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Abstract. The purpose of this paper is to study a Helmholtz problem with a spectral fractional
Laplacian, instead of the standard Laplacian. Recently, it has been established that such a fractional
Helmholtz problem better captures the underlying behavior in geophysical electromagnetics. We
establish the well-posedness and regularity of this problem. We introduce a hybrid spectral-finite
element approach to discretize it and show well-posedness of the discrete system. In addition, we
derive a priori discretization error estimates. Finally, we introduce an efficient solver that scales as
well as the best possible solver for the classical integer-order Helmholtz equation. We conclude with
several illustrative examples that confirm our theoretical findings.
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1. Introduction. Recently, starting from the Maxwell's equations, the article
[26] derived the scalar fractional Helmholtz equation. It also established existence
of fractional (anomalous) behavior for the Magnetotelluric Problem in geophysical
electromagnetics by showing a direct qualitative match between numerical tests and
actual data. Motivated by these results, the goal of this paper is to take a step
towards a rigorous mathematical foundation of the fractional Helmholtz equation. In
particular, we show its well-posedness, introduce a new hybrid (spectral-finite element)
approach for its discretization, establish a priori error estimates, and introduce an
efficient solver that scales as well as the best solver in the classical (integer-order)
case.

Let \Omega be a bounded open domain in \BbbR d. We consider the fractional-order Helmholtz
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problem \biggl\{ 
( - \Delta )

s
u (\bfitx ) - k2su (\bfitx ) = f (\bfitx ) , \bfitx \in \Omega ,

u(\bfitx ) = 0, \bfitx \in \partial \Omega ,
(fH)

with a given wave number k \in \BbbC and right-hand side data f . We restrict ourselves to
the case of homogeneous Dirichlet boundary conditions. Nonhomogeneous conditions
can be incorporated by solving an auxiliary local problem with a homogeneous right-
hand side; see, for instance, [3, 4]. For s \in (0, 1), ( - \Delta )s denotes the fractional powers
of the realization in L2(\Omega ) of the classical Laplacian ( - \Delta ) supplemented with zero
Dirichlet boundary conditions. For a rigorous definition of ( - \Delta )s, see section 2. For
completeness, we mention that the spectral Laplacian in (fH) is not the only choice for
fractional Laplacian; another popular choice is the so-called integral fractional Lapla-
cian. The two definitions coincide when \Omega = \BbbR d but are different when \Omega is bounded
[22]. Towards this end, we emphasize that our choice to use the spectral fractional
Laplacian is directly motivated by the fact that the article [26] has shown a direct com-
parison between the numerical simulations using spectral fractional Laplacian and real
life data from magnetotelluric measurements. The fractional-order model was found
to match the subsurface response more accurately than the classical, integer-order
equation. In addition, [26] provided a derivation of the fractional Helmholtz equa-
tion under the assumption of Ohm's constitutive law in terms of a fractional space
derivative.

The article [26] solved the nonlocal operator ( - \Delta )s using the so-called Kato for-
mula [14]; the use of this formula in the context of the fractional Poisson equation
was first proposed in [7], where it is referred to as the Balakrishnan formula. How-
ever, in this work we use the so-called extension approach that stems from probability
literature [18], but has been pioneered by Caffarelli and Silvestre [9] and Stinga and
Torrea [24]. The extension approach says that ( - \Delta )s is the Dirichlet-to-Neumann
map for a harmonic extension of the solution. The key advantage of this is the
fact that the extension problem is local, albeit it is posed on a semi-infinite domain,
\Omega \times (0,\infty ) \subset \BbbR d+1, with one additional space dimension. This fact introduces compu-
tational challenges. In order to create finite element based numerical approximation,
the article [19], in the case of the Poisson equation, introduced a truncation approach
so that the resulting domain is bounded. On the other hand, [1] introduced a differ-
ent approach where no such truncation is needed. Our hybrid spectral-finite element
discretization of (fH) is motivated by the latter.

The remainder of this work is structured as follows: Section 2 introduces the
necessary notation and spaces. In section 3, we show well-posedness of (fH). In sec-
tion 4 we introduce the extension problem and derive properties of its eigenfunctions.
Section 5 deals with the hybrid spectral-finite element discretization of the problem
and a priori error estimates. In section 6 we discuss the solver of the resulting linear
system. We conclude by showing numerical examples in section 7.

Remark 1.1. The choice of the coefficient  - k2s in (fH) might appear nonintuitive
at first. In [26], the fractional Helmholtz problem is stated as\biggl\{ 

( - \Delta )
s
u (\bfitx ) - \kappa 2u (\bfitx ) = f (\bfitx ) , \bfitx \in \Omega ,

u(\bfitx ) = 0, \bfitx \in \partial \Omega ,

with wave number \kappa \in \BbbC . Clearly, this is just a matter of notation, and k = \kappa 1/s.
We prefer the coefficient  - k2s, because this choice leads to weaker restrictions on the
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mesh size h when solving the fractional Helmholtz problem for fixed wave number k
and different values of the fractional order s. We also note that with the proposed
formulation, we need to solve the classical, integer-order, Helmholtz problem with
wave number k. Nevertheless, everything that follows also holds if we use \kappa 1/s instead
of k.

2. Notation. The purpose of this section is to introduce relevant notation and
preliminary results. The content of this section is well-known. Unless otherwise
stated, \Omega will be a bounded Lipschitz domain in \BbbR d. To this end, we define the
fractional-order Sobolev (Hilbert) space as

Hs (\Omega ) :=
\Bigl\{ 
u \in L2 (\Omega ) | | | u| | Hs(\Omega ) <\infty 

\Bigr\} 
,(2.1)

equipped with the norm

| | u| | Hs(\Omega ) =

\Biggl( 
| | u| | 2L2(\Omega ) +

\int 
\Omega 

d\bfitx 

\int 
\Omega 

d\bfity 
| u(\bfitx ) - u(\bfity )| 2

| \bfitx  - \bfity | d+2s

\Biggr) 1
2

.

An equivalent norm is defined by

| | u| | 2Hs(\Omega ) = min
U | \Omega =u,U\in Hs(\BbbR d)

\int 
\BbbR d

(1 + | \xi | 2)s
\bigm| \bigm| \bigm| \widehat U(\xi )

\bigm| \bigm| \bigm| 2 d\xi ,
where \widehat U is the Fourier transform of U .

Next, we define the spectral fractional Laplacian ( - \Delta )s. Let 0 < \lambda 0 \leq \lambda 1 \leq 
\cdot \cdot \cdot , and let \phi 0, \phi 1, . . . be the eigenvalues and eigenfunctions of the standard Laplacian,
i.e., \biggl\{ 

 - \Delta \phi m (\bfitx ) = \lambda m\phi m (\bfitx ) , \bfitx \in \Omega ,
\phi m (\bfitx ) = 0, \bfitx \in \partial \Omega ,

(Eig)

normalized so that | | \phi m| | L2(\Omega ) = 1. Then ( - \Delta )s is defined as

( - \Delta )
s
u (\bfitx ) =

\infty \sum 
m=0

um\lambda 
s
m\phi m (\bfitx ) with um = (u, \phi m)L2 .

Notice that the eigenfunctions \{ \phi m\} \infty m=0 form a complete orthonormal basis of L2 (\Omega ).
Using the spectrum of the Laplacian \{ (\lambda m, \phi m)\} m\in \BbbN , we define yet another fractional-

order Sobolev space [25], [8, Appendix B]

\widetilde Hs (\Omega ) =
\Bigl\{ 
u \in L2 (\Omega ) | | u| \widetilde Hs(\Omega ) <\infty 

\Bigr\} 
,(2.2)

where the norm is given by

| u| \widetilde Hs(\Omega ) =

\Biggl( \infty \sum 
m=0

| um| 2 \lambda sm

\Biggr) 1
2

,

and um= (u, \phi m)L2(\Omega ). The two spaces in (2.1) and (2.2) are related to each other.

Indeed, for s > 1/2, \widetilde Hs (\Omega ) coincides with the space Hs
0 (\Omega ) defined to be the closure

of C\infty 
0 (\Omega ) with respect to the Hs (\Omega )-norm, while for s < 1/2, \widetilde Hs (\Omega ) is identical to
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Hs (\Omega ). In the critical case s = 1/2, \widetilde Hs (\Omega ) \subset Hs
0 (\Omega ), and the inclusion is strict,\widetilde H 1

2 (\Omega ) is known as the Lions--Magenes space (see, for example, [15, Chapter 3]).

These relationships between \widetilde Hs and Hs imply that the boundary conditions in (fH)
are understood in the classical trace sense only when s > 1/2. We denote the dual

space of \widetilde Hs (\Omega ) by \widetilde H - s (\Omega ) and use \langle \cdot , \cdot \rangle \widetilde Hs(\Omega ), \widetilde H - s(\Omega ) to denote the duality pairings.

For simplicity we drop the subscripts from the duality pairings when it is clear from
the context.

The spaces \widetilde Hs (\Omega ) are useful to describe the properties of the spectral fractional

Laplacian. For instance, suppose f \in \widetilde Hr (\Omega ), r \geq  - s, and f =
\sum \infty 

m=0 fm\phi m (\bfitx ) with
fm = \langle f, \phi m\rangle ; then, the solution u to the fractional Poisson problem of order s with
right-hand side f , \biggl\{ 

( - \Delta )
s
u (\bfitx ) = f (\bfitx ) , \bfitx \in \Omega ,
u(\bfitx ) = 0, \bfitx \in \partial \Omega ,

(fP)

is given by

u =

\infty \sum 
m=0

um\phi m(\bfitx ), um = fm\lambda 
 - s
m ,(2.3)

and hence u \in \widetilde Hr+2s (\Omega ). Notice that no additional smoothness on the domain \Omega is
needed to get this higher regularity. Nevertheless, to establish an equivalence between\widetilde Hr+2s, when r + 2s > 1, with higher order Sobolev spaces additional smoothness on
the domain \Omega is needed, as shown by the following result.

Lemma 2.1. Let r \in (\ell  - 1, \ell ] for \ell \geq 2, and assume that \partial \Omega \in C\ell . Then\widetilde Hr(\Omega ) \subset Hr(\Omega ).

