗ u(i,t) and right eigenvector v(i,t) = e(t) ⊗ v(i,t), where e(t)

denotes a length-T unit vector that consists of zeros in all entries except for the entry
t (which is a 1).

Proof. See Appendix B.

Remark 4.2. The vectors u(i,t) and v(i,t) each consist of T blocks, and each block
is a length-N vector that consists of zeros except for block t, which is the associated
left or right eigenvector of C(t).

Remark 4.3. If there exist multiple eigenvalues µ
(t)
i of C(t) that are equal (that is,

µ
(t)
i = λ for any (i, t) in some set P), then any linear combination of their associated
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eigenvectors is also an eigenvector:

C(0)





∑

(i,t)∈P

αi,tv
(i,t)



 =
∑

(i,t)∈P

αi,tC(0)v
(i,t)(4.1)

=
∑

(i,t)∈P

αi,tλv
(i,t)

= λ





∑

(i,t)∈P

αi,tv
(i,t)



 .

One can show a similar result for the left eigenvectors. Consequently, the eigenspace
that is associated with each eigenvalue is an invariant subspace.

We now turn our attention to the eigenspace of the dominant eigenvalue (i.e.,
the dominant eigenspace). Let λmax(0) denote the largest positive (i.e., dominant)

eigenvalue of C(0), and let T = {t : µ
(t)
1 = λmax(0)} be the set of indices for the

layers whose largest positive eigenvalue µ
(t)
1 is equal to λmax(0). We assume that each

layer’s dominant eigenvalue µ
(t)
1 is simple (i.e., µ

(t)
j < µ

(t)
1 for any j ≥ 2) and that its

right and left eigenvectors are unique, which allows us to consider a set T of layers
rather than a set P of node-layer pairs.

We now present a key result for the dominant eigenvectors of limω→0+ C(ω).

Theorem 4.4 (weak-coupling limit of dominant eigenvectors). Let v(1)(ω) and
u
(1)(ω), respectively, be the right and left dominant eigenvectors of a supracentrality

matrix C(ω) under the assumptions of Theorem 3.7. Additionally, let µ
(t)
1 be the

largest positive eigenvalue of the centrality matrix C(t) of layer t. We assume that the

the eigenvalues µ
(t)
1 are simple, and we let v(1,t) and u(1,t) be their corresponding right

and left eigenvectors. It then follows that the ω → 0+ limits of u(1)(ω) and v(1)(ω)
are

(4.2) v
(1)(ω) →

∑

t∈T

αtv
(1,t) , u

(1)(ω) →
∑

t∈T

βtu
(1,t) ,

where the vectors α = [α1, . . . , αT ]
∗ and β = [β1, . . . , βT ]

∗, which have nonnega-
tive entries that satisfy

∑

t α
2
t =

∑

t β
2
t = 1, are positive solutions to the dominant-

eigenvalue equations

(4.3) Xα = λ1α , X∗β = λ1β ,

where λ1 is an eigenvalue that needs to be determined, the entries of X are

Xtt′ = Ãtt′
〈u(1,t),v(1,t′)〉

〈u(1,t),v(1,t)〉
χ(t)χ(t′) ,(4.4)

and χ(t) =
∑

t′∈T
δtt′ is an indicator function (with χ(t) = 1 if t ∈ T and χ(t) = 0

otherwise). (Recall that ∗ is our notation for the transpose operator.)

Proof. See Appendix C.

Remark 4.5. We obtained (4.4) using singular perturbation theory in the limit
ω → 0+. One can understand why the limit is singular by considering the dimen-
sion f(ω) = dim(null(C(ω) − λmax(ω)I)) of the eigenspace that is associated with
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the dominant eigenvalue λmax(ω) of C(ω). For any ω > 0, Theorem 3.7 (i.e., our
Perron–Frobenius theorem) guarantees that f(ω) = 1. However, (4.1) implies that
when ω = 0, there are |T | eigenvectors that are associated with eigenvalue λmax(0),
which in turn implies that f(0) = |T |. If |T | > 1, then limω→0+ f(ω) 6= f(0) and
ω = 0 is a singular point of the dominant eigenspace.

We now present three corollaries that consider Theorem 4.4 under various restric-
tions on the centrality matrices. We first consider the limiting behavior when the
layers’ centrality matrices all have the same spectral radius, as is the case for Page-
Rank matrices (because a PageRank matrix is a transition matrix of a Markov chain)
or if one rescales the centrality matrices to have the same spectral radius.

Corollary 4.6 (weak-coupling limit for centrality matrices with the same spec-
tral radius). Under the assumptions of Theorem 4.4 and also assuming that all cen-

trality matrices have the same spectral radius (i.e., λmax = µ
(t)
1 for all t), it follows

that T = {1, . . . , T} and χ(t) = 1. Additionally, (4.4) takes the form

Xtt′ = Ãtt′
〈u(1,t),v(1,t′)〉

〈u(1,t),v(1,t)〉
.(4.5)

We next consider when the layers’ centrality matrices are symmetric, which is the
case for hub matrices, authority matrices, and symmetric adjacency matrices.

Corollary 4.7 (weak-coupling limit for symmetric centrality matrices). Under
the assumptions of Theorem 4.4 and also assuming that all centrality matrices are
symmetric, then u(1,t) = v(1,t′) and (4.4) takes the form

Xtt′ = Ãtt′χ(t)χ(t
′) .(4.6)

When the centrality matrix of a single layer has the largest spectral radius, which
one often expects to occur for adjacency matrices and hub and authority matrices
(unless the network layers have symmetries that yield repeated spectral radii across
layers), the limiting behavior of the eigenvector is that it localizes onto a single dom-
inating layer.

Corollary 4.8 (weak-coupling-induced eigenvector localization onto a dominat-
ing layer). Under the assumptions of Theorem 4.4 and also assuming that one layer

has a spectral radius that is larger than all others (i.e., λmax = µ
(t)
1 for a single layer

t = τ), we have as ω → 0+ that

v(ω) → v
(1,τ) , u(ω) → u

(1,τ) .(4.7)

Understanding whether the dominant eigenvector localizes onto a single layer,
localizes onto several layers (as given by χ(t)), or does not localize has significant
practical consequences. In some situations, it can be appropriate to allow eigenvector
localization [83], whereas it can be beneficial to avoid localization in others [71].
Lemma 4.1 and Corollaries 4.7 and 4.8 characterize localization in the weak-coupling
limit and are useful for practitioners to make informed choices about which centrality
matrices to use.

4.2. Layer aggregation in the strong-coupling limit. We now study (3.2)
in the limit ω → ∞ (or, equivalently, in the limit ε := ω−1 → 0+). The results of this
subsection generalize those of [110], where we assumed that Ã encodes adjacent-in-
time coupling. In the present discussion, by contrast, we allow Ã to be from a much
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more general class of matrices, including asymmetric matrices that encode directed
interlayer couplings.

Consider the scaled supracentrality matrix

(4.8) C̃(ε) = εC(ε−1) = εĈ+ Â ,

which has eigenvectors ũ(ε) and ṽ(ε) that are identical to those of C(ω) (specifically,
ũ(ε) = u(ε−1) and ṽ(ε) = v(ε−1)). Its eigenvalues {λ̃i} are scaled by ε; specifically,
λ̃i(ε) = ελi(ε

−1).
To facilitate our presentation, we define a permutation operator for NT × NT

matrices.

Definition 4.9 (node-layer-reordering stride permutation). The matrix P is a
T -stride permutation matrix of size NT ×NT if it has entries that take the form [34]

(4.9) [P]kl =

{

1 , l = dk/Ne+ T [(k − 1) mod N ]
0 , otherwise .

Therefore, (Ã⊗ I) = P(I⊗ Ã)P∗.

Remark 4.10. The stride-permutation matrix P is unitary, and it simply changes
the ordering of node-layer pairs. Before we apply the stride permutation (which is a
type of graph isomorphism [56]), a supracentrality matrix has entries that are ordered
first by node i and then by layer t (i.e., (i, t) = (1, 1), (2, 1), (3, 1), . . . ). After we apply
the stride permutation, the entries are ordered first by layer t and then by node i (i.e.,
(i, t) = (1, 1), (1, 2), (1, 3), . . . ).

We now present our main findings for the strong-coupling regime.

