IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

3287

Task Planning on Stochastic Aisle Graphs
for Precision Agriculture

Xinyue Kan'”, Graduate Student Member, IEEE, Thomas C. Thayer 2 Graduate Student Member, IEEE,
Stefano Carpin'”, Senior Member, IEEE, and Konstantinos Karydis'~, Member, IEEE

Abstract—This work addresses task planning under uncertainty
for precision agriculture applications whereby task costs are un-
certain and the gain of completing a task is proportional to re-
source consumption (such as water consumption in precision irri-
gation). The goal is to complete all tasks while prioritizing those
that are more urgent, and subject to diverse budget thresholds
and stochastic costs for tasks. To describe agriculture-related en-
vironments that incorporate stochastic costs to complete tasks,
a new Stochastic-Vertex-Cost Aisle Graph (SAG) is introduced.
Then, a task allocation algorithm, termed Next-Best-Action Plan-
ning (NBA-P), is proposed. NBA-P utilizes the underlying struc-
ture enabled by SAG, and tackles the task planning problem
by simultaneously determining the optimal tasks to perform and
an optimal time to exit (i.e. return to a base station), at run-
time. The proposed approach is tested with both simulated data
and real-world experimental datasets collected in a commercial
vineyard, in both single- and multi-robot scenarios. In all cases,
NBA-P outperforms other evaluated methods in terms of re-
turn per visited vertex, wasted resources resulting from aborted
tasks (i.e. when a budget threshold is exceeded), and total visited
vertices.

Index Terms—Planning, robotics and automation in agriculture
and forestry, scheduling and coordination, task and motion
planning.

1. INTRODUCTION

UTONOMOUS agricultural mobile robots become

increasingly more capable for persistent missions like
monitoring crop health [1] and sampling specimens [2] across
extended spatio-temporal scales to enhance efficiency and pro-
ductivity in precision agriculture [3]. An autonomous robot (or a
team of them) needs to perform certain tasks in distinct locations
of the environment subject to a specific budget [4] on the actions
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the robot can take (e.g., a maximum capacity of soil samples
to carry [5]). During in-field operations, the actual costs to
complete tasks can be uncertain whereas expected costs may
be known. Also, some tasks can be more urgent than others,
and have to be prioritized. It is often the case [3], [6], [7] that
there exists some prior information about a required task (e.g.,
older measurements of soil moisture [8]) that can bias robot task
assignment(s). Hence, it is necessary to develop approaches that
utilize limited prior information to plan tasks with uncertain
costs and priority level.

There exist two key challenges for efficient robot task al-
location in precision agriculture. First, prior maps can indi-
cate biases in task assignments, but may not be trustworthy.
This is because conditions in the agricultural field can change
rapidly [9], are dynamic [10], [11], and may be hard to predict
ahead of time [12]. Second, as the budget is being depleted,
the robot needs to periodically return to a base station (e.g.,
to drop collected samples and/or recharge). Addressing these
two challenges simultaneously poses a two-layer intertwined
decision making under uncertainty problem: How fo perform
optimal sampling given an approximate prior map, and how
to decide an optimal stopping time (i.e. to refurn to base)
to avoid exceeding a given task capacity? This letter intro-
duces a new stochastic task allocation algorithm to balance
optimal sampling and optimal stopping when task costs are
uncertain.

A direct approach for persistent sampling (and/or monitoring)
is to survey the entire space and perform the desired task(s)
sequentially [13]-[15]. The main drawback is that the robot
would then exhaustively visit all sampling locations without
prioritizing those that would yield a higher gain or would be more
time-critical. Orienteering [16]-[19] can address part of this
drawback by determining paths that maximize the cumulative
gain under a constant budget. The robot prioritizes visiting
adjacent locations if they jointly yield higher gains than isolated
high-gain locations, and provided that any budget constraints are
not violated [16], [17]. However, this strategy can be insufficient
for missions where some tasks are more urgent than others. For
instance, several existing robot task allocation strategies, albeit
for distinct application domains [20]-[23], typically consider
a deadline [24] or user-defined importance levels. In precision
agriculture, overhead imagery (e.g., thermal imaging) can help
pinpoint locations that appear to be under water stress [9], in
which case sampling leaves or soil in those areas should be pri-
oritized. We formalize the notion of tasks with distinct urgency
(e.g., a closer deadline or greater importance) by assigning a
priority level [25], [26] to tasks.
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Besides the task priority level, deciding a next task for a robot
to complete is also dependent on available budget, which can
be of multiple types. For instance, the number of locations that
a robot can visit and sample from in one ‘trip’ is constrained
by both the energy capacity to move between locations and the
robot’s sample payload capacity. Exceeding the energy budget
can prevent the robot from returning to the base station to
recharge and drop collected samples, whereas exceeding the
sample payload capacity may cause potential robot and sample
damage. Here we consider an energy budget for the robot moving
between locations, and a resource budget linked to task execu-
tion. The two budgets are independent of each other, and both can
be reset to their initial values when the robot returns to the base
station. The actual amount of resources consumed to execute a
task can differ from what is the expectation in practice. In fact,
the actual amount of resources consumed for task execution
is revealed only after the task has been completed. To model
this, we consider the cost to complete a task to be a stochastic
random variable that follows some known distribution. The
cost to move between locations, however, is considered to be
deterministic [8]. Specific details are given in the following.

