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Highlights 

• Spatial energy density leveraged to induce different porosity distributions 
• Comprehensive defect characterization used to classify defect-induced-failures 
• A critical pore size was found to improve prediction of tensile loading ductility 

performance 

Abstract 

Laser powder bed fusion (LPBF) additive manufacturing (AM) offers a variety of advantages 
over traditional manufacturing, however its usefulness for manufacturing of high-performance 
components is currently hampered by internal defects (porosity) created during the LPBF process 
that have an unknown impact on global mechanical performance. By inducing porosity 
distributions through variations in print energy density and inspecting the resulting tensile 
samples using computed tomography, nearly 50,000 pores across 75 samples were identified. 
Porosity characteristics were quantitatively extracted from inspection data and compared with 
mechanical properties to understand the strength of relationships between porosity and global 
tensile performance. Useful porosity characteristics were identified for prediction of part 
performance. Results indicate that ductility and strain at ultimate tensile strength are the global 
tensile properties most significantly impacted by porosity and can be predicted with reasonable 
accuracy using simple porosity shape descriptors such as volume, diameter, and surface area. 
Moreover, it was found that the largest pores influenced behavior most significantly. 
Specifically, pores in excess of 125 µm in diameter were found to be a sufficient threshold for 
property estimation. These results establish an initial understanding of the complex defect-
performance relationship in AM 316L stainless steel and can be leveraged to develop 
certification standards and improve confidence in part quality and reliability for the broader set 
of engineering alloys. 
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1 Introduction 

Additive manufacturing (AM), the layer-by-layer creation of a part directly from a digital 
computer-aided design (CAD) model, is a manufacturing paradigm that is currently coming into 
maturity for industrial production. Despite the many well-known advantages of AM, including 
the ability to create complex geometries consisting of internal features which are difficult or 
impossible to create using traditional manufacturing methods, consolidate complex assemblies 
into just a few components, create functional prints, and quickly progress from design to 
manufacture for small-batch components, many issues persist which inhibit these advantages 
from being fully realized. Some of these issues include size limitations, surface roughness, low 
precision, and internal defects [1,2]. Qualification or certification, the process of determining the 
integrity of a part, must consider and account for all of these issues to safely qualify parts.  

Internal defects and porosity can largely be controlled through post-processing by hot isostatic 
pressing (HIP) and optimization of print parameters [3–5]. However, it has been shown that these 
effects on performance in titanium alloys and precipitation-hardened stainless steel cannot be 
fully removed and thus porosity remains one of the most persistent and puzzling problems in AM 
research [6–9]. Consequently, the AM research community has been working to understand the 
role of internal defects in part performance and account for it through qualification inspections 
and methodologies. Qualification of additively manufactured components can take on many 
forms, focusing on feedstock powder [10,11], in-situ melt pool monitoring [12,13], geometric 
form [14], internal feature [1,2,15–17], and material properties [18], all of which inspect or 
monitor crucial aspects of the laser powder bed fusion additive manufacturing process. However, 
there currently exists a gap in model-based understanding of the effects of internal defects on 
global tensile performance of AM 316L SS despite the numerous studies studying porosity in 
this material [2,7,19–24], consequently, an inability to safely and reliably implement or qualify 
parts. The present research seeks to bridge this gap through statistical modeling of the complex 
relationship between internal defect characteristics and tensile performance metrics. 

Despite the fact that most printed parts have very high bulk density (>99.9%) in their final state, 
pores can still have a significant impact on part performance [2,9,11]. Porosity colloquially refers 
to internal void-type defects caused by several different phenomena. Porosity defects, as a 
common issue in LPBF AM, have been the focus of many studies seeking to improve their 
identification for qualification purposes [25–28]. Computed tomography (CT), as a non-
destructive inspection approach useful for the identification of internal features, has become the 
gold-standard method for porosity detection in additively manufactured components. However, 
standardizing the extraction of porosity data, e.g. size, shape, location, remains an area under 
development. For instance, researchers at the National Institute of Standards and Technology 
(NIST) proposed a standardized method for porosity quantification and metrology relying on 
Bernsen’s method, a local threshold algorithm, which performed well compared to other 
segmentation algorithms such as Otsu’s and Yen’s methods [29]. However, commercial software 
algorithms, such as used in the current study, persist as the most common method for 
identification of porosity despite their general lack of transparency [30]. 

In LPBF AM, porosity-type defects are typically classified into three categories based on their 
formation mechanisms: gas pores, lack of fusion (LOF) defects, and keyhole porosity [11]. 
Because these categories are formed by different mechanisms they often exhibit different 
physical characteristics and sizes. Gas pores, by number, are the most numerous type of pore 
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found in AM components but are typically at the edge of detection capabilities due to the size of 
these defects. These small (diameter < 20 µm), spherical pores form via entrapment of gas either 
in the raw powder during gas atomization, or during the build process in the final part [11]. In 
contrast, lack of fusion defects are very tortuous in shape. These defects are formed, as the name 
suggests, by two melt paths or layers not fully fusing, resulting in a void. These pores are 
characterized by geometries containing sharp crevices and an often-elongated shape due to their 
orientation along build paths. Lastly, keyhole porosity is formed when localized spatial energy 
density is too high. This excess of energy results in partial evaporation of the metal meltpool and 
a subsequent formation of plasma. This causes a vapor cavity that results in entrapment of gas 
and therefore voids. Specifically, keyhole formation occurs when the melt pool transitions from 
conduction mode to keyhole mode laser melting in LPBF, which occurs when a normalized 
enthalpy threshold is exceeded [31]. Keyhole porosity shape is generally characterized as either 
spherical or long and smooth, depending on the excess of input energy, and tend to be relatively 
large. 