Lemma 4.11 (singularity at infinite coupling). Let µ̃t denote the eigenvalues of
Ã, and let ṽ(t) and ũ(t), respectively, be the corresponding right and left eigenvectors.
We assume that the eigenvalues are simple, and we order them such that µ̃1 is the
largest eigenvalue. We also let P denote the stride permutation matrix from (4.9).

For ε = 0, each µ̃t is an eigenvalue of C(ε), and the associated N -dimensional
right and left eigenspaces are spanned by the eigenvectors Pṽ(t) and Pũ

(t), respectively,
with the general form

(4.10) ṽ
(t) =

∑

j

α̃tjPṽ
(t,j) , ũ

(t) =
∑

j

β̃tjPũ
(t,j) ,

where the constants α̃tj and β̃tj must satisfy
∑

j α̃
2
tj =

∑

j β̃
2
tj = 1 to ensure that

‖ũ(t)‖2 = ‖ṽ(t)‖2 = 1. The associated length-NT vectors are ṽ(t,j) = ẽ(j) ⊗ v(t) and
ũ
(t,j) = ẽ(j) ⊗ u(t), where ẽ(j) is a length-N unit vector that consists of zeros in all

entries except for entry j (which is a 1). Therefore, ũ(t,j) (respectively, ṽ(t,j)) consists
of zeros, except in the jth block of size T , which consists of a left (respectively, right)
eigenvector of Ã.

Proof. See Appendix D.

Remark 4.12. It is straightforward to also obtain the general form of the eigen-
vectors for eigenvalues {µt} whose multiplicity is larger than 1. For example, if the
eigenvalue µ̃t of Ã has multiplicity q, then λ̃i(0) = µ̃t has multiplicity qN for the
matrix C(0). However, the notation becomes slightly more cumbersome, and we will
not study such cases in this paper.
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Theorem 4.13 (strong-coupling limit of dominant eigenvectors). Let µ̃1 denote
the dominant eigenvalue (which we assume to be simple) of the interlayer-adjacency
matrix Ã, and let ṽ(1) and ũ(1) be its associated right and left eigenvectors. We
assume that the constraints of Theorem 3.7 are satisfied, such that the supracentrality
matrix C(ε) given by (3.1) is nonnegative, irreducible, and aperiodic. It then follows
that the largest positive eigenvalue λ̃max(ε) and its associated eigenvectors, u(1)(ε) and
v
(1)(ε), of C(ε) converge as ε → 0+ as follows:

(4.11) λ̃max(ε) → µ̃1 , ṽ
(1)(ε) →

∑

j

α̃jPṽ
(1,j) , ũ

(1)(ε) →
∑

j

β̃jPũ
(1,j) ,

where P is the stride permutation from (4.9), the vectors ũ(1,j) and ṽ(1,j) are defined
in Theorem 4.11, and the constants β̃i and α̃i solve the dominant-eigenvalue equations

(4.12) X̃α̃ = µ̃1α̃ , X̃∗β̃ = µ̃1β̃ ,

where

X̃ij =
∑

t

C
(t)
ij

ũ
(1)
t ṽ

(1)
t

〈ũ(1), ṽ(1)〉
.(4.13)

Proof. See Appendix E.

Equation (4.13) indicates that the strong-coupling limit effectively aggregates
the centrality matrices {C(t)} across time via a weighted average, with weights that
depend on the right and left dominant eigenvectors of the interlayer-adjacency matrix
Ã. This result generalizes (4.13) of [110], which assumed that Ã is symmetric (so

that ũ
(1)
t = ṽ

(1)
t ). We recover the result in [110] with the following corollary.

Corollary 4.14 (strong-coupling limit of eigenvector-based centralities for mul-
tilayer networks with adjacent-in-time, uniform, and diagonal coupling [110]). For
undirected, adjacent-in-time interlayer coupling (i.e., Ãtt′ = 1 for |t − t′| = 1 and
Ãtt′ = 0 otherwise), the ε → 0+ limit of the largest eigenvalue is λ̃1(ε) → 2 cos( π

T+1 ).

When ε → 0+, the right and left dominant eigenvectors satisfy (4.11)–(4.12) with

X̃ =
∑

t

C(t)
sin2

(

πt
T+1

)

∑T
t=1 sin

2
(

πt
T+1

) .

We conclude this section by presenting corollaries with two additional special
cases of Theorem 4.13.

Corollary 4.15 (strong-coupling limit of eigenvector-based centralities for mul-
tilayer networks with all-to-all, uniform, and diagonal coupling). For all-to-all cou-
pling (with self-edges), Ã = 11∗; the ε → 0+ limit of the largest eigenvalue is
λmax(ε) → µ̃1 = N ; and, when ε → 0+, the right and left dominant eigenvectors
satisfy (4.11)–(4.12) with X̃ = T−1

∑

t C
(t).

Proof. In this case, the largest eigenvalue of Ã is µ1 = N . Additionally, the right
and left dominant eigenvectors have the same value in each component, with entries

u
(1)
t = v

(1)
t = T−1/2.
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Table 2

A list of European airline companies, which we represent as layers in a multiplex network. For

each layer, we report the number Mt of undirected edges and the spectral radius λ
(t)
1 of its associated

adjacency matrix A(t). We have chosen the ordering to match the one in [13].

Layer (t) Airline name Mt λ
(t)
1

1 Lufthansa 244 14.5
2 Ryanair 601 19.3
3 easyJet 307 14.0
4 British Airways 66 6.6
5 Turkish Airlines 118 9.9
6 Air Berlin 184 11.3
7 Air France 69 7.2
8 Scandinavian Air. 110 8.9
9 KLM 62 7.9
10 Alitalia 93 8.8
11 Swiss Int. Air Lines 60 7.3
12 Iberia 35 5.8
13 Norwegian Air Shu. 67 8.1
14 Austrian Airlines 74 8.1
15 Flybe 99 8.5
16 Wizz Air 92 6.5
17 TAP Portugal 53 7.0
18 Brussels Airlines 43 6.6
19 Finnair 42 6.4

Layer (t) Airline name Mt λ
(t)
1

20 LOT Polish Air. 55 6.8
21 Vueling Airlines 63 6.8
22 Air Nostrum 69 6.4
23 Air Lingus 108 6.7
24 Germanwings 67 7.4
25 Pegasus Airlines 58 6.7
26 NetJets 180 8.2
27 Transavia Holland 57 6.0
28 Niki 37 4.7
29 SunExpress 67 7.8
30 Aegean Airlines 53 6.5
31 Czech Airlines 41 6.4
32 European Air Trans. 73 6.8
33 Malev Hungarian Air. 34 5.8
34 Air Baltic 45 6.4
35 Wideroe 40 5.6
36 TNT Airways 61 6.2
37 Olympic Air 43 6.2
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Fig. 5. Marginal layer centralities (MLCs) and marginal node centralities (MNCs) for a mul-
tiplex European airline transportation network of the flight patterns of 37 airlines [13]. We couple
the layers with all-to-all coupling and examine interlayer-coupling strengths ω ∈ [10−2, 102]. In the
insets in panels (a) and (b), we compare the calculated conditional node centralities for ω = 10−2

and ω = 102, respectively, to the asymptotic values from Theorems 4.4 and 4.13.

importances; by contrast, for small ω, one layer is much more important because of the
eigenvector-localization phenomenon that we described in Corollary 4.8. Specifically,
the layer that represents Ryanair dominates for small ω, as its adjacency matrix has
the largest spectral radius. (It also has the most edges.) A previous investigation
of multilayer centralities in this data set [90] also identified Ryanair as the most
important airline.

In the insets in Figure 5, we plot the calculated conditional node centralities for
ω = 10−2 (in panel (a)) and ω = 102 (in panel (b)) versus the asymptotic values in
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the associated limits for ω → 0+ (see Theorem 4.4) and ω → ∞ (see Theorem 4.13),
demonstrating that they are in excellent agreement. We also observe in Figure 5(b)
that there is not a simple transition between these two limits. We highlight a few
airports whose MNCs have a peak for intermediate values of ω with the thick black
curves. These airports are more important if one considers the airline network as a
multiplex network than if one considers the layers in isolation or in aggregate.

Table 3

European airports with the largest MNCs according to eigenvector supracentrality for interlayer-
coupling strengths ω in the regimes of weak (ω = 0.01), intermediate (ω = 1), and strong (ω = 100)
coupling. We identify each airport by its International Civil Aviation Organization (ICAO) code.

