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a b s t r a c t

In this note we present a multigrid preconditioning method for solving quadratic
optimization problems constrained by a fractional diffusion equation. Multigrid methods
within the all-at-once approach to solve the first order optimality Karush–Kuhn–
Tucker (KKT) systems are widely popular, but their development have relied on the
underlying systems being sparse. On the other hand, for most discretizations, the
matrix representation of fractional operators is expected to be dense. We develop a
preconditioning strategy for our problem based on a reduced approach, namely we
eliminate the state constraint using the control-to-state map. Our multigrid precondi-
tioning approach shows a dramatic reduction in the number of CG iterations. We assess
the quality of preconditioner in terms of the spectral distance. Finally, we provide a
partial theoretical analysis for this preconditioner, and we formulate a conjecture which
is clearly supported by our numerical experiments.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let Ω ⊂ RN be an open bounded Lipschitz polygonal domain with boundary ∂Ω . The goal of this paper is to develop an
fficient multigrid based solver for the following optimal control problem: Given datum ud ∈ L2(Ω) and a regularization
arameter β > 0, solve

min
z∈L2(Ω)

1
2
∥u − ud∥

2
L2(Ω) +

β

2
∥z∥2

L2(Ω) , (1a)

ubject to the constraints posed by the fractional partial differential equation (PDE){
(−∆)su = z in Ω ,

u = 0 on ∂Ω .
(1b)

ere, u and z denote the state and control variables, respectively. Moreover, (−∆)s, with 0 < s < 1, denotes the s powers
f the L2(Ω) realization of the Laplace’s operator −∆, with the Dirichlet boundary condition u = 0 on ∂Ω . This is the
o-called spectral fractional Laplacian. We refer to [1] for the case of non-zero boundary conditions.

∗ Corresponding author.
E-mail address: hantil@gmu.edu (H. Antil).
ttps://doi.org/10.1016/j.rinam.2020.100133
590-0374/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.rinam.2020.100133
http://www.elsevier.com/locate/results-in-applied-mathematics
http://www.elsevier.com/locate/results-in-applied-mathematics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinam.2020.100133&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hantil@gmu.edu
https://doi.org/10.1016/j.rinam.2020.100133
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Antil, A. Drăgănescu and K. Green Results in Applied Mathematics 9 (2021) 100133

I
c
e
e
s
o
l
a

t
b
f
i
S
c
i
L

o
s
H
w
t
e
s

u
(
e
b

2

2

The rising interest of the community in fractional operators has been motivated by their ever-growing applicability.
n [2] (see also [3] for an efficient solver), a fractional Helmholtz equation is derived using first principle arguments in-
onjunction with a constitutive relationship. It also shows a direct qualitative match between numerical simulations and
xperimental data. In the classical setting, it is well-known that constrained optimization problems with the Helmholtz
quation as constraint arise naturally in various applications. Examples include direct-field acoustic testing [4] and remote
ensing applications such as source inversion in seismology [5]. A natural first step to create efficient solvers for these
ptimization problems is to begin with optimization problems constrained by Poisson type equations. Following this
ine of argument, we are hereby creating an efficient solver for (1). Fractional operators have also received a significant
ttention due to their applicability in imaging science [6,7].
Problem (1) was introduced in [8], and has attracted significant attention ever since. While it is a natural extension of

he standard elliptic control problem corresponding to the case s = 1, it leads to a number of challenging questions,
eginning with the definition and the numerical representation of the fractional operator. In [8], problem (1) was
ormulated and analyzed using the extension approach [9,10]. An alternative numerical analysis for (1) was provided
n [11]. The latter used a numerical scheme to approximate (3), based on Kato’s formula [12], originally introduced in [13].
ee also [14] for a tensor based method to solve (1). For completeness, we also refer to related optimal control problems
orresponding to integral fractional Laplacian where the control is distributed [15,16], or it is in the coefficient [17,18], or
t is in the exterior [19,20]. We also refer to [21] for an efficient multigrid solver for fractional PDEs with integral fractional
aplacian.
The majority of efficient solution methods for solving PDE-constrained optimization problems focus on the first order