Proof. By bootstrapping classical regularity results for the Poisson equation [11,
Theorem 3.10] and using that \partial \Omega \in C\ell , the eigenfunctions of problem (Eig) satisfy

\phi m \in H\ell (\Omega ). Now, let f \in \widetilde H\ell (\Omega ), and expand with respect to the eigenfunctions as
f =

\sum \infty 
m=0 fm\phi m (\bfitx ) with fm = \langle f, \phi m\rangle . Since \partial \Omega is Lipschitz, \phi m can be extended

by zero to the whole space [15]. Then,

| | f | | 2H\ell (\Omega ) \leq 
\int 
\BbbR d

(1 + | \xi | 2)\ell 
\bigm| \bigm| \bigm| \widehat f(\xi )\bigm| \bigm| \bigm| 2 d\xi 

=
\sum 
m,n

fmfn

\int 
\BbbR d

(1 + | \xi | 2)\ell \widehat \phi m(\xi )\widehat \phi n(\xi ) d\xi .
But, since \int 

\BbbR d

| \xi | 2j \widehat \phi m(\xi )\widehat \phi n(\xi ) d\xi = \lambda jm\delta mn | | \phi m| | 2L2(\Omega ) = \lambda jm\delta mn

for 0 \leq j \leq \ell due to Plancherel's theorem, we have that

| | f | | 2H\ell (\Omega ) =
\sum 
m

| fm| 2 (1 + \lambda m)\ell \leq C | | f | | 2\widetilde H\ell (\Omega ) .

The result then follows by interpolation of spaces between \widetilde H\ell  - 1(\Omega ) and \widetilde H\ell (\Omega ).
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Similar results to the above lemma can also be obtained under different sets of
assumptions on \Omega that give rise to a regularity lifting for the classical Poisson problem.
For example, for \Omega being a convex polyhedral domain [11, Theorem 3.12], the above
result holds true for \ell = 2. A more detailed regularity theory for spectral Poisson
problems can be found in [12].

In principle one could use the expression (2.3) to compute u. However, the cost
of precomputing the unknown eigenvalues and eigenfunctions makes this an expen-
sive task. To overcome this hurdle, as mentioned in the introduction, we follow the
approach of Stinga and Torrea [24].

We define the weighted norms on a generic domain \scrD for a nonnegative weight
function \omega by

| | u| | L2
\omega (\scrD ) =

\biggl( \int 
\scrD 
\omega (\bfitx ) | u(\bfitx )| 2 d\bfitx 

\biggr) 1
2

, | u| H1
\omega (\scrD ) =

\biggl( \int 
\scrD 
\omega (\bfitx ) | \nabla u(\bfitx )| 2 d\bfitx 

\biggr) 1
2

,

| | u| | H1
\omega (\scrD ) =

\Bigl( 
| | u| | 2L2

\omega (\scrD ) + | u| 2H1
\omega (\scrD )

\Bigr) 1
2

,

along with the associated weighted spaces

L2
\omega (\scrD ) =

\Bigl\{ 
u measurable | | | u| | L2

\omega 
<\infty 

\Bigr\} 
, H1

\omega (\scrD ) =
\Bigl\{ 
u \in L2

\omega (\scrD ) | | | u| | H1
\omega 
<\infty 

\Bigr\} 
.

We use C to denote a generic constant that could change from line to line but is
independent of the mesh size h and the wave number k. We will also drop the
differential in the integrand when the integration variable is clear from the context.

3. Well-posedness and regularity of fractional Helmholtz equation. The
main goal of this section is to establish existence and uniqueness of the solution to
the fractional Helmholtz equation (fH).

In order for problem (fH) to be well-posed, we require in what follows that

Creg | k| s+\alpha 
inf
m\in \BbbN 

\bigm| \bigm| \bigm| \bigm| 1 - \biggl( k2

\lambda m

\biggr) s\bigm| \bigm| \bigm| \bigm| \geq 1,(3.1)

where \lambda m > 0 are the eigenvalues of the standard Laplacian with zero Dirichlet
boundary conditions (see (Eig)) and where Creg > 0 and \alpha \geq  - s are constants that
are independent of k. In particular, this means that \lambda m \not = k2 for allm \in \BbbN . Condition
(3.1) will, in particular, be used in the proof of the regularity result in Proposition 3.5.
We further comment on the particular form of the condition in Remark 3.6.

We first state the notion of weak solutions.

Definition 3.1. Given f \in \widetilde H - s(\Omega ) we say that u \in \widetilde Hs(\Omega ) is a weak solution to
(fH) if

(3.2) a(u, v) = \langle f, v\rangle \forall v \in \widetilde Hs(\Omega ),

where

(3.3) a(u, v) :=

\infty \sum 
m=0

\bigl( 
\lambda sm  - k2s

\bigr) \int 
\Omega 

u\phi m

\int 
\Omega 

v\phi m.

Next, we shall establish the uniqueness of the solution to (3.2). We operate under
the condition that k \in \BbbC is a constant.
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Lemma 3.2. Let f \in \widetilde H - s(\Omega ) be given, and let k \in \BbbC be a given constant. Assume

that (3.1) holds. Then every u \in \widetilde Hs(\Omega ) solving (fH) in the weak sense is unique.

Proof. It is sufficient to show that when the data f \equiv 0, then u solving (3.2) is
identically zero. By setting v = u\ell \phi \ell (where \ell \in \BbbN is arbitrary) in (3.2), using the
orthonormality of \{ \phi m\} \infty m=0, and the assumption that k is a constant, we obtain that

a(u, u\ell \phi \ell ) =

\infty \sum 
m=0

\bigl( 
\lambda sm  - k2s

\bigr) \int 
\Omega 

u\phi m

\int 
\Omega 

u\ell \phi \ell \phi m =
\bigl( 
\lambda s\ell  - k2s

\bigr) 
| u\ell | 2 = 0.

Since according to (3.1) \lambda s\ell \not = k2s, we obtain that u\ell = 0, i.e.,
\int 
\Omega 
u\phi \ell = 0. Since \ell was

arbitrary, we obtain that u = 0 a.e. in \Omega . This completes the proof.

Lemma 3.3 (G\r arding's (in)equality). Let u \in \widetilde Hs(\Omega ) solve (fH) in the weak
sense, and let k \in \BbbC be a given constant. Then

a(u, u) + k2s\| u\| 2L2(\Omega ) = \| u\| 2\widetilde Hs(\Omega )
.

Proof. From the definition of a(\cdot , \cdot ) in (3.3) we obtain that

a(u, u) =

\infty \sum 
m=0

\bigl( 
\lambda sm  - k2s

\bigr) 
| um| 2 = \| u\| 2\widetilde Hs(\Omega )

 - k2s\| u\| 2L2(\Omega ).

By rearranging terms in the above equality, we obtain the desired result.

Theorem 3.4. Let f \in \widetilde H - s(\Omega ) be given, and let k \in \BbbC be a given constant.

Assume that (3.1) holds. Then there exists a unique u \in \widetilde Hs(\Omega ) solving (fH) in the
weak sense.

Proof. Lemmas 3.2 and 3.3, in conjunction with the Fredholm alternative, give
the asserted result. We refer to [6, Theorem 3.3] for similar arguments in the case of
the standard Laplacian.

The next result establishes regularity of solutions of the fractional Helmholtz
equation.

Proposition 3.5 (regularity). Assume that (3.1) holds. If f \in \widetilde Hr (\Omega ), r \geq  - s,
then the weak solution to the fractional Helmholtz problem u \in \widetilde Hr+2s (\Omega ), and

| | u| | \widetilde Hr+2s(\Omega ) \leq Creg | k| \alpha +s | | f | | \widetilde Hr(\Omega ) .

Proof. Assume that u \in \widetilde H\beta (\Omega ) for some \beta \geq s. Then ( - \Delta )
s
u = f + k2su \in \widetilde Hmin\{ r,\beta \} . By the regularity result for the fractional Poisson problem, we obtain that

u \in \widetilde Hmin\{ r,\beta \} +2s. Since u \in \widetilde Hs (\Omega ), we obtain the desired result by iteration. Now,
if we expand f =

\sum \infty 
m=0 fm\phi m, then u =

\sum \infty 
m=0 fm(\lambda sm  - k2s) - 1\phi m, and

| | u| | 2\widetilde Hr+2s(\Omega ) =

\infty \sum 
m=0

\lambda r+2s
m

| \lambda sm  - k2s| 2
| fm| 2 \leq sup

m\in \BbbN 

\lambda 2sm

| \lambda sm  - k2s| 2
\infty \sum 

m=0

\lambda rm | fm| 2

=
1

infm\in \BbbN | 1 - (k2/\lambda m)s| 2
| | f | | 2\widetilde Hr(\Omega ) \leq C2

reg | k| 
2\alpha +2s | | f | | 2\widetilde Hr(\Omega ) ,

where we have used assumption (3.1).
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Remark 3.6. Consider the pair of solution and right-hand side given by f =

\phi m, u = (\lambda sm  - k2s) - 1\phi m, m \in \BbbN . Then | | f | | \widetilde Hr(\Omega ) = \lambda 
r/2
m and | | u| | \widetilde Hr+2s(\Omega ) =

\lambda 
r/2
m /

\bigm| \bigm| 1 - (k2/\lambda m)s
\bigm| \bigm| .

By choosing k2 arbitrarily close to \lambda m, the ratio

| | u| | \widetilde Hr+2s(\Omega ) / | | f | | \widetilde Hr(\Omega )=1/
\bigm| \bigm| 1 - (k2/\lambda m)s

\bigm| \bigm| 
can be made arbitrarily large, which motivates the restriction on k of (3.1). Assump-
tion (3.1) might appear arbitrary at first, but it allows us to analyze the fractional
Helmholtz problem with homogeneous Dirichlet conditions much in the same way as
its classical equivalent with Robin condition. Although not the topic of this work, we
expect that the presented analysis will extend to more general boundary conditions.
The comparison with the classical Robin case also motivates the inclusion of the factor
| k| s+\alpha 

in assumption (3.1). The resulting regularity result of Proposition 3.5 mirrors
estimates available in the integer-order case; see, e.g., [17, Assumption 4.8]. In the
integer-order case, the value of \alpha depends on smoothness properties of the domain.
We note that it can be difficult to determine whether a given fractional Helmholtz
problem satisfies assumption (3.1), since the eigenvalues of the Laplacian are generally
not known in closed form. It should be observed though that this is in fact the same
assumption that needs to hold in the classical, integer-order case for s = 1.

