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Redox-Controlled Reactivity at Boron: Parallels to Frustrated Lewis/
Radical Pair Chemistry
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ABSTRACT: We report the synthesis of new Lewis-acidic boranes
tethered to redox-active vanadium centers, (Ph,N);V(u-N)B(C4Fs),
(1a) and (N(CH,CH,N(CF;));)V(u-N)B(CcFs), (1b). Redox

control of the VIV couple resulted in switchable borane versus
“hidden” boron radical reactivity, mimicking frustrated Lewis versus
frustrated radical pair (FLP/FRP) chemistry, respectively. Whereas
heterolytic FLP-type addition reactions were observed with the VV
complex (1b) in the presence of a bulky phosphine, homolytic peroxide,
or Sn—hydride, bond cleavage reactions were observed with the V' Team Borane
complex, [CoCpt][(N(CH,CH,N(CeFy))s)V(1-N)B(C.Es),] (3b), Az
indicative of boron radical anion character. The extent of radical
character was probed by spectroscopic and computational means.
Together, these results demonstrate that control of the VIV oxidation
states allows these compounds to access reactivity observed in both FLP
and FRP chemistry.

\ . \\\
J
Team Boron Radical,
VB >

reactivity

A radical “tug-of-war” between V and B enables bond activation mimicking
frustrated Lewis or radical pair chemistry through V'Y redox control.

Bl INTRODUCTION Scheme 1“
The past two decades have seen a dramatic increase in PREVIOUS WORK:

- _ ; foati ; 1-5 classic proposed
reported main grouP mediated bond activation Chen?ISt'ry' frustrated Lewis pair (FLP) frustrated radical pair (FRP)
Frustrated Lewis pair (FLP) chemistry has been a significant R FoCs CoFs ) Py

. . . . . . . . S 675
contributor to this increase, stimulating intrigue spanning \“\)F,@ P — - — \‘;P@ o8, o
multiple fields while unlocking new applications in main-group RK CoFs R \Csts §

L. 68 . .
chemistry.” "~ Whereas FLPs can activate an ever-expanding BORANE BORON RADICAL
repertoire of small molecules (H,, CO,, N,O, CO, etc.) and THIS WORK:

THIS WORK: « x
bonds (C—H, alkenes, alkynes, etc.), the commonly accepted RAMN RAMN [CoCpi] AN [CoCpi]
. s L r N, N,
mechanism features initial element—element bond polarization RAIN, Fofs . [Ramg, ,,  fefs RANG, , s
L1 « » Ny=n—g CoCri_ Svin=g == Sven—g
within the pocket of an “encounter complex” generated by the SET \

. . . . RArN CcF RArN CF RArN C.F

close interaction of the Lewis pair, followed by a two-electron, al &S, ers,
. . . 9—-11 BORANE "hidden"
concerted heterolytic bond activation step. However, 1a Ar=R = Ph BORON RADICAL
recent work has uncovered a possible homolytic pathway 1b: Ar = CgFs; R = CHyCHaN 13 3a, 3b

mediated by transient ionic phosphine/borane frustrated
radical pairs (FRPs) %enerated by single-electron transfer
(SET) (Scheme 1)."*7"® The existence of these FRPs was
supported by combined spectroscopic (i.e, EPR) and
reactivity studies, with the latter focusing on the unique
chemistry of the generated boron radical anion, such as
homolytic peroxide or Sn—hydride bond cleavage, similar to
related reports using isolated boron radical species.'”~**

Our group has been exploring new reactivity at main-group
centers by tethering these to redox-active metal centers, such
as V or Fe.”*™*® In a recent contribution, we uncovered how a
typically unreactive PY=0 bond tethered to a neighboring V"
center in the complexes (Ph,N);V=N—-P(O)Ar, (Ar = Ph,
CgFs) can engage in H atom (H-) or silyl group (Me;Si-)
transfer chemistry, resulting in the proposed protonation or

“Classical FLP containing a bulky phosphine with a bulky borane and
proposed FRP generated by SET containing a boron radical anion
(top). This work highlights the switchable reactivity from a borane to
a “hidden” boron radical anion by redox control (bottom).
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48 isolated silylation of the PY=0 bond, respectively, with the
49 concurrent reduction of V¥ to VIV.** Similar reactivity was not
s0 observed in related all-main-group model compounds (ex.
s1 Ph;PO), highlighting the cooperative role of the metal center
52 in enabling new main-group-centered reactivity. In this Article,
s3 we targeted V-tethered Lewis-acidic B complexes (1a,b),
s4 which, by control of the V redox state, exhibited either FLP
ss chemistry in the borane (V") state or reactivity analogous to
s6 the B partner in FRPs when in the boron radical anion (V'V)
s7 state (Scheme 1). The borane engaged in heterolytic bond
s¢ activation chemistry, whereas the “hidden” boron radical anion
s9 reacted homolytically. This complementary reactivity profile
60 draws significant parallels to the alternating reactivity found in
61 FLPs versus FRPs.

2 l RESULTS AND DISCUSSION

63 The synthesis of our initial target complexes (1a,b) followed
64 an analogous approach to our prewously reported (Ph,N),V=
6s N—P(O)Ar, (“VNP”) complexes and involved salt meta-
66 thesis between CIB(C4F;),”” and the known precursor,
67 (Ph,N),V(u-N)Li(THF);,”" or the new tren-based precursor,
68 N(CH,CH,N(C4Fs));V(u-N)Li(THF);, to yield complexes
69 1a and 1b, respectively (Scheme 1). The tren-based precursor
70 was prepared in three steps by initial acid—base metalation
71 using the known protonated ligand’' and V(NTMS,),>
72 followed by V¥ imine formation with TMSN; and desilylation
73 using iPrNHLi (see the Experimental Section).* Single
74 crystals suitable for X-ray diffraction (XRD) studies were
75 grown for both la and 1b. The solid-state structures for la
76 (Figure 1) and 1b (Figure S70) revealed expected trigonal

Figure 1. Solid-state molecular structure of la. C¢H; groups (except
for ipso carbons) and all hydrogen atoms are omitted for clarity.

77 planar B centers with observed B—N (1.421(11) A (1a);
78 1.428(6) A (1b)) and neighboring V=N (1.670(6) A (la),
79 1.703(4) A (1b)) bond lengths similar to previous reports.”

