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Many people rely on online social networks as sources of news and information, and the spread of media

content with ideologies across the political spectrum influences online discussions and impacts offline actions.

To examine the impact of media in online social networks, we generalize bounded-confidence models of opinion

dynamics by incorporating media accounts as influencers in a network. We quantify partisanship of content

with a continuous parameter on an interval, and we formulate higher-dimensional generalizations to incorporate

content quality and increasingly nuanced political positions. We simulate our model with one and two ideological

dimensions, and we use the results of our simulations to quantify the “entrainment” of content from nonmedia

accounts to the ideologies of media accounts in a network. We maximize media impact in a social network

by tuning the number of media accounts and the numbers of followers of those accounts. Using numerical

computations, we find that the entrainment of the ideology of content that is spread by nonmedia accounts to

media ideology depends on a network’s structural features, including its size, the mean number of followers

of its nodes, and the receptiveness of its nodes to different opinions. We then introduce content quality—a key

novel contribution of our work—into our model. We incorporate multiple media sources with ideological biases

and quality-level estimates that we draw from real media sources and demonstrate that our model can produce

distinct communities (“echo chambers”) that are polarized in both ideology and quality. Our model provides a

step toward understanding content quality and ideology in spreading dynamics, with ramifications for how to

mitigate the spread of undesired content and promote the spread of desired content.

DOI: 10.1103/PhysRevResearch.2.023041

I. INTRODUCTION

Online social media (such as Twitter, Facebook, Instagram,

and others) have become extremely influential sources of

news in daily life. For example, over two thirds of American

adults who participated in a recent survey responded that

social media, and their associated networks, is their primary

source for obtaining news [1]. Given this large audience and

the ease of sharing content online, the content that spreads on

online social networks can have important consequences on

public opinion, policy, and voting [2,3].

The spread of content in a social network depends on

the actions and biases of the individuals in that network.

Individual user preferences play a strong role in the choice to

consume news that conforms to (or even enhances) previously

held views [4]. One reason that propaganda, misinformation,

and disinformation have become so widespread on social-

media platforms is that users are more likely to share a false or

misleading story if it seems to confirm or support their biases

[5,6]. Another challenge is that content is also spread and

amplified through bot, cyborg, and sockpuppet accounts [7].

Published by the American Physical Society under the terms of the
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The political biases of content and the accounts that

spread it goes beyond a naive separation of “liberal” versus

“conservative,” and the political spectrum of ideology can

include axes for social views (“progressive” versus “conserva-

tive”), economic views (“socialist” versus “capitalist”), views

on government involvement (“libertarian” versus “authoritar-

ian”), and others. Opinions can also be issue-dependent. In a

large body of research, Poole and Rosenthal [8,9] developed

methods to classify ideological positions in roll-call voting

in the United States Congress in ideological space, and they

found that two dimensions is typically sufficient to capture an

overwhelming majority of the variance of ideologies. Their

work laid the foundation of the Voteview project [10], which

characterizes the ideologies of legislators in the United States

Congress based on their voting records. Multidimensional

political ideologies have also been explored in the context of

the United States Supreme Court. For example, by examining

singular value decompositions, Sirovich [11] demonstrated

that decisions by the judges in the second Rehnquist Court are

well-described by a two-dimensional space. This has typically

also been true of voting on legislation in the United States

Congress [12].

Political biases are not the only way in which people

judge the news that they consume and share on social media.

As the prevalence of misinformation, disinformation, and

“fake news” becomes increasingly prominent in everyday life

and the global conversations of talking heads, social-media

users are also considering the quality of news content. For

example, in the aforementioned Pew Research Study [1], the
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majority of respondents acknowledged that the news that they

see, consume, and spread on social-media platforms may

be inaccurate. There is evidence that poor-quality content

travels deeper, more broadly, and faster than high-quality

content (such as fact-based reporting) [13]. The Pew Research

study [1] also concluded that these differences in spreading

patterns are primarily the result of human actions, rather than

arising from bot or cyborg accounts.

A large body of work has examined the spread of content

on social media [13,14]. One approach is to mathematically

model the spread of content on social media using ordi-

nary differential equations, where the equations can capture

changes in time of the proportion of a population that is

“susceptible to,” “exposed to,” “infected with,” or “immune

to” the propagation of such content (e.g., a rumor) [15–18].

Such compartmental models have the advantage of being ana-

lytically tractable, but they do not capture the effects of either

network structure or heterogeneity in account characteristics.

Other studies have focused instead on data-driven or com-

putational approaches [4,5,13,19]. One important research

direction in this vein is quantifying the existence of distinct

communities and “echo chambers” [20–23] on social media,

wherein individuals interact primarily with other like-minded

individuals. Some recent work on modeling the spread of con-

tent has tried to bridge the gap between these two approaches

by introducing mathematical models that capture network

features of social media [24,25], including some very recent

mechanistic models of radicalization dynamics [26] and filter

bubbles [27]. Our approach in the present paper has some sim-

ilarities with those in Prasetya and Murata [28], who gener-

alized an independent-cascade model to explore the effects of

selective exposure and connection strengths on news propaga-

tion, and Martins [29], who developed a continuous-opinion,

discrete-action model to explore the emergence of extremism.

Extremism in models of opinion dynamics was also studied

recently in the context of radicalization and terrorism [30].

In the present paper, we formulate and study a model for

the influence of media accounts on the ideology and quality

of content that is shared in an online social network. First,

we develop a general content-spreading model with an n-

dimensional continuous ideology space and spreading choices

that are based on a bounded-confidence mechanism [31–33].

We also model how to include media accounts as influencer

nodes in a network. This has been considered in other recent

work, such as in the context of voters models with discrete-

valued opinions [34,35]. In our work, we conduct extensive

numerical simulations to examine the impact of media ac-

counts on content in examples with one and two ideologi-

cal dimensions. We then introduce content quality into our

model; this is a key novel feature of our work. Using the

resulting enhanced model, we employ numerical simulations

to examine the effect of multiple media sources on the “en-

trainment” (with one possible uncharitable interpretation as

“brainwashing”) of nonmedia nodes in the network by media

nodes. As a parallel to our consideration of media nodes,

radical or charismatic leaders have also been introduced into

voter models [36,37], DeGroot models [38], and bounded-

confidence models [39].

Our work advances the study of online content spreading

in several ways. In our model, we propose a measure of

media impact; this allows us to quantify the influence that

a set of media accounts has on the ideology of content in a

social network at consensus. Our model has the advantageous

feature of supporting a multidimensional continuous ideology

space for content, although we are not the first to employ

a multidimensional opinion space. See Refs. [40,41] for a

discussion of consensus in bounded-confidence models in

R
d and Ref. [42] for some results on the convergence and

stability of such models. For wider-ranging discussions of

consensus dynamics and opinion models, see Refs. [31,43].

A key novelty of our work is the introduction of content

quality into the spreading dynamics; to our knowledge, our

model is the first to explore the effects of content quality on

spreading. This is an important advancement for two reasons:

(1) the quality of news content has a major effect on its

spreading dynamics, and it is therefore important to study it

from a dynamical perspective; and (2) the spread of poor-

quality news content is a major social problem. Investigations

into such problems—especially ones that produce potential

mechanistic insights into them—have the potential to help

motivate strategies for mitigating their effects.

Our paper proceeds as follows. In Sec. II, which gives a

concise overview of our work, we give a nontechnical sketch

of our model and briefly outline our key results. In Sec. III, we

develop our bounded-confidence model with content spread-

ing. We discuss network structures that incorporate both non-

media and media accounts in Sec. III A, and we introduce our

content updating rule in Sec. III B. In Sec. IV, we examine

the dynamics of our model with one ideological dimension for

content. We describe how we simulate the model in Sec. IV A,

and we quantify media impact for different parameter val-

ues and network architectures in Sec. IV B. We present a

generalization of our model to two ideological dimensions

for content in Sec. V. In Sec. VI, we develop our model

further to incorporate a notion of media quality into its content

updating rule. In Sec. VII, we show simulations and results

of media impact with the incorporation of content quality,

including an example in which we draw media biases and

qualities from a publicly available, hand-curated distribution.