4. The extension problem. By using [9, 24] we can equivalently cast the frac-
tional Helmholtz problem (fH) as a problem over the extruded domain \scrC = \Omega \times (0,\infty ):\left\{           

 - \nabla \cdot \omega (y)\nabla U (\bfitx , y) = 0, (\bfitx , y) \in \scrC ,

U (\bfitx , y) = 0, (\bfitx , y) \in \partial L\scrC := \partial \Omega \times [0,\infty ),

\partial U

\partial \nu \omega 
(\bfitx ) - k2sU(\bfitx , 0) = f (\bfitx ) , \bfitx \in \Omega ,

(Ext)

where \omega (y) = y\alpha /ds, \alpha = 1 - 2s, ds = 21 - 2s \Gamma (1 - s)
\Gamma (s) , and

\partial U

\partial \nu \omega 
(\bfitx ) =  - lim

y\rightarrow 0+
\omega (y)

\partial U

\partial y
(\bfitx , y) = ( - \Delta )sU(\bfitx , 0).(4.1)

The solution to (fH) is then recovered by taking the trace of U on \Omega , i.e., u = tr\Omega U .
We define the solution space \scrH 1

\omega on the semi-infinite cylinder \scrC as

\scrH 1
\omega =

\bigl\{ 
V \in H1

\omega (\scrC ) | V = 0 on \partial L\scrC 
\bigr\} 

and we denote its dual by (\scrH 1
\omega )

\ast . Notice that

tr\Omega \scrH 1
\omega \equiv \widetilde Hs(\Omega ),

where tr\Omega denotes the \Omega -trace operator. Moreover, due to the Poincar\'e inequality in
the weighted Sobolev spaces, we have that the seminorm | \cdot | H1

\omega 
is a norm on \scrH 1

\omega , and
we write | | \cdot | | \scrH 1

\omega 
:= | \cdot | H1

\omega 
. We refer to [10] for details.

The weak formulation of the extension problem (Ext) consists of seeking U \in \scrH 1
\omega 

such that

\scrA (U, V ) = \langle f, V \rangle \Omega \forall V \in \scrH 1
\omega ,(wExt)

D
ow

nl
oa

de
d 

06
/2

1/
21

 to
 1

29
.1

74
.2

52
.2

50
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



© 2021 National Technology and Engineering Solutions of Sandia, LLC

FAST SOLVER FOR FRACTIONAL HELMHOLTZ A1369

where we have

\scrA (U, V ) =

\int 
\scrC 
\omega \nabla U \cdot \nabla V  - k2s

\int 
\Omega 

UV and \langle f, V \rangle \Omega :=
\bigl\langle 
f, tr\Omega V

\bigr\rangle 
.

We will also frequently use the shorthand

| | V | | L2(\Omega ) := | | tr\Omega V | | L2(\Omega ) .

We seek a solution of the extension problem using classical separation of variables:
U (\bfitx , y) = \Phi (\bfitx )\Psi (y). Then

 - \Delta \bfitx \Phi 

\Phi 
=
\partial y (\omega (y)\partial y\Psi )

\omega (y)\Psi 
= A,

where A is a constant that is independent of \bfitx and y. Thanks to (Eig), the boundary
condition on the lateral face of the cylinder \scrC shows that \Phi = \phi m and A = \lambda m for
m \in \BbbN . The associated solution \Psi = \psi m in the extension direction must therefore
satisfy

\partial y (\omega (y)\partial y\psi m) = \lambda m\omega (y)\psi m.(4.2)

Notice that \psi m(0) = 1. Moreover, using (4.1) we obtain that

\partial \psi m

\partial \nu \omega 
= \lambda sm.(4.3)

By applying integration by parts to (4.2) and using (4.3) we obtain that

\lambda m

\int \infty 

0

\omega \psi m\psi n +

\int \infty 

0

\omega \psi \prime 
m\psi 

\prime 
n = \lambda sm,(4.4)

which is uniquely solvable when we impose \psi m(+\infty ) = 0. Subtracting the same
identity with indices m and n interchanged results in\int \infty 

0

\omega \psi m\psi n =

\left\{   
\lambda s
m - \lambda s

n

\lambda m - \lambda n
if m \not = n,

s\lambda s - 1
m if m = n,

(4.5)

and by substituting in (4.4)

\int \infty 

0

\omega \psi \prime 
m\psi 

\prime 
n =

\left\{   
\lambda m\lambda s

n - \lambda n\lambda 
s
m

\lambda m - \lambda n
if m \not = n,

(1 - s)\lambda sm if m = n,
(4.6)

where the identities for m = n are obtained by taking the limit as \lambda n \rightarrow \lambda m. The
solution to the extension problem (Ext) is then given by

U (\bfitx , y) =

\infty \sum 
m=0

um\phi m(\bfitx )\psi m (y) , where um =
\bigl( 
\lambda sm  - k2s

\bigr)  - 1
fm,(4.7)

while u (\bfitx ) =
\sum \infty 

m=0 um\phi m (\bfitx ) as in (2.3). The separable solution (4.7) is the ba-
sis for our choice of discretization of the extension problem to be described in the
next section. The main advantage of this approach is that the extension problem
involves only integer-order derivatives but comes at the price of having to deal with
a degenerate weight \omega (y).

We conclude this section with the following well-posedness result for (wExt).
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Proposition 4.1. Let \Omega be a bounded Lipschitz domain, and let f \in \widetilde H - s(\Omega ).
Then there exists U \in \scrH 1

\omega solving (wExt), and such a solution depends continuously
on the data

| | U | | \scrH 1
\omega 
\leq Cd(k) | | f | | \widetilde H - s(\Omega )

with Cd(k) = Creg | k| s+\alpha 
.

Proof. The proof follows along the lines of Theorem 3.4, i.e., we need to show
uniqueness of U and prove G\r arding's inequality. Then, the result will follow from the
Fredholm alternative. Construction of a unique solution using separation of variables
is given above. G\r arding's inequality can be shown as follows. We have

(4.8)

\| U\| 2\scrH 1
\omega 
= \scrA (U,U) + k2s (tr\Omega U, tr\Omega U)L2(\Omega )

= \scrA (U,U) + k2s \langle \scrT tr\Omega U, tr\Omega U\rangle \widetilde H - s(\Omega ), \widetilde Hs(\Omega )

= \scrA (U,U) + k2s \langle (tr \star \Omega \scrT tr\Omega )U,U\rangle (\scrH 1
\omega )\ast ,\scrH 1

\omega 
,

where in the second equality we have used the existence of a compact operator
\scrT : \widetilde Hs(\Omega ) \rightarrow \widetilde H - s(\Omega ). Moreover, in the last equality we have used that the trace oper-

ator tr\Omega : \scrH 1
\omega \rightarrow \widetilde Hs(\Omega ) is bounded linear and thus its adjoint tr \star \Omega : \widetilde H - s(\Omega ) \rightarrow (\scrH 1

\omega )
\ast 

is well-defined. Notice that the operator tr \star \Omega \scrT tr\Omega : \scrH 1
\omega \rightarrow (\scrH 1

\omega )
\ast is compact (compo-

sition of bounded and compact operators); thus we have shown G\r arding's (in)equality
[20, Remark 2.1.58]. Now, just as in (4.7), we can expand f =

\sum \infty 
m=0 fm\phi m, so that

U =
\sum \infty 

m=0 fm(\lambda sm  - k2s) - 1\phi m\psi m. Since \phi m are orthonormal in L2(\Omega ), we find

\| U\| 2\scrH 1
\omega 
=

\int 
\scrC 
\omega | \nabla U | 2

=

\infty \sum 
m=0

| fm| 2 1

(\lambda sm  - k2s)2

\biggl( \int 
\Omega 

| \nabla \phi m| 2
\int \infty 

0

\omega (\psi m)2 +

\int 
\Omega 

\phi 2m

\int \infty 

0

\omega (\psi \prime 
m)2

\biggr) 

=

\infty \sum 
m=0

| fm| 2 \lambda sm
(\lambda sm  - k2s)2

\leq sup
m\in \BbbN 

\lambda 2sm
(\lambda sm  - k2s)2

\infty \sum 
m=0

\lambda  - s
m | fm| 2

\leq C2
reg | k| 

2(s+\alpha ) | | f | | 2\widetilde H - s(\Omega ) .

This completes the proof.

5. Discretization of the extension problem and a priori error bounds.
For the remainder of this paper, we assume that \Omega is sufficiently smooth so that\widetilde Hr+2s(\Omega ) can be associated with the classical fractional-order Sobolev spaceHr+2s(\Omega )
(see Lemma 2.1). We expect that domains of limited smoothness will reduce the
achievable rate of convergence. We propose approximating the variational problem
(wExt) using a Galerkin scheme with the subspace consisting of standard low-order
nodal finite elements of order p \geq 1 in the \bfitx -variable and a spectral method in
the y-direction. To this end, we let \scrT h be a shape regular, globally quasi-uniform
triangulation of \Omega , and let

Sh =
\bigl\{ 
vh \in C0

\bigl( 
\Omega 
\bigr) 
| vh
\bigm| \bigm| 
K

\in \BbbP p (K) \forall K \in \scrT h
\bigr\} 
.
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In the y-direction, ideally, we would like to use y-basis functions \{ \psi m\} given in the
previous section. Unfortunately, this requires knowledge of the true eigenvalues \lambda m
of ( - \Delta ) over \Omega . Therefore, we use approximations \widetilde \lambda m \approx \lambda m in place of the true
eigenvalues in (4.5) and (4.6).

The Galerkin subspace for the extension problem is then taken to be

\scrV h =

\Biggl\{ 
Vh =

M - 1\sum 
m=0

vh,m (\bfitx ) \widetilde \psi m (y) | vh,m \in Sh and \widetilde \psi m solves (4.4) with \widetilde \lambda m\Biggr\} \subset \scrH 1
\omega .

Notice that we do not need an analytic expression for the basis functions \{ \widetilde \psi m\} , and
it is sufficient to know mass and stiffness matrices (4.5) and (4.6). The spectral
expansion order M will depend on s, h, and the regularity of the solution. This
dependency will be made more explicit in Assumption 5.3. The efficient approach
to find approximations \widetilde \lambda m is discussed in [1] and is based on using the asymptotic
law for the eigenvalues of the integer-order Laplacian as well as coarse finite-element
discretizations. We further emphasize that \scrO (| log h| ) eigenvalue approximations are
sufficient to get ``good approximation"" properties.