ptimality conditions, namely the Karush–Kuhn–Tucker (KKT) system [22]. The KKT system couples the PDE (1b) (the
tate equation) and the adjoint equation, the latter being a linear PDE with a similar character to the state equation.
ence, for the case of classical PDE constraints with finite element discretizations, the KKT system – albeit indefinite –
ill have a sparse structure, and solvers and preconditioners used for the state equation can play an important role for
he KKT system as well. However, for most discretizations the matrix representation of discrete fractional operators is
xpected to be dense, therefore the all-at-once approach of solving the KKT system loses its main attractiveness, namely
parsity.
In this work we use a reduced approach, namely we eliminate the state constraint from the optimization problem (1)

sing the control-to-state map. Using the discretization from [11], we introduce a multigrid based preconditioner to solve
1). Multigrid methods, traditionally known as some of the most efficient solvers of discretizations of PDEs, has been
mployed in recent times with great success in PDE-constrained optimization [22] as well. Our approach is motivated
y [23], and we develop a multigrid preconditioner for the reduced system of (1).

. The fractional operator and the optimality conditions

.1. Continuous optimality conditions

For s ≥ 0, we define the fractional order Sobolev space

Hs(Ω) :=

{
u =

∞∑
k=1

ukϕk ∈ L2(Ω) : ∥u∥2
Hs(Ω) :=

∞∑
k=1

λs
ku

2
k < ∞

}
, (2)

where λk are the eigenvalues of −∆ and ϕk the corresponding eigenfunctions with zero Dirichlet boundary conditions
and ∥ϕk∥L2(Ω) = 1, and

uk = (u, ϕk)L2(Ω) =

∫
Ω

uϕk .

By now, it is well-known that the definition of Hs(Ω) in (2) is equivalent to Hs
0(Ω) for s > 1/2, and Hs(Ω) = Hs(Ω) =

Hs
0(Ω) when s < 1/2, while H

1
2 (Ω) = H

1
2
00(Ω), i.e., the Lions–Magenes space [24]. Recall that, for 0 < s < 1, Hs(Ω) is the

interpolation space between L2(Ω) and H1
0 (Ω) [24], a fact that is relevant for the analysis below. Let H−s(Ω) be the dual

space of Hs(Ω).
For s ≥ 0, the spectral fractional Laplacian is defined on the space C∞

0 (Ω) by

(−∆)su :=

∞∑
k=1

λs
kukϕk with uk =

∫
Ω

uϕk .

Notice that, for any w =
∑

∞

k=1 wkϕk ∈ Hs(Ω), we have that⏐⏐⏐⏐∫ (−∆)suw
⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
∞∑

λs
kukwk

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
∞∑

λ
s
2
k ukλ

s
2
k wk

⏐⏐⏐⏐⏐ ≤ ∥u∥Hs(Ω)∥w∥Hs(Ω),

Ω k=1 k=1

2
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and thus (−∆)s extends as an operator mapping from Hs(Ω) to H−s(Ω) due to density. In addition, we have that

∥u∥Hs(Ω) = ∥(−∆)
s
2 u∥L2(Ω) .

f. [9], for every z ∈ H−s(Ω) there exists a unique u ∈ Hs(Ω) that solves (1b). Using Kato’s formula (see [13,25] for a
derivation), the solution u can be explicitly written as

u = (−∆)−sz =
sin sπ

π

∫
∞

−∞

e(1−s)y(ey − ∆)−1zdy . (3)

Notice that (−∆)−s
: H−s(Ω) → Hs(Ω) is bounded and linear. By restricting (−∆)−s to L2(Ω), and using the compact

embedding Hs(Ω) ↪→ L2(Ω), we can treat the solution map Ks
:= (−∆)−s as a bounded linear operator on L2(Ω). Hence,

he adjoint operator (Ks)∗ : L2(Ω) → L2(Ω) is well-defined, and is equal to Ks. Using Ks, the reduced form of problem (1)
s given by

min
z∈L2(Ω)

1
2
∥Ksz − ud∥

2
L2(Ω) +

β

2
∥z∥2

L2(Ω). (4)

Problem (4) has a unique solution that satisfies the following first-order necessary and sufficient optimality conditions

Hsz def
=

(
(Ks)∗Ks

+ βI
)
z = (Ks)∗ud. (5)

Notice that (5) follows immediately after differentiating twice the functional in (4). The operatorHs in (5) is the continuous
reduced Hessian operator. Next we shall discretize (5).