We conclude and discuss several possible extensions of our

work in Sec. VIII.

II. OVERVIEW OF OUR MODEL AND RESULTS

The aim of our paper is to advance understanding of the

spread of misinformation and “fake news” on social me-

dia through mathematical modeling. This contrasts with the

more common data-driven, computational approaches to these

problems that tend to use existing models (such as compart-

mental models). An important facet of our approach is that

the underlying spreading mechanisms are based on continu-

ous and potentially multidimensional quantities—specifically,

ideology and quality of content—that result in discrete actions

(spreading a message). By incorporating these continuous

variables into the spreading dynamics, our model (1) provides

a plausible framework to study the spread of extremism on

networks and (2) and lays the foundation for systematic com-

parison with empirical data of the spread of ideologies online.

Our model takes the form of a dynamical process on a

network. It includes (1) a time-independent network structure
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of accounts and relationships between them in an online social

network (see Sec. III A) and (2) a mechanism for the temporal

evolution of the ideology of the content that is produced by

media accounts in that network (see Sec. III B). To represent

the network structure, we construct a graph in which nodes

represent accounts and edges represent followership relation-

ships between these accounts. One can either construct these

networks from empirical data (such as Facebook or Twitter

networks) or using synthetic networks (e.g., from generative

models of random graphs). In a network, we designate each

account as either a media account or a nonmedia account.

Media accounts are accounts that do not follow any other

accounts but are followed by at least one other account. In our

model, we construe media accounts as “influencers,” “opinion

sources,” or “external opinion forcing” in a network. It is for

simplicity that we assume that their content is not influenced

by any other accounts. All other accounts in a network are

nonmedia accounts, which each follow at least one other

account in the network.

We model the content that spreads in an online social

network based on its ideology (see Sec. VII) and eventually

also on its quality (see Sec. VI). We suppose that accounts

in a network spread content during each discrete time step.

We determine the ideology of the content that is spread by an

account at each time step with a simple update rule. A helpful

way to conceptualize the update rule is as follows. At each

time step, each account “reads” the content from all of the

accounts that it follows, and it is influenced only by accounts

whose content is sufficiently similar to the ideology of its own

content. In the next time step, the account spreads new content

whose ideology is a mean of the account’s old ideology

and the aforementioned sufficiently similar ideologies of the

accounts that it reads. As a real-life example, a user may read

several articles on a topic and then create a message (e.g., a

tweet) based on these articles that has their own “spin” on the

material. We give a precise definition of the update rule in

Sec. III B.

An important question that we are able to study with our

model is how much the ideology of the media account(s) in

a network entrains the content that is spread by nonmedia

accounts in that network. That is, how strong does the external

forcing by media need to be to have a concrete impact on

the outcome of the ideological dynamics? To quantify the

amount of media influence, we calculate a summary statistic

that we call media impact. Using numerical simulations of

our model, we illustrate how the number of media accounts

and the number of followers per media account affect the

media impact. Surprisingly, we find that the most successful

media entrainment occurs when there are a moderate number

of media accounts that each have a moderate number of

followers. We study how network parameters (such as the

number of nonmedia accounts) affect this phenomenon in

Secs. IV and V.

An exciting outcome of our modeling and analysis is

that “echo chambers” arise naturally from our content-

spreading mechanism. Following common usage in socio-

logical research (see, e.g., Refs. [20,21]), we use the term

“echo chamber” to refer to a group of nonmedia nodes that

primarily or solely influence each other’s ideologies and are

not influenced much by accounts that are outside the group.

These ideological echo chambers emerge even when there

are many followership connections between accounts in the

different echo chambers. (In our model, the follower relation-

ships do not change, although it would be fascinating to study

a generalization of our model in the form of a coevolving

network.) In Sec. VII, we use a hand-curated distribution of

ideologies and qualities of real-world media outlets as an input

to our model. We observe the emergence of two polarized

communities: one with ideologically moderate, high-quality

content and one with conservative, low-quality content. Our

model is very flexible, as it allows many generalizations and

modifications to study features of interest in online social

networks. For example, one can study the influence of mul-

tiple social-media platforms by generalizing our networks to

multilayer networks, and one can also draw media content

and ideology from different probability distributions. It is

also possible to adapt our model to study other applications

in which one combines continuous parameters (for ideology,

quality, self-confidence, or something else) with discrete ac-

tions based on those parameters. A few examples include

models for gambling in sports, choices between competing

products, and choices of students of majors and courses to

take at a university.

III. A BOUNDED-CONFIDENCE MODEL

WITH CONTENT SPREADING

A. Social network structure

Consider a social network with N nonmedia accounts. We

represent this social network with a graph G(VN , E ), where

each node in the set VN represents an account and each

edge in the set E represents a follower relationship from one

account to another. Specifically, we say that account i is a

follower of account j if there is a directed edge from j to i.

With this structure, we can represent this social network as

an adjacency matrix A, where Ai j = 1 if account i follows

account j and Ai j = 0 otherwise. We do not assume reciprocal

follower relationships, so A is not symmetric in general. We

also assume that the network structure is fixed, so follower

relationships do not change in time.

We now introduce media accounts into the above social

network. Suppose that media accounts do not change their

ideology, as encapsulated in the content that they produce, so

they are not influenced by other accounts. Therefore, the only

edges in media accounts are ones that are directed outward.

In other words, the in-degree of a media account is always

0. Of course, this is a simplification of real-world media

outlets, which may (in some cases) be swayed by individuals

or by public opinion. We make this simplifying assumption

for two reasons: (1) we suppose that the media ideology

represents the ideology of a particular topic or news story

(and such a view of a given media outlet is unlikely to change

much on the timescale of online content spread of a story)

and (2) it allows us to examine the effect of an “external

forcing” of ideological content. Our assumption is analogous

to the inclusion of zealots, which have been studied in various

opinion models, including voter models [36] and the Deffuant

bounded-confidence model [44]. We let M denote the number

of media accounts and nM denote the number of followers
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(i.e., out-edges) per media account. We assume that each

media account has the same number of followers, with one

exception in Sec. VII (where we impose a media follower-

number distribution based on data from real-world media

outlets). Once we add media accounts, the total number of

nodes in a network is N + M.

We represent the ideology of each account in a network at

discrete time t by xt
i (where i ∈ {1, . . . , N + M}), and we take

the ideology space to be continuous and bounded, with xt
i ∈

[−1, 1]d . We allow the ideology space to be d-dimensional,

so we can be more nuanced than the typical choice in prior

research of using d = 1 [45]. At time t , each account spreads

content (perhaps with their own spin, as has been studied

for memes using Facebook data [46]) that reflects its current

ideology xt
i . When it is clear, we will not always write the

superscript t.

B. Content updating rule

We update content synchronously at each discrete time step

in the following way. Accounts update their content by averag-

ing the ideologies of observed content that is sufficiently close

to their own opinion. We say that an account is receptive to

such content. Accounts include their own ideology at the pre-

vious time step when determining their location in ideological

space in a time step. During this step, they share content with

their new ideology. Accounts see content only from accounts

that they follow; therefore, media accounts are not receptive

to any other content. We define a receptiveness parameter c,

which gives the distance in ideology within which an account

is receptive. With this notation, we define the set of accounts

to which account i is receptive to be Ii = { j ∈ {1, . . . , N +

M}|Ai j = 1; dist(x j, xi ) < c}. We also have to decide how to

measure the distance dist(·, ·) in ideological space. One can

consider any metric, and we choose to use the �p norm.