80 The resulting V=N—B angles differed substantially from one
81 another (161.1(6)° (1a), 170.0(3)° (1b)). with both deviating
82 more from linearity than in the reported VNP case
83 (175.9(7)°).”® The analysis of the products by multinuclear
84 nuclear magnetic resonance (NMR) spectroscopy revealed
ss expected broad ''B resonances (31.8 ppm (1a), 30.1 ppm
86 (1b)) consistent with three-coordinate B centers.’”** Whereas
s7 the >'V resonance for 1a (120 ppm) was similar to that of the
88 VNP analog (117 ppm),” the resonance for 1b (=79 ppm)

was significantly shifted, likely due to the higher coordination s9
number at V.>> Whereas borane-substituted early metal imido 90
complexes are known,**~** to the best of our knowledge, these 91
represent the first examples incorporating boranes with 92
strongly electron-withdrawing substituents. 93

We observed that 1a was unstable and readily decomposed 94
within hours in solution at room temperature, as observed by 9s
multinuclear NMR spectroscopy (Figures SS0—S52). One of 96
the decomposition products, Ph,NB(C4Fs),, was identified 97
through independent synthesis, whereas the V-containing 98
decomposition product remains unknown (Figures S46— 99
S49). We attributed this decomposition pathway to the close 100
proximity of the Lewis-acidic B center to the labile Lewis-basic 101
Ph,N™ groups. Dissolving la in coordinating solvents 102
(tetrahydrofuran (THF), MeCN) led to adduct formation 103
and slower decomposition, as observed by NMR spectroscopy 104
(Figures S62 and S63). The coordinating solvent molecules 10s
could be readily removed in vacuo, 1nd1cat1ng reduced Lewis 106
acidity at B in 1a compared w1th B(C4F;),,* the Lewis acid of 107
choice in FLP chemistry.””® Not surprisingly, the decom- 108
position pathway observed in 1a was not observed in 1b due to 109
the chelating tren ligand. 110

We next investigated whether 1b could act as an effective 111
Lewis acid partner in FLP chemistry. Whereas combinations of 112
1b with bulky phosphines (PtBu;, PMes;, Mes = 2,4,6- 113
trimethylphenyl) led to no changes in the NMR spectra 114
compared with isolated Lewis partners—the hallmark of FLP 115
formation—no reaction with small molecules (H,, CO,) was 116
observed. Whereas the reduced Lewis acidity at B may be 117
partially responsible, we believe that the extreme steric 118
crowding at B due to the flanking tren aryl groups, as observed 119
in the space-filling depiction of the solid-state structure (Figure 120
S71), likely plays a bigger role. Therefore, we attempted to use 121
a more donating, “longer” para-benzoquinone molecule, 122
previously used in FLP chemistry.'”” Mixing equimolar 123
amounts of 1b, PMes;, and tetrafluoro-1,4-benzoquinone in 124
dichloromethane (DCM) resulted in the immediate formation 125
of a new product (Figure 2a), as observed by NMR 1266
spectroscopy. Single crystals suitable for XRD studies were 127
obtained and confirmed the formation of compound 2-F, 128
(Figure 2b), featuring the FLP addition across the 120
benzoquinone moiety. We note that the analogous reaction 130
with unsubstituted benzoquinone to yield the product 2-H, 131
was also obtained, although it was only characterized 132
crystallographically (Figure S72). Lastly, we note that the 133
mechanism of activation here is unlikely to proceed through an 134
SET mechanism, sometimes proposed with PMes;,">** due to 135
the inability of 1b to oxidize PMes; to any appreciable extent 136
(vide infra).® 137

Whereas the B centers in la,b are Lewis-acidic, we next 138
probed if boron radical character could be accessed by redox- 139
control. Because of the instability of 1a, we only investigated 140
the electrochemical profile of 1b by cyclic voltammetry (CV) 141
in DCM. A clean, reversible redox event at E;/, = —1.10 V, 142
referenced to the ferrocene/ferrocenium (Fc/Fc*) redox 143
couple (Figure 3a), was observed and attributed to the vV
redox couple. This reduced complex was chemically isolated by 145
treating 1b with decamethylcobaltocene, CoCp5 (E,/, = —1.94 146
V in DCM).* We note here that 1a could also be reduced 147
using this method, albeit in lower isolated yields due to its 148
instability. The reduced products, 3a and 3b (Scheme 1), were 149
slowly crystallized, and low-resolution solid-state structures 150
were obtained by XRD studies (Figures S73 and S74). We 151
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Figure 2. (a) FLP addition of 1b/PMes; to tetrafluoro-1,4-
benzoquinone to produce 2-F,. (b) Solid-state molecular structure
of 2-F,. C4F groups (except for ipso carbons), hydrogen atoms, and
cocrystallized solvent molecules are omitted for clarity.

152 note that a high-resolution structure was obtained by
153 generating a cobaltocene (CoCp,) analog of 3b, termed 3b’
154 (Figure S75). Both 3a and 3b’ contained significantly
155 elongated V—N(B) bonds (1.885(8) A (3a), 1.776(4) A
156 (3b’)) and shortened B—N bonds (1.368(14) A (3a),1.354(7)
157 A (3b’)) relative to 1a,b (vide supra). The resulting V—N—B
158 angle in 3a was significantly more bent (139.2(9)°) relative to
159 la (161.1(6)°), similar to the observed trend upon the
160 reduction of the VNP analog™ and suggesting a simplified
161 single- and double-bonded structure (V—N=B) with the
162 reduction event mostly localized at V. In stark contrast, the V—
163 N—B linkage in 3b’ (173.9(4)°) changed only slightly relative
164 to 1b (170.0(3)°), which may suggest a more delocalized

V=N=B 7 framework enforced by the flanking tren aryl 165
groups. 166

Compounds 3a and 3b/3b’ were further analyzed by X- 167
band EPR spectroscopy. The room-temperature spectrum of 168
3a revealed an expected isotropic eight-line hyperfine splitting 169
pattern due to the coupling of the d' electron to the *'V center 170
(I=7/2) (Figure S64). Anisotropic spectra were observed at 171
100 K for all species (Figure 3b, Figures S65—S67) and were 172
similar to our reported VNP system.”® The lack of resolved 173
hyperfine coupling to ''B suggests little to no delocalization of 174
the d' electron along the V-N-B framework."” However, 175
simulating the data in the absence of ''B coupling led to 176
sharper line widths and a poorer fit with the experimental data 177
(Figure S66), which may suggest some delocalization to B and 178
consequently N. The expected coupling to ''B may simply be 179
too weak to be observable by EPR spectroscopy.” > 10
Therefore, we turned to DFT studies to further probe this. 181
Calculations performed on the anion of 3b revealed some 182
degree of delocalization of the single electron to the B center 183
along the V=N=B 7 framework, suggesting the presence of a 184
“hidden” boron radical (Figure 3c). In particular, whereas the 1ss
majority of the spin density resided on V (82%), in agreement 1s6
with our EPR data, the spin density on B (13%) was found to 1s7
be non-negligible.”’ As previously noted, whereas several early 188
metal borylimido complexes have been prepared,”*™** to the 189
best of our knowledge, their redox properties have not been 19
investigated as they have been here. 191