The Galerkin approximation of (wExt) seeks Uh \in \scrV h such that

\scrA (Uh, Vh) = \langle f, Vh\rangle \Omega \forall Vh \in \scrV h,(wExth)

with the approximation of the fractional Helmholtz problem given by

uh := tr\Omega Uh.

Having introduced the discrete problem, our next goal is to obtain an estimate for
the error u  - uh. The trace inequality in [10, Proposition 2.1] (see also [19]) implies
that

| | u - uh| | \widetilde Hs(\Omega ) \leq C | | U  - Uh| | \scrH 1
\omega 
,

where the constant is independent of p, M , and h. We also refer to [5, Theorem 2.3]
for a more general trace inequality. Hence, in order to bound u  - uh, it suffices to
bound | | U  - Uh| | \scrH 1

\omega 
, the discretization error of the extension problem (wExth).

Define the norm

| | | V | | | 2 := | | V | | 2\scrH 1
\omega 
+ | k| 2s | | V | | 2L2(\Omega ) , V \in \scrH 1

\omega .

Using the trace inequality in [10, Proposition 2.1] (see also [19]), we find that \scrA is
continuous

| \scrA (U, V )| \leq | | U | | \scrH 1
\omega 
| | V | | \scrH 1

\omega 
+ | k| 2s | | U | | L2(\Omega ) | | V | | L2(\Omega ) \leq C | | | U | | | | | | V | | | \forall U, V \in \scrH 1

\omega 

and satisfies the G\r arding type (in)equality

\scrA (U,U) + k2s | | U | | 2L2(\Omega ) = | | U | | 2\scrH 1
\omega 

\forall U \in \scrH 1
\omega .

Define the solution operator \scrS k : \widetilde H - s (\Omega ) \rightarrow \scrH 1
\omega via

\scrA (\scrS kf, V ) = \langle f, V \rangle \Omega \forall V \in \scrH 1
\omega 
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and the adjoint solution operator \scrS \ast 
k : \widetilde H - s (\Omega ) \rightarrow \scrH 1

\omega via

\scrA (W,\scrS \ast 
kf) = \langle f,W \rangle \Omega \forall W \in \scrH 1

\omega .

The two operators can be expressed in terms of each other as

\scrS \ast 
k = \scrS k.

Moreover, let

\eta := sup
f\in L2(\Omega )\setminus \{ 0\} 

inf
Vh\in \scrV h

| | | \scrS \ast 
kf  - Vh| | | 
| | f | | L2(\Omega )

.

\eta measures how well solutions of the adjoint problem can be approximated using
functions in \scrV h. Naturally, we expect \eta to decrease as h decreases. The following two
results, Theorems 5.1 and 5.2, closely mimic the ideas developed in [17, 16] for the
integer-order case. We refer to the supplementary material file (supp.pdf [local/web
276KB]) for their respective proofs. Similar to the integer-order Helmholtz equation,
the mesh size needs to be small enough to resolve the wave number k.

Theorem 5.1. Assume that

\eta | k| s \leq \gamma (5.1)

for small enough constant \gamma that is independent of h and k. Then \scrA satisfies the
discrete inf-sup condition

inf
Uh\in \scrV h

sup
Vh\in \scrV h

| \scrA (Uh, Vh)| 
| | | Uh| | | | | | Vh| | | 

\geq 1 - C\gamma 

1 + 2(Cd(k) + \eta ) | k| s
.

Theorem 5.2. Let U \in \scrH 1
\omega be the solution of (wExt), and let Uh \in \scrV h be the

solution of (wExth). Assume that (5.1) holds for small enough constant \gamma that is
independent of h and k. Then

| | | U  - Uh| | | \leq C inf
Vh\in \scrV h

| | | U  - Vh| | | ,

| | U  - Uh| | L2(\Omega ) \leq C\eta | | | U  - Uh| | | ,

where the constants are independent of h and k.

Before we turn our attention to the approximation results, we state the required
assumptions on the approximation space \scrV h and the eigenvalue approximations \{ \widetilde \lambda m\} ,
parameterized by a parameter t that will be linked to the solution regularity.

Assumption 5.3. Given t \geq s, assume that the following hold:

\bullet M is large enough such that \lambda 
(s - t)/2
M \sim hmin\{ p,t - s\} , where p is the polynomial

degree.
\bullet For 0 \leq m \leq M  - 1 it holds that\Biggl( \widetilde \lambda m

\lambda m

\Biggr) s

,

\biggl( 
\lambda m\widetilde \lambda m
\biggr) 1 - s

\leq c2\sigma (5.2)

with a positive constant c\sigma that is independent of h.
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\bullet For 0 \leq m \leq M  - 1 it holds that

g
\Bigl( 
s, \widetilde \lambda m/\lambda m\Bigr) \leq \lambda t - s

m h2min\{ p,t - s\} ,(5.3)

where

g (s, \rho ) = 1 - 1

(1 - s)\rho s + s\rho s - 1
.(5.4)

We refer the reader to [1] for a discussion on how these requirements can be
achieved in practice using the asymptotic behavior of the eigenvalues and by finite
element discretization. The assumptions (5.6) and (5.4) in the following theorem are
also discussed in [1] in more detail. In what follows, let \pi h denote the Scott--Zhang
interpolant [21].

Theorem 5.4. Let s \leq t \leq p + 1 and assume that Assumption 5.3 holds for t.
Moreover, assume that there exist positive constants C0, C1 independent of h such
that the following two inequalities hold for any \bfity \in \BbbR M :

M - 1\sum 
m,n=0

ymyn

\int 
\Omega 

(\phi m  - \pi h\phi m) (\phi n  - \pi h\phi n)(5.5)

\leq C0 | log \lambda M | 
M - 1\sum 
m=0

y2m | | \phi m  - \pi h\phi m| | 2L2(\Omega ) ,

M - 1\sum 
m,n=0

ymyn

\int 
\Omega 

\nabla (\phi m  - \pi h\phi m) \cdot \nabla (\phi n  - \pi h\phi n)(5.6)

\leq C1 | log \lambda M | 
M - 1\sum 
m=0

y2m | | \nabla (\phi m  - \pi h\phi m)| | 2L2(\Omega ) ,

where \pi h is the Scott--Zhang interpolant.
Let U satisfy the variational equality (wExt), and assume that u = tr\Omega U

\in \widetilde Hq (\Omega ) for s \leq q \leq t. Then

inf
Vh\in \scrV h

| | | U  - Vh| | | 

\leq C | u| \widetilde Hq(\Omega )

\sqrt{} 
| log h| 

\Bigl\{ 
hmin\{ p,t - s\} q - s

t - s + | k| s hmin\{ p,t - s\} min\{ q,2t - 2s\} /(t - s)
\Bigr\} 
,

where C is independent of h and k.

Given the length of the proof of the above theorem, we record it in the supple-
mentary material file (supp.pdf [local/web 276KB]).

Remark 5.5. Given a right-hand side function f \in \widetilde Hr (\Omega ), the regularity result
in Proposition 3.5 gives that the solution to the fractional Helmholtz problem has
regularity of order r+ 2s. Using elements of order p, we want to select M and eigen-
value approximations \widetilde \lambda m to satisfy Assumption 5.3 for t = max\{ 0,min\{ r, p - s\} \} +2s.
Satisfying the conditions for larger values of t will not lead to any improvements in
the approximation result. This also shows that the method cannot take advantage of
right-hand side regularity r \geq p - s.

The following stable splitting is inspired by the classical, integer-order case (see,
e.g., [16]).
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Proposition 5.6. Assume that assumption (3.1) holds. Then, for g \in L2(\Omega ),
\scrS \ast 
kg can be split as

\scrS \ast 
kg = U\scrE (g) + U\scrA (g),

where U\scrE (g), U\scrA (g) \in \scrH 1
\omega , and their respective traces u\scrE (g) := tr\Omega U\scrE (g) and u\scrA (g) :=

tr\Omega U\scrA (g) satisfy

u\scrE (g) \in \widetilde H2s(\Omega ), | u\scrE (g)| \widetilde H2s(\Omega ) \leq C | | g| | L2(\Omega ) ,

u\scrA (g) \in \widetilde Ht(\Omega ), | u\scrA (g)| \widetilde Ht(\Omega ) \leq C | k| \alpha +(t - s) | | g| | L2(\Omega ) \forall t,

for constants that are independent of k.

Proof. Set \scrI k :=
\bigl\{ 
m \in \BbbN | \lambda m \leq 2 | k| 2

\bigr\} 
. Expand g with respect to \{ \phi m\} and

write, using gm = (g, \phi m)L2 ,

g =

\infty \sum 
m=0

gm\phi m =
\sum 
m\in \scrI k

gm\phi m +
\sum 
m \not \in \scrI k

gm\phi m =: g\scrA + g\scrE ,

\scrS \ast 
kg = \scrS \ast 

kg\scrA + \scrS \ast 
kg\scrE =: U\scrA (g) + U\scrE (g).

Since for m \not \in \scrI k we have that
\bigm| \bigm| \lambda sm  - k2s

\bigm| \bigm| = \lambda sm  - k2s > (1 - 1/2s)\lambda sm, we find

| u\scrE (g)| 2\widetilde H2s(\Omega ) =
\sum 
m\not \in \scrI k

\lambda 2sm

| \lambda sm  - k2s| 2
| gm| 2 \leq C

\sum 
m \not \in \scrI k

| gm| 2 = C | | g\scrA | | 2L2(\Omega ) \leq C | | g| | 2L2(\Omega ) .

On the other hand, we have that

| u\scrA (g)| 2\widetilde Ht(\Omega ) =
\sum 
m\in \scrI k

\lambda tm

| \lambda sm  - k2s| 2
| gm| 2

\leq C | k| 2(t - 2s)
\sum 
m\in \scrI k

\lambda 2sm

| \lambda sm  - k2s| 2
| gm| 2

\leq C | k| 2(t - 2s)
sup
m\in \scrI k

\lambda 2sm

| \lambda sm  - k2s| 2
| | g\scrA | | 2L2(\Omega )

= C | k| 2(t - 2s) 1

infm\in \scrI k
| 1 - (k2/\lambda m)s| 2

| | g\scrA | | 2L2(\Omega )

\leq CC2
reg | k| 

2(t - 2s) | k| 2s+2\alpha | | g| | 2L2(\Omega ) ,

where we have used assumption (3.1).