The update rule for the ideology of an account is

xt+1
i =

1

|Ii| + 1

⎛

⎝xt
i +

∑

j∈Ii

xt
j

⎞

⎠, (1)

which we can also write as

xt+1
i =

1

|Ii| + 1

⎛

⎝xt
i +

N+M
∑

j=1

Ai jx
t
j f

(

xt
j, xt

i

)

⎞

⎠, (2)

where f (x) = 1 if dist(x j, xi ) < c and f (x) = 0 otherwise. In

Fig. 1, we show a schematic of this update rule with a small,

concrete example. Our model builds on previous work in

opinion dynamics. Our consensus-forming mechanism from

averaging ideology is reminiscent of the influential work of

DeGroot [47]. Although this is a standard choice, a recent

paper by Mei et al. [48] suggested that weighted-median

influence is also a reasonable choice for consensus formation.

In the present paper, we draw our bounded-confidence mech-

anism from the Hegselmann–Krause (HK) [33] and Deffuant

[32,45] models of continuous opinion dynamics. Bounded-

confidence updates are also related to the DeGroot–Friedkin

(DF) model of social power [49].

(b)(a)

FIG. 1. A schematic of the content updating rule in our model.

In (a), we show the ideology of nodes in a social network at time

t . In (b), we show their ideologies in the next time step (after we

have applied the update rule). In this example, there are M = 2

media nodes (gray circles) and N = 4 nonmedia nodes. To make

this example more concrete, let’s focus on the highlighted node

(in yellow). The yellow node follows four other accounts, two of

which are media accounts and two of which are nonmedia accounts.

If we take the receptiveness parameter to be c = 0.5, the yellow

node is receptive only to content from three of these accounts

(specifically, the ones that are surrounded by dashed boxes). After

averaging the content from the accounts to which it is receptive,

the yellow account updates its ideology for the next time step

to xt+1 = 1

4
(0.7 + 0.5 + 0.9 + 0.9) = 0.75. During time step t + 1,

this account shares content with that ideology.

IV. DYNAMICS WITH A ONE-DIMENSIONAL IDEOLOGY

As an example, we examine content spreading when our

model has one ideological dimension, where we interpret the

value xi ∈ [−1, 1] as the political viewpoint of the content of

account i on a liberal–conservative axis. We take xi = −1 to

be very liberal, xi = 1 to be very conservative, and xi = 0 to

be moderate. We use the distance dist(x j, xi ) = |x j − xi|. We

then write the content updating rule for these evolving pieces

of one-dimensional political content [see Eq. (2)] by writing

f (x j, xi ) =

{

1 , if |x j − xi| < c

0 , otherwise .
(3)

In this example, we suppose that there are M media accounts

that all have the same political opinion xM ∈ [−1, 1]. There

are multiple possible interpretations of this assumption. For

example, one can interpret it as M different media outlets

that share the same message, which has a given political bias

(as represented by a particular location in ideological space).

Another way to interpret it is as one media account with

M − 1 affiliated sockpuppet accounts, which it is using to help

spread its message with a specified political bias.

A. Simulations

In each network, we suppose that there are N nonmedia

accounts, and we vary the number M of media accounts

and the number nM of followers of each media account. We

assume that all media accounts in a given simulation have an

equal number of followers, although it would be interesting

to extend our model by drawing nM from a distribution of
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FIG. 2. Individual trials of our model on the Reed College Face-

book network (which has N = 962 nonmedia nodes) with different

levels of media influence. We influence the convergence time and

content-spreading dynamics by varying the media-account parame-

ters M and nM . (a) With low media influence, most accounts converge

to the location x = 0 in ideological space. (b) For larger values

of M and nM , a large fraction of the nonmedia accounts converge

to the ideological position of the media nodes. (c) For still larger

values of these parameters, splitting in ideology occurs very rapidly,

resulting in a smaller fraction of nonmedia accounts that converge

to the media’s ideology. In each simulation in this figure, we evenly

distribute the initial ideologies of nonmedia accounts and we set the

ideological position of all media accounts to xM = 0.9.

FIG. 3. Media impact for our model on the Reed College net-

work (which has N = 962 nonmedia nodes) with different numbers

of media accounts (M) on the vertical axis and followers per media

account (nM ) on the horizontal axis. All media accounts have the

same ideological position of xM = 0.9. The colors indicate the values

of R, the mean of the impact summary diagnostic [see Eq. (7)] for

distance from media ideology over 50 trials. Dark red indicates the

most media impact (i.e., the largest values of R), and white indicates

the least impact. The ideological position xM of the media accounts

and the initial ideological positions of the nonmedia accounts are

the same as those in Fig. 2. The arrows designate the regions of the

plot that correspond to the mean media impact for the three panels

in Fig. 2.

the numbers of followers. Unless we note otherwise, we use

200 trials for each numerical experiment, and we interpret a

trial to have “converged” if |xt
i − xt−1

i | < 10−4 for all i for

ten consecutive steps. For simplicity, we set the receptiveness

parameter to take the value c = 0.5, except for Fig. 8, where

we examine the effects of varying this parameter. For a de-

tailed discussion on the effects of the receptiveness parameter

in bounded-confidence models, see Meng et al. [45].

We initialize the nonmedia accounts to have evenly-spaced

initial ideologies, so

x0 =

[

−1,−1 +
2

N − 1
, . . . , 1

]

.

We uniformly randomly permute the starting values of non-

media nodes for each trial, so they are not spatially ordered

in the network. In each trial, each media account has nM

distinct followers, which we choose uniformly at random

from the nonmedia accounts. We choose the followers of each

media account independently, so it is possible for a nonmedia

account to follow multiple media accounts.

In Fig. 2, we show examples of individual trials with

different numbers of media accounts and different numbers

of followers per media account. We run our model on the

Reed College Facebook network from the FACEBOOK100 data

set [50]. The networks in this data set are Facebook friend-

ship networks on university campuses from one day in fall

2005. In our simulations, we use only the largest connected

component of each Facebook network to represent nonmedia

accounts, and we note that the friendship connections between

nonmedia accounts in these networks are bidirectional. In
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FIG. 4. Heat maps of the summary diagnostic R for media impact in the Facebook networks of various universities from the FACEBOOK100

data set [50] illustrate that the largest media impact occurs for moderate numbers of media accounts with moderate numbers of followers. In

each panel, the vertical axis gives the number of media accounts (M), the horizontal axis gives the number of followers per media account

(nM ), and the colors indicate the mean impact summary diagnostic (R) over 50 trials. Dark red indicates the most media impact (i.e., the largest

values of R), and white indicates the least impact. The Facebook networks are (a) Amherst, (b) Bowdoin, (c) Caltech, (d) Haverford, (e) Reed,

(f) Simmons, and (g) Swarthmore.

Fig. 2, we show the ideology of each of the Reed College

network’s N = 962 nonmedia accounts on the vertical axis

and the simulation time t on the horizontal axis. We take the

media opinion to be xM = 0.9. These trials suggest that media

nodes influence both convergence time and content-spreading

dynamics. We explore these ideas further in Sec. IV B.

B. Media influence with a one-dimensional opinion space

Our simulations of our content-spreading model suggest

that the number of nonmedia accounts that converge to the

ideological position of the media nodes—as we just illustrated

for an example (see Fig. 2) in which all media nodes have

the same ideology—depends nontrivially both on the number

of media accounts and on the number of followers per media

account. In this section, we present simulations that illuminate

the level of media influence on a variety of real and synthetic

networks. We continue to assume that all media nodes have

the same ideological position.