Similar to 1a, compound 3a was found to be very unstable in 192
noncoordinating solvents. Whereas we attributed the migration
of PhyN™ to B as being responsible for the decomposition of 194
la, the decomposition of 3a was noticeably different. 195
Monitoring a solution of paramagnetic 3a in a mixture of 196
benzene-dg and bromobenzene-d; by multinuclear NMR 197
spectroscopy at room temperature revealed the appearance 198
of a main diamagnetic decomposition product (Figures S53— 199
S55), with resonances in the F (=127, —164, —167 ppm) 200
and ''B (—2.0 ppm) spectra, consistent with the formation of a 201
four-coordinate boron center.”’ Interestingly, the 'H NMR 20
spectrum revealed a major species having inequivalent 203
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Figure 3. (a) Cyclic voltammograms (250 mV/s) of 1b (black) (3.0 mM), 2,4,6-tBu;C¢H,0- (red) (3.0 mM), and dibenzoyl peroxide
(PhC(O)OOC(0)Ph) (blue) (3.0 mM) in DCM using 0.1 M [Bu,N][PF] supporting electrolyte, a glassy carbon working electrode, a platinum
wire counter electrode, and a Ag wire pseudoreference electrode and internally referenced to the Fc/Fc* redox couple. Substrates possessing E, ;, >

—1.10 V are susceptible to SET from 3b, leading to FLP reactivity (left), whereas those with E, ,, <

—1.10 V are unlikely to be reduced and instead

directly react with the “hidden” boron radical anion (right). (b) Anisotropic X-band EPR spectrum of 3b (black) with an overlaid simulation (red)
at 100 K revealing a *'V-centered reduction with possible electron delocalization along the V=N=B framework. (See the SI for simulation
parameters.) (c) Spin-density map of 3b calculated by DFT and revealing a non-negligible contribution on B (13%), suggestive of “hidden” boron

radical character.
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204 resonances attributed to the [CoCpj]* cation between 0.5 and
20s 2.1 ppm (Figure S53). Upon scaling up the reaction, single
206 crystals suitable for XRD studies were grown, and the solid-
207 state structure unequivocally revealed the formation of the
208 [CoCp¥]* C—H activated product, 4a (Figure 4). The bond
209 metrics along the V=N—B bonds in 4a are similar to those
210 found in 1a (Table S1) and are consistent with the observed
211 oxidation to a diamagnetic V" center.
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Figure 4. Solid-state molecular structure of 4a. Phenyl C—H linkages,
hydrogen atoms, and cocrystallized solvent molecules are omitted for

clarity.

212 The methyl C—H bond activation of [CoCp5]* in the
213 conversion of 3a to 4a involved the formal loss of H-, the fate
214 of which remains unknown. However, we observed that the
215 addition of the stable phenoxyl radical, 2,4,6-tBu;C¢H,0O-
216 (ArO-), to 3a resulted in the clean formation of 4a and ArOH.
217 We also note that compound 3b does not undergo this
218 spontaneous decomposition but does initiate the [CoCp¥]*
219 C—H activation in the presence of ArO-. Taken together, we
220 hypothesized that the C—H bond activation chemistry likely
221 proceeded through one of two mechanisms: (1) via a FRP-
222 induced homolytic C—H cleavage mechanism involving the
223 ArO- and “hidden” boron radical anion (3a,b) (Scheme 2, left;
224 Figure 3c), reminiscent of previously proposed FRP* and
225 boron radical C—H reactivity,”' or (2) via initial SET from the

Scheme 2“
ERP ELP
RArN RAMN,
RAIN, Joefs RAING, LeFs
V=N—E SET - V=N—E
/ RArN
RArN CoFs ™ (1a-b) CeFs
(3a-b) [CoCp3] +

+ tBu
tBu Oe
tBu (o} 2
(o]

“Proposed FRP composed of the boron radicals 3a,b and ArO:
performing C—H bond activation of [CoCp3]* (left). Alternatively,
SET from 3a,b to ArO* would generate an FLP composed of 1a,b and
ArO~, which could deprotonate the acidic methyl C—H bond in
[CoCp5]*, generating the products 4a,b (right).

anion of 3a,b to ArO- to generate the FLP composed of ArO™~ 226
and la)b (Scheme 2, right). Subsequent deprotonation at one 227
of the acidic methyl C—H bonds in [CoCpj]* would result in 228
the formation of 4a,b.>>~>* A similar SET from a related borole 229
radical to TEMPO, followed by C—H deprotonation at 230
[CoCp#]*, was recently reported.” 231

To distinguish between these possible mechanisms, a simple 232
comparison of the V¥V redox couple in 1/3 relative to the 233
ArO*’~ couple should reveal whether SET is favored. The CV 234
of ArO- was taken in DCM and revealed a clean reversible 235
ArO*/~ couple at E,;, = —091 V vs Fc/Fc* (Figure 3a). 236
Whereas the E, ), value of 1a/3a could not be obtained due to 237
the aforementioned instability of these complexes, the 1b/3b 238
couple at E;/, = —1.10 V vs Fc/Fc* (vide supra) does support a 239
favorable (AG = —19 kJ/mol) SET event (Figure 3a). Thus 240
mechanistically, it is likely that the chemistry proceeded via an 241
FLP-type mechanism involving an initial SET from 3b to ArO- 242
to generate the 1b/ArO™ FLP, which initiated the observed 243
C—H functionalization.” 244

Whereas the combination of 3a,b with ArO- likely generated 245
an intermediate FLP for C—H activation of [CoCp¥]*, our 246
DFT studies nonetheless indicated that radical character at 247
boron should also be accessible (Figure 3c). As previously 24s
noted, boron radicals are invoked in FRP chemistry and are 249
typically probed by homolytic bond cleavage reactions at 250
peroxides or Sn—hydrides."”~** To discount possible initial 251
SET to any of these reagents, we first collected the CV data of 252
both dibenzoyl peroxide (PhC(O)OOC(O)Ph) and Ph;SnH. 253
The CV data of (PhC(O)OOC(O)Ph) collected in DCM 254
revealed an irreversible reduction event at E{feik = —1.92 V 255
(Figure 3a). Similarly, an irreversible reduction event was 256
observed for Ph;SnH near the electrochemical window of 257
acetonitrile (E;,eeik = —2.74 V, Figure S81). Thus any SET event 258
from 3b to either of these reagents should be highly 259
unfavorable (AG > 85 kJ/mol). Exposing either 3b or 3b’ 260
(both paramagnetic) to a half-equivalent of PhC(O)OOC- 261
(O)Ph in DCM led to the clean emergence of new, 262
diamagnetic, analogous products, as observed by multinuclear 263
NMR spectroscopy. In particular, a sharp resonance in the ''B 264
NMR (—4.2 ppm), with corresponding meta/para-shifted 265
resonances in the 'F NMR spectra (Figures S41—S45), 266
emerged and is consistent with four-coordinate boron 267
centers.”” A significantly shifted *'V NMR resonance (=311 268
ppm) also emerged from this reaction. Whereas suitable single 269
crystals for XRD studies were not obtained from the 3b 270
reaction, they were obtained from the 3b’ reaction, albeit in 271
low resolution, and the solid-state structure confirmed the 272
formation of a new carboxylate B—O product (Sb’) generated 273
through the homolytic peroxide cleavage expected from boron 274
radical reactivity (Figure 5).""7>> We note that the reaction 275 fs
with 3a produced the analogous carboxylate product, Sa 276
(Figure S77). 277