While gas pore distributions in final parts are largely dictated by raw material quality, LOF and 
keyhole defects can be influenced and controlled to a degree by process parameter optimization 
[32,33]. The most often modified parameters include power, laser speed, and hatch spacing, 
which can be tuned to produce highly dense parts. However, defects will always be created due 
to small, stochastic laser power variances, recoating inconsistencies, and powder issues. 
Currently, aerospace standards for additively manufactured and welded components in critical 
applications permit porosity of up to 1.5 mm diameter in some cases [34,35]. Without model-
based understanding of the relationship between defects, standards may be limited in their 
effectiveness, either permitting unsafe parts into service or being overly conservative in their 
restrictions, resulting in increased weight and costs for parts. The persistent occurrence of 
porosity defects means that an understanding of the effects of these defects is critical to the 
success of these components in critical structural applications. 

Despite relatively in-depth knowledge about defect formation, the relationship between internal 
defects and global part performance under various loading conditions is not fully understood. 
Many studies have been performed in this area, but most rely on qualitative inspection of 
components and on generalized measurements such as total pore count and bulk density. These 
studies seek to understand the defect-tensile performance relationship and have covered a variety 
of materials including 316L SS [2,19], Ti-6Al-4V [7], and 17-4PH SS [9,17].  

For example, Madison et al. [9] inspected dozens of 17-4PH tensile using CT and found 
relatively weak correlations between defect properties and tensile performance. This study 
examined porosity distribution characteristics including total number of defects, equivalent 
spherical diameter, volume, among others and found relatively low correlation between defects 
and behavior, the maximum being an R-squared (R2) value of ~0.50. Slightly better success was 
had when multiple pore parameters were combined using ANOVA techniques, reaching a 
maximum R2 of 0.60. Boyce et al. [17] utilized extreme value statistics to reveal failure-critical 
defects in 17-4PH SS subject to tensile loading. Examining over 1000 samples, this study 
emphasized the need of large sample set sizes for characterization of the stochastic behavior of 
AM materials.  

In this study, to understand the complex relationship between internal defects and tensile 
performance, three sample arrays consisting of 25 tensile samples each were manufactured at 
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three different print settings designed to induce varying defect distributions. These samples were 
then inspected using computed tomography to systematically and quantitatively characterize the 
defect distributions within the samples. Samples were pulled to failure in tension, mechanical 
properties calculated, and the resulting fracture surfaces inspected using scanning electron 
microscopy (SEM). Defect feature distributions gathered from CT inspections were then 
analyzed and compared with mechanical properties to understand the relationship between 
defects and global tensile performance. 

2 Methods 

Three build plates were manufactured at three different global energy density (GED) conditions 
using an EOS M290 additive manufacturing machine equipped with a 400 W IPG Photonics 
Laser. The default EOS scan strategy was used, with a laser stripe width of 5 mm and an overlap 
of 0.12 mm. In this scan strategy, the laser traces contours around each component slice during 
printing to create improved surface quality on the component exterior. Additionally, a 67 degree 
rotation was utilized each layer to help reduce thermal warpage and the creation of anisotropy in 
the component. Parts were built using constant parameters and build strategy throughout the 
entire z-height of the build. Each sample array was printed with the axial direction of the tensile 
sample oriented with the z-axis (vertically), as shown in Figure 1a so as to maximize print 
quality, which has been shown to be well correlated with print orientation [36–38]. In this way, 
the present study sought to isolate the effects of pores from the effects of surface irregularities as 
much as possible in an as-built condition for small-scale components.  

GED, a measure of spatial energy density that is often used for tuning machine parameters, can 
be calculated using Equation 1, where 𝑃𝑃 is laser power, 𝐻𝐻 is hatch spacing, and 𝑆𝑆 is laser scan 
speed. GED is the two-dimensional equivalent of volumetric energy density, which includes 
laser thickness as a parameter in the denominator and is commonly used to understand AM 
builds. Layer thickness was kept constant at 20 µm in this study, so it can be assumed that GED 
and volumetric energy density would provide identical trends and only be different by a scaling 
factor of 1/𝑡𝑡 where 𝑡𝑡 is layer thickness. Power was kept constant during each build and was 
chosen as the independent variable changed between builds due to its established impact on part 
quality. Power was only modified for the core parameters of the part, while contour parameters 
were kept at their default values. More in-depth, parametric investigation of a larger power-
speed-hatch spacing space was determined to be beyond the scope of this study. Instead, the 
variation of laser power, reflected by the GED value, was used a means to induce different 
porosity distributions between the three builds. Investigation of this larger parameter space and 
its effects on part quality can be found elsewhere [5,39,40].  

 𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑃𝑃
𝐻𝐻𝐻𝐻

 (1) 

 

One tensile array from each of the three builds, consisting of 25 tensile dogbones with 
dimensions of 1 mm2 cross-section and 4 mm gage length, was used for this study, conforming to 
proportions prescribed by the ASTM E8 standard [41] but linearly scaled to the desired cross-
section. The small size of samples was chosen to mimic small AM features such as the struts 
found in lattices, which often have diameters on the order of 1mm [38]. The sample size of 75 
total dogbones was determined to be sufficiently large to capture both the tensile behavior and 
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the statistical distribution of defects most commonly found in this type of part. GED parameters 
for each of the three builds are shown in Table 1. 