2.2. Discrete optimality conditions

We consider a quasi-uniform discretization Th of Ω and the spaces of continuous piecewise linear functions Vh and
V0
h = Vh ∩ H1

0 (Ω). The control z is discretized using Vh, while the state u is discretized using V0
h . According to [13], the

discrete solution operator Ks
h : Vh → V0

h is defined as

Ks
h :=

sin sπ
π

m
N+∑

ℓ=−N−

e(1−s)yℓ (eyℓ − ∆h)−1 ,

where the quadrature nodes are uniformly distributed as yℓ = mℓ. This quadrature rule has been shown to be expo-
nentially convergent (see [13]) to the continuous integral in (3). The underlying constants N− and N+ are chosen to
balance the quadrature error and spatial discretization error. In our case they are: m ∼ (ln 1

h )
−1, N+

= ⌈
π2

4sm2 ⌉, and
−

= ⌈
π2

4(1−s)m2 ⌉. Finally, we shall denote by πh : L2(Ω) → Vh, the L2-orthogonal projection.
Using the above discretization, the discrete form of (5) is given by

Hs
hzh

def
= ((Ks

h)
∗Ks

h + βI)zh = (Ks
h)

∗ud,h , (6)

where ud,h = πhud. This work is concerned with a multigrid preconditioning approach to efficiently solve (6).

3. Two-grid and multigrid preconditioner

3.1. Preconditioner description

Following [23], assuming Th is a refinement of T2h, we define the two-grid preconditioner:

Gs
h = β(I − Ehπ2h) + EhHs

2hπ2h , (7)

where Eh
: V2h → Vh is the natural embedding operator.

The extension of the preconditioners from two-grid to multigrid is a streamlined process that is presented in full detail
in [23,26]. It is sufficient to say that the multigrid version has a W-cycle structure, and that the coarsest grid has to be
sufficiently fine. Hence, it may be that the coarsest level used in the multigrid version of Gs

h is not the coarsest that is in
principle available by the existing geometric framework. The number of levels that can be used is problem dependent,
and depends also of the quality of the two-grid preconditioner, as described below.

3.2. Analysis and conjecture

We assess the quality of the preconditioner Gs
h by estimating the spectral distance (see [23]) d(Hs

h, G
s
h), where for two

symmetric positive definite operators A, B ∈ L(L2(Vh))

d(A, B) = max |ln (Au, u) − ln (Bu, u)| = max{|ln λ| : λ ∈ σ (A, B)}. (8)

u∈Vh

3
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For the optimal control of elliptic PDEs (the case s = 1), and under maximum regularity assumptions, it is known that

d(H1
h, G

1
h ) ≤ C

h2

β
. (9)

Consequently, when solving (6) using multigrid preconditioned conjugate gradient (CG), the number of iterations will
decrease with increasing resolution at the optimal rate. This is significant, since at higher resolutions the most expensive
operation is precisely the Hessian-vector multiplication. A decrease in the power of h in (9), which can occur in a number
of instances (boundary control, loss of elliptic regularity), results in (7) becoming a less efficient preconditioner.

We conduct our analysis using Lemma 1 in [26], which requires estimating the operator L2(Ω)-norm

∥Ks
h − EhKs

2hπ2h∥ = sup
z∈Vh

∥(Ks
h − EhKs

2hπ2h)z∥
∥z∥

, (10)

here ∥ · ∥ on the right-hand-side denotes the norm in L2(Ω), and Eh also denotes the restriction of Eh to V0
h . From here

n, ∥ · ∥ without subscripts represents either the vector or the operator L2-norm, depending on the context. Notice that
nly the control-to-state solution operators play a role in (10). The estimation process is based on the following apriori
stimate in Corollary 2 from [11], which assumes Ω to be convex in R2 or R3: for any s ∈ (0, 1) and ε′ > 0, there exists
= C(ε′, s) so that

∥Ks
hz − Ksz∥ ≤ Ch2s−ε′

∥z∥. (11)

e also recall the following regularity estimate: for s ∈ (0, 1) there exists C (uniformly bounded in s) so that:

∥Ksz∥H2s(Ω) ≤ C∥z∥. (12)

o show (12), let z =
∑

∞

k=1 zkϕk in L2(Ω) and u =
∑

∞

k=1 ukϕk = Ksz be the solution of the state equation (1b). Then

uk = λ−s
k zk.

rom the definition of Hs-norm in (2), we have that

∥u∥2
H2s(Ω) =

∞∑
k=1

λ2s
k u2

kϕk =

∞∑
k=1

λ2s
k λ−2s

k z2kϕk = ∥z∥2.