Lastly, we explored the reactivity of 3b/3b" with Ph;SnH. 278
While again the emergence of diamagnetic products was 279
observed by NMR spectroscopy, including a doublet resonance 280
in the "B NMR spectrum that collapsed to a singlet in the 2s1
11B{IH} spectrum, indicating a B—H bond, we were unable to 252
obtain a clean product in this case (Figures S57—S61). 283
However, the analysis of the '?Sn NMR spectrum revealed the 2s4
formation of a single new product with a chemical shift at 285
—142.4 ppm (Figure S60), similar to those reported for 26
Ph;SnSnPh; in various solvents.'” Upon working up the crude 287
reaction mixture, this product was isolated and unambiguously 2ss
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Figure 5. (a) Reaction of 3b’ with PhC(O)OOC(O)Ph led to
homolytic peroxide cleavage and B—O carboxylate bond formation
(5b’), indicative of boron radical reactivity. (b) Low-resolution
isotropic solid-state molecular structure of Sb’. C¢F;s groups on tren
(except for ipso carbons), [CoCp,]*, hydrogen atoms, and cocrystal-
lized solvent molecules are omitted for clarity.

identified by XRD studies because its unit-cell parameters
matched the reported values.”> The formation of this Sn—Sn
product is strongly indicative of boron radical reactivity and
homolytic bond cleavage, analogous to reported FRP
reactivity.'”~**

B CONCLUSIONS

In summary, we have outlined the synthesis of new Lewis-
acidic boranes tethered to redox-active vanadium centers.
Redox control of the V'V pair allowed for controlled borane
or boron radical anion reactivity mimicking FLP or FRP
reactivity, respectively. We are further investigating the
potential use of such main-group/metal platforms for new
cooperative small-molecule or bond-activation chemistry.

B EXPERIMENTAL SECTION

General Considerations. All manipulations were performed
under an atmosphere of dry, oxygen-free N, or Ar through standard
Schlenk or glovebox techniques (MBraun UNIlab Pro SP Eco
equipped with a —38 °C freezer). Pentane, diethyl ether, benzene,
toluene, THF, and DCM were dried using an Mbraun solvent
purification system. 2,2,4-Trimethylpentane (iso-octane), hexame-
thyldisiloxane (HMDSO), acetonitrile, acetonitrile-d;, benzene-d,
chloroform-d, dichloromethane-d,, and tetrahydrofuran-dg were
purchased from Aldrich or Cambridge Isotope Laboratories, degassed
by freeze—pump—thaw, and stored on activated 4 A molecular sieves
prior to use. Ph,NH, "BuLi (1.6 M in hexanes), VCl;(THF),,
Me;SiN;, ‘Pr,NH, and (PhC(O)OOC(O)Ph) were purchased from
Aldrich, Strem, or other commercial vendors and used as received.
Co(CsMe;), and Co(CHg), were furchased from Aldrich and
sublimed prior to use. (C4Fs),BCL> (Ph,N);V(u-N)Li(THF),,*
2,4,6-Buy;CeH,0-,°¢ N(CH,CH,NH(C(F;)),,*" V(NTMS,),** and
"PrNHLi*® were prepared according to literature procedure. Elemental
analyses (C, N, H) were performed at the University of California,
Berkeley using a PerkinElmer 2400 Series II combustion analyzer.

Spectroscopic Analyses. NMR spectra were obtained on a
Varian Unity Inova 600 MHz, Varian Unity Inova 500 MHz, or
Agilent Technologies 400 MHz spectrometer and referenced to the
residual solvent of acetonitrile-d; (1.94 ppm), benzene-dg (7.16 ppm),
D,0 (4.79 ppm), dichloromethane-d, (5.32 ppm), methanol-d, (3.31
ppm), or tetrahydrofuran-dg (1.73 ppm) or externally (''B: BF;-Et,0;
YE: CECly; S'V: VOCI;; *'P: 85% H;PO,; '”Sn: Me,Sn; "Li: 9.7 M
LiCl in D,0). Chemical shifts (§) are recorded in ppm, and the
coupling constants are in hertz. X-band EPR spectra were collected on
a Bruker EMX EPR spectrometer equipped with an Oxford ESR 900
liquid-helium cryostat. A modulation frequency of 100 kHz was used
for all EPR spectra, and the data were plotted using Origin. EPR
simulations used the program QPOWA by Belford and coworkers, as
modified by J. Telser.”’”

X-ray Crystallography. Data were collected on a Bruker KAPPA
APEX 1I diffractometer equipped with an APEX II charge-coupled
device (CCD) detector using a TRIUMPH monochromator with a
Mo Ka X-ray source (@ = 0.71073 A). The crystals were mounted on
a cryoloop with Paratone-N oil, and all data were collected at 100(2)

K using an Oxford nitrogen gas cryostream system. A hemisphere of 341

data was collected using @ scans with 0.5° frame widths. Data
collection and cell parameter determination were conducted using the
SMART program. Integration of the data frames and final cell
parameter refinement were performed using SAINT software.
Absorption correction of the data was carried out using SADABS.
Structure determination was done using direct or Patterson methods
and difference Fourier techniques. All hydrogen atom positions were
idealized and rode on the atom of attachment. The structure solution,
refinement, graphics, and the creation of publication materials were

342

performed using SHELXTL or OLEX.” All POV-Ray depictions of 351

the solid-state molecular structures are shown at the 50% probability
ellipsoid level unless otherwise noted.

Electrochemical Analyses. CV was performed on a CH
Instruments 630E electrochemical analysis potentiostat, equipped
with a 3 mm diameter glassy carbon working electrode, a Ag wire
pseudoreference electrode, and a Pt counter electrode with [Bu,N]-
[PF4] (0.1 M) supporting electrolyte solution in CH,Cl, or CH;CN.
The glassy carbon working electrode was cleaned prior to each
experiment by polishing with 1, 0.3, and 0.05 mm alumina (CH
Instruments) in descending order, followed by sonication in distilled
water for 2 min. All voltammograms were referenced to the Fc/Fc*
redox couple.