 

Table 1. Print parameter summary 
 P (W) H (mm) S (mm/s) GED (J/mm2) 
High GED 220 0.09 1083 2.26 
Nom GED 195 0.09 1083 2.00 
Low GED 170 0.09 1083 1.74 

 

 
Figure 1. Test sample array CT volume. a) Array with analyzed gage sections highlighted and build direction (+Z) 
indicated. b) Array with dimensions and CT scan coordinate system shown at origin where the axis of the sample 

array is aligned with the x-axis and the axis of the sample gage sections is parallel to the z-axis. 
 

Computed tomography (CT) inspections were performed on the sample arrays to quantitatively 
assess the defect distributions of the samples prior to testing. CT inspections were carried out 
using a Nikon M2 Dual Head 225/450 kV machine equipped with a Perkin Elmer detector. The 
manufacturer-recommended auto-conditioning warmup routine was performed to ensure a stable 
operating voltage and therefore a steady image. A helical scan path was chosen to maximize 
resolution of the elongated sample arrays. A helical scan effectively removes some types of 
imaging artifacts and allows acquisition of a single volume of elongated data [42]. This 
technique helps optimize the scanning of high aspect ratio parts such as the thin dogbone arrays 
used in the present study. A resolution of 10 µm per cubic voxel edge (1x10-6 mm3 voxel 
volume) was achieved with an acceleration voltage of 440 kV and a tube current of 198 µA. This 
resolution was determined to provide adequate detail for shape assessment of porosity at the size 
scale of interest to the authors. Prior research suggests gas pores are typically < 20 µm in 
diameter whereas keyhole and lack of fusion porosity are most often larger than this and also 
most damaging to mechanical performance [11]. Furthermore, others have suggested that pore 
identification requires at least 8 (2x2x2) voxels in each orthogonal direction [24,43] and that 
highly detailed shape assessment requires at least 125 (5x5x5) voxels [44]. While most of the 
defects identified in this study fall well below this 125 voxel mark, the authors contend that the 
pores that will be shown to be of the most consequence, those ≥125 µm diameter, are large 
enough to be sufficiently characterized. A 1 mm Cu prefilter was used to mitigate beam 
hardening interference with defect assessment. A detailed summary of CT scan parameters is 
presented in Table 2. 

 



6 
 

 

 

Table 2. CT Inspection Parameters 
CT Parameter Value 

Acceleration Voltage 440 kV 
Current 198 µA 

Resolution (voxel edge) 10 µm 
Number of Projections 4944 

Detector Size 4000 x 4000 pixels 
Binning 2 x 2 pixels 

Field of View 20 x 20 mm 
Pixel Pitch 200 µm  

Exposure Time 1000 ms 
Scan Duration 82 minutes 

Beam Hardening Filter 1 mm Cu 
 

Analysis of CT data was performed in Volume Graphics VGSTUDIO MAX 3.1, a commercial 
CT data analysis software. Following a surface determination using an advanced deformable 
surface refinement technique, CT volumes were digitally registered using best-fit geometry 
elements such that the volumes aligned with the coordinate system in Figure 1b. Regions of 
interest (ROIs) were defined using a rectangular prism to define the gage section for each sample 
as the same size and relative location for fair comparison of defect distributions and locations 
within a sample as well as to restrict analysis zones to those defects in the gage section. 

To identify internal defects, VGDefX, a commercial porosity identification algorithm was used. 
A 2-voxel offset from the determined surface was set in combination with a medium adaptive 
noise reduction scheme to ensure noise or edge artifacts were not misidentified as physical 
defects. Using this analysis, 32 quantitative descriptors were extracted for each of the nearly 
50,000 pores identified across the 75 inspected samples. For the sake of brevity, not all defect 
descriptors will be presented in this paper, but presented analysis will be constrained to those that 
offered promise as performance predictors using the approach presented in Section 3.4. 

Several of the extracted defect features to be presented warrant further explanation. Diameter is 
calculated as that of the minimum sphere that encompasses the defect and is often referred to as 
the minimum bounding sphere. Compactness and sphericity both describe the shape of the defect 
and are defined as follows. Compactness describes the volumetric efficiency of the defect by 
indicating the percent volume the defect takes up in the minimum bounding sphere. Sphericity is 
a similar metric which compares the surface area of the defect to that of the minimum bounding 
sphere. Equations 2 and 3 present mathematical descriptions of compactness and sphericity used 
to calculate these characteristics where V is volume, d is diameter, and A is surface area. 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑉𝑉𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒

=
6𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜋𝜋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑3  (2) 
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𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

𝐴𝐴𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝜋𝜋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2

𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (3) 

 

Distance to center is the Euclidean distance between the centroid of a defect and the center of the 
gage section in the x-y plane, as defined by the coordinate system in Figure 1. Lastly, principal 
component axis (PCAx) analysis was performed on each identified defect. PCAx deviation 
indicates the standard deviation of the position of the voxels that describe a pore along each 
orthogonal PCAx, where PCAx deviation 1 corresponds to the standard deviation along the most 
pronounced axis of the defect volume. Standard deviations are calculated as the square roots of 
the eigenvalues resulting from PCAx analysis. A high PCAx deviation indicates poor alignment 
of the pore voxels with that axis and low ratio indicates the voxels are well-aligned. In other 
words, a pore with a high PCAx deviation may resemble a pancake and a low PCA deviation 
may resemble a thin cylinder-like crack. The PCAx maximum and minimum deviation ratios 
indicate the ratio between PCAx deviation 1 or 3, respectively, and the radius of the 
circumscribed sphere of the defect.  