Rank

1
2
3
4
5
6
7
8
9
10

ω = 0.01

Airport MNC

EGSS 0.329
EIDW 0.286
LIME 0.254
EBCI 0.201
LEMD 0.193
LEAL 0.190
EDFH 0.189
LIRA 0.184
LEGE 0.176
LEPA 0.166

ω = 1

Airport MNC

LEMD 1.379
EHAM 1.296
LEBL 1.257
EDDM 1.171
LIRF 1.150
EDDF 1.121
EDDL 1.105
LFPG 1.091
LOWW 1.066
LIMC 0.968

ω = 100

Airport MNC

EHAM 1.406
LEMD 1.400
LIRF 1.206

LOWW 1.198
LEBL 1.193
EDDM 1.160
LFPG 1.157
EDDF 1.134
EDDL 1.128
LSZH 1.017

In Table 3, we list the airports with the largest MLCs for eigenvector supracen-
trality for small, intermediate, and large values of ω. As expected, for large and small
ω, the top airports correspond to the top airports (i.e., those with the largest eigen-
vector centralities) that are associated with the aggregation of layers and the Ryanair
network layer, respectively. The top-ranked airports for ω = 1 have a large overlap
with those for ω = 100. The top airport, Adolfo Suárez Madrid–Barajas Airport
(LEMD), is particularly interesting. LEMD is the only airport that ranks in the top
10 for both the Ryanair layer and the layer-aggregated network; this contributes to
its having the top rank for this intermediate value of ω. We highlight similar ranking
boosts for other airports with solid black curves in Figure 5(b). We also note that
LEMD was identified in previous investigations [48,116] as one of the most important
airports in this data set.

In Figure 6, we illustrate that the eigenvector supracentralities correlate strongly
with node degrees. In Figure 6(a), we show for ω = 100 that the airports’ condi-
tional centralities, averaged across layers, are correlated strongly with their total (i.e.,

layer-aggregated) degrees di =
∑

t,j A
(t)
ij (see the blue “×” marks). We expect this

strong correlation for eigenvector supracentrality, as node degree is a first-order ap-
proximation of eigenvector centrality in monolayer networks [112]. We also plot the
mean conditional centralities versus the number of length-2 paths that emanate from
each node (see the red circles). As expected, this correlation is even stronger, as the
number

∑

t,j [A
(t)]2ij of length-2 paths is a second-order approximation to eigenvector

centrality [112].4

4As described in [112], one can interpret the number of length-k paths as an kth-order approxi-
mation to the dominant eigenvector of an adjacency matrix when the largest positive (i.e., dominant)
eigenvalue has a magnitude that is strictly larger than those of all of the other eigenvalues. Recall
that Theorem 2.10 guarantees that this is true whenever A is nonnegative, irreducible, and aperiodic.
(We also note that the condition of aperiodicity does not hold for certain classes of networks, such as
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Fig. 6. Eigenvector supracentralities for the multiplex European airline network. (a) For

ω = 100, the airports’ MNCs correlate strongly with the layer-aggregated degrees di =
∑

t,j A
(t)
ij and

with the total number of length-2 paths (summed across layers) that emanate from each node. To
facilitate this comparison, we normalize the vectors. In the legend, we write “k-path” as shorthand
terminology for “length-k path.” (b) We compute the Pearson correlation coefficients to compare the
airports’ eigenvector supracentralities to three different notions of node degree that one can define

for a multiplex network: (dot-dashed blue curve) intralayer degrees d
(t)
i =

∑
j A

(t)
ij versus conditional

node centralities Zit; (dashed red curve) total degrees di =
∑

t d
(t)
i versus the sum

∑
t Zit(ω) of the

conditional node centralities; and (solid gold curve) degrees d
(2)
i =

∑
j A

(2)
ij in the Ryanair layer

versus
∑

t Zit(ω). (This figure is in color in the electronic version of this article.)

In Figure 6(b), we plot (as a function of ω) the Pearson correlation coefficient r
between node degrees and eigenvector centralities for three cases: (dot-dashed blue

curve) intralayer degrees d
(t)
i =

∑

j A
(t)
ij versus the conditional node centralities Zit;

(dashed red curve) total degrees di =
∑

t d
(t)
i versus the sum

∑

t Zit(ω) of the con-

ditional node centralities; and (solid gold curve) the degrees d
(2)
i =

∑

j A
(2)
ij in the

Ryanair layer versus
∑

t Zit(ω). As expected, for very small and very large values
of ω, the supracentralities correlate strongly with the Ryanair layer and the layer-
aggregated network, respectively. Interestingly, for ω ≈ 0.5, there is a spike in the
correlation between the intralayer degrees and the conditional node centralities.

In section SM2 of the supplementary materials, we describe the results that we
obtain when we conduct a similar experiment with PageRank matrices (see Defini-
tion 2.6). Figure SM2 gives an interesting contrast to Figure 6(b). Because PageRank
matrices all have the same spectral radius, no layer dominates in the limit ω → 0+,
so there is no eigenvector localization (see Theorem 4.4). Instead, in Figure SM2(b),
we observe for small ω that the conditional centralities correlate strongly with the

nodes’ intralayer degrees d
(t)
i . In section SM2, we also compare these findings to re-

sults for PageRank “versatility” [22], a generalization of centrality that attempts to
quantify important nodes in a multilayer network that may not be particularly impor-
tant in any individual layer. Finally, because we use an interlayer-adjacency matrix
that encodes all-to-all coupling, the different multiplex generalizations of eigenvec-
tor centrality that use the Khatri–Rao product [23, 24, 94, 98] are all equal to each

bipartite networks.) Consider the power-method iteration for numerically computing the dominant
eigenvector for any adjacency matrix A under these assumptions. If one initializes the power method
with 1 (a vector of ones), then Ak1 converges (after normalization) to the dominant eigenvector of
A. Additionally, [Ak1]i (i.e., the ith entry of the vector) is equal to the number of length-k paths
that emanate from node i.
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other and are also equivalent to the eigenvector centrality that is associated with the
layer-aggregated adjacency matrix

∑

t A
(t). Corollary 4.15 states that this centrality

is also equivalent to marginal node centrality for eigenvector supracentralities in the
limit ω → ∞.

5.2. United States mathematical-science program rankings using a Ph.D.
exchange network [110]. We apply our supracentrality framework to study the
prestige of U.S. mathematical-science doctoral-granting programs by examining a
temporal network that encodes the graduation and hiring of Ph.D. recipients in the
mathematical sciences. Specifically, we analyze the temporal network from [110],
which we constructed using data from the Mathematics Genealogy Project [88]. As
in [110], we calculate uniformly and diagonally coupled authority scores, such that
a university with a high authority score corresponds to an academic authority. A
high-authority university produces desirable students, who tend to be hired by other
institutions.

In our examination of the Ph.D. exchange network in [110], we restricted our
attention to undirected, adjacent-in-time coupling that is encoded by an interlayer-
adjacency matrix Ã with entries Ãtt′ = 1 if |t − t′| = 1 and Ãtt′ = 0 otherwise.
In the present study, by contrast, we consider the effects of causality by coupling
time layers using a directed chain with “layer teleportation.” Specifically, we use an
interlayer-adjacency matrix with elements

(5.1) Ãtt′ =

{

1 , t′ − t = 1
γ , otherwise .

Teleportation was introduced for PageRank centrality [33] to allow centrality matri-
ces that are associated with weakly connected (and even disconnected) networks to
satisfy the irreducibility assumptions of Theorems 2.10 and 2.11. Similarly, we use
teleportation between layers to satisfy the assumptions of Theorem 3.7; this ensures
that the supracentralities are positive and unique. We differentiate between these two
types of teleportation by referring to the original PageRank notion as node teleporta-
tion and the teleportation in (5.1) as layer teleportation. See [111] for an exploration
of layer teleportation in further detail.5

In Figure 7, we examine the effect of the layer teleportation parameter γ on
authority supracentralities. In Figures 7(a)–(c), we plot the layers’ authority MLCs
xt(ω) (which are given by Definition 3.5) versus the year t for coupling strengths ω ∈
{101, 102, 103} from the weak-coupling, intermediate-coupling, and strong-coupling
regimes. See section 3.3 for a description of how we identify coupling regimes. In
each panel, we plot the MLCs for three values of the layer teleportation parameter:

γ = 10−2, γ = 10−3, and γ = 10−4. In panel (d), we plot dt =
∑

ij A
(t)
ij , which is

the total number of people who earned a Ph.D. in the mathematical sciences in year
t who later supervised a graduating Ph.D. student. Observe that t = 1966 is the year
with the largest value of dt.