Density Functional Theory Calculations. DFT calculations
were performed using ORCA 4.>° The geometry optimization of the
anion of 3b was carried out using the UKS TPSSO method with the
def2-TZVP basis set’® ' and with the relativistic effect, which was
accounted for by the zero-order regular approximation (ZORA),*>~¢*
implemented in the ORCA software. The electric and magnetic
hyperfine structure was calculated for B and V centers only.

Synthesis of (Ph,N);V(u-N)B(C4Fs), (1a). To a cold (=35 °C)
solid mixture of CIB(C4F;), (0.190 g, 0.5 mmol) and (Ph,N),V(u-
N)Li(THF), (0.414 g, 0.5 mmol) was added cold ether (10 mL, —35
°C). The reaction solution stood at —3S °C for 2 days with
intermittent stirring for 1 min every 12 h. The mixture was filtered;
then, the solvent was removed in vacuo. The residue was washed with
cold pentane (4 X S mL), and the solid was dried in vacuo for 20 min
to afford a dark-brown solid (0.310 g, 0.34 mmol, 68% yield). Single
crystals suitable for XRD studies were obtained by cooling a
concentrated toluene/pentane solution of 1a to —35 °C and standing
overnight. 'H NMR (400 MHz, C(Dg, 25 °C): § = 6.91-6.85 (m,
24H; ArH), 6.71 (m, 6H; ArH). A small amount of THF and ether
(~0.5 equiv total) in the product could not be removed in vacuo,
which may due to the Lewis acidity of 1la. *C NMR (100 MHz,
C¢Dg 25 °C): § = 154.4, 128.9, 125.5, 123.2 (Ph,N). The signal-to-
noise ratio was too low to properly identify any C4Fj 13C resonances.
SIV NMR (105 MHz, C¢Dg, 25 °C): 6 = 119.6 (br). >B NMR (128
MHz, C(Dy, 25 °C): & = 31.8 (br). ’F NMR (376 MHz, C(Dg, 25
°C): 6 = —=131.0 (m, 4F; 0-C4Fs), —151.7 (t, ] = 18.8 Hz, 2F; p-C4F),
—162.1 (m, 4F; m-CgF;). Elemental analysis (%) calc. for
C4sH30BF N,V (1a) (914.5315 g-mol™'): C, 63.04; H, 3.31; N,
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6.13. Found: C, 60.14; H, 3.30; N, 6.06. Attempts to obtain
satisfactory elemental analysis consistently resulted in reduced carbon
percentages, likely due to incomplete combustion.®®

Synthesis of (N(CH,CH,N(C4F5))s)V(p-N)B(CoF5), (1b). Part 1:
Synthesis of ((tren)VNTMS). To a solution of N(CH,CH,NH-
(C¢Fs))s (0.545 g, 0.846 mmol) in THF (3 mL) was added
V(NTMS,); (0.450 g, 0.846 mmol) in THF (5 mL). The purple
mixture was sealed in a heavy-walled reaction flask and heated to 70
°C for 3 h until a dark-green solution formed. Under a nitrogen
atmosphere, TMS-N; (1.1 equiv) was added, and the resulting
mixture was resealed and stirred for 5 h at 70 °C to yield a yellow-
orange solution. The volatiles were removed in vacuo and washed
with pentane until the filtrate became nearly colorless. The filter-cake
was then washed with ether (3 X 1 mL) to give a bright-yellow
powder (0.659 g, 0.705 mmol, 83.3% yield). Bright-yellow single
crystals suitable for XRD studies were grown by vapor diffusion of
HMDSO into a saturated ether solution of the product. NMR data:
'H NMR (400 MHz, C¢Dy, 25 °C): 6 = 3.30 (t, *Jgy = 8.0 Hz, 6H;
CH,), 2.13 (t, *Jgy = 8.0 Hz, 6H; CH,), —0.77 (s, 9H; CH;). °C
NMR (100 MHz, C(Dq, 25 °C): 6§ = 57.8 (CH,), 53.3 (CH,), —1.8
(CHs;). The signal-to-noise ratio was too low to properly identify any
CgF; 13C resonances. 'V NMR (105 MHz, C¢Dq, 25 °C): § = —259.3
(br). F NMR (376 MHz, C¢Dy, 25 °C): 6 = —149.2 (d, J = 18.5 Hz,
6F; 0-C¢Fs), —165.6 (m, 6F; m-C¢4F), —166.1 (t, ] = 21.5 Hz, 3F; p-
CgF;). Elemental analysis (%) calc. for C,,H,F;sNSiV (779.5025 g-
mol™): C, 41.60; H, 2.72; N, 8.98. Found: C, 41.92; H, 2.69; N, 8.92.

Part 2: Synthesis of ((tren)VNLI(THF);). To a cooled, stirring
solution of ((tren)VNTMS) (1.0 g, 1.28 mmol) in THF (4 mL) was
added 'PrNHLi (0.117 g, 1.79 mmol) as a suspension in pentane (3
mL) to induce an immediate darkening of the solution to yellow-
green. The reaction was monitored by '’F NMR, and (if needed)
additional aliquots of 'PrNHLi reagent were added to ensure the
complete consumption of the starting material. The reaction was
stirred for 30 min before the volatiles were removed in vacuo. The
residue was washed with pentane (10 X 2 mL) to give a dark
microcrystalline powder (0.850 g, 0.912 mmol, 71.3% yield). Single
crystals suitable for XRD studies were grown by the slow vapor
diffusion of pentane into a saturated solution of the product in THF.
NMR data: 'H NMR (400 MHz, C(D, 25 °C): 6 = 3.49 (t, *Juy =
8.0 Hz, 6H; tren CH,), 2.99 (t, ¥y = 8.0 Hz, 12H; THF CH,), 2.17
(t, 6H; *Jyy = 8.0 Hz, 6H; tren CH,), 1.32 (m, 12H; THF CH,). *C
NMR (100 MHz, C(Dg, 25 °C): § = 67.6 (THF CH,), 55.7 (tren
CH,), 53.0 (tren CH,), 25.4 (THF CH,). The signal-to-noise ratio
was too low to properly identify any C¢Fs '*C resonances. *'V NMR
(105 MHz, C¢Dg, 25 °C): 6 = —143.1 (br). ’F NMR (376 MHz,
C¢Dg, 25 °C): 8 = —149.9 (d, J = 22.5 Hz, 6F; 0-CF,), —168.7 (t, ] =
21.1 Hz 6F; m-CgFs), —173.7 (t, J = 22.3 Hz, 6F; p-C¢Fs). Elemental
analysis (%) calc. for CygHyF sLiN;OV (929.5735 gmol™): C,
46.52; H, 3.90; N, 7.53. Found: C, 46.25; H, 3.98; N, 7.57.