Theorem 5.7. Let f \in \widetilde Hr (\Omega ), r \geq  - s. Assume that\Bigl\{ 
1 + (h | k| )max\{ 0,min\{ r,p - s\} \} | k| \alpha +s

\Bigr\} \sqrt{} 
| log h| 

\bigl[ 
(h | k| )s + (h | k| )2s

\bigr] 
\leq \gamma (5.7)

for small enough constant \gamma that is independent of h and k, and that Assumption 5.3
is satisfied for t = max\{ 0,min\{ r, p - s\} \} +2s and that the conditions of Theorem 5.4
hold. Let U \in \scrH 1

\omega be the solution of (wExt), and let Uh \in \scrV h be the solution of
(wExth) and u and uh be their respective traces on \Omega . Then

| | u - uh| | \widetilde Hs(\Omega )
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\leq C | | U  - Uh| | \scrH 1
\omega 
\leq C | | | U  - Uh| | | \leq C | k| \alpha +s

hmin\{ p,r+s\} 
\sqrt{} 

| log h| | f | \widetilde Hr(\Omega ) ,

| | u - uh| | L2(\Omega )

\leq C | k| \alpha +s
\Bigl\{ 
1 + (h | k| )max\{ 0,min\{ r,p - s\} \} | k| \alpha +s

\Bigr\} 
hmin\{ p+s,r+2s\} | log h| | f | \widetilde Hr(\Omega ) ,

where the constants are independent of h and k.

Remark 5.8. Condition (5.7) is the fractional-order equivalent of the usual con-
ditions on the relation between wave number k and mesh size h; see, e.g., [16, 27].
Assumption 5.3 guarantees good approximation properties and is, loosely speaking,
satisfied by choosing enough eigenvalue approximations \widetilde \lambda m given a mesh of mesh size
h, and reduces to the classical, integer-order case (compare [16]) up to the logarithmic
factor. The conditions (5.6) and (5.4) of Theorem 5.4 are shown to hold in practice;
see [1].

Proof. Without loss of generality, assume that r+s \leq p. (Otherwise, we can take
r = p - s.) Let g \in L2 (\Omega ). According to Proposition 5.6 we split \scrS \ast 

kg = U\scrE (g)+U\scrA (g),
with u\scrE (g) = tr\Omega U\scrE (g) having regularity q\scrE = 2s and u\scrA (g) = tr\Omega U\scrA (g) having
regularity q\scrE = t. Since q\scrE = 2s \leq max\{ 0, r\} + 2s = t = q\scrA \leq 2t - 2s, we have that

min\{ p, t - s\} q\scrE  - s

t - s
= q\scrE  - s = s,

min\{ p, t - s\} min\{ q\scrE , 2t - 2s\} /(t - s) = min\{ q\scrE , 2t - 2s\} = 2s,

min\{ p, t - s\} q\scrA  - s

t - s
= q\scrA  - s = t - s,

min\{ p, t - s\} min\{ q\scrA , 2t - 2s\} /(t - s) = min\{ q\scrA , 2t - 2s\} = t.

Hence, by applying Theorem 5.4 and Proposition 5.6, we have that

inf
Vh\in \scrV h

| | | \scrS \ast 
kg  - Vh| | | 

\leq inf
Vh\in \scrV h

| | | U\scrE (g) - Vh| | | + inf
Vh\in \scrV h

| | | U\scrA (g) - Vh| | | 

\leq C
\Bigl\{ 
| u\scrE (g)| \widetilde H2s(\Omega ) + ht - 2s | u\scrA (g)| \widetilde Ht(\Omega )

\Bigr\} \sqrt{} 
| log h| hs [1 + (h | k| )s]

\leq C
\Bigl\{ 
1 + hmax\{ 0,min\{ r,p - s\} \} | k| \alpha +(t - s)

\Bigr\} \sqrt{} 
| log h| hs [1 + (h | k| )s] | | g| | L2(\Omega )

\leq C
\Bigl\{ 
1 + (h | k| )max\{ 0,min\{ r,p - s\} \} | k| \alpha +s

\Bigr\} \sqrt{} 
| log h| hs [1 + (h | k| )s] | | g| | L2(\Omega ) .

Therefore, we find

\eta \leq C
\Bigl\{ 
1 + (h | k| )max\{ 0,min\{ r,p - s\} \} | k| \alpha +s

\Bigr\} \sqrt{} 
| log h| hs [1 + (h | k| )s] .

Combining the latter with Theorem 5.1 and (5.7), we obtain that the discrete inf-sup
condition holds.

Now, let f \in \widetilde Hr (\Omega ). Then the solution of the fractional Helmholtz problem is in\widetilde Hr+2s(\Omega ) and hence, applying Theorem 5.4 with q = r + 2s \leq t and the regularity
estimate from Proposition 3.5, we obtain that

inf
Vh\in \scrV h

| | | U  - Vh| | | \leq C | u| \widetilde Hr+2s(\Omega )

\sqrt{} 
| log h| hr+s [1 + (h | k| )s]

= CCreg | f | \widetilde Hr(\Omega ) | k| 
\alpha +s

\sqrt{} 
| log h| hr+s [1 + (h | k| )s] .
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Combining this with Theorem 5.2 and (5.7), we obtain the estimates

| | | U  - Uh| | | 

\leq C | k| \alpha +s
hmin\{ p,r+s\} 

\sqrt{} 
| log h| | f | \widetilde Hr(\Omega ) ,

| | U  - Uh| | L2(\Omega )

\leq C | k| \alpha +s
\Bigl\{ 
1 + (h | k| )max\{ 0,min\{ r,p - s\} \} | k| \alpha +s

\Bigr\} 
hmin\{ p+s,r+2s\} | log h| | f | \widetilde Hr(\Omega ) .

We conclude by noting that due to the trace inequality,

| | u - uh| | \widetilde Hs(\Omega ) \leq C | | U  - Uh| | \scrH 1
\omega 
\leq C | | | U  - Uh| | | .

6. Solution of the linear system. Let \{ \Phi i\} ni=1 denote the nodal basis func-
tions of the finite element solution space Sh; then the solution of the discretized frac-
tional Helmholtz problem can be written as uh (\bfitx ) =

\sum n
i=1 uh;i\Phi i (\bfitx ) = \bfitu h \cdot \Phi (\bfitx ).

Here, for ease of notation, we have assumed that the eigenvalue approximations\widetilde \lambda m, m = 0, . . . ,\widetilde M  - 1, are all distinct. To select \widetilde M distinct eigenvalue approxima-
tions, \widetilde M \leq M , we use the same procedure that is detailed in [1]. In a nutshell, we
approximate the lower part of the spectrum using coarse finite element discretizations
and multigrid preconditioned LOBPCG, and the upper part of the spectrum using
Weyl's asymptotic law. Finally, a decimation procedure is applied. This works since
Assumption 5.3 does not require the same level of accuracy for all eigenvalues. The
larger the eigenvalue, the more freedom we have in approximating it. We refer to [1]
for all the details.

By expanding the finite element functions as linear combinations with respect to
the basis functions \Phi i, the solution Uh (\bfitx , y) of the extension problem (wExth) can
be written in the form

Uh (\bfitx , y) =

\widetilde M - 1\sum 
m=0

n\sum 
i=1

ci,m\Phi i (\bfitx ) \widetilde \psi m (y) \in \scrV h

with the coefficients (ci,m) = \bfitU h obtained by solving the linear system\bigl[ 
MFE \otimes 

\bigl( 
S\sigma  - k2sB\sigma 

\bigr) 
+ SFE \otimes M\sigma 

\bigr] 
\bfitU h = \bfitF h,(6.1)

where

MFE =

\biggl( \int 
\Omega 

\Phi i\Phi j

\biggr) 
, SFE =

\biggl( \int 
\Omega 

\nabla \Phi i\nabla \Phi j

\biggr) 
,

M\sigma =

\biggl( \int \infty 

0

\omega \widetilde \psi m
\widetilde \psi n

\biggr) 
, S\sigma =

\biggl( \int \infty 

0

\omega \widetilde \psi \prime 
m
\widetilde \psi \prime 
n

\biggr) 
,

B\sigma = 1\widetilde M \otimes 1T\widetilde M ,
\bfitF h = \bfitf h \otimes 1\widetilde M , \bfitf h = (\langle f,\Phi i\rangle ) .

Here, 1\widetilde M is the vector of ones of length \widetilde M . The approximation to the solution of the
fractional Helmholtz problem is then obtained by taking the trace of Uh on \Omega :

uh = tr\Omega Uh =

n\sum 
i=1

\left(  \widetilde M - 1\sum 
m=0

ci,m

\right)  \Phi i (\bfitx ) ,(6.2)
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where we recall the normalization \widetilde \psi m (0) = 1. In matrix form, the trace operator is
given by I \otimes 1T\widetilde M \in \BbbR n\times \scrN , so that \bfitu h =

\bigl[ 
I \otimes 1T\widetilde M \bigr] \bfitU h.

Proposition 6.1. There exist weights wm and shift coefficients \mu m such that

\bfitu h =

\widetilde M - 1\sum 
m=0

wm [MFE\mu m + SFE ]
 - 1

\bfitf h.(6.3)

When k2s is real, all \mu m are real and at most one coefficient \mu m is negative.

Proof. We consider the following generalized eigenvalue problem:\bigl( 
S\sigma  - k2sB\sigma 

\bigr) 
Q =M\sigma Q\mu (6.4)

with the normalization QHM\sigma Q = I and \mu a diagonal matrix with entries \mu m. If
k2s is real, then all \mu m are real since S\sigma , B\sigma , and M\sigma are real-valued and symmetric
matrices. Then\bigl( 

I \otimes QH
\bigr) \bigl[ 
MFE \otimes 

\bigl( 
S\sigma  - k2sB\sigma 

\bigr) 
+ SFE \otimes M\sigma 

\bigr] 
(I \otimes Q) =MFE \otimes \mu + SFE \otimes I.

Hence, we have\bigl[ 
MFE \otimes 

\bigl( 
S\sigma  - k2sB\sigma 

\bigr) 
+ SFE \otimes M\sigma 

\bigr]  - 1
= (I \otimes Q) [MFE \otimes \mu + SFE \otimes I]

 - 1 \bigl( 
I \otimes QH

\bigr) 
.