We introduce an order parameter that we use as a diagnos-

tic to measure the impact of media nodes on the ideological

positions at convergence. Let xb
i denote the ideological posi-

tion of account i at convergence in the absence of media influ-

ence. We establish a mean baseline ideology R0 by computing

the mean distance between the ideological positions (xb
i ) of

nonmedia accounts at convergence and the media ideology

xM . In mathematical terms, this baseline is

R0 =
1

N

N
∑

i=1

∥

∥xb
i − xM

∥

∥

2
. (4)

023041-6



A MODEL FOR THE INFLUENCE OF MEDIA ON THE … PHYSICAL REVIEW RESEARCH 2, 023041 (2020)

FIG. 5. Heat maps of the summary diagnostic R for media impact of our model on various synthetic networks illustrate that the largest

media impact occurs for moderate numbers of media accounts with moderate numbers of followers for a variety of network architectures. In

each panel, the vertical axis gives the number of media accounts (M), the horizontal axis gives the number of followers per media account

(nM ), and the colors indicate the media impact diagnostic (R), which we compute as a mean over 200 trials. Dark red indicates the most

media impact (i.e., the largest values of R), and white indicates the least impact. In (a), we use a star network in which all nonmedia accounts

follow one central nonmedia account, which also follows the peripheral nonmedia accounts. In (b), we use a directed ring lattice in which each

nonmedia account follows k = 25 neighboring nonmedia accounts. In (c), we construct a directed variant of a Watts–Strogatz network from

the directed ring lattice with k = 25. In it, we rewire follower connections with a probability of β = 0.5. In (d), we use a directed variant of

an Erdős–Rényi network in which we take the expected mean out-degree (i.e., the mean number of nonmedia accounts that are followed by a

nonmedia account) to be k = 25. In (e), we use a complete network. For the directed ER and WS networks, we construct a new network for

each of the 200 trials.

The quantity R0 characterizes the mean effect on nonmedia

nodes, for one trial, of the dynamics for a given network

structure in the absence of media influence. Because the

outcome depends on the initial ideological positions of the

nonmedia accounts, we average R0 over many trials.

Once we have calculated the baseline ideology R0, we

construct a similar order parameter RM that characterizes the

mean outcome of the dynamics for the same network after we

introduce media nodes. Let x∗
i denote the ideological position

of account i at convergence in a network with media influence.

The associated media-influenced ideology diagnostic is

RM =
1

N

N
∑

i=1

‖x∗
i − xM‖2 . (5)

The order parameters R0 and RM allow us to quantify the

impact of media nodes on content-spreading dynamics, where

we note that one can also define time-dependent analogs of (4)

and (5). We define the media impact R for one trial to be the

ratio of the mean baseline ideological distance to the media-

influenced ideological distance in that trial:

R =
R0

RM

. (6)

We can also obtain an overall media impact

R =
R0

RM

(7)

by averaging the media-influenced opinion function RM over

some number (e.g., 200) of trials. We interpret the media

impact in the following way. If R = 1, the media has not had

an influence on the “average” (specifically, the mean) ideolog-

ical position of the nonmedia accounts (and the content that

they spread) at convergence. If R ∈ [0, 1), the media nodes

have driven the mean ideological position of the accounts to

be farther from the media’s ideological position than is the

case without the media accounts. Finally, if R > 1, the mean

ideological position of the nonmedia accounts (and hence of

the content that they spread) is closer to the media ideology

than it would be without the media accounts, with larger

values of R indicating a stronger impact.

Equation (7) gives one of multiple possible summary

diagnostics to measure media influence. Another option is

to measure the mean of the distances between the media

and nonmedia ideologies; that is, one can use only the ex-

pected value of RM from Eq. (5). This alternative entails
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FIG. 6. Heat maps of the media impact diagnostic R for directed ER networks with different values of the expected mean number k of

nonmedia accounts that nonmedia accounts follow. We show results for (a) k = 2, (b) 10, (c) 25, and (d) 50. Our simulations suggest that

media impact is larger for progressively larger k. The vertical axis is the number of media accounts (M), the horizontal axis is the number

of followers per media account (nM ), and the colors represent the media impact diagnostic (R), which we average over 200 trials. Dark red

indicates the most media impact (i.e., the largest values of R), and white indicates the least impact.

an impact level of RM ∈ [0, 2], where small values of RM

represent considerable “entrainment” to the media ideology.

That is, the media nodes have successfully influenced (e.g.,

“brainwashed,” to describe it in an uncharitable way) many

nonmedia accounts in a network. Large values of RM represent

low levels of media influence. Using this alternative impact

function for the experiments in this section gives the same

qualitative results to what we report using (7).

In Fig. 3, we illustrate media impact values for differ-

ent numbers of media accounts (M) and numbers of media

followers (nM). We show the mean value of the summary

diagnostic R over 50 trials. These simulations suggest a sur-

prising result: the highest levels of adoption of media ideology

do not occur for the largest values in (nM, M ) parameter

space. Instead, the most successful scenario for promoting

widespread adoption of the media ideology is to spread the

content through a moderate number of media accounts, each

of which has a moderate number of followers. This observa-

tion is consistent with previous empirical observations that

accounts with a small number of followers can significantly

promote the spreading of content on Twitter [51]. For a

very small number of media nodes (or if the media nodes

have very few followers), as in Fig. 2(a), the media ideology

has very low impact. A large number of media nodes with

many followers per account [as in Fig. 2(c)] produces some

impact, yielding values of R in the interval (1, 2). However,

we observe a larger impact when there are a moderate number

of media accounts that each have a moderate number of

followers [see Fig. 2(b)]. In this situation, we often obtain

R � 2.

In Fig. 4, we show heat maps of the media entrainment

values (using the summary diagnostic R) for our model for

social networks from the FACEBOOK100 data set [50]. Each

such network consists of people at a particular university who

are connected to each other via Facebook friendships (which

yield bidirectional edges) from one day in fall 2005. We add

media accounts to each network in the way that we described

previously for the Reed College network in Sec. IV A. For

each of the FACEBOOK100 networks that we examine, our

simulations produce a distinct region with large media impact

(specifically, with R � 2). In each case, the largest amount of

media impact does not occur for the largest values of the two

quantities in (nM, M ) parameter space.

In Fig. 5, we show heat maps of the media entrainment

values (using the summary diagnostic R) for our model for a

variety of synthetic network architectures, each of which has

100 nonmedia accounts. For clarity, we first briefly describe

how we construct each of these networks. These networks are

a directed ring lattice, a star, a directed variant of Erdős–Rényi

(ER) networks, a directed variant of Watts–Strogatz (WS)
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FIG. 7. Heat maps of the media impact diagnostic R for directed ER networks with different numbers of nonmedia accounts (N) for a fixed

ratio (k/N) of the expected mean number of nonmedia accounts that nonmedia accounts follow to the total number of nonmedia accounts. We

show results for (a) N = 50 and k = 13, (b) N = 100 and k = 25, (c) N = 500 and k = 125, and (d) N = 1000 and k = 250. Our simulations

suggest that both the media impact R and the spread of the media impact (which we define to be (max{R} − min{R}) over all (nM , M ) pairs)

increase with N . The vertical axis is the number of media accounts (M), the horizontal axis is the number of followers per media account (nM ),

and the colors represent the media impact diagnostic (R), which we average over 200 trials. Dark red indicates the most media impact (i.e., the

largest values of R), and white indicates the least impact. Unlike in our other figures, we have not scaled the color range to be the same across

these four plots; this aids in visualizing the difference in the spread of impact values for networks of different sizes.

networks, and complete networks. In the star network, all but

one of the nonmedia accounts follow one central nonmedia

account. These edges are bidirectional, so the central non-

media account follows all of the other nonmedia accounts. We

construct a directed ring lattice as follows. Each nonmedia

account follows k other nonmedia accounts, where the ith

node follows nodes {i + 1, i + 2, . . . , i + k} (mod N ). In this

case, the edges are not bidirectional (so, for example, account

1 follows account 2, but account 2 does not follow 1). We

construct a directed variant of a WS network by starting

with this directed ring lattice and rewiring each edge with

probability β = 0.5 [52]. We rewire a directed edge from

node i to node j by selecting a new node j′ uniformly at

random from the nodes that account i does not currently

follow; we remove the edge from i to j and add an edge

from i to j′. We construct directed ER networks, which have

an expected mean out-degree of k = 25, as a variant of the

G(N, p) model. (In other words, the expected mean number

of nonmedia accounts that a node follows is k = 25.) For the

directed ER and WS networks, we construct a new network

for each trial, so one should interpret our simulation results

as a sample mean over many networks. Although all of these

networks have the same number of nonmedia accounts, the

region of parameter space in which the media has the most

impact differs across different networks. This suggests that

network architecture plays an important role in determining

the level of media involvement that is necessary for media

accounts to exert “global” influence in a network.