Part 3: Synthesis of 1b. To a stirring solution of ((tren)VNLI-
(THF);) (1.0 g 1.076 mmol) in benzene was added (C4F;),BCl
(0.409 g, 1.076 mmol) in ether/benzene to give a dark-green solution
that was stirred for 2 h. The volatiles were removed in vacuo, and the
green oily residue was dissolved in DCM and filtered through a Celite
plug to remove LiCl. The dark-green residue was minimally dissolved
in benzene and then treated with acetonitrile (0.1 mL) to give a
yellow precipitate that was collected and washed with pentane (10 X
1 mL) and ether (5 X 1 mL). Upon dissolution into a 1:1 benzene/
THF mixture and the removal of all volatiles, an analytically pure
dark-green powder was isolated (0.755 g, 0.719 mmol, 66.8% yield).
Single crystals suitable for XRD studies were obtained by slow vapor
diffusion of HMDSO into a saturated solution of the product in ether.
NMR data: 'H NMR (400 MHz, C(Dg, 25 °C): 6 = 3.30 (t, 3Juy =
5.4 Hz, 6H; CH,), 2.35 (t, *Jun = 5.4 Hz, 6H; CH,). *C NMR (100
MHz, C(Dy, 25 °C): 6 = 60.6 (CH,), 53.1 (CH,). The signal-to-noise
ratio was too low to properly identify any C¢Fs "*C resonances. >'V
NMR (105 MHz, C¢Dg, 25 °C): 6 = —78.9 (br). B NMR (128
MHz, C¢Dg, 25 °C): § = 30.1 (br). ’F NMR (376 MHz, C¢D, 25
°C): 6 = —133.1 (br, 4F; B 0-C¢F), —148.4 (br, 6F; tren 0-CF),
—149.5 (br, 2F; B p-C4Fs), —161.4 (br, 4F; B m-C¢Fs), —162.9 (br,

3F; tren p-CgF;), —164.9 (br, 6F; tren 0-C¢Fs). Elemental analysis
(%) calc. for C34H,,BF,NV (1051.2386 g'mol '): C, 41.13; H, 1.15;
N, 6.66. Found: C, 41.27; H, 1.38; N, 6.67.

Synthesis of 2-F;. To a stirring solution of 1b (0.010 g, 0.0095
mmol) and PMes; (0.00369 g, 0.0095 mmol) in DCM (3 mL) was
added tetrafluoro-1,4-benzoquinone (0.00171 g, 0.0095 mmol) in
DCM (1 mL) to give an orange solution within minutes. The reaction
was stirred for 10 min before the volatiles were removed in vacuo.
The residue was washed with pentane (3 X 1 mL) and ether (1 mL)
to give a yellow powder (0.011 g, 0.0068 mmol, 71.4% yield). Single
crystals suitable for XRD studies were grown by the slow vapor
diffusion of pentane into a saturated solution of 2-F, in DCM. NMR
data: '"H NMR (400 MHz, CDCl,, 25 °C): § = 7.03 (s, 6H; aryl CH),
3.68 (t, 6H; CH,), 2.98 (t, 6H; CH,), 2.38 (s, 9H; CH,), 2.13 (s,
18H; CH,;). *C NMR (126 MHz, CDCl,, 25 °C): § = 147.0 (ipso
C), 133.2 (m-CH), 119.9 (0-CMe), 119.1 (p-CMe), 59.6 (CH,), 53.1
(CH,), 23.3 (0-CHj), 21.4 (p-CHj;). The signal-to-noise ratio was too
low to properly identify any C¢Fs '*C resonances. 'V NMR (105
MHz, CDCl,, 25 °C): 6 = —300.7 (br). '*B NMR (128 MHz, CDCI,,
25 °C): 6 = —2.3 (br). 3'P NMR (161 MHz, CDCl,;, 25 °C): 6 =
70.92 (s). YF NMR (376 MHz, CDCI,, 25 °C): 6 = —134.2 (br, 4F;
B 0-CgFs), —148.0 (br, 6F; tren 0-C¢4F;), —155.8 (d, 2F; quinone CF),
—156.6 (d, 2F; quinone CF), —160.8 (t, 2F; B p-CF), —166.9 (t, 4F;
B m-C¢Fs), —168.1 (d, 6F; tren 0-C¢Fs), —168.7 (t, 3F; tren p-C4Fs).
Elemental analysis (%) calc. for CgH,BF,0N;PV (1619.8310 g
mol™): C, 51.16; H, 2.80; N, 4.32. Found: C, 50.83; H, 2.45; N, 3.96.

Synthesis of 2-H,. The synthesis of 2-H, was carried out in a
manner identical to that of 2-F,, except benzoquinone was used in
place of tetrafluoro-1,4-benzoquinone. The resulting product was
characterized crystallographically. Single crystals suitable for XRD
studies were grown by the slow vapor diffusion of iso-octane into an
ether solution of the product.

Synthesis of [(Ph,N);V(u-N)B(C4F;5),]1[Co(CsMes),] (3a). A
solution of Co(CsMe;), (0.033 g, 0.1 mmol) in THF (2 mL) was
added to a solution of complex 1a (0.091 g, 0.1 mmol) in THF (3
mL). The reaction mixture stood at room temperature for 15 min,
and the solvent was removed in vacuo. The residue was washed with
cold ether (2 X 3 mL) to afford a brown solid (0.086 g, 0.0687 mmol,
68.7% yield). Single crystals suitable for XRD studies were obtained
by the slow vapor diffusion of pentane into a concentrated
difluorobenzene solution of 3a at room temperature. EPR data were
collected at 298 K in benzene (Figure S64) and at 100 K in THF
(Figure S65). Elemental analysis (%) calc. for CgHgoBCoF(N,V
(1243.9247 g-mol™*): C, 65.66; H, 4.86; N, 4.50. Found: C, 64.62; H,
476; N, 4.21.

Synthesis of [N(CH,CH,N(CgF5));V(u-N)B(CgF5),1[Co(CsMe;),]
(3b). To a stirring solution of 1b (0.100 g, 0.0951 mmol) in ether (3
mL) was added Co(CsMe;), (0.031 g, 0.0951 mmol) in ether (2 mL)
to immediately give a dark-red precipitate that was stirred for 15 min.
The volatiles were removed in vacuo, and the red powder was washed
with pentane (5 X 1 mL) and ether (5 X 1 mL). The brick-red
powder was then dried in vacuo (0.105 g, 0.0760 mmol, 79.9% yield).
Single crystals suitable for XRD studies were grown by the slow
evaporation of a 10:1 ether/DCM mixture of the product. EPR data
were collected at 100 K in DCM (Figure S66). Elemental analysis (%)
calc. for C5sH,,BCoF NV (1380.6318 gmol™'): C, 48.72; H, 3.07;
N, 5.07. Found: C, 48.99; H, 2.73; N, 4.91.