Since \bfitF h = \bfitf h \otimes 1\widetilde M and \bfitu h =
\bigl[ 
I \otimes 1T\widetilde M \bigr] \bfitU h, we obtain

\bfitu h =

\widetilde M - 1\sum 
m=0

\bigl( 
QH1\widetilde M\bigr) 2m\underbrace{}  \underbrace{}  

=:wm

(MFE\mu m + SFE)
 - 1
fh.

Both the spectral mass matrixM\sigma and the spectral stiffness matrix S\sigma are real-valued,

symmetric, and nonnegative, and so we know that the eigenvalues \mu 
(0)
m of the related

problem

S\sigma Q0 =M\sigma Q0\mu 
0, QT

0M\sigma Q0 = I

are all real and nonnegative. Here, the entries of the diagonal matrix \mu 0 are \mu 
(0)
m .

Without loss of generality, we assume that 0 \leq \mu 
(0)
0 \leq \mu 

(0)
1 \leq \cdot \cdot \cdot \leq \mu 

(0)\widetilde M - 1
. The

eigenvalues \mu m, in turn, satisfy the characteristic equation

0 = det
\bigl( 
S\sigma  - k2sB\sigma  - \mu M\sigma 

\bigr) 
= det (Q0)

 - 2
det
\bigl( 
\mu 0  - k2s\bfitz \otimes \bfitz T  - \mu I

\bigr) 
,

where \bfitz = QT
0 1\widetilde M . Here, we have exploited the tensor product structure of B\sigma .

This means that we are interested in the impact on the spectrum of a rank one
perturbation of a diagonal matrix. The eigenvalues of the rank one perturbation are
 - k2s | | z| | 2 with multiplicity one and 0 with multiplicity \widetilde M  - 1. If k2s is real, then
\mu 0 - k2s\bfitz \otimes \bfitz T is Hermitian and all \mu m are real. We assume without loss of generality
that \mu 0 \leq \mu 1 \leq \cdot \cdot \cdot \leq \mu \widetilde M - 1

. Applying Weyl's theorem [13, Theorem 4.3.7], one can
then show that

\mu 
(0)
0  - k2s | | z| | 2 \leq \mu 0 \leq \mu 

(0)
0 ,
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\mu 
(0)
m - 1 \leq \mu m \leq \mu (0)

m for m \geq 1.

Since all \mu 
(0)
m are nonnegative, we can conclude that at most one eigenvalue \mu m is

negative.

The above proposition shows that we need to solve a sequence of systems with
matrix of the form

MFE\mu + SFE , \mu \in \BbbC .

Depending on \mu , we use different solver strategies.
\bullet \mu is real and nonnegative (this corresponds to a classical, integer-order reaction-
diffusion problem):
We employ a conjugate gradient solver with a standard geometric multigrid
preconditioner.

\bullet \mu is real and negative (this corresponds to an integer-order Helmholtz prob-
lem):
We use GMRES preconditioned by a geometric multigrid which has been
constructed from the shifted system SFE + (1 + i\beta )\mu MFE with \beta = 0.5.

\bullet \mu is complex, Re\mu is nonnegative:
We use GMRES preconditioned by standard geometric multigrid.

\bullet \mu is complex, Re\mu is negative:
Let \mu =:  - \nu (1+i\alpha ) with \nu \in \BbbR \geq 0 and \alpha \in \BbbR . We use GMRES preconditioned
by a geometric multigrid which has been constructed from the shifted system
SFE  - \nu (1 + i\beta )MFE with \beta = 0.5.

We note that this solution approach exposes a significant amount of parallelism.
The solution of the \widetilde M decoupled problems is embarrassingly parallel, and each of
the integer-order problems can be performed in parallel. We also note that these
solvers merely reuse existing solver technologies. In particular, this implies that any
improvements that can be made for the (potentially costly) solution of the integer-
order Helmholtz equation will benefit the solution of its fractional equivalent. This is
why we can limit ourselves to a comparatively simple solution strategy. More advanced
methods are available in the literature. It should be noted that the iterative solution
of (integer-order) Helmholtz problems is notoriously difficult, particularly in the case
of large wave numbers. It is therefore no surprise that the fractional-order case is
faced with the same issues.

In Figure 6.1, we plot the distance between the shift coefficients and  - k2 for
\Omega = [0, 1]2, s \in \{ 0.6, 0.9\} , and different wave numbers k. It can be observed that as
h \rightarrow 0, the distance decays towards zero. While we do not explore this property any
further from a theoretical standpoint, this shows that one of the subsystems recovers
asymptotically the equivalent integer-order Helmholtz system.

6.1. Comparison with the integer-order case. When k2s is real, only a
single \mu m is negative according to Proposition 6.1. The above observation entails
that the single integer-order Helmholtz problem that needs to be solved has wave
number (very close to) k. This permits a comparison of the solution complexity of
the classical integer-order Helmholtz problem to the fractional case. The fractional-
order case differs in that we need to

\bullet compute eigenvalue approximations \widetilde \lambda m, m = 0, . . . ,\widetilde M ,
\bullet solve a generalized eigenvalue problem to obtain shifts \mu m and weights wm,
m = 0, . . . ,\widetilde M , and
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Fig. 6.1. Convergence of the shift coefficient \mu closest to  - k2 for \Omega = [0, 1]2 and several wave
numbers k.

\bullet solve \widetilde M  - 1 reaction-diffusion type systems.
The generalized eigenvalue problem (6.4) can be solved in \scrO 

\bigl( \widetilde M3
\bigr) 
operations, as

outlined in [1], and the weights wm can be computed in \scrO 
\bigl( \widetilde M2

\bigr) 
operations. Since

finding the eigenvalue approximations is also an inexpensive operation (cf. [1]), the
computations are entirely dominated by the linear solves. Solving an integer-order
Helmholtz problem can be significantly more costly than solving reaction-diffusion
problems, especially when the wave number k is large. Therefore, we expect that the
overall cost of solving the fractional Helmholtz problem is comparable to the classical
integer-order case.

6.2. Solving sequences of problems with variable fractional order. If
the eigenvalue approximations are chosen such that they satisfy Assumption 5.3 for
a range of fractional orders [smin, smax] \subset (0, 1), the resulting solver can be used to
solve fractional Helmholtz problems of order smin \leq s \leq smax without rediscretization.
This is quite beneficial since the exact value of the fractional exponent s is generally
unknown and needs to be determined through repeated linear solves with varying s in
the framework of an inverse problem. See, for instance, [23, 2, 5], where the exponent
s is spatially dependent. We do not explore the property further in the context of the
present work.

7. Numerical examples. Let \Omega = [0, 1]d. We solve the fractional-order Helmholtz
equation \biggl\{ 

( - \Delta )
s
u (\bfitx ) - k2su = f (\bfitx ) , \bfitx \in \Omega ,

u(\bfitx ) = 0, \bfitx \in \partial \Omega .

In order to evaluate the error convergence rates, we consider the manufactured ana-

lytic solution u = C
\prod d

i=1 [xi(1 - xi)]
r+2s - 1/2

with a given right-hand side regularity
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of index r and C chosen to normalize u. We obtain an approximation of the cor-
responding right-hand side function f via the discrete sine transform. We observe
that

f \in \widetilde Hr (\Omega ) , u \in 

\Biggl\{ 
C\infty \bigl( \Omega \bigr) for r + 2s \in \BbbN + 3/2,\widetilde Hr+2s (\Omega ) else.

We have to resort to this approach since we are not aware of any nontrivial analytic
pairs of right-hand side and solution for the fractional Helmholtz problem that reflect
the regularity properties of the equation. We also note that prescribing the solution,
and finding an approximation to the right-hand side function f , instead of the other
way around, permits us to compute the L2-error as follows:

| | u - uh| | 2L2(\Omega ) = | | u| | 2L2(\Omega )  - 2Re (u, uh)L2(\Omega ) + | | uh| | 2L2(\Omega ) .

Here, the first term can be evaluated analytically and the second and third term can
be evaluated using quadrature of sufficiently high order. The \scrH 1

\omega -error is given by

| | U  - Uh| | 2\scrH 1
\omega 
= (f, u)L2(\Omega )  - 2Re (f, uh)L2(\Omega ) + (f, uh)L2(\Omega ) + k2s | | u - uh| | 2L2(\Omega )

+ 2i Im(k2s) (uh, u)L2(\Omega ) .

Here, we have used the variational formulation given in (wExt). Since the expansion
coefficients um and the exact eigenvalues \lambda m are known, we can use the expansion

(f, u)L2(\Omega ) =

\infty \sum 
m=0

\bigl( 
\lambda sm  - k2s

\bigr)  - 1 | u| 2m

to approximate the true value by truncating the sum to a sufficient number of terms,
as long as we make sure that the truncation error is dominated by the discretization
error. As stated in Theorem 5.7 the \widetilde Hs-error is bounded by the \scrH 1

\omega -error.
It is important to note that the fact that the domains \Omega are hypercubes is exploited

only to obtain approximations for pairs of solutions and right-hand sides in order to
compute error norms. The discretization of the problem as well as the solver are
entirely oblivious to this fact and do not take advantage of it.