Following CT inspection, tensile testing of samples was performed using a custom, high-
throughput tensile testing system equipped with an Interface 2-kip load cell that allows for the 
automated, rapid testing of tensile samples. This setup, described in more detail elsewhere [45], 
is capable of semi-autonomously testing 50-100 samples per hour due to a stage for sample 
movement and two PointGrey 5 MP digital image correlation (DIC) cameras used as automated, 
virtual strain-gauges. Using these cameras a spatial resolution of ~0.003 mm/pixel was achieved. 
A nominal field of view of 8 x 8 mm was used and images were acquired every 0.3 seconds, 
resulting in an average of ~300 images taken during each tensile test. Engineering strain was 
determined using the virtual extensometer and calculated in real time at the camera refresh rate 
using the Vic-Gauge software by Correlated Solutions. Sample gage section size was also 
calculated using the cameras to accurately calculate stress values by measuring and multiplying 
the thicknesses of two orthogonal sides of a sample gage section. To prepare samples for DIC 
measurements, samples were speckled with a white undercoat and a black speckle pattern via 
spray paint. Samples were pulled at a constant, quasi-static rate of 0.03 mm/s (0.0075 
mm/mm/s), which is compliant with the ASTM E8 standard for tensile testing of samples with 
elongations greater than 5% [41]. 

Following mechanical testing, the resulting fracture surfaces were examined using scanning 
electron microscopy. Samples were imaged with an acceleration voltage of 15 kV using a Zeiss 
Ultra 60 Field Emission Scanning Electron Microscope (SEM) equipped with a Schottky FEG 
gun. The secondary electron detector was used to capture the most topographical information 
possible. 

3 Results 

3.1 Mechanical Properties 

High-throughput mechanical testing resulted in tensile properties of the samples including 
ultimate tensile strength (UTS), strain at UTS, ductility (often referred to as elongation at 
fracture), modulus (obtained from unloading and reloading samples for computational 
simplicity), yield stress (measured from the initial loading yield), and strain at yield. Raw stress-
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strain data is presented in Figure 2 and the loading/unloading curve for modulus calculation is 
highlighted. A summary of measured properties is presented in Table 3. In this table it can be 
seen that the elastic modulus, at an approximate value of 125 GPa, is well below the nominal 
wrought value of 193 GPa [46]. This difference can be attributed to the scale-dependent property 
phenomena observed in small AM components. For example, in Ref. [47] the authors measured 
an elastic modulus of 121 GPa for 1 mm2 square cross-section 316L samples. In summary, a 
reduction of apparent material properties, specifically elastic modulus and ultimate tensile 
strength, can be observed as component size is decreased as a result of the increasing role of 
surface roughness on material response [38,47]. Furthermore, the [001] microstructural texture, 
aligned in the loading direction [47] as a preferential growth direction in LPBF [48,49] of the 
austenitic (FCC) stainless steel samples, has been shown to result in significant decreases in 
modulus compared to the isotropic polycrystalline value [50]. An alternative method for 
measurement of elastic modulus not taken here can be found in Ref. [51].  
 

From the data in Table 3 it can be seen that, overall, variability of properties tended to be slightly 
higher for high GED samples compared to the nominal and low GED conditions. This is 
especially evident in UTS, modulus, and yield strength. The most significant differences in 
mechanical properties between GED types occur in UTS strain and ductility values, particularly 
in the high GED samples. These samples suffer a decrease in UTS strain of approximately 10% 
and a decrease in ductility of 12% compared to their nominal counterparts for these properties. 
However, variability of these properties, as measured by standard deviation, is consistent across 
GED conditions at approximately 2.7% and 3.7%. 

 
Figure 2. Stress-strain data from tensile tests. 

 

Table 3. Experimental summary for all GED levels (mean ± population standard deviation). 
N = 25 for each GED condition 

Mean Value Modulus  
(GPa) 

Yield Stress  
(MPa) 

Yield Strain  
(%) 

UTS  
(MPa) 

UTS Strain 
(%) 

Ductility  
(%) 

High GED 127.3±3.6 337±19.0 0.469±0.015 490±13.4 45.2±2.7 60.7±3.59 
Nom GED 124.3±3.2 358±18.4 0.494±0.016 481±12.9 54.5±2.7 70.9±3.68 
Low GED 133.2±3.3 366±18.0 0.481±0.015 494±11.3 56.5±2.3 73.6±3.76 
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3.2 CT Inspection Results: Defect Characteristics 

Table 4 summarizes CT inspection results for important defect parameters. This data is 
visualized on a normalized scale in Figure 3 in which data is scaled such that the mean value for 
a defect feature (e.g. diameter) across all GED conditions is equal to 1.0. As can be seen from 
this table and figure, samples produced in the high GED condition exhibit higher standard 
deviation as well as higher values at the mean and D90 (90th percentile) values in most cases, 
particularly volume. Additionally, these results indicate that high GED samples tend to have 
defect distributions with less-uniform characteristics and larger defects overall. For example, the 
D90 pore volume is significantly larger for high GED samples compared to the nominal and low 
GED samples at 12.50 x10-5, 9.79 x10-5, and 9.12x10-5 mm3 for these conditions, respectively. 
This trend persists for other defect features, including diameter and surface area.  