This paper introduces a new stochastic task allocation ap-
proach, termed Next-Best-Action Planning (NBA-P), for task
planning under uncertainty in precision agriculture. The pa-
per also contributes a new Stochastic-Vertex-Cost Aisle Graph
(SAG). SAG is an extension of the aisle graph [8], [27], which
is often used to describe agriculture-related environments. The
main novelty of SAG is that it can represent uncertain task costs.
Using SAG, our proposed NBA-P algorithm simultaneously
determines 1) how to optimally schedule which tasks to perform
at run-time, and 2) when to optimally stop performing new tasks
and return back to the base station also at run-time. NBA-P
ensures that urgent tasks are prioritized subject to both energy
and resource budgets. Further, it can be extended to multi-robot
teams. We test in single- and multi-robot cases using both simu-
lated data and 10 real-world datasets collected in a commercial
vineyard at central California. In all cases, NBA-P achieves
higher efficiency than naive lawnmower, informed lawnmower,
and series Greedy Partial Row planners [28]-[30] in terms of
more return per visited vertices, less resources wasted because
of aborted tasks, and less total visited vertices.

II. RELATED WORK

Aisle graphs [8], [27] model motion constraints emerging
when robots navigate in structured environments like agricul-
tural fields. Vertices denote task locations, and edges represent
connections between locations. Any two rows connect to each
other only via the two end vertices. Moving backwards is not
allowed; if a robot enters a row, it will have to reach the row’s
end before moving to another row. In the original aisle graph [8],
[27], vertices and edges are associated with known and constant
reward and movement costs, respectively. Our extension, SAG,
can also represent uncertain task costs.

Orienteering can tackle persistent sampling on aisle graphs.
Orienteering is NP-hard, and thus greedy heuristics are often
employed [8]. Recent efforts on stochastic orienteering associate
stochastic costs to graph edges and propose a time-aware policy
for a robot to adjust its path to avoid exceeding a certain bud-
get [31]. However, addressing cases that involve uncertain task
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Fig. 1. SAG As(3,3+ 2) with 3 rows and 5 columns. Grey nodes are end
vertices to connect rows. Vertices with red edges are base stations.

cost on vertices for aisle graphs remains open. NBA-P tackles
the problem by simultaneously considering uncertain task costs
on vertices and deterministic costs on edges.

Optimal stopping [32] can be used to find the (optimal) criteria
to terminate a process while incorporating uncertainty [33].
Often, data arrive in sequence, and irrevocable decision has to
be made as to when the expected return is maximized [34]-[36].
Optimal stopping has been used in robotics applications like
target tracking [37] and marine ecosystem monitoring [38].
However, no motion constraints, like those imposed by aisle
graphs, apply to robot actions, and hence existing methods can-
not be ported over to operations on aisle graphs. Paths planned
with NBA-P fill the gap, as they directly apply to environments
with motion constraints captured by aisle graphs.

Our method applies when: 1) motion constraints in the envi-
ronment can be captured by a SAG; 2) the cost of completing
tasks follow exponential distributions; and 3) the obtained gain
by completing a task is proportional to the actual task cost.

ITI. STOCHASTIC TASK ALLOCATION PROBLEM SETUP

We first define the Stochastic-Vertex-Cost Aisle Graph (SAG),
to incorporate uncertain task cost on vertices. Then, we present
this paper’s problem setup utilizing SAG.

A. The Stochastic-Vertex-Cost Aisle Graph (SAG)

We propose SAG to extend the original aisle graph [8], [27]
to handle missions consisting of tasks with priority levels and
stochastic execution costs. There are three main differences
between SAG and the original aisle graphs. 1) SAG considers
stochastic costs for task execution at vertices. 2) Vertices in
SAG are associated with task priority levels. 3) The gain, which
describes the benefit of completing a task, is proportional to
the actual resource consumption if the task is fully completed.
With more resource consumption, higher gain could be obtained,
e.g., higher quality information during soil sampling process, or
better field watering. Note that no gain will be obtained if 1)
the resource budget is exceeded during task execution, and the
task is aborted, or 2) a robot only passes through a vertex on its
way without performing a task. In contrast, in the original aisle
graph rewards are constant and can be collected immediately
when passing through vertices.

Given a field that contains m rows and n columns (where n
denotes the total number of possible sampling locations in each
row), its SAG representation is an (undirected) graph A (m, n +
2) = (V, E) where V and F are the sets of vertices and edges,
respectively. Note that in the graph representation we add two
additional “virtual’ columns at indices 7 = 0 and j = n + 1 that
connect the m rows; virtual vertices carry no gain. An example
of a A.(3,5) graph is given in Fig. 1.
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The set of edges E is built as follows:'

® Vertices v; ; with¢ € [1,m]and j € [1, n| have two edges,

€i,(j—1)t and €ijt-

® Vertices v; j with: € (1,m)and j € {0,n + 1} have three

edges:if j = Othen {e; o+, €(;_1)+,0, €i+ o} andif j = n +
1 then {e; 4 586 1)+ fitts Gt gL -

¢ The four corner vertices are v10,Vm,0,V1,n+1>Vm,n+1

each of which has two edges.