In Figure 7(a) (i.e., for small ω), the tall peak indicates that there is eigenvector
localization onto time layer t = 1982, whose associated authority matrix has the
largest spectral radius among all layers. For γ = 10−2, we also observe a smaller
peak at t = 1966. Comparing Figure 7(b) to Figure 7(a) for γ = 10−2, we observe

5Theorems 2 and 3 in [111] restate Theorems 4.4 and 4.13 from an earlier draft of the present
paper. We have since improved the clarity of these results by stating that λmax and λ̃max are “largest
positive” eigenvalues.
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Fig. 7. Effect of the layer teleportation parameter γ on authority supracentralities in the
mathematical-science Ph.D. exchange network. (a)–(c) MLCs versus the year t for several choices
of γ and ω. The dotted black curves in panel (c) depict the asymptotic results from Theorem 4.13.
Specifically, in the ω → ∞ limit, the MLCs are given by the right dominant eigenvector of Ã.

(d) The total number dt =
∑

ij A
(t)
ij of mathematical-science Ph.D. recipients in year t who later

supervised a graduating Ph.D. student. (e)–(g) The rank r
(t)
i that is associated with the conditional

node centrality of Georgia Institute of Technology (GT) for various values of γ and ω. (h) The

number d
(t)
i =

∑
j A

(t)
ij of people who earned a Ph.D. in the mathematical sciences from GT in year

t who later supervised a graduating Ph.D. student.

that the peak near t = 1966 is more pronounced for ω = 101 than for ω = 102. We
observed a similar localization phenomenon in [110] for adjacent-in-time coupling. In
Figure 7(c), we illustrate behavior that contrasts starkly with our findings in [110].
Specifically, we see that the interlayer-coupling architecture (which changes with the
layer teleportation parameter γ) has a significant effect on the strong-coupling limit.
By varying γ, one can tune the extent to which older time layers have larger centrality
than newer time layers. When γ = 10−4, for example, we observe in Figure 7(c) that
the MLC of time layers appears to decrease rapidly as t increases. Our asymptotic
theory in section 4.2 gives an accurate description of this phenomenon. Observe the
dotted black curves, which show the right dominant eigenvector ṽ(1) of Ã; we obtain
these MLC curves from Theorem 4.13 in the ω → ∞ limit.

In Figures 7(e)–(g), we plot the university rank r
(t)
i ∈ {1, . . . , N} of Georgia

Institute of Technology (GT) that is associated with its conditional centralities for
different time layers; we call this its “rank trajectory.” As in Figures 7(a)–(c), these
panels show results for ω ∈ {10, 102, 103}; in each panel, we again plot results for
γ ∈ {10−2, 10−3, 10−4}. In Figure 7(h), we plot the number of people who earned a
Ph.D. in the mathematical sciences from GT who later supervised a graduating Ph.D.
student; observe the increase that starts in the 1960s. Starting in the late 1970s, GT’s
mathematics program transitioned from being primarily teaching-oriented to being
much more research-oriented, with a newly restructured doctoral degree program [26].
We used GT in [110] as a case study to illustrate the methods that we developed in
that paper. All centrality trajectories for GT that we present in the present paper
differ significantly from those in [110], which coupled the time layers by letting the
interlayer-adjacency matrix correspond to an undirected chain (see Corollary 4.14).
In particular, many of the rank trajectories in Figures 7(e)–(g) suggest that GT has
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its highest rank in the 1980s, around the time when GT graduated its largest numbers
of Ph.D. students who subsequently supervised their own Ph.D. students. We also see
that the choices for ω and γ influence the centrality trajectory for GT. The parameter
γ has a larger effect for the intermediate-coupling and strong-coupling regimes (see
panels (f) and (g)) of ω than it does for the weak-coupling regime. For intermediate
coupling ω = 102 with γ = 10−3, the rank of GT varies from about 50th to about
15th from t = 1945 to t = 1985.

In section SM3 of the supplementary materials, we provide additional results for
the Ph.D. exchange network. We show in Table SM3 that γ does not seem to have
a significant effect on top-ranked universities, although it does have a strong effect
on the MLCs for large values of ω. In Figure SM3, we show plots that are similar to
Figures 5 and 6, except that the results describe the Ph.D. exchange network instead
of the multiplex airline network. For small and large ω, we find that the authority
supracentralities correlate strongly with the intralayer degrees of a dominating layer
(t = 1966 in this case) and with the nodes’ total degrees, respectively.

6. Conclusions. It is important to develop systematic ways of calculating im-
portances in the form of centralities and their generalizations for nodes, edges, and
other structures in multilayer networks. In the present paper, we examined centrali-
ties that are based on eigenvectors for two popular classes of multilayer networks: (1)
multiplex networks, which encode different types of relationships; and (2) temporal
networks, in which relationships change over time. We presented a unifying linear-
algebraic framework that generalizes eigenvector-based centralities, such as PageRank
and hub and authority scores, for multiplex and temporal networks. A key aspect of
our approach involves studying joint, marginal, and conditional centralities that one
calculates from the dominant eigenvector of a supracentrality matrix, which couples
centrality matrices that are associated with individual layers. See [106] for MATLAB
and Python code that computes supracentralities and reproduces the experimental
results of our paper.

Our main methodological contribution is the extension of the supracentrality
framework of [110], which previously was restricted to undirected adjacent-in-time
coupling, to more general types of interlayer coupling. Our new, more general frame-
work couples layers through an interlayer-adjacency matrix Ã, allowing one to study
centralities in multilayer networks with a large family of interlayer-coupling topolo-
gies. We found that the architecture of Ã significantly impacts supracentralities, and
we highlighted that some choices are more appropriate than others for different sit-
uations. As an example, in section 5.2, we let Ã encode a directed chain with layer
teleportation (see Figure 1(b) for a visualization) and studied a temporal network
that encodes the graduation and hiring of Ph.D. recipients in the mathematical sci-
ences. Our results on this example contrast sharply with those in [110] because of
our different choice of interlayer coupling.6 We also studied a multiplex network that
encodes airline transportation in Europe (see section 5.1), and we observed a different
mechanism that yields boosts in centrality. Specifically, we found that nodes that
are important in both the large-ω and small-ω limits can receive centrality boosts for

6For an in-depth comparison of the effects of directed and undirected coupling between time
layers, see our recent book chapter [111]. One of our findings in [111] is that coupling layers using a
directed chain (which respects the arrow of time) introduces a bias that increases the centralities of
node-layer pairs that are associated with the earliest time layers. We also illustrated in [111] that one
can moderate such a bias using a layer teleportation parameter (and we note that it seems fruitful
to study multilayer generalizations of so-called “smart teleportation” [60]).
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intermediate values of ω, whereas nodes that are important in just one of the limits
do not. For examples, see the centrality of the airport LEMB in Table 3 and the black
curves in Figure 5(b).

We explored how different interlayer-coupling architectures (as encoded by Ã) and
interlayer-coupling strengths (as encoded by ω) influence centralities. Specifically, we
identified an interesting interplay between Ã and the architectures of the individual
layers in multiplex and temporal networks. To gain insight into this interplay, we
performed singular perturbation theory in the limits of weak and strong interlayer
coupling (see section 4), which lead to layer decoupling and layer aggregation, respec-
tively. We demonstrated that the limiting supracentralities depend on several factors,
including the right and left dominant eigenvectors of Ã and the spectral radii of the
layers’ centrality matrices, possibly leading to localization of the dominant eigenvec-
tor of a supracentrality matrix onto one or more layers (specifically, the ones whose
associated centrality matrices have the largest spectral radii). We focused on studying
the eigenvector that is associated with the dominant eigenvalue of a supracentrality
matrix because we obtain the supracentralities from that vector. It may also be inter-
esting to explore other eigenvectors and eigenvalues using the perspective of Jordan
decompositions [97].