In what follows, we solve the above problem for the d-hypercube, d = 2, fractional
order s \in \{ 0.6, . . . , 0.9\} , and

I. a low regularity case (r = 1/2), using piecewise linear (p = 1) elements and
real-valued wave number k \in \{ 5, 20\} ,

II. a low regularity case (r = 1/2), using piecewise quadratic (p = 2) elements
and real-valued wave number k \in \{ 5, 20\} ,

III. a high regularity case (r = 2), using piecewise quadratic (p = 2) elements
and real-valued wave number k \in \{ 5, 20\} , and

IV. a low regularity case (r = 1/2), using piecewise linear (p = 1) elements and
complex-valued wave number k = 20 + 5i.

In all settings, we use quasi-uniform meshes.
In Tables 7.1 and 7.2, we display the solution errors measured in the \scrH 1

\omega - and
the L2 (\Omega )-norm for the first two test cases, I and II. In Tables 7.3 and 7.4, the
convergence results of the latter two test cases, III and IV, are shown. As predicted
by Theorem 5.7, order hmin\{ p,r+s\} convergence is observed in the \scrH 1

\omega -norm. For the
L2-error, we often observe convergence of order hmin\{ p+1,r+2s\} , which is better than
the theoretical rate of hmin\{ p+s,r+2s\} predicted by Theorem 5.7.
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Table 7.1
L2-errors and \scrH 1

\omega -errors for the solution of the fractional Helmholtz problem on the unit square
for test case I: wave number k = 5 ( left) and k = 20 ( right), fractional orders s \in \{ 0.6, 0.7, 0.8, 0.9\} ,
and piecewise linear (p = 1) finite elements for a right-hand side f \in \widetilde Hr (\Omega ), r = 1/2.

s = 0.6, k = 5.0 s = 0.6, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.177 8.99e-02 3.12e-01 3.36e-02 2.78e-01
0.0884 2.00e-02 2.17 1.11e-01 1.49 6.99e-03 2.27 1.04e-01 1.41
0.0442 4.91e-03 2.03 5.07e-02 1.13 7.29e-03 -0.06 6.53e-02 0.67
0.0221 1.23e-03 2.00 2.49e-02 1.03 1.25e-02 -0.78 7.93e-02 -0.28
0.011 3.12e-04 1.98 1.24e-02 1.00 1.07e-03 3.54 1.40e-02 2.50

0.00552 7.95e-05 1.97 6.24e-03 0.99 2.31e-04 2.21 6.39e-03 1.13
0.00276 2.05e-05 1.96 3.13e-03 1.00 5.61e-05 2.04 3.15e-03 1.02
0.00138 5.34e-06 1.94 1.57e-03 1.00 1.40e-05 2.00 1.57e-03 1.00

Theoretical 1.60 1.00 1.60 1.00

s = 0.7, k = 5.0 s = 0.7, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.177 8.39e-02 3.67e-01 4.68e-02 4.57e-01
0.0884 1.89e-02 2.15 1.41e-01 1.38 1.88e-02 1.31 1.97e-01 1.21
0.0442 4.65e-03 2.02 6.62e-02 1.09 5.77e-03 1.70 7.92e-02 1.32
0.0221 1.17e-03 2.00 3.28e-02 1.01 1.00e-02 -0.80 8.79e-02 -0.15
0.011 2.94e-04 1.99 1.64e-02 1.00 8.76e-04 3.52 1.79e-02 2.30

0.00552 7.42e-05 1.99 8.25e-03 0.99 1.90e-04 2.21 8.39e-03 1.09
0.00276 1.88e-05 1.98 4.13e-03 1.00 4.61e-05 2.04 4.15e-03 1.02
0.00138 4.76e-06 1.98 2.06e-03 1.00 1.14e-05 2.01 2.07e-03 1.01

Theoretical 1.70 1.00 1.70 1.00

s = 0.8, k = 5.0 s = 0.8, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.177 7.89e-02 4.42e-01 5.33e-02 6.79e-01
0.0884 1.79e-02 2.14 1.81e-01 1.29 4.06e-02 0.39 4.76e-01 0.51
0.0442 4.41e-03 2.02 8.68e-02 1.06 4.28e-03 3.24 9.66e-02 2.30
0.0221 1.10e-03 2.00 4.31e-02 1.01 7.37e-03 -0.78 9.17e-02 0.07
0.011 2.76e-04 2.00 2.16e-02 1.00 6.62e-04 3.48 2.27e-02 2.01

0.00552 6.91e-05 2.00 1.08e-02 1.00 1.44e-04 2.20 1.09e-02 1.06
0.00276 1.73e-05 2.00 5.40e-03 1.00 3.50e-05 2.04 5.41e-03 1.01
0.00138 4.34e-06 2.00 2.70e-03 1.00 8.70e-06 2.01 2.70e-03 1.00

Theoretical 1.80 1.00 1.80 1.00

s = 0.9, k = 5.0 s = 0.9, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.177 7.46e-02 5.41e-01 5.44e-02 9.32e-01
0.0884 1.71e-02 2.12 2.33e-01 1.21 6.07e-02 -0.16 9.28e-01 0.01
0.0442 4.21e-03 2.02 1.13e-01 1.04 3.00e-03 4.34 1.20e-01 2.96
0.0221 1.05e-03 2.00 5.62e-02 1.01 4.79e-03 -0.67 9.05e-02 0.40
0.011 2.62e-04 2.00 2.81e-02 1.00 4.52e-04 3.41 2.88e-02 1.65

0.00552 6.56e-05 2.00 1.40e-02 1.00 9.99e-05 2.18 1.41e-02 1.03
0.00276 1.64e-05 2.00 7.02e-03 1.00 2.43e-05 2.04 7.03e-03 1.01
0.00138 4.09e-06 2.00 3.51e-03 1.00 6.04e-06 2.01 3.51e-03 1.00

Theoretical 1.90 1.00 1.90 1.00

All computations are performed on a dual socket Intel Xeon E5-2650V3, 2.30GHz,
20 core workstation. In Figures 7.1 and 7.2 we display timings for the solution of the
linear problems of test cases I--IV. We display both the total solve time as well as the
cumulative time for all reaction-diffusion type solves. We observe that, as expected,
the integer-order Helmholtz solve dominates the overall solution time for larger wave
number k. This is essentially due to an increase in the number of iterations. For
example, solving the integer-order Helmholtz problem for test case I on the finest
mesh takes 13 iterations for k = 5, but 41 for k = 20. The reaction-diffusion type
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Table 7.2
L2-errors and \scrH 1

\omega -errors for the solution of the fractional Helmholtz problem on the unit square
for test case II: wave number k = 5 ( left) and k = 20 ( right), fractional orders s \in \{ 0.6, 0.7, 0.8, 0.9\} ,
and piecewise quadratic (p = 2) finite elements for a right-hand side f \in \widetilde Hr (\Omega ), r = 1/2.

s = 0.6, k = 5.0 s = 0.6, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 1.07e-02 7.63e-02 1.02e-02 8.53e-02
0.177 2.00e-03 2.41 2.53e-02 1.59 3.89e-03 1.40 3.23e-02 1.40

0.0884 5.42e-04 1.89 6.79e-03 1.90 1.15e-03 1.76 9.13e-03 1.82
0.0442 1.59e-04 1.77 4.48e-03 0.60 1.67e-04 2.78 4.49e-03 1.02
0.0221 4.80e-05 1.73 2.08e-03 1.11 4.81e-05 1.79 2.08e-03 1.11
0.011 1.46e-05 1.71 9.61e-04 1.11 1.46e-05 1.72 9.61e-04 1.11

Theoretical 1.70 1.10 1.70 1.10

s = 0.7, k = 5.0 s = 0.7, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 1.31e-02 1.22e-01 1.50e-02 1.51e-01
0.177 2.37e-03 2.47 4.19e-02 1.54 4.68e-03 1.68 5.32e-02 1.51

0.0884 5.50e-04 2.10 1.12e-02 1.90 1.36e-03 1.78 1.51e-02 1.82
0.0442 1.36e-04 2.02 6.69e-03 0.74 1.49e-04 3.19 6.71e-03 1.17
0.0221 3.51e-05 1.95 2.90e-03 1.21 3.54e-05 2.07 2.90e-03 1.21
0.011 9.26e-06 1.92 1.25e-03 1.22 9.26e-06 1.93 1.25e-03 1.22

Theoretical 1.90 1.20 1.90 1.20

s = 0.8, k = 5.0 s = 0.8, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 1.43e-02 1.75e-01 1.85e-02 2.39e-01
0.177 2.19e-03 2.71 5.62e-02 1.64 4.29e-03 2.11 6.93e-02 1.79

0.0884 4.23e-04 2.38 1.15e-02 2.29 1.24e-03 1.79 1.73e-02 2.00
0.0442 8.35e-05 2.34 7.29e-03 0.66 1.01e-04 3.62 7.32e-03 1.24
0.0221 1.81e-05 2.21 2.92e-03 1.32 1.84e-05 2.46 2.92e-03 1.33
0.011 4.06e-06 2.15 1.16e-03 1.33 4.07e-06 2.18 1.16e-03 1.33

Theoretical 2.10 1.30 2.10 1.30

s = 0.9, k = 5.0 s = 0.9, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 1.48e-02 2.36e-01 2.14e-02 3.60e-01
0.177 1.88e-03 2.98 6.85e-02 1.78 3.34e-03 2.68 8.02e-02 2.16

0.0884 3.02e-04 2.63 4.94e-03 3.79 9.65e-04 1.79 1.46e-02 2.45
0.0442 4.29e-05 2.82 6.69e-03 -0.44 6.23e-05 3.95 6.72e-03 1.12
0.0221 7.25e-06 2.57 2.41e-03 1.47 7.78e-06 3.00 2.41e-03 1.48
0.011 1.31e-06 2.47 8.76e-04 1.46 1.32e-06 2.56 8.62e-04 1.48

Theoretical 2.30 1.40 2.30 1.40

subproblems do not display such behavior. This shows that for high wave number k,
solution of the fractional problem and its integer-order equivalent have very compa-
rable cost. We also observe that for fixed k, the solution time scales roughly linearly
with the number of degrees of freedom n = dimSh of the finite element space.

In a final example, we solve the fractional Helmholtz problem on the Fichera
cube \Omega = [0, 2]3 \setminus [1, 2]3 for wave number k = 5 and f = 1. Since no analytic solution
is known, errors are computed with respect to a solution on a fine mesh (mesh size
h \approx 0.0135, n \approx 14.5 \times 106 unknowns). While we did not use available closed-
form expressions for the eigenvalue before, this example further illustrates that such
expressions are not needed. In Table 7.5, we display the solution errors measured in
the \scrH 1

\omega - and the L2 (\Omega )-norm. Again, we observe that the L2-error converges faster
than predicted by Theorem 5.7, but that order hmin\{ p,r+s\} convergence is observed in
the \scrH 1

\omega -norm. The apparent speed-up of convergence for finer meshes is due to the
fact that we are using the solution on a fine mesh to compute errors.
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Fig. 7.1. Solution times for the fractional Helmholtz problem on the unit square for test cases I
( top) and II (bottom). Also, the total time (\times ) and time for all reaction-diffusion type subproblems
(\bullet ).
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Fig. 7.2. Solution times for the fractional Helmholtz problem on the unit square for test cases III
( top) and IV (bottom). Also, the total time (\times ) and time for all reaction-diffusion type subproblems
(\bullet ).
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Table 7.3
L2-errors and \scrH 1

\omega -errors for the solution of the fractional Helmholtz problem on the unit
square for test case III: wave number k = 5 ( left) and k = 20 ( right), fractional orders s \in 
\{ 0.6, 0.7, 0.8, 0.9\} , and piecewise quadratic (p = 2) finite elements for a right-hand side f \in \widetilde Hr (\Omega ),
r = 2.