Set S contains all priority levels in A;. Let ¢, : V — R
and e, : E — R be the costs for task execution at vertices and
movement on edges, respectively. The actual resource consump-
tion to complete a task at vertex v € V' follows an exponential
distribution, ¢, (v) ~ Exzp(w@,), where w, is the mean cost of
all tasks with priority level s € S. The actual task cost is not
known before task completion, and is independent between
tasks at different locations. The cost of movement on edges
is a known constant. Function f : V — S returns the priority
level of a vertex, and f(v; ;) = 0,v; ; € V indicates no tasks at
a vertex.> Condition f(;, ;,) < f(i,.j,) implies that the task at
vy, j, 18 more urgent than the task at v;, ;. In other words, if
the same amount of resources is consumed at v;, ;, and vj, j,.
higher gain is obtained at v;, j,. Once a task is completed, its
priority level is set to 0.

Letr : V — R be the actual gain obtained when complet-
ing a task. Function p : S — R~ maps each priority level to
a deterministic positive value, which indicates the gain-to-cost
ratio of completing a task of given priority level. Then, r(;, ;) =
»"J'(f(h,_fl))c'u(i] J1) and »u'(f(il,jl)) < “’(f(iz-,jz)) if f(‘il,jl) <

(i2,52) TOT Viy 3y, Vip 5, € V. Vertices v; ; with 7 € [1,m] and
j = n+ 1 are virtual nodes to connect rows, hence f(; ; =0,
Cy(i,j) = 0,7(; ;) = 0. Edges e; o+ and e; ,+ Withi € [1,m] has
ce(€i,0+) = Ce(€int+) = 0.

Priority levels can be user-defined or estimated via any prior
environment maps. The latter can be determined based on col-
lected data, e.g., difference between ideal and sampled soil mois-
ture levels [8]. However, prior information may be approximate
and thus lead to suboptimality if directly set as priority levels for
vertices. A way to assign priority levels from prior information
is to set thresholds so that data within a range yield the same
priority level. Only same types of tasks with same expected cost
can be set at same priority level.

B. Stochastic Task Allocation on SAGs

A mission on SAG A.(m,n + 2) = (V, E) comprises tasks
located at v € V C V. Given energy budget for moving along
edges and resource budget for executing tasks on vertices, to
complete all tasks in Vi so that:

® C1: Tasks are prioritized according to priority level.

® (C2: The number of tasks being aborted because of exceed-

ing the resource budget (at run-time) are minimized.

C1 enforces the time-critical decision making, whereas C2 en-
sures efficiency of mission completion. When a task is aborted,
no gain is obtained and both consumed resources and energy
spent moving to that vertex are wasted. Aborting tasks will also

IFor clarity and completeness, we follow and partially adapt the definition of
the original aisle graphs from [8], [27].

2For clarity, we will henceforth write f(v; ;) as f(i,5)- Any other functions
that take vertices as input will be shortened similarly.
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cause delays on mission completion time. To avoid exceeding
the resource budget at run-time, the robot thus needs to de-
termine an optimal stopping time. Its next action should be to
either 1) perform another feasible task of the highest possible
priority level (which we describe how to set next), or 2) stop
performing tasks and return to the base station. Since the actual
cost is unknown before completing a task, the next action and
corresponding paths are determined in an adaptive manner based
on remaining budget at run-time.

IV. PROPOSED TASK PLANNING ALGORITHM

Our proposed Next-Best-Action Planning (NBA-P) approach
balances sampling feasible vertices on SAG and determining
when it is preferable to exit (i.e. return to base station) based on
remaining resource and energy budgets. When sampling feasible
vertices, we use a three-phase approach. Phase 1: sample feasi-
ble vertices subject to resource budget; Phase 2: sample feasible
vertices from phase 1 subject to energy budget; Phase 3: select
arow to proceed and plan corresponding paths. When sampling
in phase 1, we start from the highest priority level that currently
exists. If either phase 1 or phase 2 returns no feasible vertex, we
decrease the examined priority level until either feasible vertices
are found, or the examined priority level reaches 0, in which case
it is optimal to exit. This strategy ensures that tasks with higher
priority level are prioritized when possible.