We now examine the media impact on directed ER net-

works as we vary k, the expected mean number of nonmedia

accounts that a nonmedia account follows. In Fig. 6, we

show heat maps of the media impact summary diagnostic

R for directed ER networks with different expected mean

out-degrees. As we increase the expected mean out-degree k,

we observe that media impact also increases.

We now perform numerical experiments in which we vary

the size of the directed ER networks by varying the number

of nonmedia accounts. To try to isolate the effect of network

size, we fix the ratio (k/N) of the expected mean number (k)

of nonmedia accounts that a nonmedia account follows to the

total number (N) of nonmedia accounts for each simulation.

As in our earlier observations, we see in Fig. 7 that the media

impact increases as we increase the number N of nonmedia

nodes. However, in this case, we observe a progressively

larger spread in the media entrainment diagnostic R for pro-

gressively larger N . For example, for N = 1000 and k = 250,
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FIG. 8. Heat maps of the media impact diagnostic R for directed ER networks for different values of the receptiveness parameter c. We

show results for (a) c = 0.1, (b) c = 0.2, (c) c = 0.3, (d) c = 0.4, and (e) c = 0.5. For small values of c, the receptiveness of accounts is

too small for the media accounts to impact the mean ideological positions of the nonmedia accounts. For progressively larger values of c,

we observe progressively larger media impact. The vertical axis is the number of media accounts (M), the horizontal axis is the number of

followers per media account (nM ), and the colors represent the media impact diagnostic (R), which we average over 200 trials. Dark red

indicates the most media impact (i.e., the largest values of R), and white indicates the least impact.

the spread of the media impact (which we define to be

(max{R} − min{R}) over all (nM, M ) pairs) is approximately

88.2048 − 0.9980 = 87.2068. However, for N = 50 and k =

13, the spread is approximately 1.4295 − 1.0364 = 0.3931 in

our simulations.

In Fig. 8, we illustrate the effect of varying the receptive-

ness parameter c. If the receptiveness is very small, nonmedia

accounts in a network adjust their ideological positions only if

the content that they see is very close to their current ideology.

Consequently, we observe little or no media impact on the

ideological positions of the nonmedia nodes in the network.

For sufficiently large receptiveness, however, the media do

impact the mean ideological position of nonmedia nodes, with

a larger impact for larger values of c.

One natural generalization of our model is to consider

the effect of varying the weighting of an individual’s current

FIG. 9. Heat maps of the media impact diagnostic R for directed ER networks for different values of the self-weight: (a) w = 3, (b) w = 5,

and (c) w = 10. In our numerical experiments, even when accounts weight their own ideology more heavily than those of the accounts that

they follow, we observe similar qualitative dynamics as when we do not incorporate the parameter w into our model. The vertical axis is the

number of media accounts (M), the horizontal axis is the number of followers per media account (nM ), and the colors represent the media

impact diagnostic (R), which we average over 200 trials. Dark red indicates the most media impact (i.e., the largest values of R), and white

indicates the least impact.
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FIG. 10. In our simulations, we observe an interesting relation-

ship between media impact and convergence time. In the top panel,

we show a heat map of the mean convergence time (in color, where

yellow is the longest time and blue is the shortest) versus the number

of media accounts (M) on the vertical axis and the number of

followers per media account (nM ) on the horizontal axis. In the

bottom panel, we show the mean media impact R versus the mean

convergence time. Each circle represents one value in the (nM , M )

parameter plane, so each circle corresponds to one of the square

regions from (a). A larger media impact is positively correlated with a

longer time to convergence. In both panels, we run our simulations on

a directed ER network with N = 100 nonmedia accounts that follow

an expected mean of k = 25 nonmedia accounts.

ideology in its content updating rule. (This is reminiscent

of self-appraisal in DeGroot models [31,49].) One way to

incorporate such a weighting, with which an account can value

its current ideology more than those of the accounts that it

follows, is to include a parameter w ∈ R�0 into the update

rule in Eq. (2). The content updating rule with self-weight w is

xt+1
i =

1

|Ii| + w

⎛

⎝wxt
i +

N+M
∑

j=1

Ai jx
t
j f

(

xt
j, xt

i

)

⎞

⎠. (8)

We perform numerical experiments on directed ER networks

in which we increase the self-weight w such that nonmedia

nodes weight their current ideology 3, 5, and 10 times more

FIG. 11. An example in which our model exhibits multiple

timescales in a single simulation on the Reed College Facebook net-

work (which has N = 962 nonmedia nodes) with the same parameter

values (c = 0.5 and xM = 0.9) as in Fig. 3. In this simulation, M = 9

and nM = 225. In the top panel, we set the convergence tolerance

to TOL = 10−4; our simulation converges with this tolerance after

51 time steps. In the bottom panel, we show the same network with

the same initial data with the convergence tolerance set to TOL = 0.

For this convergence tolerance, the two large ideology groups with

positive ideologies eventually “collapse” on a long timescale to one

group with a single ideology, which is entrained to the media’s

ideology. This “collapse” takes over 2 × 104 time steps to occur; this

is several orders of magnitude longer than the dynamics in the top

panel.

than the ideologies of the accounts that they follow. We show

the results of these simulations in Fig. 9. In these examples,

we observe media impact that is qualitatively similar to our

observations without the parameter w.

Additionally, as suggested by the individual trials in Fig. 2,

we observe a relationship between media impact and time

to convergence. As we illustrate in Fig. 10, our simulations

indicate that a larger media impact is positively correlated

with a longer time to convergence.

C. Metastability and long-time dynamics

In Sec. IV B, we defined a numerical simulation to have
“converged” if |xt

i − xt−1
i | < TOL = 10−4 for all i. Given
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FIG. 12. We simulate our model on the Reed College Facebook network (which has N = 962 nonmedia nodes) with the same parameter

values (c = 0.5 and xM = 0.9) as in Fig. 3 for 500 trials for three levels of media impact: M = 0 and nM = 0 (yellow), M = 11 and nM = 225

(orange), and M = 21 and nM = 675 (blue). In the top row, we show the distributions of the mean ideology at convergence for convergence

tolerances of (left) 0 and (right) 10−4. In the bottom row, we show the distributions of the variance of the ideology at convergence for

convergence tolerances of (left) 0 and (right) 10−4. Our histograms have 20 bins. (In some cases, the bins are very thin.) We observe that

the qualitative behavior of the mean and variance of the ideologies is the same for different convergence tolerances.

this definition, an important question to ask is whether (1)
these “converged” values have truly reached a stationary state
or (2) our model will subsequently reach a consensus state
on extremely long timescales. To examine this question, we
run numerical simulations of our model with a convergence
tolerance of TOL = 0 and impose a bailout time of T =

250 000 time steps. If our simulations reach the bailout time,
we record the “converged” state as the state at the bailout time.
We perform these simulations on the Reed College Facebook
network (which has N = 962 nonmedia nodes) with the same
parameter values (c = 0.5 and xM = 0.9) as in Fig. 3 and
on directed ER networks with the same parameter values
(N = 100, k = 25, c = 0.5, and xM = 0.9) as in Fig. 5.