However, defect feature distributions are fairly consistent across GED types at the lower end 
(D10) of distributions, such as in the case of diameter, where the high, nominal, and low GED 
values are 0.067, 0.065, and 0.067 mm, respectively. Differences seen in the consistency of 
defect features across GED types are indicators that defects at both extremes of the spectrum, 
particularly for size, are formed by different physical phenomena. These differences are 
consistent with what would be expected when observing different types of defects. Other defect 
feature mean values such as sphericity and compactness tend to be largely the same for each of 
the three GED conditions.  

Table 4. Defect feature summary 
High GED: N=19,542; Nom GED: N=11,632; Low GED: N=16,436 

 Mean D10 D90 Standard Deviation 
GED: High Nom Low High Nom Low High Nom Low High Nom Low 
Global 

Density (%) 98.71 99.37 99.14 98.24 99.05 98.64 99.06 99.64 99.47 0.306 0.255 0.36 

Diameter 
(mm) 0.093 0.087 0.090 0.067 0.065 0.067 0.127 0.118 0.120 0.024 0.021 0.020 

Volume  
(1x105 mm3) 6.581 5.431 5.231 3.040 3.040 2.700 12.50 9.790 9.120 6.463 3.118 3.074 

Surface Area 
(mm2) 0.015 0.013 0.013 0.010 0.010 0.010 0.030 0.020 0.020 0.009 0.007 0.006 

Compactness 0.145 0.162 0.139 0.090 0.090 0.080 0.220 0.230 0.210 0.053 0.053 0.049 

Sphericity 0.550 0.533 0.555 0.470 0.450 0.480 0.620 0.600 0.620 0.057 0.055 0.054 
PCAx 

Deviation 1 0.023 0.022 0.022 0.017 0.016 0.017 0.03 0.029 0.029 0.005 0.005 0.005 

PCAx 
Deviation 2 0.013 0.012 0.012 0.008 0.008 0.008 0.019 0.017 0.017 0.004 0.004 0.004 

PCAx 
Deviation 3 0.007 0.007 0.006 0.004 0.005 0.004 0.01 0.009 0.008 0.003 0.002 0.002 

Max. PCAx 
Deviation 

Ratio 
49.12 49.98 49.96 43.27 45.03 44.9 54.70 55.20 55.1 4.544 3.901 3.970 

Min. PCAx 
Deviation 

Ratio 
14.42 16.47 13.56 9.29 12.41 9.28 20.26 20.64 18.53 4.395 3.294 3.862 
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Dist. to 
Center (mm) 0.349 0.330 0.340 0.150 0.138 0.148 0.532 0.513 0.517 0.144 0.142 0.140 

 

 
Figure 3. Defect feature distribution summary. Data normalized such that 1.0 is the mean value of the entire defect 

character distribution containing all GED conditions. The filled box represents the D25-D75 range for each GED type 
and the line extends from D10-D90. Global Density is not included because the range is very small relative to other 

defect features. 
 

Figure 4 presents a representative CT inspection image of a high GED sample gage section. This 
figure shows the wide variety of pore sizes distributed in the high GED samples as well as pore 
spatial distribution throughout the sample. Defect location was considered to gain further insight 
into mechanisms of porosity formation observed in these samples. Figure 5 presents defect 
location in the x-y plane of the gage sections for all samples separated by volumetric percentile 
range and GED condition. This figure reveals that the largest pores, existing in the 90th percentile 
by volume or greater, tend to form around the edge of the samples and under the non-nominal 
GED conditions, particularly in the high GED condition. Pores below the 75th percentile tend to 
be distributed uniformly in the x-y plane and thus are not all shown. 

 
 

Figure 4. Semi-transparent CT volume of high GED gage section. Colorbar denotes pore diameter in mm. 
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Figure 5. Pore location maps at uniform scaling for various percentiles for each GED condition. Data points indicate 

only location. Bold bracketed numbers in leftmost column indicate percentile value. Volume values are shown in 
italics and brackets in units of 1x10-4 mm3. 

 

Distance to center results for the various volumetric percentile ranges and GED types are 
presented in Table 5. As can be seen from this table, average defect distance to center in the x-y 
plane increases with increasing defect volume while standard deviation decreases. This trend is 
particularly strong in the high GED samples, where average distance to center increases from 
0.349 mm in the 0-100 volumetric percentile range to 0.457 mm in the 98.5-100 percentile range. 
This trend of increasing distance to center with increasing pore size can be seen most clearly in 
Figure 6, which shows the mean distance to center of pores in each volumetric percentile range 
listed in Table 5. In this figure, the mean distance to center is shown to be approximately the 
same across ranges up to the 75th percentile. However, a sharp increase begins after this 75th 
percentile mark, especially for the high GED condition. 

 

Table 5. Mean value +/- standard deviation (mm) of pore distance to gage center at various volumetric percentile 
ranges. 

Volume Percentile High GED Nominal GED Low GED 
All Pores: 0-100 0.349 ± 0.144 0.330 ± 0.142 0.340 ± 0.140 

0-25 0.336 ± 0.141 0.326 ± 0.140 0.335 ± 0.138 
25-50 0.333 ± 0.142 0.326 ± 0.142 0.332 ± 0.138 
50-75 0.337 ± 0.144 0.332 ± 0.142 0.340 ± 0.139 
75-100 0.381 ± 0.143 0.338 ± 0.143 0.352 ± 0.142 
90-100 0.416 ± 0.132 0.346 ± 0.144 0.360 ± 0.144 

98.5-100 0.457 ± 0.093 0.419 ± 0.138 0.446 ± 0.078 
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Figure 6. Mean pore distance to gage center as a function of volumetric percentile. 