A. Phase 1: Feasible Vertices Subject fo Resource Budget

To tackle the stochastic task cost, we formulate the next-task
selection subject to resource budget as an optimal stopping
problem. We employ a one-stage-look-ahead rule: if it is better
to return to base station directly than to perform one more
task of any priority level then return, then return at current
time. In this phase, we do not need to consider the actual robot
position. Let p and g be the remaining resource budget and the
total gain in the current ‘trip’ (i.e. operation since last visit to
a base station), respectively.’ If a task of priority level s € S
consumes x amount of resources, the return is p(s)x. Then, in
a dynamic programming framework, with (p, ¢) the state, the
expected return function, ®(p, g), is

max { [ X C®(p — x,q + p(s)z)dz },if p>0
@(p,q)Z{"—‘ES ts }

q, otherwise,

(1
where A, = wls When p > 0 (i.e. some resource is available),
a task of priority level s € S which maximizes the return is
selected. Otherwise, no task can be completed and the total return
remains the same as gq.

1) Single Priority Level for All Tasks: We start with the case
that all tasks in the mission have the same priority level, |S| = 1.
In this case, we only need to determine the optimal time to exit.
According to (1), for s € S, the state (p,’ ¢’) is on the optimal
stopping boundary if

p‘
= / Aot (g + p(s)z)dz, @
0

3Gain q are set to 0 when the robot resets at the base station.
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Fig. 2. Illustrations of cases described in (a) Lemma 1, (b) Condition 1 and

(c) Condition 2. Red points visualize sample states (p,g). In (a)-(c), tasks of
priority levels s1 or so are feasible if the current state (p, g) is below the curves

g(p,' s1) or g(p,' s2), respectively.

since continuing to perform another task will not result in higher
expected return. Hence, the robot should exit if the current state
(p,q) satisfies p < p’ and g > ¢/, i.e. all tasks are infeasible.
Solving (2) leads to

= @r 1), )

Defining function g: (Rsg,S5) — Rso,(p,s) — ¢ based
on (3) represents the optimal stopping boundary curve for a
given priority level. Thus, it is optimal to exit at state (p,’¢')
when ¢’ > g(p,’ s) given a priority level s € A,.

Definition 1: A task of priority level s is feasible for the
current state (p,q), if (p, g) lies below the optimal stopping
boundary curve g(p,’ s) (Fig. 2).

2) Multiple Priority Levels Across Tasks: If |S| > 1, the
robot determines the candidates with highest possible priority
level allowed by the remaining budget. The optimal strategy
is to examine the feasibility to perform a task of priority level
s = max(.9), and then decrease s until a feasible task is found.
If no feasible task exists until s = 0, then the optimal decision
is to return back to the base station.

When multiple priority levels exist, it is not always true that
tasks with higher priority levels must be performed before any
lower priority rank tasks. To maximize the expected return in
one ‘trip’ (i.e. between two times that a robot visits the base
station), when the remaining resource budget is not enough for
high priority level tasks, a task with lower priority level can
potentially be selected to be performed next. However, in some
scenarios, a lower priority task will never be selected prior to a
higher priority task.

Lemma 1: At state (p, g), given that tasks with priority level
s € S are infeasible, then all tasks with s’ € S and s’ < s must
be infeasible if wy > w,.

Proof: Letsy, sz € §:1 < 51 < s2 < max(S)and p(s1) <
ft(s2). The mean costs of s; and sy tasks are w,, and w,,,
respectively. If w,, > w,,, for any p > 0, g(p, s2) > g(p, s1)-
Hence, if a s priority level task is infeasible at state (p, q),
ie.¢ > g(p, s2), then ¢ > g(p, s2) > g(p, s1), and s tasks are
infeasible too (Fig. 2(a)). |

On the other hand, as shown in Fig. 2(b), (c), for s1,s2 € S
such that 1 < 51 < s3 < max(9), if W, < ws,, the relation-
ship between boundary curves g(p, s1) and g(p, s2) is either
Condition 1 (Fig. 2(b)) or Condition 2 (Fig. 2(c)).

® Condition 1 :

g(p,s2) < g(p,51),p > 0, 4)
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Algorithm 1: SampleQone((p, g), s).
1: procedure DETERMINE (1 AT STATE (p, q)

2: s+ min(s,maz(9)),Q1 + 0

3: whiles > 0AndQ; =0 do

4:  if g < g(p, s) then

5 for v € Vr do

6: if f(v) = sthen Q; + Q; U {v}
7 end if

8: end for

: else

10: whilew, 1 > w,dos+s—1
Iz end while
12: s+s5—1
13: end if

14: end while
15: return Qq,s
16: end Procedure

® Condition 2: 3pg > 0, such that
> g(p,s1), if 0 <p > po
Y gy ok )
< g(p,s1), ifp > po

For Condition 1, a state (p, g) above the curve g(p, s2) can
be still below the curve g(p, s1), e.g., point by in Fig. 2(b). In
this case, s; tasks should be performed next even if there still
exist s, tasks. For Condition 2, when p > py, the situation is the
same as described above for Condition 1. When 0 < p < pp we
reduce to the conditions of Lemma 1, in which case given that
sp tasks are infeasible, s; tasks must be infeasible (an example
is point ¢; in Fig. 2(c)).

Let )1 be the set containing all feasible vertices subject to a
given resource budget. We propose Algorithm 1 to determine ()4
at a state (p, g). If Q1 = 0, the robot returns to the base station.
Otherwise, all vertices in 7 will continue to be examined in
Phase 2 subject to a given energy budget.