Although the apparent “convergence” of our simulations

does exhibit interesting dynamics at multiple timescales in

some trials (see Fig. 11), these cases are rare. The distributions

for the mean have the same form regardless of whether we

choose TOL = 10−4 or TOL = 0. The same is true for the

distributions of the variance. In Figs. 12 and 13, we show

histograms of the mean ideology and variance of the ideology

over 500 trials in the Reed College Facebook network (see

Fig. 12) and in directed ER networks (see Fig. 13). Both

figures illustrate that the qualitative dynamics are the same

for both tolerance levels. In yellow, we show the distributions

without media impact (M = 0 and nM = 0). In orange, we

show the distributions when there are a moderate number

of media accounts that each have a moderate number of

followers. In blue, we show the distributions when there are a

large number of media accounts that each have a large number

of followers. As in our simulations in Sec. IV B, the mean

ideologies have larger values in the presence of media nodes,

and perfect entrainment (for which the mean ideology is 0.9)

occurs primarily when there are a moderate number of media

accounts (e.g., M = 15 for the ER networks), rather than when

there are a larger number of media accounts (e.g., M = 30

for the ER networks). We supplement these observations by

examining the distributions of the variance in ideology. Small

variance in ideology corresponds to consensus states, and

we observe these states only when media influence is absent

(i.e., M = 0) or low or moderate (e.g., M = 15 for the ER

networks). In other words, high levels of media influence (e.g.,

M = 30 for the ER networks) do not result in ideological

consensus (including as a result of entrainment to the media

ideology), even at 0 tolerance.

In the present paper, we focus on dynamics on short

and medium timescales, as we believe that it is particularly

relevant to simulate the dynamics of content spread over the

course of a news cycle. However, the observed separation of

timescales in some trials of our numerical experiments may

have interesting implications for future studies on long-term

effects of media impact in online social networks.
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FIG. 13. We simulate our model for 500 trials, where we draw the network for each trial from a directed ER random-graph ensemble with

N = 100 nodes and an expected mean out-degree of k = 25 (as in Fig. 5). We take c = 0.5 and xM = 0.9, and we examine three levels of

media impact: M = 0 and nM = 0 (yellow), M = 15 and nM = 15 (orange), and M = 30 and nM = 30 (blue). In the top row, we show the

distributions of the mean ideology at convergence for convergence tolerances of 0 (left) and 10−4 (right). In the bottom row, we show the

distributions of the variance of the ideology at convergence for convergence tolerances of 0 (left) and 10−4 (right). Our histograms have 20

bins. For both tolerances, we observe that the mean ideology has the same qualitative behavior; the same is true of the variance of the ideology.

V. EXTENDING OUR MODEL TO TWO

IDEOLOGICAL DIMENSIONS

We now move beyond one ideological dimension and

examine our content-spreading model with two ideological

dimensions. Suppose that, at time t , each account has an

ideological position of xi ∈ [−1, 1] × [−1, 1]. We use the

�2 norm to calculate the distance dist(x j, xi ) = ‖x j − xi‖2 in

ideology between accounts i and j. Depending on context, this

two-dimensional ideology may represent two different aspects

of a political-bias spectrum (e.g., the first dimension may rep-

resent socially liberal versus socially conservative, whereas

the second may represent preferred economic policies that

very between socialism and capitalism), or it may represent

political bias on multiple issues (e.g., immigration reform and

gun control). Given our ideological space and choice of metric

on this space, we then write our model as in Eq. (2).

Simulations

We simulate our content-spreading model with two ideo-

logical dimensions using a straightforward generalization of

the simulations of our model with one ideological dimension.

We add media accounts with a given ideology xM and assign

their followers uniformly at random from the nonmedia ac-

counts. In our examples, we initialize nonmedia accounts with

ideological positions that we draw uniformly at random for

each trial. (Therefore, it is again true that there is no spatial

ordering of ideology in the network structure.)

In Fig. 14, we show a heat map of simulations of media

impact in our model with two ideological dimensions. We ob-

serve qualitatively similar results as in our simulations of our

content-spreading model with one-dimensional ideologies.

We again see that the largest media impact (i.e., entrainment)

does not occur for the largest numbers of media accounts

and followers per media account. Instead, the largest amount

of entrainment occurs when there are a moderate number of

media accounts, each of which has a moderate number of

followers.

VI. COMBINING MEDIA BIAS AND QUALITY

Thus far, we have used our content-spreading model to

study the effects of media ideology on content spreading in

social networks. We now introduce the primary novel compo-

nent of our work: incorporation of media content quality into

our spreading model. Bessi et al. [5] observed that individuals

are more likely to spread low-quality content if it confirms or

supports their existing biases, and we seek to incorporate such

behavior into our content-spreading model.
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FIG. 14. An example of a heat map of the media impact diag-

nostic R for our model with political positions with two ideological

dimensions. For this example, we simulate our model on directed ER

networks with N = 100 nonmedia accounts that follow an expected

mean of k = 25 nonmedia accounts. We obtain qualitatively similar

results as in our computations with one ideological dimension, but

the mean media impact is less pronounced in this case. Specifically,

the mean impact R is smaller when using two ideological dimen-

sions than what we observed previously when using one ideological

dimension for directed ER networks with the same parameter values.

The vertical axis is the number of media accounts (M), the horizontal

axis is the number of followers per media account (nM ), and the

colors represent the media impact diagnostic (R), which we average

over 200 trials. Dark red indicates the most media impact (i.e., the

largest values of R), and white indicates the least impact.

We again denote the state of account i by xi. In our
prior discussions, this state was a vector in d-dimensional
ideological space (with d = 1 and d = 2 in our simulations).
Now, however, we introduce an additional dimension into an
account’s current state to indicate the quality of its shared con-
tent; therefore, we now take xi ∈ [−1, 1]d × [0, 1]. We allow
content quality to lie on a continuous spectrum, with values
near xd+1,i = 0 representing propaganda and disinformation
(e.g., clickbait or so-called “fake news”) and values closer
to xd+1,i = 1 representing substantive, thorough, fact-based
material.

To focus our discussion, suppose that there is one ideolog-
ical dimension, so d =1 and xi = (x1,i, x2,i ) ∈ [−1, 1]×[0, 1].
As before, suppose that accounts adjust their ideological
views only when they are exposed to content that is within
a distance c of their current ideology (i.e., only when
dist(x1,i, x1, j ) < c). Additionally, we now suppose that ac-
counts also consider content quality when we determine their
receptiveness. Account i decides whether the content of ac-
count j is acceptable for spreading based on the distance
dist(x1,i, x1, j ) between their ideological positions. If this dis-
tance is very small (e.g., close to 0), this content supports
account i’s ideology, and i is more likely to spread it even
if it is not of high quality. However, if the distance in ideology
is larger (e.g., close to c), account i is more discerning and
tends to spread the content only when it is of sufficiently high
quality.

We quantify content discernment in the following way.
We calculate the minimum acceptable quality qi, j as a linear

function of distance in ideology between account i and ac-
count j. That is,

qi, j =
1

c
dist(x1,i, x1, j ) . (9)

With this functional form of qi, j , account i spreads content
that confirms its bias exactly regardless of quality, because
the minimum acceptable quality is 0. If the content has an
ideological position that equals the maximum receptiveness
distance c from account i’s ideological position, then account
i spreads the content only if it is of quality 1, the highest
possible quality.