We expect that our results will be useful not only for centrality analysis but also
for studying matrices that arise in data integration. In our investigation, we considered
both (1) a set of matrices and (2) a set of relationships between these matrices. Using
a “supramatrix” framework, we constructed and analyzed a matrix that reflects both
(1) and (2). Our perturbative approach for analyzing dominant eigenspaces in the
present paper assumes that the matrices are nonnegative and square, but it is not
limited to matrices that encode network data. Consequently, we expect our findings
to also be insightful in other scenarios that involve combining matrices of data into
larger matrices.

One can also use a supracentrality framework to study dynamical processes on
multiplex networks. For example, multiplex Markov chains were defined recently [108]
using a formulation that was inspired by supracentrality. In [108], it was shown that
stationary distributions of such chains provide a better measure for the importance of
nodes and layers than the stationary distributions for other models of diffusion, such
as those based on supra-Laplacian matrices [35, 101] and previously studied supra-
transition matrices [74,119]. Given the new insights in [108] from the supracentrality-
inspired multiplex Markov chains, the methods in the present paper will likely reveal
additional insights about dynamical processes on multiplex and temporal networks.

Appendix A. Proof of Theorem 3.7. To prove the uniqueness and posi-
tivity of v(ω), we use the Perron–Frobenius theorem for nonnegative matrices (see
Theorem 2.10) [4]. To satisfy the assumptions of Theorem 2.10, we must show that
the matrix C(ω) is nonnegative and irreducible under our two assumptions: (1) Ã

is nonnegative and irreducible; and (2) the sum
∑

t C
(t) is an irreducible nonnega-

tive matrix. By construction, the entries in C(ω) are nonnegative, so we only need
to prove irreducibility. Because the matrix C(ω) is nonnegative, we can interpret it
as a weighted adjacency matrix that encodes possibly directed and weighted edges
between node-layer pairs {(i, t)} for i ∈ V = {1, . . . , N} and t ∈ {1, . . . , T}. We will
show that the network that is associated with the adjacency matrix C(ω) is strongly
connected, which implies that it is irreducible.

We start with two observations. First, we note that Ã describes an adjacency
matrix for a strongly connected network. Let L̃ < ∞ denote the diameter of this
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network. For any node k and any two layers, t and t′, it follows that there exists
a path from node-layer pair (k, t) to node-layer pair (k, t′) in the network that is
associated with the adjacency matrix C(ω). The length of this path is at most L̃.

Second, because the matrix C(t) = T−1
∑

t C
(t) is irreducible and nonnegative, we

can interpret it as an adjacency matrix for a strongly connected network. Let L < ∞
denote the diameter of this network. For any two nodes, i and j, of this network,
there exists a path of length l ≤ L from i to j. We denote the path by a sequence
S(i, j) = {k0, k1, . . . , kl−1, kl} of nodes from i = k0 to j = kl. We also identify a
sequence {t1, t2, . . . , tl} of layers, such that the entry [C(tj)]kj−1,kj

in matrix C(tj)

is positive. For any j, there must exist at least one matrix C(tj) for which the

(kj−1, kj)th entry is positive, because the (kj−1, kj)th entry in C(t) is positive (i.e.,

because (kj−1, kj , C(t)
kj−1,kj

) is a weighted edge) and C(t) is a sum of nonnegative
matrices.

For any two node-layer pairs, (i, s) and (j, t), we now prove that there exists a
path with a length of at most L̃L from (i, s) to (j, t) in the network that is associated
with the matrix C(ω). We do this by explicitly constructing such a path. We first

identify a path S(i, j) from i to j in the network that is associated with C(t). Consider
the following sequence of node-layer pairs:

(A.1) {(k0, t0), (k1, t1), (k2, t2), . . . , (kl−1, tl−1), (kl, tl)} ,

where l ≤ L; we define kj and tj as above; and k0 = i, t0 = s, kl = j, and tl = t.
By definition, the (kj−1, kj)th entry in C(tj) is positive for each j, implying that the
network that is associated with the matrix C(ω) has an edge from (kj−1, tj) to (kj , tj).
We construct a path from (i, s) to (j, t) by taking the sequence in (A.1) and inserting
a path from each term in the sequence to the next term. That is, we insert a path
from (k0, t0) to (k0, t1) using only node-layer pairs that involve node k0. The length
of this path is at most L̃. Additionally, from our definition of the path S(i, j), we
see that there exists an edge from (k0, t1) to (k1, t1). We then insert a path, whose
length is also at most L̃, from (k1, t1) to (k1, t2) using only node-layer pairs that
involve node k1. By construction (see above), there exists an edge from (k1, t2) to
(k2, t2), completing the path from (k1, t1) to (k2, t2). We repeat this process until
finally we insert a path from (kl−1, tl−1) to (kl−1, tl) using only node-layer pairs that
involve node kl−1, and we note (again by construction) that there exists an edge from
(kl−1, tl) to (kl, tl). Each of these paths exists because the network that is associated
with Ã is strongly connected, and each of these paths has a length of at most L̃.

The above construction yields a path from any node-layer pair to any other node-
layer pair in the network that is associated with C(ω), thereby proving that the
network is strongly connected. Using our construction, we have also obtained an up-
per bound of L̃L for the network’s diameter. Because C(ω) corresponds to a strongly
connected network, it is irreducible and nonnegative by the Perron–Frobenius theo-
rem for nonnegative matrices, so the right dominant eigenvector v(ω) is unique and
positive. Consequently, the entries {Wit(ω)}, {xi(ω)}, and {x̂t(ω)} are also unique
and positive. Because these entries are positive, it follows in turn that {Zit(ω)} and
{Ẑit(ω)} are positive and finite.

Finally, if C(ω) is also aperiodic, then Theorem 2.10 states that the largest positive
eigenvalue of C(ω) is larger in magnitude than the other eigenvalues.

Appendix B. Proof of Lemma 4.1. We show that each eigenvalue–eigenvector
pair of C(t) yields an eigenvalue–eigenvector pair of C(0). Consider the matrix–vector
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multiplication C(0)v(i,t), and let k = p mod(N) and t′ = dp/jNe. We write

[C(0)v(i,t)]p =
∑

(k,t′)

C
(t)
jk v

(i,t′)
k δtt′ = µ

(t)
i v

(i,t′)
j δtt′ = µ

(t)
i [v(i,t)]p ,(B.1)

where we use the notation [Ĉv(i,t)]p to denote the pth entry of the vector C(0)v(i,t).

This implies that C(0)v(i,t) = µ
(t)
i v

(i,t), so µ
(t)
i is an eigenvalue of C(0) with right

eigenvector v(i,t). Similarly, C(0)∗u(i,t) = µ
(t)
i u

(i,t), so u
(i,t) is the associated left

eigenvector.

Appendix C. Proof of Theorem 4.4. Equation (4.2) follows from Lemma 4.1

and Remark 4.3. Let T be the set {t} of layer indices for which µ
(t)
1 = λmax(0),

and define S = span
(

{v(1,t)}t∈T

)

as the span of the associated eigenvectors (i.e.,
as the right dominant eigenspace). Because of the continuity of “eigenprojections”
(i.e., projections onto eigenspaces) [52, Chapter 2], the dominant eigenvector v(1)(ω)
converges to the dominant eigenspace S of C(0). Similarly, for ω → 0+, the left
dominant eigenvector of C(ω) converges to the left dominant eigenspace of C(0).
Given these observations, we only need to prove that the constants {αt} and {βt}
satisfy (4.3).

We expand λmax(ω), u
(1)(ω), and v(1)(ω) for small ω to obtain kth-order approx-

imations:

λmax(ω) =

k
∑

j=0

ωjλj +O(ωk+1) ,

v
(1)(ω) =

k
∑

j=0

ωj
vj +O(ωk+1) ,

u
(1)(ω) =

k
∑

j=0

ωj
uj +O(ωk+1) .(C.1)

We use superscripts to indicate powers of ω in the terms in the expansion, and we use
subscripts for the terms that are multiplied by a power of ω. Note that λ0, v0, and
u0 denote the dominant eigenvalue and its corresponding right and left eigenvectors
in the ω → 0+ limit. Successive terms in the expansions (C.1) involve higher-order
derivatives, and we assume that each term has sufficient smoothness of these functions.