As a consequence of convergence (11) and regularity (12) we obtain the following uniform bound (with respect to h)
f the operator norm of Ks

h: there exists Ls independent of h so that

∥Ks
hz∥ ≤ Ls∥z∥, ∀z ∈ Vh. (13)

emma 3.1. Assume Ω ⊂ RN with N = 2, 3 be a convex polygonal bounded domain. Then for any ε′ > 0 and s ∈ (0, 1)
here is a constant Cs > 0 so that

∥Ks
h − EhKs

2hπ2h∥ ≤ Csh2s−ε′

. (14)

Proof. For z ∈ Vh we have

∥(Ks
h − EhKs

2hπ2h)z∥ ≤ ∥(Ks
h − Ks)z∥ + ∥Ks(I − π2h)z∥ + ∥(Ks

− Ks
2hπ2h)z∥, (15)

here we omitted the embedding operators. Using (11) we can bound the first and third terms on the right-hand side
f (15) by

∥(Ks
h − Ks)z∥ ≤ Ch2s−ε′

∥z∥, ∥(Ks
− Ks

2h)π2hz∥ ≤ C(2h)2s−ε′

∥z∥, (16)

here we have also used ∥π2hz∥ ≤ ∥z∥. For the middle term in (15) we interpolate between the inequalities (see [27])

∥u − πhu∥ ≤ Ch∥u∥H1
0 (Ω), ∥u − πhu∥ ≤ ∥u∥L2(Ω), (17)

hat hold for all u ∈ H1
0 (Ω), respectively u ∈ L2(Ω). It follows that

∥u − πhu∥ ≤ Chs
∥u∥Hs(Ω), ∀u ∈ Hs(Ω). (18)

ence,

∥Ks(I − π2h)z∥ = sup
v∈L2(Ω)

|(Ks(I − π2h)z, v) |

∥v∥
= sup

v∈L2(Ω)

|((I − π2h)z,Ksv) |

∥v∥

= sup
|((I − π2h)z,Ksv − π2hKsv) |
v∈L2(Ω) ∥v∥

4
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Table 1
Direct measurements of spectral distances in one spatial dimension for two different regularization parameters β and
different mesh sizes. The dependence on β is according to the predicted theory in Theorem 3.1 and the dependence
on mesh size h is according to the Conjecture 3.1.
β = 1

N 16 32 64 128 256 512 1024

s = 0.25 3.51e−2 1.78e−2 8.97e−03 4.50e−3 2.25e−3 1.13e−3 5.64e−4
log2(di/di+1) 0.9771 0.9910 0.9961 0.9982 0.9991 0.9996
s = 0.3 1.82e−2 8.02e−3 3.51e−3 1.53e−3 6.66e−4 2.90e−4 1.26e−4
log2(di/di+1) 1.1807 1.1931 1.1976 1.1991 1.1997 1.1999
s = 0.4 4.81e−3 1.61e−3 5.34e−4 1.76e−4 5.82e−5 1.92e−5 6.34e−6
log2(di/di+1) 1.5780 1.5934 1.5976 1.5993 1.5998 1.5999

N 64 128 256 512 1024 2048 4096

s = 0.5 1.20e−4 2.71e−5 6.16e−6 1.46e−6 3.43e−7 8.24e−8 2.03e−08
log2(di/di+1) 2.1432 2.1386 2.0742 2.0949 2.0566 2.0194
s = 0.6 8.53e−5 1.89e−5 4.45e−6 1.02e−6 2.40e−7 5.81e−8 1.40e−8
log2(di/di+1) 2.1730 2.0865 2.1167 2.0946 2.0486 2.0536
s = 0.7 5.83e−5 1.37e−5 3.15e−6 7.25e−7 1.71e−7 4.13e−8 1.01e−8
log2(di/di+1) 2.0930 2.1184 2.1195 2.0805 2.0524 2.0350

β = 0.1

N 16 32 64 128 256 512 1024

s = 0.25 3.06e−1 1.66e−1 8.63e−2 4.41e−2 2.23e−2 1.12e−2 5.62e−3
log2(di/di+1) 0.8846 0.9391 0.9685 0.9840 0.9919 0.9959
s = 0.3 1.68e−1 7.75–2 3.45e−2 1.52e−2 6.64e−3 2.90e−3 1.26.e-3
log2(di/di+1) 1.1210 1.1651 1.1850 1.1935 1.1972 1.1988
s = 0.4 4.71e−2 1.60e−2 5.33e−3 1.76e−3 5.82–4 1.92e−4 6.34e−5
log2(di/di+1) 1.5578 1.5864 1.5953 1.5985 1.5995 1.5998