s = 0.6, k = 5.0 s = 0.6, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 1.17e-02 9.35e-02 3.26e-02 2.12e-01
0.177 1.51e-03 2.96 2.69e-02 1.80 4.30e-03 2.93 3.64e-02 2.54

0.0884 2.04e-04 2.89 7.19e-03 1.90 1.07e-03 2.01 9.60e-03 1.92
0.0442 2.69e-05 2.92 1.84e-03 1.96 5.74e-05 4.22 1.87e-03 2.36
0.0221 3.49e-06 2.95 4.70e-04 1.97 4.71e-06 3.61 4.68e-04 2.00

Theoretical 2.60 2.00 2.60 2.00

s = 0.7, k = 5.0 s = 0.7, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 1.22e-02 1.28e-01 3.31e-02 2.92e-01
0.177 1.62e-03 2.91 3.77e-02 1.76 4.57e-03 2.86 5.16e-02 2.50

0.0884 2.12e-04 2.93 9.99e-03 1.92 1.17e-03 1.97 1.37e-02 1.91
0.0442 2.72e-05 2.97 2.54e-03 1.98 6.19e-05 4.24 2.58e-03 2.41
0.0221 3.43e-06 2.99 6.44e-04 1.98 4.88e-06 3.66 6.55e-04 1.98

Theoretical 2.70 2.00 2.70 2.00

s = 0.8, k = 5.0 s = 0.8, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 1.29e-02 1.76e-01 3.29e-02 3.96e-01
0.177 1.73e-03 2.90 5.26e-02 1.75 4.65e-03 2.82 7.13e-02 2.47

0.0884 2.19e-04 2.98 1.38e-02 1.93 1.22e-03 1.94 1.91e-02 1.90
0.0442 2.74e-05 3.00 3.48e-03 1.98 6.43e-05 4.24 3.54e-03 2.43
0.0221 3.42e-06 3.00 8.82e-04 1.98 5.00e-06 3.69 8.82e-04 2.00

Theoretical 2.80 2.00 2.80 2.00

s = 0.9, k = 5.0 s = 0.9, k = 20.0
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 1.39e-02 2.44e-01 3.23e-02 5.35e-01
0.177 1.83e-03 2.92 7.28e-02 1.74 4.57e-03 2.82 9.66e-02 2.47

0.0884 2.25e-04 3.02 1.89e-02 1.95 1.22e-03 1.91 2.60e-02 1.89
0.0442 2.79e-05 3.01 4.77e-03 1.99 6.50e-05 4.23 4.85e-03 2.43
0.0221 3.48e-06 3.00 1.20e-03 1.98 5.06e-06 3.68 1.21e-03 2.01

Theoretical 2.90 2.00 2.90 2.00
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Table 7.4
L2-errors and \scrH 1

\omega -errors for the solution of the fractional Helmholtz problem on the unit square
for test case IV: wave number k = 20 + 5i ( left) and k = 20 + 20i ( right), fractional orders

s \in \{ 0.6, 0.7, 0.8, 0.9\} , and piecewise linear (p = 1) finite elements for a right-hand side f \in \widetilde Hr (\Omega ),
r = 1/2.

s = 0.6, k = 20 + 5i s = 0.6, k = 20 + 20i
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 3.80e-02 3.94e-01 3.50e-02 2.75e-01
0.177 1.02e-02 1.90 1.90e-01 1.05 8.86e-03 1.98 1.37e-01 1.01

0.0884 3.33e-03 1.61 9.42e-02 1.01 2.70e-03 1.72 6.84e-02 1.00
0.0442 1.02e-03 1.71 4.72e-02 1.00 8.69e-04 1.63 3.44e-02 0.99
0.0221 3.09e-04 1.72 2.38e-02 0.99 2.77e-04 1.65 1.73e-02 0.99
0.011 9.36e-05 1.72 1.20e-02 0.99 8.70e-05 1.67 8.71e-03 0.99

0.00552 2.84e-05 1.72 6.01e-03 0.99 2.71e-05 1.68 4.39e-03 0.99
0.00276 8.66e-06 1.72 3.02e-03 0.99 8.38e-06 1.69 2.21e-03 0.99
0.00138 2.64e-06 1.71 1.51e-03 1.00 2.59e-06 1.70 1.11e-03 0.99

Theoretical 1.60 1.00 1.60 1.00

s = 0.7, k = 20 + 5i s = 0.7, k = 20 + 20i
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 4.25e-02 4.94e-01 3.97e-02 3.04e-01
0.177 1.26e-02 1.75 2.43e-01 1.03 1.14e-02 1.80 1.55e-01 0.97

0.0884 4.29e-03 1.56 1.22e-01 1.00 3.42e-03 1.74 7.68e-02 1.01
0.0442 1.24e-03 1.79 6.09e-02 1.00 1.03e-03 1.74 3.87e-02 0.99
0.0221 3.48e-04 1.83 3.07e-02 0.99 2.99e-04 1.78 1.96e-02 0.98
0.011 9.61e-05 1.86 1.54e-02 0.99 8.50e-05 1.81 9.92e-03 0.98

0.00552 2.64e-05 1.87 7.75e-03 0.99 2.38e-05 1.83 5.01e-03 0.99
0.00276 7.18e-06 1.88 3.89e-03 1.00 6.60e-06 1.85 2.52e-03 0.99
0.00138 1.95e-06 1.88 1.95e-03 1.00 1.81e-06 1.86 1.26e-03 1.00

Theoretical 1.70 1.00 1.70 1.00

s = 0.8, k = 20 + 5i s = 0.8, k = 20 + 20i
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 4.95e-02 6.45e-01 4.69e-02 3.57e-01
0.177 1.41e-02 1.81 3.17e-01 1.03 1.28e-02 1.87 1.77e-01 1.02

0.0884 4.51e-03 1.65 1.57e-01 1.01 3.50e-03 1.88 8.49e-02 1.06
0.0442 1.23e-03 1.88 7.81e-02 1.01 9.59e-04 1.87 4.27e-02 0.99
0.0221 3.22e-04 1.93 3.91e-02 1.00 2.58e-04 1.89 2.16e-02 0.98
0.011 8.36e-05 1.95 1.96e-02 1.00 6.81e-05 1.92 1.09e-02 0.98

0.00552 2.15e-05 1.96 9.83e-03 1.00 1.78e-05 1.94 5.51e-03 0.99
0.00276 5.50e-06 1.97 4.92e-03 1.00 4.58e-06 1.96 2.76e-03 1.00
0.00138 1.40e-06 1.98 2.46e-03 1.00 1.17e-06 1.97 1.38e-03 1.00

Theoretical 1.80 1.00 1.80 1.00

s = 0.9, k = 20 + 5i s = 0.9, k = 20 + 20i
h L2 RoC \scrH 1

\omega RoC L2 RoC \scrH 1
\omega RoC

0.354 5.56e-02 8.52e-01 5.31e-02 4.70e-01
0.177 1.46e-02 1.93 4.14e-01 1.04 1.32e-02 2.01 2.12e-01 1.15

0.0884 4.33e-03 1.75 2.02e-01 1.03 3.28e-03 2.01 9.90e-02 1.10
0.0442 1.12e-03 1.95 9.94e-02 1.02 8.39e-04 1.97 4.94e-02 1.00
0.0221 2.85e-04 1.98 4.95e-02 1.00 2.14e-04 1.97 2.48e-02 0.99
0.011 7.19e-05 1.99 2.48e-02 1.00 5.42e-05 1.98 1.25e-02 0.99

0.00552 1.81e-05 1.99 1.24e-02 1.00 1.37e-05 1.99 6.26e-03 0.99
0.00276 4.53e-06 2.00 6.20e-03 1.00 3.43e-06 1.99 3.13e-03 1.00
0.00138 1.13e-06 2.00 3.10e-03 1.00 8.58e-07 2.00 1.56e-03 1.00

Theoretical 1.90 1.00 1.90 1.00
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Table 7.5
L2-errors and \scrH 1

\omega -errors for the solution of the fractional Helmholtz problem on the Fichera
cube: fractional orders s \in \{ 0.6, 0.7, 0.8, 0.9\} and piecewise linear (p = 1) finite elements for a

right-hand side f \in \widetilde Hr (\Omega ), r = 1/2.

s = 0.6, k = 5.0
h L2 RoC \scrH 1

\omega RoC
0.433 1.11e+01 2.93e+01
0.217 8.21e-01 3.76 2.27e+00 3.69
0.108 1.13e-01 2.86 4.91e-01 2.21

0.0541 3.21e-02 1.82 2.25e-01 1.13
0.0271 7.66e-03 2.07 1.04e-01 1.12

Theoretical 1.60 1.00

s = 0.7, k = 5.0
h L2 RoC \scrH 1

\omega RoC
0.433 6.90e+00 2.14e+01
0.217 5.10e-01 3.76 1.67e+00 3.68
0.108 7.04e-02 2.86 3.76e-01 2.15

0.0541 1.99e-02 1.82 1.75e-01 1.10
0.0271 4.75e-03 2.07 8.13e-02 1.11

Theoretical 1.70 1.00

s = 0.8, k = 5.0
h L2 RoC \scrH 1

\omega RoC
0.433 4.37e+00 1.59e+01
0.217 3.23e-01 3.76 1.25e+00 3.67
0.108 4.46e-02 2.86 2.92e-01 2.10

0.0541 1.26e-02 1.82 1.38e-01 1.08
0.0271 3.01e-03 2.07 6.45e-02 1.10

Theoretical 1.80 1.00

s = 0.9, k = 5.0
h L2 RoC \scrH 1

\omega RoC
0.433 2.82e+00 1.21e+01
0.217 2.08e-01 3.76 9.56e-01 3.66
0.108 2.87e-02 2.86 2.30e-01 2.06

0.0541 8.14e-03 1.82 1.10e-01 1.07
0.0271 1.95e-03 2.06 5.17e-02 1.09

Theoretical 1.90 1.00

8. Conclusion. In this work, we have presented a fractional-order Helmholtz
problem. We have discussed well-posedness and convergence of a hybrid spectral-
finite element discretization. An efficient solver has been proposed that scales as
well as the best possible solver for the integer-order Helmholtz equation, making the
more appropriate fractional equation a preferable alternative for geophysical electro-
magnetics modeling. Numerical examples have been used to illustrate the obtained
theoretical results.
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