Our strategy is to develop consistent solutions to C(ω)∗u(1)(ω) = λmax(ω)u
(1)(ω)

and C(ω)v(1)(ω) = λmax(ω)v
(1)(ω) for progressively larger values of k. Consider

the equation for the right eigenvector. Starting with the first-order approximation,
we insert λmax(ω) ≈ λ0 + ωλ1 and v

(1)(ω) ≈ v0 + ωv1 into (3.2) and collect the
zeroth-order and first-order terms in ω to obtain

(

λ0I− Ĉ

)

v0 = 0 ,(C.2)
(

λ0I− Ĉ

)

v1 =
(

Â− λ1I

)

v0 ,(C.3)

where I is the NT ×NT identity matrix. Equation (C.2) corresponds to the system

that is described by Lemma 4.1, implying that the operator λ0I − Ĉ is singular and
has a |T |-dimensional null space, where T = {t : µt = maxt µt} indicates the set of
centrality matrices C(t) whose largest eigenvalue is equal to the maximum eigenvalue.
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In particular, maxt µt = λ0 = λmax(0), so the dominant eigenvectors have a general
solution of the form

(C.4) v0 =
∑

t

αtv
(1,t) , u0 =

∑

t

βtu
(1,t) ,

where αt and βt are constants that satisfy 1 =
∑

t α
2
t =

∑

t β
2
t to ensure that ‖α‖ =

‖β‖ = 1. (See Lemma 4.1 for the definitions of u(1,t) and v(1,t).)
To determine the vectors α = [α1, . . . , αT ]

∗ and β = [β1, . . . , βT ]
∗ of constants

that uniquely determine u0 and v0, we use (C.3) to seek a solvability condition for

the first-order terms. We use the fact that the left null space of λ0I − Ĉ is the span
of {u(1,t)} to see that [u(1,t)]∗(λ0I − Ĉ)v1 = 0 for any t. We left-multiply (C.3) by
[u(1,t)]∗ and simplify to obtain

[u(1,t)]∗Âv0 = λ1[u
(1,t)]∗v0 .(C.5)

Inserting the solution of v0 in (C.4) yields

∑

t′

αt′ [u
(1,t)]∗Âv(1,t′) = λ1

∑

t′

αt′ [u
(1,t)]∗v(1,t′)

= λ1〈u
(1,t),v(1,t)〉αt ,(C.6)

which uses [u(1,t)]∗v(1,t) = 〈u(1,t),v(1,t′)〉δtt′ , where δij is the Kronecker delta. We
simplify the left-hand side of (C.6) to obtain

∑

t′

αt′ [u
(1,t)]∗Âv(1,t′) =

∑

t′

αt′Ãtt′ [u
(1,t)]∗[e(t

′) ⊗ v(1,t′)]

=
∑

t′

αt′Ãtt′ [e
(t) ⊗ u(1,t)]∗[e(t

′) ⊗ v(1,t′)]

=
∑

t′

αt′Ãtt′〈u
(1,t),v(1,t′)〉 .(C.7)

The last expression follows from the relations Â = Ã⊗ I, v(1,t′) = e(t
′) ⊗ v(1,t′), and

u
(1,t) = e(t) ⊗ u(1,t), where we recall that e(t) is a unit vector that consists of zeros

in all entries except for entry t (which is a 1). We equate the expressions (C.7) and
(C.6) and divide by 〈u(1,t),v(1,t)〉 to obtain the equation

∑

t′

Ãtt′
〈u(1,t),v(1,t′)〉

〈u(1,t),v(1,t)〉
αt′ = λ1αt(C.8)

for the right dominant eigenvalue. One proceeds analogously to obtain a similar equa-
tion for the left dominant eigenvector, and together these two eigenvector equations
yield (4.3).

Appendix D. Proof of Lemma 4.11. Examining C̃(ε), which is given by (4.8),

yields (using any matrix norm) ‖C̃(ε) − Â‖ = ε‖Ĉ‖ → 0+ as ε → 0+, implying that

C̃(0+) = Â = Ã⊗ I. Using the stride permutation P that is defined by (4.9), we write

(D.1) P
∗(Ã⊗ I)P = I⊗ Ã =









Ã 0 · · ·

0 Ã
. . .

...
. . .

. . .









.
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Because I ⊗ Ã is block diagonal and each diagonal block is identical, it follows that
the spectrum of I ⊗ Ã is identical to that of Ã (although the eigenvalues need to
repeat an appropriate number of times), and one can obtain the eigenvectors of the
former as functions of the eigenvectors of Ã.

Let {µ̃t} denote the eigenvalues of Ã, and let ṽ(t) and ũ(t) denote their correspond-
ing right and left eigenvectors, respectively. We now illustrate that ṽ(t,j) = ẽ(j)⊗v(t)

and ũ(t,j) = ẽ(j)⊗u(t) are right and left eigenvectors of I⊗Ã. With p ∈ {1, . . . , NT},
we define t = p mod(T ) and k = dt/pT e and obtain

[(I⊗ Ã)v̂(t,j)]p =
∑

t′,k′

Ãtt′δkk′ ṽ
(t)
t′ δk′j

=
∑

t′,k′

Ãtt′ ṽ
(t)
t′ δkj

=
∑

t′

Ãtt′ ṽ
(t)
t′ δkj

= µ̃tṽ
(t)
t′ δkj

= µ̃t[v̂
(t,j)]p .(D.2)

One can show similarly that (I⊗Ã)∗ũ(t,j) = µ̃tũ
(t,j), illustrating that ṽ(t,j) and ũ(t,j)

are right and left eigenvectors that are associated with the eigenvalue µ̃t of I ⊗ Ã.
This implies that P∗(A⊗ I)Pṽ(t,j) = µtṽ

(t,j), and left-multiplication by P gives

(Ã⊗ I)[Pṽ(t,j)] = µ̃t[Pṽ
(t,j)] .(D.3)

By repeating this procedure using (Ã ⊗ I)∗ (instead of Ã ⊗ I), one can also
show that (Ã ⊗ I)∗[Pũ(t,j)] = µ̃t[Pũ

(t,j)]. Taken together, this expression and (D.3)

imply that Pṽ
(t,j) and Pũ

(t,j) are right and left eigenvectors of Â = Ã ⊗ I that are
associated with the eigenvalue µ̃t. However, for a given value of t (and assuming that
the eigenvalues {µ̃t} are simple), there are N orthogonal right eigenvectors {Pṽ(t,j)}
and N orthogonal left eigenvectors {Pũ(t,j)}. It follows that each eigenvalue µ̃t of Ã
has multiplicity N and associated N -dimensional right and left eigenspaces.

Appendix E. Proof of Theorem 4.13. We expand λ̃max(ε), ṽ
(1)(ε), and

ũ
(1)(ε) for small ε to obtain kth-order approximations:

λ̃max(ε) =

k
∑

j=0

εj λ̃j +O(εk+1) ,

ṽ
(1)(ε) =

k
∑

j=0

εjṽj +O(εk+1) ,

ũ
(1)(ε) =

k
∑

j=0

εjũj +O(εk+1) .(E.1)

We use superscripts to indicate powers of ε in the terms in the expansion and subscripts
for the terms that are multiplied by εj . Note that λ̃0, ṽ0, and ũ0 indicate the dominant
eigenvalue and its corresponding right and left dominant eigenvectors in the ε → 0+

limit. Successive terms in the expansions (E.1) involve higher-order derivatives, and
we assume that each term has sufficient smoothness of these functions.
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Our strategy is to develop consistent solutions to both of the eigenvalue equations,
C̃(ε)∗ũ(ε) = λ̃max(ε)ũ(ε) and C̃(ε)ṽ(ε) = λ̃max(ε)ṽ(ε), for progressively larger values
of k. Consider the equation for the right eigenvector. Starting with the first-order
approximation, we insert λ̃max(ε) ≈ λ̃0+ελ̃1 and ṽ(ε) ≈ ṽ0+εṽ1 into (3.2) and collect
the zeroth-order and first-order terms in ε to obtain

(

λ̃0I− Â

)

ṽ0 = 0 ,(E.2)
(

λ̃0I− Â

)

ṽ1 =
(

Ĉ− λ̃1I

)

ṽ0 ,(E.3)

where I is the NT ×NT identity matrix. Equation (E.2) corresponds to the system

that is described by Lemma 4.1, implying that the operator λ̃0I − Â is singular and
has an N -dimensional null space. (This is the dominant eigenspace of Â.) That is,
(E.2) has a general solution of the form

ṽ0 =
∑

j

α̃jPṽ
(1,j) ,

λ̃0 = max
t

µ̃t ,(E.4)

where α̃i are constants that satisfy
∑

i α̃
2
i = 1 (which implies that ‖ṽ0‖2 = 1). Addi-

tionally,

ũ0 =
∑

j

β̃jPũ
(1,j) ,(E.5)

where
∑

i β̃
2
i = 1 (which implies that ‖ũ0‖2 = 1).