Synthesis of [N(CH,CH,;N(CgF5))sV(p-N)B(CgF5),1[Co(CsH;),]
(3b’). To a stirring solution of 1b (0.160 g, 0.152 mmol) in ether (4
mL) was added Co(C3Hj;), (0.029 g, 0.152 mmol) in ether (2 mL) to
immediately give a dark precipitate that was stirred for 30 min. The
volatiles were removed in vacuo, and the dark residue was washed
with pentane (10 X 1 mL) and ether (S X 1 mL) until the filtrate
wash was nearly colorless. After the removal of the remaining wash
solvent, a dark-red powder was isolated (0.137 g, 0.110 mmol, 72.7%
yield). Single crystals suitable for XRD studies were grown by the slow
vapor diffusion of HMDSO into a saturated DCM solution of the
product. EPR data were collected at 100 K in DCM (Figure S67).
Elemental analysis (%) calc. for C,sHy,BCoF,sNV (1240.3618 g-
mol™): C, 44.54; H, 1.79; N, 5.65. Found: C, 44.36; H, 1.50; N, 5.59.
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Synthesis of 4a. Method 1. A solution of 1a (0.091 g, 0.1 mmol)
in fluorobenzene (3 mL) was combined with a solution of
Co(CsMes), (0.033 g, 0.1 mmol) in fluorobenzene (1 mL), and
the mixture stood at room temperature overnight. The volatiles were
removed in vacuo to give a dark-brown powder, and the 'H, 'F, and
'V NMR analysis of this crude product revealed that 4a was formed
(see Method 2) as the major product (>85%) (Figure SSS). Because
of the similar solubility of 4a and the minor impurities, multiple
attempts to purify it failed.

Method 2. A solution of 3a (0.240 g, 0.193 mmol) in THF (6 mL)
was combined with a solution of 2,4,6-Bu;C¢H,0- (0.0505 g, 0.193
mmol) in THF (2 mL), and the mixture stood at room temperature
for 2 h. The volatiles were then removed in vacuo to give a dark-
brown solid powder, and the "H NMR of this crude product revealed
a 1:1 mixture of 4a and 2,4,6-'Bu;PhOH. The crude powder was
washed with pentane (3 X S mL) and then with ether (4 X 4 mL) to
give a dark-brown solid (0.050 g, 0.04 mmol, 20.7% yield). The
isolated yield was low due to the similar solubility of 4a and the
2,4,6-Bu;C4H,OH byproduct. Single crystals suitable for XRD studies
were obtained by the slow vapor diffusion of pentane into a
concentrated difluorobenzene solution of 4a at room temperature. 'H
NMR (400 MHz, THF-dg, 25 °C): 6 = 7.16 (t, *Juy = 7.9 Hz, 2H; m-
ArH), 7.07 (d, ¥Jug = 7.9 Hz, 2H; 0-ArH), 6.90 (t, *Jz = 7.6 Hz,
10H; m-ArH), 6.78 (d, }Jug = 7.6 Hz, 10H; 0-ArH), 6.73 (t, 3Juy =
7.2 Hz, SH; p-ArH), 1.98 (s, 2H; BCH,), 1.52 (s, 15H; CsMe;), 1.42
(s, 6H; CMe), 1.09 (s, 6H; CMe). 3C NMR (100 MHz, THF-d,, 25
°C): 6 = 155.6, 128.6, 128.2, 124.4, 124.1, 122.7, 119.7 (two sets of
phenyl resonances are observed and are attributed to 77—z stacking
between one C4H; group and one C¢Fg group, as observed in the
solid-state XRD structure), 94.9, 93.7, 93.0, 91.9 (C), 8.4, 7.9, 7.4
(CMe). The signal-to-noise ratio was too low to properly identify any
C¢Fs and BCH, "C resonances. 'V NMR (105 MHz, THE-dg, 25
°C): § = —155.0 (br). B NMR (128 MHz, THF-dg, 25 °C): 6 =
—2.0 (br). F NMR (376 MHz, THF-dj, 25 °C): § = —127.1 (m, 4F;
0-C¢Fs), —164.2 (t, ] = 18.8 Hz, 2H; p-C(F;), —167.0 (m, 4F; m-
C¢F;). Elemental analysis (%) calc. for CggHgoBCoF N,V
(1242.9167 g~m01_1): C, 65.71; H, 4.78; N, 4.51. Found: C, 65.35;
H, 5.10; N, 4.51.

Synthesis of 4b. To a stirring solution of 3b (0.050 g, 0.0362
mmol) in DCM (2 mL) was added 2,4,6-Bu;CsH,0- (0.0095 g,
0.0362 mmol) in DCM (1 mL) to induce an immediate color change
to yellow. The solution was stirred for 1 h before all volatiles were
removed in vacuo. The residue was washed with pentane (10 X 1 mL)
to remove the 2,4,6-'Bu;PhOH byproduct and residual
2,4,6-Bu,PhO-. The remaining solid was then washed with ether (1
mL), and the remaining yellow powder was dried in vacuo (0.031 g,
0.0224 mmol, 62% yield). Single crystals suitable for XRD studies
were grown by the slow vapor diffusion of iso-octane into a 1:1
DCM/ether mixture of the product. NMR data: "H NMR (400 MHz,
CD,Cl, 25 °C): § = 3.65 (br, 6H; CH,), 2.88 (br, 6H; CH,), 1.61
(br, 1SH; CsMes) 1.51 (br, 2H; BCH,) 1.34 (br, 6H; CMe) 0.81 (br,
6H; CMe). *C NMR (100 MHz, CD,Cl,, 25 °C): § = 120.7
(CsMe;), 93.5 (CMe), 92.8 (CMe), 92.1 (CMe), 61.0 (CH,), 55.0
(CH,), 8.4 (BCH,), 8.1 (CsMes), 8.0 (CMe), 7.8 (CMe). The signal-
to-noise ratio was too low to properly identify any C¢Fs *C
resonances. °'V NMR (105 MHz, CD,Cl,, 25 °C): 6 = —235.7 (br).
138 NMR (128 MHz, CD,Cl,, 25 °C): 6 = —5.5 (br). '°F NMR (376
MHz, CD,Cl,, 25 °C): § = —127.8 (br, 4F; B 0-C4F;), —148.9 (br,
6F; tren 0-C¢Fs), —162.8 (br, 2F; B p-C¢Fs), —167.5 (br, 4F; B m-
C¢Fs), —167.4 (br, 6F; tren m-C¢Fs), —168.6 (br, 3F; tren p-CFs).
Elemental analysis (%) calc. for Cs¢H,BCoF,NsV (1379.6238 g
mol™): C, 48.75; H, 3.00; N, 5.08. Found: C, 48.41; H, 3.12; N, 4.97.