B. Phase 2: Feasible Vertices Subject fo Energy Budget

From (1, we continue sampling vertices that satisfy the
energy budget constraint. Suppose arobot is at vertex v;,_ ;. € V,
and a vertex v; ; € ()1 is a candidate to be examined. Without
loss of generality, suppose two base stations are located on row
14, €ach atone of the end vertices v;, o and v;, n 1. The robot can
reset at either one. Vertex v;:; is feasible if the current remaining
energy budget T allows the robot to move to v;:; then to any
base station. Let ¢,(i") be the cost to move from v;_;_to an
end node—either on column 0 or n 4 1 depending on the robot’s
moving direction in current row ¢’ (recall backward motion is
not allowed). Let ¢5(:’) be the cost to move between two end
vertices v;g and vj1,, 41 in row i/, and t be the cost to move from
the end vertex on row 7’ closest to the robot along its direction
of motion to the closest base station. Then, v;;; is feasible if 4

T > ta(i') + ta(i') + ty (i) (6)

If v;;; can be reached, all vertices on row i’ must be reachable,
since tq(7') + (') + ty(i') only depends on row . Costs tg

“Expressions to compute ¢, tg and t. are given in the Appendix.
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and ¢, are fixed for each row and can be precomputed prior
to deployment. Cost ¢, is computed at run-time. The set con-
taining all vertices that satisfy both budgets is Q2 = {v;1j» €
Qulta(?’) +p(i') + 4 (¢') < T}

C. Phase 3 and Proposed Algorithm

Phase 3 can be reached if ()2 # (). Note that all tasks at vertices
in @7 have the same priority level s and hence the same expected
cost w,. Therefore, sampling the next vertex turns into selecting
a row 1 which consists of one or more tasks of priority level s.
Then, the robot will perform the first encountered feasible task
while moving along row 3.

Suppose the robot is currently at v;_ ;. with state (p, g). The
row i € [1,m] is selected such that Vi’ € [1,m],?' # 1.,

min{|Qa(i)|, %J} > min{| Q2 (i), %J},

ta(i) < ta(i), ®)

where Q2(z) = {v;;j € Q2l|i’ = i}, and w, is the mean cost of
feasible tasks. By (7), the robot is expected to complete more
tasks in row ¢ than any other row. Thus, row ¢ should be the
row that contains the largest number of feasible tasks permitted
by remaining budget g, according to the expected cost w,. If
multiple rows return a tie, then the row closest to the robot’s
current position will be selected as per (8).

The proposed Next-Best-Action Planning (NBA-P) approach
is formalized in Algorithm 2. NBA-P can be extended to apply
to multi-robot teams by sequentially determining the next best
action for each robot. In multi-robot implementation, each robot
runs NBA-P independently and in parallel, and exchanges infor-
mation only about the row it currently occupies. For each robot,
()2 has to be modified by removing all vertices in those rows that
are occupied by other robots. Note that similar to [16], multiple
robots can travel simultaneously along the vertical columns 0
and n + 1, since space on the boundary of a field is typically
much larger.

)

Algorithm 2: NBA-P.
1: Procedure Determine next action at state (p, q)

2 s + max(S),
3 Qi+ 0,Q,+ 0
4 While Q2 = 0
5 If s=0 exit, return to base station
6: End If
7 Q1, s « SampleQone((p,q), s)
8: IfQ), = () exit, return to base station
9: Else
10: obtain @), from Eq. (6), s +— s —1
113 End If
12 End While
13: continue with Phase 3

14: End Procedure

V. RESULTS

To study the efficiency and effectiveness of the proposed
approach, we test with 1) simulated data in a 2-robot scenario,
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and 2) data collected from areal-world vineyard in 1- and 5-robot
scenarios. Testing with simulated data enables parameter tuning
so as to study the properties of NBA-P, whereas testing with
real-world data reveals the spatial pattern of real tasks that exist
in agricultural fields. In both cases, NBA-P is compared against
lawnmower planner [28], which is often seen in agriculture-
related applications [29], [30]. In naive lawnmower (N-LM),
a robot follows meandering paths to survey rows in sequence.
When no budget constraint is considered, and when departing
from a corner in a square environment, lawnmower will generate
the shortest path to survey the entire field in the sense that each
vertex is visited only once. In experiments using real-world
datasets, NBA-P is also compared against informed lawnmower
(I-LM) and Series Greedy Partial Row (S-GPR) [16]. I-LM
attempts to complete a task if the remaining budget is greater
than the expected cost of a task. S-GPR is modified to use both
energy and resource budgets. In multi-robot cases, each robot
runs N-LM, I-LM, and NBA-P independently and in parallel to
each other; in S-GPR robots plan their trajectories sequentially.
All vertices in occupied rows turn infeasible for other robots so
that each row has one robot performing tasks.