To determine the vectors α̃ = [α̃1, . . . , α̃N ]∗ and β̃ = [β̃1, . . . , β̃N ]∗ of constants
that uniquely determine ũ0 and ṽ0, we seek a solvability condition for the first-order
terms. Using the fact that each vector Pũ(1,i) lies in the left null space of λ̃0I− Â, it
follows that [ũ(1,i)]∗P∗(λ̃0I−Â)ṽ1 = 0. Therefore, we left-multiply (E.3) by [ũ(1,i)]∗P∗

and simplify to obtain

[ũ(1,i)]∗P∗
Ĉṽ0 = λ̃1[ũ

(1,i)]∗P∗
ṽ0 .(E.6)

Inserting the solution of ṽ0 in (E.4) yields

∑

j

α̃j [u
(1,i)]∗P∗

ĈPṽ
(1,j) = λ̃1

∑

j

α̃j [ũ
(1,i)]∗P∗

Pṽ
(1,j)

= λ̃1

∑

j

α̃j [ũ
(1,i)]∗ṽ(1,j)

= λ̃1〈ũ
(1), ṽ(1)〉α̃i ,(E.7)

because P∗
P = PP

∗ = I and [ũ(1,i)]∗ṽ(1,j) = 〈ũ(1), ṽ(1)〉δij , where δij is the Kronecker
delta. We divide (E.7) by 〈ũ(1), ṽ(1)〉 to obtain an N -dimensional eigenvalue equation
for the dominant eigenvector α̃. One can implement the analogous steps for the equa-
tions for the left dominant eigenvector, and together these two eigenvector equations
yield (4.12).
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[36] P. Gonçalves, Behavior modes, pathways and overall trajectories: Eigenvector and eigen-
value analysis of dynamic systems, Syst. Dyn. Rev., 25 (2009), pp. 35–62.

[37] P. Grindrod and D. J. Higham, A matrix iteration for dynamic network summaries, SIAM
Rev., 55 (2013), pp. 118–128, https://doi.org/10.1137/110855715.

[38] P. Grindrod and D. J. Higham, A dynamical systems view of network centrality, Proc. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20130835.

[39] P. Grindrod, M. C. Parsons, D. J. Higham, and E. Estrada, Communicability across
evolving networks, Phys. Rev. E, 83 (2011), 046120.
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[98] L. Solá, M. Romance, R. Criado, J. Flores, A. G. del Amo, and S. Boccaletti, Eigen-
vector centrality of nodes in multiplex networks, Chaos, 23 (2013), 033131.
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SUPPLEMENTARY MATERIALS: TUNABLE

EIGENVECTOR-BASED CENTRALITIES FOR MULTIPLEX AND

TEMPORAL NETWORKS∗

DANE TAYLOR† , MASON A. PORTER‡ , AND PETER J. MUCHA§

In this supplement, we provide more information about our study of our peda-
gogical synthetic network (see section SM1), the multiplex airline network (see sec-
tion SM2), and the Ph.D. exchange network (see section SM3).

SM1. Extended study of our pedagogical example. In this section, we
present an extended study of our numerical experiments (see section 3.3 of the main
text) using the multiplex network in Figure 1(a) of the main text. Recall that the
interlayer-coupling strength between layers 3 and 4 in this network differs from that
of the other interlayer couplings. (See the dashed lines in Figure 1(a).) In section 3.3,
we set Ã34 = Ã43 = 0.01 and Ãtt′ = 1 for the other interlayer couplings.
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Fig. SM1. Eigenvector supracentrality results for our pedagogical multiplex network in which
the coupling strength between layers 3 and 4 differs from that between the other layers. In panels
(a) and (b), we report the same results as in Figure 3(b) of the main text (for which we used
Ã34 = Ã43 = 0.01), except that now we use (a) Ã34 = Ã43 = 0.1 and (b) Ã34 = Ã43 = 1. In panel
(b), note that the curves for “sensitivity”, which we measure in terms of the stepwise magnitudes
of change (specifically, ‖W(ωs)−W(ωs−1)‖F and ‖Z(ωs)− Z(ωs−1)‖F ), are no longer bimodal.

In Figure SM1, we now explore two other choices of interlayer-coupling strengths
between layers 3 and 4: (a) Ã34 = Ã43 = 0.1 and (b) Ã34 = Ã43 = 1. We plot the
marginal node centralities (MNCs), marginal layer centralities (MLCs), and “sensi-
tivity” of the joint and conditional centralities across a range of coupling strengths
ω. Our measures of sensitivity are the stepwise magnitudes of change (i.e., ‖W(ωs)−
W(ωs−1)‖F and ‖Z(ωs) − Z(ωs−1)‖F ). In panel (b), note that the curves are no
longer bimodal, implying that a stable intermediate regime vanishes as we increase
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Ã34. Intuitively, this occurs because the network that is associated with the interlayer-
adjacency matrix Ã of Figure 1(a) no longer has two well-separated communities if
Ã34 = Ã43 = 1.

SM2. Extended study of European airport rankings. We now discuss
additional results for our study of a European airline transportation multiplex network
(with data from [SM1]) from section 5.1 of the main text. Recall that this network
includes N = 417 European airports, which are in the largest strongly connected
component of an aggregation (which we obtain from summing the layers’ adjacency
matrices) of the multiplex network. There are T = 37 layers, each of which encodes
the flight patterns between airports for a single airline.

In section 5.1 of main text, we studied supracentralities for the European airline
transportation multiplex network using the layers’ adjacency matrices as their cen-
trality matrices C(t) = A(t) (so these are eigenvector supracentralities), and we found
that the Ryanair network dominates the supracentralities in the weak-coupling limit
because of eigenvector localization. Specifically, as we illustrated in Figure 4(a) of the
main text, v(ω) localizes onto layer t = 2. Corollary 4.8 of the main text describes
this phenomenon, which occurs because the centrality matrix for Ryanair has the
largest spectral radius.

We now study supracentrailities when the layers’ centrality matrices are PageRank
matrices. (See Definition 2.6 of the main text.) We add a self-edge to each node to
ensure that there are no dangling nodes. In Table SM1, we list the airports with
the largest MLCs for small, intermediate, and large values of the coupling strength
ω. Unsurprisingly, there is some overlap with the top-ranked airports in Table 2
of the main text (which is based on eigenvector supracentralities). For example,
LEMD (Adolfo Suárez Madrid–Barajas Airport) makes the top-10 list for all values
of ω in both tables. However, most of the top-ranked airports are different. In
particular, for ω ≥ 0.1, the top-ranked airports are LTBA, EBLG, LTFJ, and EVRA
for PageRank supracentrality; none of these airports appear in Table 2 of the main
text. It is unsurprising that we observe these differences, as it is well-known for
monolayer networks that PageRank and eigenvector centrality identify different types
of node importances (although they are correlated with each other).

Table SM1

European airports with the top marginal node centralities (MNCs) for coupling strengths ω ∈
{0.01, 1, 100}, which are in the regimes of weak (ω = 0.01), intermediate (ω = 1), and strong
(ω = 100) coupling. We show results for when the layers’ centrality matrices are PageRank matrices
and the interlayer-adjacency matrix is Ã = 11

T . We indicate airports using their International Civil
Aviation Organization (ICAO) codes.

Rank

1
2
3
4
5
6
7
8
9
10

ω = 10−2

Airport MNC

EHAM 0.406
LOWW 0.373
LTBA 0.372
EGKK 0.365
LEMD 0.363
LTFJ 0.344
LFPG 0.337
LGAV 0.333
EGLL 0.328
EIDW 0.328

ω = 100

Airport MNC

LTBA 0.802
EBLG 0.732
LTFJ 0.700
EVRA 0.695
EHAM 0.662
EGKK 0.653
LOWW 0.633
EIDW 0.586
EGSS 0.583
LEMD 0.554

ω = 102

Airport MNC

LTBA 0.929
EBLG 0.866
EVRA 0.818
LTFJ 0.791
EHAM 0.725
LOWW 0.699
EGKK 0.698
EIDW 0.656
EGSS 0.631
LEMD 0.596
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Fig. SM2. Supracentralities for the multiplex European airline network when the layers’ central-
ity matrices are given by PageRank matrices. (a) Airport MLCs versus intralayer coupling strength
ω. (b) Pearson correlation coefficients for comparing PageRank supracentralities to three different
notions of node degree. (See the description in the caption of Figure 6(b) of the main text.)