N 64 128 256 512 1024 2048 4096

s = 0.5 8.74e−4 2.12e−4 5.20e−5 1.29e−5 3.20e−6 7.98e−7 1.99e−8
log2(di/di+1) 2.0416 2.0299 2.0118 2.0111 2.0045 2.0019
s = 0.6 5.72e−4 1.28e−4 3.02e−5 7.01e−6 1.65e−6 4.00e−7 9.73e−8
log2(di/di+1) 2.1625 2.0807 2.1077 2.0866 2.0445 2.0400
s = 0.7 4.40e−4 1.03e−4 2.39e−5 5.51e−6 1.31e−6 3.15e−7 7.72e−8
log2(di/di+1) 2.0900 2.1138 2.1141 2.0764 2.0496 2.0330

(18)
≤ (2h)2s sup

v∈L2(Ω)

∥(I − π2h)z∥∥Ksv∥H2s(Ω)

∥v∥

(12)
≤ C(2h)2s∥(I − π2h)z∥ ≤ C ′h2s

∥z∥. (19)

The conclusion follows from (16) and (19). ■

The next theorem follows from Lemma 3.1 and Lemma 1 in [26].

Theorem 3.1. If Csh2s−ε′

≤ β/(4Ls), then

d(Hs
h, G

s
h) ≤ 4Lsβ−1h2s−ε′

. (20)

This result certifies that the quality of the two-grid (and hence multigrid) preconditioner is improving with increasing
resolution, as in the elliptic case, but at a rate that is degrading as s decreases to 0. Consequently, the preconditioner is
expected to be less efficient as s decreases. At the same time, the coarsest mesh that can be used may also need to be
finer and finer as s decreases due to the hypothesis in Theorem 3.1; hence, the number of levels that can be used at some
point will necessarily be smaller. Remarkably, the numerical results in Section 4 show an improved picture: they suggest
that in fact a significantly stronger estimate holds. Hence, we formulate the following conjecture.

Conjecture 3.1. Assuming the domain is convex, there is a constant C̃s independent of h, so that, if h is sufficiently small,

d(Hs
h, G

s
h) ≤

{
C̃sβ

−1h4s , if 0 < s < 1/2
C̃sβ

−1h2 , if 1/2 ≤ s < 1 .
(21)

It is notable that (21) is consistent with the classical result (9) for s = 1, and also with Theorem 3.1 as s ≈ 1. However,
it shows that the preconditioner is uniformly very good when 1/2 ≤ s < 1 and even with the classical case s = 1, and
is twice as efficient compared to what the analysis predicts for 0 < s < 1/2. Proving Conjecture 3.1 requires a different
approach from proving Theorem 3.1, since we do not expect any superconvergence to hold in (14). Instead, we expect
the proof of the conjecture to involve higher order estimates in weaker norms for the control-to-state map, in addition
to more refined regularity results.
5
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t

Fig. 1. The top and bottom panels respectively show the iteration counts for CG and MGCG with respect to the mesh-size. As expected, we observe
the iteration count to be roughly independent of the mesh-size for CG; for MGCG it is expected to decrease as the mesh-size decreases. An exception
may be the transition from two to three grids, where the number of iterations may increase. With the base case being h = 2−5 , we see in two of
he cases an increase in the MGCG iteration count when refining from h = 2−6 (two grids) to h = 2−7 (three grids).

4. Numerical experiments

We have performed two kinds of numerical experiments. First we aim to verify (21) directly by building matrices
corresponding to the Hessian and the two-grid preconditioner for a set of grids with hj = 2−j, j = jmin, . . . , jmax, followed
by a direct computation of dshj := d(Hs

hj
, Gs

hj
) using generalized eigenvalues (Hs

hj
u = λGs

hj
u). Then we form the ratios

dshj−1
/dshj to confirm the formula (21). We show results for β = 1 and β = 0.1 for this purpose. However, due to the

sizes of the matrices involved, these computations are limited to the one-dimensional case Ω = (0, 1). The results for
s = 0.25, 0.3, 0.4, 0.5, 0.6, 0.7 are shown in Table 1, and they strongly support Conjecture 3.1. The precise values of
jmin, jmax vary with s, due primarily to memory limitation (smaller s requires more memory). It is notable that the spectral
distances in the lower part of the table are approximately ten times larger than their counterparts in the upper half (for
a value of β that is ten times smaller), thus also supporting the dependence on β in (21).