A. Testing With Simulated Data and Parametric Study

We consider a simulated environment A (20, 17) of 20 rows
and 17 columns (including the two virtual columns). Base sta-
tions are located at v10,0 and vyp,16. The cost to move on each
edge is 1. Consider two robots deployed from base station vyg o
to complete all tasks. Each robot departs with energy budget
80, and resource budget 40.° A vertex is considered “visited”
if the robot stops at the vertex and attempts to perform a task,
regardless whether the task is ultimately completed or aborted.
If the resource budget is exceeded before task completion, the
task will be aborted, the resources already consumed for this task
are considered to be “wasted,” and no gain will be obtained. The
total gain will be the sum of the actual gain, which is proportional
to the actual task cost, at all task-completed vertices. Two cases
are studied, 1) S = {1}, i.e. all tasks have equal priority level,
and 2) S = {1,2}, i.e. two priority levels exist, hence tasks
with s = 2 will be prioritized. In case 1, p(1) = 1,71 = 2;
and in case 2, p(1) = 1, pu(2) = 2, w1 = 1.5, w, = 2. For each
case study, 10 trials are conducted. In each trial, 225 tasks
are randomly assigned to 225 vertices in A, with randomly
generated task location and actual task cost. In each trial, the
proposed method and the N-LM method are tested on the same
simulated environment.

Fig. 3 illustrates shows from a sample trial when |S| = 1 (top)
and |S| = 2 (bottom). Fig.s 3(a) and (c) show the percentage of
obtained gain over ground truth total gain as a function of visited
vertices (shortened as r /v ratio). Fig.s 3(b) and (d) show the total
wasted resources because of aborted tasks as a function of visited
vertices (shortened as w /v ratio). Total wasted resources are the
sum of resource consumption for all aborted tasks. Total gain,
total wasted resources and visited vertices correspond to the sum
of those values from both robots. Results suggest that all tasks
are completed, and the robots return to the base station.

>Values for both budgets are selected randomly for evaluation purposes.
Expected task costs are selected to achieve a budget over expected cost ratio
of 20, which helps reveal general patterns of the method.
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Fig. 3. Example of (a) percentage of obtained gain and (b) wasted resources
over visited vertices when |.S| = 1. Panels (c) and (d) contain the same infor-
mation when |S| = 2.

TABLEI
RESULTS FOR SIMULATED DATA OVER 10 TRIALS

/v ratio wi/v ratio vertices

(10—3) (10—2) visited
1S =1 NBA-P | 4424002 | 1.124+1.08 226.2+1.1
N-LM 3.46 £0.18 9.13+1.74 28941+ 149
1S] = 2 NBA-P | 4444+0.02 | 0.331+0.73 2254+ 0.7
N-LM 3.76 £0.1 45+ 1.63 266.2 £ 7.0

Table I contains the mean and one standard deviation of r /v
ratio, w/v ratio, and total visited vertices over 10 trials. Larger
/v suggests higher efficiency since more gainis obtained by vis-
iting the same number of vertices, i.e. same number of attempts
to execute tasks. Lower w/v indicates lower rates of aborted
tasks, i.e. less resources are wasted by visiting the same number
of vertices. Higher r /v, lower w /v, and less total visited vertices
are desired, and these conditions together indicate higher overall
effectiveness.

Resultsin Fig. 3 and Table I suggest that, in both cases, NBA-P
achieves higher r /v ratio, lower w /v ratio, and less total visited
vertices than N-LM. When | S| = 1, since all tasks have the same
priority level, the higher r/v ratio of NBA-P is mainly due to
the optimal stopping strategy that helps prevent aborting tasks.
When | S| = 2, the higher r /v is due to both the optimal stopping
and priority-driven strategies. This can be observed by the steep
slope at the beginning of the curve of our method in Fig. 3(c),
during which time tasks with priority level 2 are prioritized. The
high rate of tasks being aborted in N-LM explains why the total
visited vertices for N-LM are more than for NBA-P. For N-LM,
the robot will attempt to perform a task if there is still remaining
resource budget. However, if the budget is exceeded during task
execution, the task will be aborted and the vertex needs to be
re-visited. Setting multiple priorities may be useful but needs
to be carefully tuned as too many priority levels can make the
process inefficient in practice, forcing the robot to move across
the field to reach the tasks of the next highest priority level.

Reducing the rate of aborted tasks can increase efficiency.
We continue to study the influence of p and w, to the rate of
aborted tasks, in which case the energy budget does not need to
be considered. Starting with |S| = 1, and assuming there exist
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Fig.4. (Left) Rate of aborted tasks over the ratio of budget/w; when |S| = 1.
(Right) Rate of aborted tasks with respect to the ratio of budget/io1 and budge=
t/1mg for the |S| = 2 case.

infinite tasks, we need to determine the optimal time to stop
performing more tasks. Fig. 4 (left) shows the relation between
aborted tasks (ratio of occurrences over 1000 trials) and the ratio
of initial budget over mean task cost w;, for different values of
p. Results suggest that aborting a task is barely influenced by
the value of . If the initial budget is close to the mean task cost,
the rate of aborted tasks can be as high as 50%, and the optimal
stopping rule is less effective. If the initial budget is more than
50 times the mean task cost, the rate of aborted tasks reaches 0.