 

3.3 SEM Inspection 

Representative fracture surface images from each GED condition are shown in Figure 7. Defects 
seen on the fracture surfaces are highlighted in green to aid in visualization. As can be seen from 
these few images, trends observed in CT data regarding pore size and location for each GED 
type are also observed in SEM images. Specifically, large pores occur around the edges and 
appear to be most common in the high GED samples, while low GED samples have very small 
pores occurring in no obvious spatial pattern. This phenomena has also been observed in AM 
316L SS elsewhere [2]. 

 
Figure 7. Select fracture surface SEM images with overlays of identified porosity. a) High GED, b) Nominal GED, 

c) Low GED  
 



13 
 

3.4 Defect-Property Correlations 

To better understand the relationship between defects and global mechanical properties, these 
properties were plotted against each other and statistical relationships were quantitatively valued 
to identify key defect features indicative of changes in mechanical performance. One defect 
feature datapoint was created for each sample by using the mean value of the property of all 
pores considered in that sample and plotted against the mechanical properties of the sample. 
These relationships were quantified using a coefficient of determination (R2) method resulting 
from a linear least squares curve fit. A statistical test was used to determine whether correlations 
were statistically significant.  

The coefficient of determination, often referred to as the R2 value, is an indicator of how well a 
model, in this case a linear model, represents the data used to create the model. R2 values were 
calculated for all identified defect and mechanical property relations. A linear least squares 
regression fit was chosen as the model because it allows for simple comparison of the 100+ 
relationships analyzed in this study. More complex models such as quadratic or cubic could 
potentially mask relationships and make it more difficult to isolate porosity characteristics that 
strongly influence mechanical behavior. Using this first-order model, defect features that impact 
mechanical performance can be rapidly identified and follow-up studies can be designed to 
further understand the likely-more-complex relationship of an individual defect feature and its 
effects on mechanical properties. Furthermore, a statistical p-value was calculated from the linear 
model, which indicates the probability that the results observed occurred due to a true 
relationship between two variables, assuming the null hypothesis is correct. A p-value of 0.05 or 
less was chosen as the acceptance criterion for these tests, which indicates a ≥95% confidence in 
the observed results. 

Figure 8 presents R2 results for all relationships considered using the mean property of that 
sample. Of the considered mechanical properties, strain at UTS, ductility, and modulus appear to 
be related to defect characteristics. Most notably, volume, surface area, and maximum principal 
component axis deviation ratio (Max. PCAx Dev. Ratio) have the strongest correlations with 
strain at UTS and ductility of the considered properties with R2 values in the range of 0.46-0.52. 
Table 6 presents the p-values for each individual relationship shown in Figure 8. Relationships 
that were shown to be statistically significant are shown in boldface. However, R2 values less 
than 0.5 are generally considered to be very weak correlations and do not indicate a strong 
relationship that would allow for defects to serve as reliable predictors of performance metrics. 
To improve upon the weak relationships observed when considering all detected defects in a 
sample, the same relationships were calculated when only considering pores larger than a 
particular threshold. To accomplish this, an initial criterion of a defect being ≥150 µm in 
diameter allows for significantly better correlation strength to be resolved. It should be noted that 
by filtering the pores to be considered in the analysis, the number of pores considered in any 
individual sample drops significantly. Two samples without pores larger than the specified size 
threshold were not considered in this analysis. 
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Figure 8. R2 value heatmap comparing defect features and mechanical properties. All defects considered. 

 

Table 6. Truncated defect-property relationship p-values with statistically significant relationships in boldface 
 UTS Strain at 

UTS Ductility Modulus Yield 
Stress 

Strain at 
Yield 

Global Density 0.121 0.000 0.000 0.759 0.052 0.021 
Diameter 0.007 0.000 0.000 0.072 0.022 0.000 
Volume 0.489 0.000 0.000 0.239 0.000 0.005 
Surface Area 0.917 0.000 0.000 0.042 0.000 0.042 
Compactness 0.000 0.594 0.780 0.000 0.712 0.017 
Sphericity 0.000 0.348 0.339 0.000 0.673 0.001 
PCAx Deviation 1 0.002 0.000 0.007 0.004 0.179 0.002 
PCAx Deviation 2 0.253 0.000 0.000 0.961 0.014 0.015 
PCAx Deviation 3 0.005 0.000 0.004 0.000 0.031 0.548 
Max. PCAx Dev. Ratio 0.333 0.000 0.000 0.555 0.001 0.004 
Min. PCAx Dev. Ratio 0.000 0.754 0.789 0.000 0.787 0.008 
Distance to Center 0.739 0.328 0.623 0.299 0.368 0.076 
Pore X Location 0.769 0.326 0.149 0.833 0.206 0.366 
Pore Y Location 0.082 0.067 0.143 0.136 0.708 0.284 
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As seen in Figure 9, consideration of only the largest pores in a sample, those over 150 µm in 
diameter, serves as a significantly better predictor of performance than does consideration of all 
pores. In general, relationships that were already strong were shown as strengthened by using 
this method. Specifically, size descriptors such as diameter, volume, surface area, and projected 
size, increased significantly for ductility and strain at UTS. Pore volume continues to be one of 
the best indicators for strain at UTS and ductility performance, having R2 values of 0.67 and 
0.53, respectively. Based on the results presented here, the authors propose that diameter, 
volume, or surface area serve as the best indicators for component qualification inspection 
purposes. As with consideration of all pores, UTS, modulus, and yield stress properties show no 
correlation with defect characteristics. 