The second kind of numerical results are actual two-dimensional solves in Ω = (0, 1)2 of (6), i.e., our optimal
control problem with a multigrid version of the preconditioner. The data is ud(x, y) = sin(4πx) sin(3πy). For each case
considered, we compare the number of unpreconditioned CG iterations to the number of multigrid preconditioned CG
(MGCG) iterations, and we report the wall-clock times. The results are reported in Table 2 and also in Figs. 1 and 2.
The solvers are all matrix-based, in the sense that the sparse matrices implementing the operators Ks

h are formed in
block-diagonal form and prefactored. Only the coarsest Hessian is formed at resolution 32 × 32, which is used as the
base case for all cases considered. The effect of decreasing the value of the regularizer β and/or that of the parameter s is
an increase in the number of CG iterations. In order to maintain the number of unpreconditioned CG iterations between
20 and 50 (for illustration purposes) we have chosen slightly larger values of β as we decreased s in the experiments
6
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Fig. 2. The top and bottom panels respectively show the wall clock time for CG and MGCG with respect to the mesh-size. As expected, on the
log–log plot we observe a perfectly linear behavior for CG. For MGCG, the behavior is sublinear for all the cases for which transitioning to a finer
grid results in a drop of the number of iterations. We show two cases for which there is no drop: for s = 0.6, 0.7, when refining the grid from

= 2−8 to h = 2−9 , the number of iterations remains 3, which is very low. The outlier value marked with superscript ‘‘a’’ in Table 2 was excluded
s = 0.25, h = 2−9), since it only reflects that the machine was forced into much slower swap space.

escribed below. The number of CG iterations also indicates the difficulty of the problem at hand, as it corresponds to
he number of relevant eigenmodes that can be recovered for the control for a given problem setting. All computations
ere performed using Matlab on a system with two eight-core 2.9 GHz Intel Xeon E5-2690 CPUs and 256 GB memory.
The cases include s = 0.25, 0.3, 0.4, 0.5, 0.6, 0.7. The results show a dramatic reduction in the number of MGCG

terations compared to unpreconditioned CG, as well as a reduction in computing time. It is notable that for each case, the
umber of MGCG iterations is ultimately decreasing with increasing resolution. E.g., for s = 0.4 the number of multigrid
G iterations, decreases from 7 on a 64 × 64 grid to 3 on a 512 × 512 grid, while the number of unpreconditioned
G iterations is virtually constant. However, for s = 0.25 the decrease is less dramatic. It is expected that for a regular,
terative or parallel implementation of the matrix–vector product of the Hessian, the dramatic decrease in number of
terations will be reflected in the decrease of computing time, since the most expensive iteration remains at the finest-level
ractional Poisson solve.
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Table 2
Iteration counts for unpreconditioned CG vs. MGCG with base case 32 × 32; wall-clock times are shown in seconds in
parenthesis.
64 × 64 128 × 128 256 × 256 512 × 512

CG MGCG CG MGCG CG MGCG CG MGCG

s = 0.25, β = 10−2

24 (25) 9 (10) 25 (198) 19 (174) 25 (1482) 12 (880) 25 (11326) 8 (23876a)

s = 0.3, β = 10−2

21 (19) 6 (6) 21 (148) 6 (54) 21 (1110) 4 (299) 21 (8805) 3 (2045)

s = 0.4, β = 10−3

35 (28) 7 (6) 35 (206) 7 (52) 36 (1635) 4 (261) 35 (11753) 3 (1585)

s = 0.5, β = 10−3

23 (18) 5 (4.5) 23 (136) 4 (32) 23 (1015) 3 (200) 23 (7743) 2 (1124)

s = 0.5, β = 10−4

57 (43) 8 (7) 56 (316) 11 (76) 55 (2369) 7 (402) 55 (18090) 4 (1900)

s = 0.6, β = 10−4

38 (30) 6 (5) 38 (226) 4 (33) 37 (1687) 3 (210) 37 (12591) 3 (1635)

s = 0.7, β = 10−4

27 (25) 5 (5) 26 (183) 4 (38) 25 (1315) 3 (240) 25 (9991) 3 (2103)

aThe time marked is not relevant, because the computation was forced into much slower swap space due to memory limitations.
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