Given that p barely affects the rate of aborted tasks (Fig. 4
(left)), we examine in the case that |S| = 2 the influence of the
ratio between initial budget and task mean cost for each priority
level. We assume there exist infinite tasks of priority level 1
and 2. The goal is to determine if it is better to select another
task of priority level 1 or 2 to perform, or to stop. Fig. 4 (right)
suggests that, regardless of the relation between w; and w5, the
rate of aborted tasks is more influenced by the ratio of initial
budget over ws. This is intuitive since tasks of priority level 2
are prioritized over tasks of priority level 1. Since more s = 2
tasks are performed if possible, it escalates its influence to the
rate of aborting tasks. Thus, when higher priority tasks exist,
the initial budget can be set by considering expected cost of
high priority tasks, as the expected cost of low priority tasks do
not have much impact when energy is sufficient. The proposed
method is more suitable when the mean cost of tasks is small
enough compared to the initial (resource) budget.

B. Testing With Real-World Field Data

The real-world datasets used here contain soil moisture values
collected in a commercial vineyard located in central California.
The structure of the vineyard imposes motion constraints to
ground robots moving therein. Irrigation lines are attached to
metallic wires at about 12 in from the ground and running
parallel to the trellis. Thus, to move from one row to another
(even if adjacent), the robot must first exit the row from either
end (based on its direction), and then re-enter at the desired row.
Samples were collected on a regular grid with 275 rows and
214 columns uniformly covering the field. Sampling locations
were computed offline, and data were collected with a Campbell
H2SP soil moisture sensor.

Suppose autonomous ground mobile robots are deployed to
water plants in the vineyard. Vertices with moisture values less
than a desired level are considered to contain a task (of precise
watering). The ground truth task cost at any vertex is the moisture
difference between collected moisture values and the desired. An
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TABLEII
RESULTS FOR 10 FIELD EXPERIMENTAL DATASETS IN 1- AND 5-ROBOT SCENARIOS

robot data idx 1 2 3 4 = 6 7 8 9 10
number total tasks 39528 | 44607 58845 | 38190 | 33489 | 24075 | 12203 58553 58551 | 20345
NBA-F | 253 224 1.70 2.62 299 4.15 8.19 1.7 1.71 492
v N-LM 1.72 1.23 0.55 1.23 1.56 217 6.68 0.59 0.57 3.72
(10~5) I-LM 2.53 224 1.70 2.61 2.98 4.14 B.18 1.70 1.70 4.91
S-GPR 2.52 222 1.67 2.59 295 4.10 8.15 1.68 1.68 4.89
NBA-F | 0I5 0 0 0.61 0 0 1.61 0 0 144
1 wiv N-LM 5.88 11.9 2342 2207 1696 | 21.37 6.66 19.45 2453 491
(10~3) I-LM 462 0.98 16.77 28.87 19.10 | 2347 fri | 17.23 2718 4.00
5-GPR 9.12 22.44 70.44 49.03 3347 | 41.83 10.94 58.66 76.18 7.70
NBA-P | 39529 | 44607 | 58845 | 38192 | 33480 | 24075 | 12206 | 58553 | 58551 | 20345 |
visited N-LM | 58220 [ B1277 [ 181553 | BIOB3 | 64178 | 46144 | 14967 | 168360 | 176174 | 26914
vertices I-LM 39585 | 44703 | 58966 | 38349 | 33600 | 24159 | 12223 58689 58734 | 20372
S-GPR | 39731 | 45018 | 59933 [ 38672 | 33847 | 24363 | 12263 | 59504 59587 | 20433
NBA-P | 253 224 170 2.62 2.99 4.15 8.19 171 1.71 491
/v N-LM 1.77 1:3; 0.62 137 1.69 233 6.81 6.52 6.03 3.81
(1075) I-LM 2:5% 224 1.70 261 298 4.14 B.18 1.70 1.70 491
S-GFR 2.52 227 1.67 239 295 4.10 B.I3 1.68 1.68 430 |
NBA-P 0 0 0 0592 [] [] 2.67 0 0 059 |
5 wiv N-LM 5397 12.00 2472 24,67 1866 | 2262 6.23 2118 2705 472
(10~3) I-LM 5.81 8.37 1478 2735 1847 | 2358 494 14.66 29.46 3.61
S-GPR 9.08 22.66 70.37 49.03 33.09 | 4131 10.26 58.66 76.18 779
NBA-P | 39528 | 44607 | 58845 | 38193 | 33480 | 24075 | 12200 | 58553 | 58551 | 20348 |
visited N-LM | 56543 | 77210 [ 162420 | 73179 | 59253 | 42923 | 14688 | 153425 | 165869 | 26233
vertices I-LM 39599 | 44687 | 58952 | 38335 | 33596 | 24160 | 12218 | 58670 58753 | 20369
S-GPR | 39729 | 45020 | 359933 | 38672 | 33847 | 24363 | 12263 | 59504 59587 | 20433

L= N T vV T - )