 
Figure 9. R2 value heatmap comparing defect features and mechanical properties. Defects > 150 µm in diameter 

considered. 
 

Due to the increase in R2 values when only considering pores larger than 150 µm shown in 
Figure 9, it is implicit that a minimum defect size threshold exists that is optimal to predict 
tensile performance metrics. To investigate this size threshold, an optimization study was 
performed in which various diameter thresholds for considered pores were used to calculate R2 

values as in Figure 8 and Figure 9. Using minimum pore diameters from 50-200 µm, R2 values 
were calculated, the results of which are shown in Figure 10. 
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Figure 10. R2 value as a function of minimum considered diameter for a) Strain at UTS and b) Ductility. 

 

As can be seen in Figure 10, as minimum diameter considered in analysis increases, the R2 value 
generally increases for considered defect features for strain at UTS and ductility, which is shown 
by the positive trend in the plotted lines until approximately 160 µm. R2 values peaking for many 
defect features at ~0.65-0.75 when 130-135 µm is used as the minimum considered diameter 
threshold, showing only the most important defect property data. After approximately 160 µm, 
the R2 values tend to decrease. This is hypothesized to be due to the fewer number of samples 
that are considered after this point, shown by the dashed line in this figure. Samples considered 
decreases because samples without pores in the specified range were not considered.  

4 Discussion 

The data presented in this study provide promising results for the establishment of qualification 
metrics and inspection thresholds for thin-walled additively manufactured 316L stainless steel 
components subject to tensile loading conditions.  

4.1 Keyhole Porosity 

With trends identified that relate defect features to global mechanical properties, the cause of the 
defects in this study must be considered to mitigate impacts on performance in future 
components. Location maps generated from computed tomography data shown in Figure 5 
highlight trends relating pore volume and location. From the subfigures showing location of 
pores for various ranges of volumetric percentiles as well as the data provided in Table 5 and 
visualized in Figure 6, it is clear that the largest pores tend to form around the sample 
boundaries, whereas the smallest pores form uniformly throughout the sample. It is anticipated 
that the smaller pores are gas pores and will thus need to be mitigated through the use of higher 
quality powder. For example, plasma rotating electrode processed (PREP) powders have been 
shown to significantly reduce gas porosity formation compared to gas atomized powders, as were 
used in this study [52,53]. However, the present study has demonstrated that these smaller pores 
tend to have relatively little impact on mechanical behavior and can therefore, for the most part, 
be ignored.  
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Additionally, it is hypothesized that the cause of the significant increase in distance to gage 
center of the largest pores is due to the path of the laser during part creation. It is well-
established that keyhole porosity formation is due to excessive energy input in LPBF AM and 
similar processes such as laser welding [21,31,54]. Thus, it is hypothesized that the laser scan 
pattern used in the printing of the samples used in this study resulted in non-uniform energy 
density input, specifically a localized increase in spatial energy density near the sample edges. 
Figure 11 presents images of the same keyhole pore at different magnifications as seen from the 
processed CT volume. These images highlight both the location of the pore as close to the edge 
of the sample as well as the general shape of the defect.  

Although the accuracy of shape descriptions of pores obtained from CT data are limited by the 
resolution of the scan, a well-documented limitation of CT porosity identification [55], it is 
believed that the pores of most consequence in this study, those >125 µm diameter, are assessed 
with an appropriate degree of accuracy. With ≥ 12 voxels in diameter, shape descriptors, 
particularly those that are PCAx-related, are hypothesized to be adequately obtained. Other 
measurements that may be more susceptible to resolution effects such as surface area may be 
more impacted. However, the porosity detection algorithm used in the present study is capable of 
inter-voxel interpolation which can increase porosity detection to sub-voxel resolution [56]. 
However, shape assessment on smaller pores are likely much less accurate. More thorough shape 
characterization for these pores would require instrumentation with capabilities beyond that of 
standard laboratory CT sources, which are typically only capable of only down to ~5 µm 
resolution [42]. Use of these higher resolution systems can significantly limit inspectable sample 
size [30] and make inspections of many samples such as the 75 inspected in this study 
impractical. 

As has been well-established that in AM metals such as aluminum and titanium, keyhole pore 
formation at the end of laser tracks is significantly more likely than in the steady-state regions in 
the middle of the laser tracks [28,57]. The resulting pores are sometimes referred to as end-of-
track (EoT) pores. The occurrence of keyhole pores has been shown to increase with energy 
density due to keyhole fluctuation [57]. The results of the present study suggest that even higher 
GED input would result in keyhole porosity forming not only at the edges of samples but in the 
center of these samples as well, resulting in further reduction of tensile properties. Ref. [28] 
suggests that because of the increased likelihood of porosity formation in the EoT region, 
optimization of processing conditions such as laser power and energy density could be used to 
mitigate these issues. Although dynamic control of laser parameters is not yet available on most 
commercial AM machines, researchers at NIST have developed a custom AM system that allows 
for this dynamic, granular control of scanning parameters [58]. 