We can gain insight into one of the main causes of these differences by examining
the limit of small ω. In Figure 6(b) of the main text, we observed that the conditional
centralities correlate very strongly with the intralayer node degrees in the Ryanair
layer (but not in the other layers). However, as we can see in Figure SM2(b), the
PageRank MNCs paint a very different picture. Specifically, for small values of ω,
the conditional node centralities correlate strongly with the intralayer node degrees
in all layers. In other words, for eigenvector supracentrality, the Ryanair layer domi-
nates, and the supracentralities largely reflect the intralayer node degrees of this single
layer. By contrast, for PageRank supracentralities, the Ryanair layer is not dominant.
Whether there is such domination or not depends on whether eigenvector localization
occurs as ω → 0+, as described by Theorem 4.4 and Corollary 4.8 of the main text. In
this example, localization occurs for eigenvector supracentrality but not for PageRank
supracentrality. There is no such localization in the latter case, because PageRank
matrices are transition matrices for Markov chains and thus they all have a spectral
radius of 1.

As a final experiment with the multiplex airline network, we compare our results
to calculations that use PageRank versatility [SM2], a different extension of PageRank
for multiplex networks. We implement PageRank versatility by building a supra-
adjacency matrix A = diag[A(1), . . . ,A(t)] + ωÃ ⊗ I with interlayer edges of weight
ω. Interpreting A as an ordinary adjacency matrix (i.e., ignoring the fact that some
edges are intralayer edges and others are interlayer ones, we construct its associated
PageRank matrix by substituting A 7→ A in Definition 2.6 of the main text. The
dominant eigenvector of the resulting matrix gives centralities for node-layer pairs.
It is similar to our notion of joint centrality (see Definition 3.3), and both yield
centralities for node-layer pairs. We calculate the PageRank versatility of each node
by summing the eigenvector entries that are associated with the node-layer pairs for
that node. PageRank versatility is similar to our notion of MNCs (see Definition
3.5 of the main text), and one calculates each of them by summing the centralities
of node-layer pairs for each node. In Table SM2, we list the top-ranked airports
according to PageRank versatility. The list includes many of the same top-ranked
airports that we identified using eigenvector supracentrality (see Table 3 of the main
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text) and PageRank supracentrality (see Table SM1).

Table SM2

European airports with the top PageRank versatilities [SM2] for supracentrality matrices that we
construct using interlayer-coupling strengths ω ∈ {0.01, 1, 100}. We use a teleportation parameter
of σ = 0.85.

Rank

1
2
3
4
5
6
7
8
9
10

ω = 10−2

Airport MNC

EHAM 0.429
LEMD 0.386
LOWW 0.384
LTBA 0.374
EGKK 0.373
EDDM 0.359
LGAV 0.353
LFPG 0.349
EDDF 0.343
EGGS 0.342

ω = 100

Airport MNC

EGSS 0.307
EHAM 0.306
EDDM 0.306
EGKK 0.306
LTBA 0.305
EDDF 0.305
LEMD 0.305
EIDW 0.304
LOWW 0.304
LFPG 0.302

ω = 102

Airport MNC

EGSS 0.298
LTBA 0.298
EDDM 0.298
EDDF 0.298
EGKK 0.298
EHAM 0.298
LOWW 0.298
EIDW 0.298
LFPG 0.298
LEMD 0.298

SM3. Extended study of U.S. mathematical-science doctoral program

rankings. We now present additional results for our study (see section 5.2 of the
main text) of supracentralities in a temporal network of the graduation and hiring
of mathematical-science Ph.D. recipients between U.S. universities. (The data set,
which was released with [SM5] and is available at [SM4], was compiled from the
Mathematics Genealogy Project [SM3].) In Table SM3, we list the universities with
the top MNCs when the layers’ centrality matrices are given by their authority ma-
trices. (See Definition 2.4 of the main text.) The interlayer-adjacency matrix Ã is
given in the main text. We show results for several choices of the layer teleportation
parameter γ and interlayer-coupling strength ω. Although the ordering of the top-
ranked schools depends sensitively on the values of γ and ω, we typically obtain the
same set of universities near the top. MIT, for example, is almost always ranked first
throughout (γ, ω) parameter space.

Table SM3

Top MNCs (see Definition 3.5 of the main text) for U.S. doctoral programs in the mathematical
sciences when the layers’ centrality matrices are authority matrices and the interlayer-adjacency
matrix is given by (3.5) of the main text. We show results for three choices of (γ, ω).

(γ, ω) = (10−2, 1) (γ, ω) = (10−2, 102) (γ, ω) = (10−3, 102)

Rank

1
2
3
4
5
6
7
8
9
10

University x̂i

MIT 0.91
U Washington 0.23

Boston U 0.15
U Michigan 0.12

Brown 0.12
UCLA 0.111

Carnegie Mellon 0.11
Purdue 0.11
USC 0.11

U of Georgia 0.11

University x̂i

MIT 5.28
UC Berkeley 2.28
Stanford 1.84
Princeton 1.42
Harvard 1.28
Cornell 1.23
UIUC 1.18

Washington 1.13
U Michigan 1.12

UCLA 1.09

University x̂i

MIT 3.47
UC Berkeley 1.72
Stanford 1.28
Harvard 0.97
Princeton 0.96
Cornell 0.89
UIUC 0.77
UCLA 0.75

Wisconsin-Madison 0.74
U Michigan 0.66

In Figure SM3, we illustrate the effect of ω on the authority supracentralities
for a layer teleportation-parameter value of γ = 10−2. In panels (a) and (b), we
show the layers’ MLCs and nodes’ MNCs, respectively. We observe three qualitative
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Fig. SM3. Supracentralities of the Ph.D. exchange network with the layers’ centrality matrices
given by their authority matrices and the interlayer-adjacency matrix given by (3.5) of the main text
with layer teleportation parameter γ = 10−2. (a) MLCs versus ω. (b) MNCs versus ω. The insets
in panels (a) and (b) compare the calculated conditional node centralities for ω = 1 and ω = 104,
respectively, to the asymptotic values from Theorems 4.4 and 4.13, respectively. (c) We compute
Pearson correlation coefficients to measure the similarity between various authority supracentralities

and four different notions of multiplex node degree: (dot-dashed blue curve) intralayer degrees d
(t)
i =

∑
j A

(t)
ij versus conditional node centralities Zit; (dashed red curve) total degrees di =

∑
t d

(t)
i

versus the sum
∑

t Zit(ω) of the conditional node centralities; (solid gold curve) degrees d
(2)
i =

∑
j A

(2)
ij in the Ryanair layer versus

∑
t Zit(ω); and (dotted purple curve) the values

∑
j C

(1966)
ij =

∑
k,j A

(1966)
ki

A
(1966)
kj

versus
∑

t Zit(ω).

regimes: weak, intermediate, and strong coupling. In the insets of Figure SM3(a)
and Figure SM3(b), we compare calculated conditional node centralities for ω = 1
and ω = 104, respectively, to the asymptotic values from Theorems 4.4 and 4.13,
respectively.

In Figure SM3(c), we plot (as a function of ω) the Pearson correlation coefficient
r between authority supracentralities and the same three notions of node degree as
for Figure 6(b) of the main text and Figure SM2(b). Additionally, the dotted pur-
ple curve is the Pearson correlation coefficient between the MNCs and the values
∑

j C
(1966)
ij =

∑
k,j A

(1966)
ki A

(1966)
kj , which give a first-order approximation to the au-

thority scores for layer t = 1966. (See footnote 3 of the main text.) For very large
values of ω, the authority supracentralities correlate most strongly with the nodes’
total degrees (dashed red curve). For small ω, the authority supracentralities corre-
late most strongly with the row sums of the matrices A(1966) (solid gold curve) and
C(1966) for layer t = 1966 (dotted purple curve). This occurs because the spectral
radii of these matrices are larger than those of the matrices that are associated with
the other layers, and there is localization onto layer t = 1966 (the dominating layer),
as characterized by Corollary 4.8 of the main text.
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