The ideological-position updating rule with quality dis-

cernment is

xt+1
1,i =

1

|Ii| + 1

⎛

⎝xt
1,i +

N+M
∑

j=1

Ai jx
t
1, jg

(

xt
i , xt

j

)

⎞

⎠, (10)

where

g
(

xt
i , xt

j

)

=

{

1 , if x2, j > qi, j

0 , otherwise
(11)

and

Ii =
{

j ∈ {1, . . . , N + M}
∣

∣Ai j = 1; g(xi, x j ) = 1
}

. (12)

We take the metric to be the �2 norm dist(xi, x j ) = ‖x1,i −

x1, j‖2, so we are using the same ideology metric as in our

previous discussions. When a nonmedia node elects to spread

content, we also adjust the quality of the content that it spreads

with the update

xt+1
2,i =

1

|Ii| + 1

⎛

⎝xt
2,i +

N+M
∑

j=1

Ai jx
t
2, jg

(

xt
i , xt

j

)

⎞

⎠, (13)

which, along with Eq. (10), implies that

xt+1
i =

1

|Ii| + 1

⎛

⎝xt
i +

N+M
∑

j=1

Ai jx
t
jg

(

xt
i , xt

j

)

⎞

⎠. (14)

VII. MEASURING IMPACT FROM MULTIPLE SOURCES:

MEDIA BIAS AND QUALITY

Earlier in our paper (see Sec. IV B), we studied the effect

of the numbers of media accounts and media followers per

media account when media content has one fixed ideology.

Our incorporation of content quality allows us to examine

an important question of societal interest in a simple but

plausible way: How do competing media accounts influence

the outcome of opinions or ideological positions in a social

network? This situation models a more realistic scenario of

the influence of disparate news media (with heterogeneous

political biases and content quality) in a social network.

We extend our media-entrainment summary diagnostic from

our model with one ideological dimension to measure the

impact of media accounts on the mean ideological position

at convergence when there are multiple media sources. In

this scenario, the quantity of interest is a function R(x) that

encodes the impact of each possible ideological position x.

To construct the function R(x), we first establish a baseline

function r0(x) that encodes the prevalence of each ideology
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(e) (f ) (g) (h)

(a) (b) (c) (d)

FIG. 15. Impact on the ideology x (which we take to be a scalar in this example) of nonmedia accounts in a network with media ideologies

that we draw from a probability distribution. In the top row [i.e., (a)–(d)], we show the media impact for M = 100 media accounts, where we

draw the ideological positions of each media account from the uniform distribution on [−1, 1]. We consider the following numbers of followers

per media account: (a) nM = 1 (blue), (b) nM = 25 (red), (c) nM = 50 (green), and (d) nM = 100 (pink). In the bottom row [i.e., (e)–(h)], we

show the media impact for M = 100 media accounts with ideological positions that we draw from a truncated Gaussian distribution on [−1, 1]

with (before truncation) mean 0 and standard deviation 0.5. We again consider the following numbers of followers per media account: (e)

nM = 1 (blue), (f) nM = 25 (red), (g) nM = 50 (green), and (h) nM = 100 (pink). Both sets of simulations are on directed ER networks with

N = 100 nonmedia accounts. We average each media impact function R(x) over 200 trials. We indicate the standard deviations with the shaded

regions. The dashed line at R(x) = 0 represents no media impact. Values of R(x) that lie below this line indicate that the media has decreased

the prevalence of nonmedia accounts with ideology x in comparison to what occurs in the absence of media; values of R above this line indicate

that the media accounts have increased the prevalence of nonmedia accounts with ideology x.

for a given network in the absence of media accounts. Ideally,

it may be desirable to take r0(x) to be the probability that

an account prefers content with ideological position x. In

practice, we construct a function r0(x) by binning the ideol-

ogy of the content for each trial into bins of width δx. We

then count the number of times that there is content in the

ideology interval [x, x + δx], and we calculate a normalized

histogram. Once we have constructed the baseline function

r0(x), we use our previous strategy (see Sec. IV B) to construct

a function ri(x) that measures the prevalence of each ideology

in a network in the presence of media accounts. That is,

ri(x) is the distribution that describes the probability that a

nonmedia account has ideological position x when there are

media accounts in the network. We then use these functions

to construct the media impact function R(x) = ri(x) − rb(x).

Positive values of R(x) for ideology x indicate that the media

has enhanced the prevalence of content with this ideology in a

network, negative values indicate that the media has decreased

the prevalence of content with this ideology in a network, and

0 indicates no change.

In our model, it is interesting to consider a variety of

distributions of media ideologies. For example, we can draw

these opinions from a convenient synthetic probability distri-

bution, or we can determine them from empirical data. First,

using one ideological dimension, we consider two examples

in which we draw media ideologies from synthetic probability

distributions. In Fig. 15, we show the media impact functions

when there are M = 100 media accounts with ideologies that

FIG. 16. Distribution of media accounts in (ideology, quality)

space. We include M = 103 media accounts, whose positions in the

space are hand-curated and available from the Ad Fontes Media

Bias Chart [53]. Each colored dot represents one media account.

The horizontal coordinate represents the ideological position of an

account’s political content, and the vertical coordinate represents

the quality of its political content. The size of a dot represents the

number of followers of the associated Twitter account. The five

labeled accounts are the ones that are followed by at least 25% of

the nonmedia accounts in our numerical experiments.
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FIG. 17. Snapshots of temporal evolution of content ideology and quality in the Reed College network with M = 103 media accounts over

122 time steps. We draw media ideologies and qualities from Version 4.0 of the Ad Fontes Media Bias Chart [53]. We choose the number of

followers per media account to be proportional to the approximate number of followers that each media source had on Twitter on 15 February

2019 at 17:36 Pacific Standard Time (under the constraint that each media source in the model has at least one follower, so we round up to one

follower for some accounts). Each dot in the figure represents a nonmedia account. The horizontal coordinate represents the ideological bias of

each account’s content at time t , and the vertical coordinate represents its content quality at time t . To aid visualization, the colors also signify

ideological position. (The bluest color is the most liberal, and the reddest color is the most conservative.) We represent follower relationships

as lines between the dots. This network architecture does not change over time, although the content that is spread by the nonmedia accounts

does change over time. Because the ideology and quality of the content from the media accounts do not change, we do not show these nodes.

we draw (1) from a uniform distribution on [−1, 1] and (2)

from a truncated Gaussian distribution on [−1, 1] with (before

truncation) mean 0 and standard deviation 0.5. For each of

these two examples, we examine the dependence of the media

impact function on the number nM of followers per media

account.

We also showcase our model using a media distribution

that we generate from hand-curated empirical observations

of real-world media sources that incorporate both political

ideology (in one dimension) and content quality (in the other

dimension). This example includes M = 103 media accounts

with ideological biases and qualities from Version 4.0 of the

hand-curated Ad Fontes Media Bias Chart [53]. We rescale the

ideology and quality chart coordinates so that they lie within

the intervals [−1, 1] and [0, 1], respectively. In Fig. 16, we

show these media content coordinates. These coordinates pro-

vide an illustrative example of a possible input to our model;

one should not necessarily construe them as quantitatively

representing the “true” ideologies of the depicted sources. An

important extension of our work is developing quantitative

techniques (e.g., using sentiment analysis) to analyze bias and

quality of content sources from real data. This is a difficult

and interesting problem, and we leave it as future work.