Fig. 5. (Left) Instance of a wheeled mobile robot performing soil moisture
measurements in a commercial vineyard. (Right) Sample ground truth cost (i.e.
the moisture difference between collected moisture values and a desired level) for
one of the field experimental datasets used here. Low-moisture (dry) locations
are indicated by higher differences. In these areas, more water (the resource
in this case) needs to be consumed to reach a desired moisture level, which
is equivalent to a higher cost. Discretely-sampled values where mapped to a
continuous contour illustrated here using the kriging interpolation algorithm.
(However, we use the discrete values directly on the SAG representation of the
environment utilized by our algorithm.).

example in shown in Fig. 5. The robots’ decision is constrained
by the resource budget of total water carrying capacity, and
the energy budget to move between locations. All tasks are
considered to have the same priority level (|.S| = 1). The location
of tasks and the mean cost of all tasks (averaged real costs of
all tasks using ground truth) are available to the robot(s) prior to
departure, whereas the actual cost for each task is unknown to the
robot(s) before task completion. Without loss of generality, we
consider the movement cost on edges to be 1 (all water emitters
are located within the same interval distance). We test in 1- and
5-robot cases; robots depart with energy budget 800 and resource
budget 400. Base stations are located at v137,0 and vy37215.
Table II shows results for 10 real-world datasets in 1- and
5-robot scenarios. The 10 datasets were collected during a
timespan of 5 months, hence task locations and costs differ
among datasets. Results suggest that, in all cases, our proposed
NBA-P algorithm achieves higher /v ratio, lower w/v ratio,
and less total visited vertices than N-LM. Even though I-LM
and S-GPR achieve similar /v ratio and total visited vertices

as NBA-P, the w/v ratio is much higher compared to NBA-P.
Results attempts only if the expected task cost is less than the
remaining budget yet it fails to consider the uncertainties in
actual resource consumption, which can be much higher than
the expected value. In addition, the high actual cost may cause
multiple failed attempts at the same position. Thus, the total
waste of resource can be significant, evident by the averaged total
waste over 10 datasets for 1-robot cases being 5, 1725, 671 and
1796 for NBA-P, N-LM, I-LM and S-GPR, respectively. That
is, NBA-P is able to handle uncertain task costs, and requires
less total resources to complete the same amount of tasks as
compared to other methods. Importantly, no tasks are aborted in
13 out of 20 cases using NBA-P, where each case contains up to
60 000 tasks. For datasets 3, 8, and 9, N-LM in fact visits three
times more vertices than the proposed method. The total path
lengths for evaluated methods differ within around 2%-range,
and NBA-P achieves the shortest path for datasets 6 and 10. That
is, NBA-P plans paths of similar length as lawnmower methods.

In all, testing with experimental data validates the efficacy
and efficiency of our proposed method, and demonstrates pre-
liminary feasibility that it can scale both in terms of the size of
the environment and the number of robots in the team.

VI. CONCLUSION

Contributions and Key Findings. The paper contributes to
stochastic task allocation in precision agriculture. Given re-
source and energy budgets, our NBA-P algorithm returns the
best action on a stochastic aisle graph (SAG) by simultaneously
determining optimal sampling locations and optimal stopping
times to return to a base station, all at run-time. The proposed al-
gorithm is tested using both simulated data for a 2-robot scenario
and agricultural field experimental datasets for 1- and 5-robot
scenarios. Results suggest that, by applying NBA-P, all tasks
are completed, and tasks with high priority levels are prioritized
when possible. The rate of aborted tasks is minimal when the
initial resource budget is more than 50 times the mean task costs.
NBA-P outperforms N-LM, I-LM and S-GRP methods in all
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simulated and real-world datasets, in terms of more gain per
vertex visited, fewer tasks being aborted, and less total visited
vertices to complete the same number of tasks. In testing with
real-world datasets, our method has no tasks aborted in 13 out
of 20 cases with up to 60 000 tasks in each case. Further, N-LM
visits up to 3 times more vertices than NBA-P to complete same
number of tasks, which leads to a significant waste of resources.

Directions for Future Work. At its current form, NBA-P is
not suitable for scenarios where the task and movement costs
are correlated. Further, the overall paths using NBA-P can be
longer than those derived via the lawnmower method, especially
when multiple priority levels exist and tasks of different priority
level are intertwined. Future directions of research include 1)
application of the proposed algorithm to physical robots in the
field, and 2) study of the scenario that considers correlated cost
for movement and task execution.

APPENDIX

Let hl and hr represent the robot moving toward column
0 and j+ 1, respectively. Suppose i11 = min(ic, '), t12 =
max(ic, '), 121 = min(i,' 1q), and i22 = max(i,' iq). Then,

1 i1o—1 .
Y. Celin g+ ) + 2%, celest nqa), i A,

L= = - :
a }?_czll Ealbyoqt )+ Z;Zhll cy(ei+ o), if hr.
n—1
ta(i) = Y ce(esss+)-
j=1
=S if Al
B (?") = i=iz1 Cg(8i+,0),lf ]
b =

i=i21 ;
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