Synthesis of [(Ph,N);V(u-N)B(O(O)CPh)(C¢F;5),1[Co(CsMe;),]
(5a). The radical anion 3a was generated in situ and then reacted with
dibenzoyl peroxide. A solution of 1a (0.091 g, 0.1 mmol) in THF (3
mL) was mixed with a solution of Co(CsMe;), (0.033 g, 0.1 mmol)
in THF (1 mL), and the solution stood at ambient temperature for S
min. Dibenzoyl peroxide (12.1 mg, 0.05 mmol) in THF (1 mL) was
added to the above solution, and the resulting mixture stood at
ambient temperature for 3 h. The volatiles were removed in vacuo to

give a greasy red mixture, which was washed with ether (3 X S mL) to
give a red powder (0.075 g, 0.055 mmol, 55% yield).). Single crystals
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pentane into a concentrated difluorobenzene solution of 4a at room
temperature. "H NMR (400 MHz, THF-dg, 25 °C): § = 7.71 (d, *Jun
= 7.2 Hz, 2H; o-ArH of PhCOO), 7.27 (t, *Juy = 7.2 Hz, 1H; p-ArH
of PhCOO0), 7.71 (d, 3Juy = 7.2 Hz, 2H; m-ArH of PhCOO), 6.80 (d,
3Jem = 7.2 Hz, 12H; m-ArH of Ph,N), 6.71 (d, *Juy = 7.2 Hz, 12H; o-
ArH of PhyN), 6.63 (t, *Jyy; = 7.2 Hz, 6H; p-ArH of Ph,N), 1.70 (s,
30H; CsMe;). C NMR (100 MHz, THF-dg, 25 °C): § = 166.9
(PhCOO0), 155.4 (Ph,N), 136.4 (PhCOO), 131.0 (PhCOO), 130.6
(PhCOO), 1284 (Ph,N), 127.7 (PhCOO), 124.7 (Ph,N), 122.7
(Ph,N), 95.0 (CsMes), 7.9 (CsMes). The signal-to-noise ratio was too
low to properly identify any C4F5 '*C resonances. 'V NMR (105
MHz, THF-dg, 25 °C): § = —166.4 (br). 1*B NMR (128 MHz, THE-
dg, 25 °C): 6 = —1.3 (s). YF NMR (376 MHz, THF-d,, 25 °C): 6 =
—132.5 (m, 4F; 0-C¢F;), —164.8 (t, ] = 18.8 Hz, 2F; p-C.F;), —168.3
(m, 4F; m-C4Fg). Elemental analysis (%) calc. for
C,sHgsBCoF (N, O,V (1365.0397 g-mol™): C, 65.99; H, 4.80; N,
4.10. Found: C, 65.43; H, 4.68; N, 3.79.

Synthesis of [N(CH,CH,N(C¢F5));V(u-N)B(O(O)CPh)(C4Fs),]-
[Co(CsHs),] (5b°). To a stirring solution of 3b’ (0.040 g, 0.0322
mmol) in DCM (2 mL) was added dibenzoyl peroxide (0.004 g,
0.016 mmol) in DCM (1 mL) to give an immediate lightening of the
solution to orange. The mixture was stirred for 15 min; then, all
volatiles were removed in vacuo. The resulting yellow-orange powder
was washed with pentane (3 X 1 mL) and ether (5 X 0.5 mL), and the
volatiles were removed in vacuo (0.032 g, 0.0235 mmol, 73% yield).
Single crystals suitable for XRD studies were grown by the slow vapor
diffusion of iso-octane into a saturated solution of the product in
DCM. NMR data: '"H NMR (400 MHz, CD,Cl,, 25 °C): § = 7.96 (d,
3]HH =
PhCOO), 7.45 (t, *Jgy = 8 Hz, 2H; m-ArH of PhCOO) 5.44 (s, 10H;
CH) 3.69 (br, 6H; CH,) 3.00 (br, 6H; CH,). *C NMR (100 MHz,
CD,Cl,, 25 °C): § = 167.7 (PhCOO), 131.4 (PhCOO), 130.1
(PhCOO), 128.2 (PhCOO), 85.1 (CsHy), 60.2 (CH,), 53.7 (CH,).
The signal-to-noise ratio was too low to properly identify any CcF;
13C resonances. 'V NMR (105 MHz, CD,Cl,, 25 °C): § = —310.7
(br). *B NMR (128 MHz, CD,Cl,, 25 °C): 6 = —4.2 (br). YF NMR
(376 MHz, CD,Cl,, 25 °C): § = —134.0 (br, 4F; B 0-C,F;), —148.8
(br, 6F; tren 0-CgFs), —162.6 (br, 2F; B p-C4Fs), —168.0 (br, 4F; B
m-CgFs), —168.0 (br, 6F; tren m-C4Fs), —169.0 (br, 3F; tren p-C4Fs).
Elemental analysis (%) calc. for Cs3H,;BCoF,sN;O,V (1361.4768 g-
mol™"): C, 46.76; H, 2.00; N, 5.14. Found: C, 46.57; H, 1.93; N, 4.99.

Synthesis of (C¢H;),NB(C¢Fs),. Diphenylamine (0.0338 g, 0.2
mmol) in toluene (3 mL) was added to a solution of B(C4Fj); (0.102
g, 0.2 mmol) in toluene (3 mL) to give a pale-yellow solution that was
stirred overnight at 110 °C to give a colorless solution. The volatiles
(including the C¢FsH byproduct) were removed in vacuo to give a
pale-yellow solid, which was recrystallized in pentane at —35 °C to
give a white solid (0.047 g, 0.092 mmol, 46% yield). '"H NMR (400
MHz, C,Dg, 25 °C): 6 = 6.95 (d, *Juy = 7.6 Hz, 4H; 0-ArH), 6.80 (t,
i = 7.2 Hz, 4H; m-ArH), 6.74 (t, ’Juy = 6.8 Hz, 2H; p-ArH). C
NMR (100 MHz, CsDy, 25 °C): & = 146.9 (ipso C), 129.3 (0-CH),
127.4 (m-CH), 126.7 (p-CH). The signal-to-noise ratio was too low
to properly identify any C¢F '*C resonances. *B NMR (128 MHz,
C¢Dg, 25 °C): 6 = 36.7 (br). F NMR (376 MHz, C(Dg, 25 °C): 6 =
—132.4 (m, 4F; 0-C4Fs), —151.2 (t, ] = 18.8 Hz, 2F; p-C.F;), —161.5
(m, 4F; m-CgF;). Elemental analysis (%) cale. for C,,H;oBF (N
(513.1450 g:mol™"): C, 56.18; H, 1.96; N, 2.73. Found: C, 55.92; H,
1.80; N, 2.62.
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