In Fig. 17, we show the temporal evolution of one trial

of our content-quality spreading model on the Reed College

network with media account ideologies and qualities from the

Media Bias Chart. We set each media account j to have a

number nM, j of followers that is proportional to its number

of followers on Twitter on 15 February 2019 at 17:36 Pacific

Standard Time (under the constraint that each media source

in the model has at least one follower, so we round up to

one follower for some accounts). We select followers for each

media account by selecting the nonmedia accounts whose

initial conditions are closest in ideological position to that

of the media account. That is, for each media account j

(with j ∈ {1, . . . , M}) and each nonmedia account i (with

i ∈ {1, . . . , N}), we calculate the distance dist(x0
1,i, x1,M j

) in

ideological position for all i at t = 0. From this set of all

distances in ideological position from media account j, we

select the nM j
smallest distances; these nonmedia accounts are

the followers of media account j. In the simulations for which

we use this media distribution as an input, we observe the

emergence of two primary communities (“echo chambers”)

of content: one in which the content is ideologically moderate

and of fairly high quality (specifically, it has an ideology of

about 0 and a quality of about 0.75) and one in which the

opinion is more conservative but of lower quality (specifically,

it has an ideology of about 0.5 and a quality of about 0.4). See

the contour plot in Fig. 18. The polarization that results from

simulations of our model is a reflection of the polarization

in the ideology and quality of the media distribution. In

our simulations, the account for Fox News (which has an
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FIG. 18. Contour plot of the media impact function R(x) for

ideology and quality in the Reed College Facebook network with

M = 103 media accounts, where we draw media biases and qualities

from Version 4.0 of the Ad Fontes Media Bias Chart [53] (as in

Fig. 17). The impact function R(x) illustrates the relative influence

of the media accounts on the mean ideology and quality of content

in the network. When R < 0 (in blue), the media has decreased the

prevalence of content with the (ideology, quality) pair (x1, x2) in

comparison to the content in the absence of media; when R > 0 (in

pink), the media has increased the prevalence of content with the

(ideology, quality) pair (x1, x2).

ideological position of 0.613636 and a quality of 0.3125 in

the Media Bias Chart and is followed by about 28% of the

nonmedia accounts) is very popular and near the final location

of the conservative community in (ideology, quality) space.

VIII. CONCLUSIONS AND DISCUSSION

We introduced a model for the spread of content in an

online social network, with both media and nonmedia nodes,

that accounts for the effects of both ideology and content

quality on the spreading dynamics. We based the spreading

dynamics of our model on a bounded-confidence mechanism,

such that accounts spread content that is sufficiently close to

their current ideological position. In the most sophisticated

version of our model, the quality of content determines how

close an account’s ideological position should be to the con-

tent’s ideological position for the account to share the content.

Therefore, low-quality content is shared only when it supports

an account’s existing ideological biases. As far as we are

aware, our model is the first mathematical model to explicitly

incorporate the effects of media quality on spreading dynam-

ics. This is a key novelty of our work.

We conducted simulations for our content-spreading model

for media content with both one and two ideological dimen-

sions. Using results from our simulations, we quantified the

level of media “entrainment” (i.e., how much the media affects

the ideological positions of nonmedia accounts) for a variety

of network architectures. We examined how the amount of

media entrainment of the nonmedia accounts in a network

depends on the numbers of media accounts and on the number

of followers per media account in that network. We found

that media impact increases when one increases the number of

nonmedia accounts, the expected mean number of nonmedia

accounts that such an account follows, or the receptiveness

of such an account. We also observed an interesting rela-

tionship between media entrainment and convergence time

in our model, with higher levels of media entrainment cor-

relating positively with longer convergence times. Finally, we

simulated a version of our model that accounts for content

quality in the spreading dynamics. Using a hand-curated set

of media inputs from real media outlets and their numbers

of followers on Twitter, we demonstrated that this version

of our model produces polarization in both ideology and

quality of content. Specifically, it yields a community of

high-quality content in the center of the political spectrum

and a conservative community of low-quality content. Our

model provides a useful step towards increasing understand-

ing of how media content quality affects the spread of online

content.

Our model is a simplistic model for the spread of media

content in online social networks. This is a complex system,

and naturally it is not appropriate to view our model as a per-

fectly accurate mathematical description of such phenomena.

Instead, our model provides a starting point for exploring the

mechanisms that contribute to content spreading dynamics

and echo chambers. There are many worthwhile ways to

generalize our model. For example, our assumption that ac-

counts choose whether to spread content based on a universal

confidence parameter c is a naive simplification, as is the

homogeneity of nonmedia accounts in general. Spreading

behavior surely depends on individual characteristics, as has

been explored in models that include zealots [54] and in other

models of social dynamics [24,55,56]. Augmenting our model

of content spreading by incorporating account heterogeneity

is important future work. In such efforts, we expect that it will

be insightful to explore the effects of structural homophily

(for example, as was explored using the DeGroot model in

[57]). Individuals in social networks are free to choose which

accounts to follow (and which accounts to stop following

or never follow), and such choices are sometimes driven by

the desire to follow accounts that have similar ideologies

[4,5]. This can increase structural homophily and exagger-

ate echo chambers in networks [22,58], because edges are

more likely to arise (and persist) between nodes with similar

ideologies.

There are also other interesting avenues for extending our

work. For example, when modeling content with multiple

ideological dimensions, one can give different weights to

different dimensions. One can also incorporate spreading

through multiple types of social media by generalizing our

model to multilayer networks [59] or develop models of media

influence that go beyond pairwise interactions by generalizing

it to hypergraphs or simplicial complexes [60]. It will also

be interesting to extend recent work on bounded-confidence

opinion dynamics that coevolve with network structure [61]

to include the effects of media. It is also important to explore

the influence of time-dependence in network architecture [62]

on the dynamics of our content updating rule, as accounts

can follow new accounts and unfollow accounts. One way to

explore such phenomena is to incorporate network rewiring,

as in adaptive voter models [63].
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A key strength of our model is its flexibility, as one can

formulate generalizations of it (such as ones that we just

discussed) in a straightforward way. Furthermore, one can

already readily use our model to study many interesting phe-

nomena. For example, although we only examined a few case

studies of media probability distributions in the present paper,

one can draw the number of media accounts, the number

of followers per account, and the ideologies and qualities

of media content from any probability distribution—either

synthetic ones or ones that are inferred from empirical data—

and it is important to explore these ideas in future work. It is

particularly desirable for media nodes in a content-spreading

model to produce content that follows some distribution of

ideologies and qualities, rather than always using the same

parameter values for such features. It will also be very in-

teresting to include media nodes with ideologies xM that are

inferred from data, such as through sentiment analysis of

news stories on a given topic (as described in Ref. [19] and

references therein). Using procedures such as topic modeling

and sentiment analysis can generate a probability distribution

of media accounts in ideological space as an output, which

can then be fed into our model. There has been some recent

progress in this direction. For example, Ye and Skiena [64]

measured media bias and quality from the web pages and

tweets of media sources, and Albanese et al. [65] created a

two-dimensional model based on semantic analysis to quan-

tify media influence on voting. Another important issue is the

examination of transient dynamics of content spreading, as

it is necessary to go beyond our focus on the properties of

ideological positions after long times or at convergence.

Developing mathematical approaches for analyzing and

quantifying the dynamics of content spreading has ramifica-

tions for how to mitigate the spread of undesired content and

promote the spread of desired content in social media. One

potential impact is the development of control strategies and

“fake-news filters” (e.g., by flagging content that is below

some threshold value on the quality axis in a model like ours)

that are reminiscent of spam filters. Our work provides a step

toward the development of novel algorithms to encourage se-

lective spreading of high-quality or desirable content. Another

area for which further development of such models may also

be fruitful is in bot detection, where most existing algorithms

rely on network measures, followership data, activity rates,

or linguistic cues [7] (all of which are straightforward to

manipulate by malicious actors), rather than using spreading

dynamics. Advances in these modeling efforts will also yield

insights into the theory of online content spread and help

bridge the gap between simple spreading models and realistic

investigations of spreading on social media.
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