With this level of control not yet widely available, others have turned to re-melting or repair 
strategies to remove such EoT pores. An example of a re-melting strategy is the contour strategy 
employed as part of the default EOS parameters used for the printing of parts used in this study. 
However, Kiss et al. [59] demonstrated, albeit in Ti64, that such repair strategies either failed to 
remove pores or formed more pores during the repair, concluding that laser re-melting 
techniques are impractical as void repair strategies. As such, the pores near the edge of samples 
in the present study are practically inevitable at the current stage of technology widely available, 
even with the implemented contour scanning strategy. It is anticipated, though the referenced 
study was conducted on a different material system, that the fundamental physics will stay the 
same and therefore present similar difficulties for 316L. 
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Figure 11. Example of keyhole porosity in high GED sample showing shape and distance from center shown at 

different magnifications and perspectives. Defect color indicates pore volume (1x103 mm3) as shown on scale bar. 
 

4.2 Qualification Implications 

Porosity has long been suspected to be detrimental to tensile performance, yet its exact effects 
remain elusive. The results presented in this study suggest that internal defects can be used as 
one metric in AM component qualification. This is significant for the AM community because 
with the initial understanding of the relationship between porosity and tensile performance 
established in this study, parts may be able to be qualified for use without testing many specific 
components to establish inspection metrics on a component-by-component basis. This indicates 
that statistical models of the defect-property relationship could be used to save significant 
amounts of time on money spent on qualifying a re-designed part. 

Perhaps the most significant finding of the results presented above is that it may be possible to 
predict global part performance using only the largest pores in a sample. The present study found 
that pores above 125 µm diameter have the most significant effect on tensile performance. For 
comparison, the American Welding Society (AWS) additive manufacturing standard, AWS 
D20.1/20.1M [34], and AWS fusion welding standard, AWS D17.1/17.1M:2017—AMD2 [35], 
allow critical application components to contain sub-surface pores of up to 0.33 times the 
thickness (330 µm pores in the parts used in this study) or 1.5 mm diameter for larger parts. In 
light of the significant variability in part performance observed in the present study along with 
the correlation between larger pores and global tensile performance, these standards may not be 
strict enough. If pores ≥125 µm are all that need to be detected, it is feasible that lower-
resolution inspection methods for performance predictions may be adequate as inspection tools. 
Alternatively, high-grade CT systems may be used for higher inspection confidence and 
probability of detection.  

Results presented in this study are consistent with other studies such as that by Madison et al. [9] 
and Kramer et al. [2] in the conclusion that porosity impacts tensile performance of additively 
manufactured components. Ref. [9], investigating 17-4PH SS, found that maximum R2 values of 
approximately 0.50 exist for correlation of porosity characteristics and tensile performance. 
These results, despite being performed on a different material system, are very similar to results 
in this study. The present study, however, found that consideration of only the largest pores can 
significantly improve the R2 values of these relationships. Ref. [2], investigating 316L SS, found 
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that cracks initiate sooner and grow more quickly because of porosity. It also found that porosity 
affected fracture path significantly. This early initiation of cracks by large voids identified in 
Ref. [2] is consistent with the low elongation properties seen in the samples of the present study. 
Ref. [2] did not investigate the strength of these relationships through R2 analysis, but concluded 
that an obvious relationship between voids and mechanical behavior remained elusive. The 
similar conclusions of the referenced study to those of the present study lend legitimacy to the 
correlations presented and provide further understanding of the reasons for low elongation values 
in samples with large porosity from a fracture mechanics perspective. 

Furthermore, both ductility and strain at UTS were shown to be negatively impacted by porosity, 
as measured by volume and other characteristics. This is important because 316L SS is often 
chosen for its ductile material response and ability to absorb energy. Elastic modulus, UTS, and 
yield stress and strain were all shown to be fairly constant across all GED conditions and only 
moderately correlated with porosity characteristics. This is consistent with the findings of others 
and shows that porosity needs relatively little consideration when designing components that will 
only experience elastic loading conditions.  

Lastly, little to no correlation was seen between pore shape and global tensile performance. It is 
suspected that pore shape may have impact on local tensile behavior or under fatigue loading 
conditions where defect shape often is more significant. However, as mentioned above, higher-
resolution equipment and smaller sample sizes would be necessary to detect these small pores 
and assess pore shape with higher accuracy. While other variables (e.g., microstructure, surface 
roughness, surface defects) may also influence mechanical properties, the present work has 
highlighted clear correlations between the above porosity characteristics and global mechanical 
properties. Future studies that can control for these other variables through heat treatment 
microstructure normalization or post-processing to mitigate surface effects may reveal further 
insights into the role of porosity in global tensile performance. 

5 Conclusions 

The present work focused on developing an understanding of the role of internal porosity defects 
created by variations in spatial energy distributions on global tensile performance of 316L SS 
samples to address the current lack of thorough understanding of this relationship. This study 
developed an improved understanding of this relationship through correlation of porosity 
features and mechanical properties and is useful for the development of inspection standards for 
critical structural components such as those in aerospace and defense. The major conclusions of 
this study are: 

1. The largest defects (those in excess of 125 µm diameter) in a sample have the 
largest impact on global tensile behavior. 

2. Defect size, as measured by volume, is the most significant characteristic, of those 
investigated, that is correlated with tensile behavior. 

3. Ductility and strain at ultimate tensile strength are the global tensile properties most 
significantly negatively impacted by porosity. 

4. UTS, elastic modulus, yield stress, and yield strain were not shown to be affected 
by porosity characteristics. 

5. Pore shape demonstrated little effect on tensile properties. 
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