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A Deep Ensemble Classifier for Surface Defect Detection in Aircraft Visual 
Inspection 
 
 
ABSTRACT 
 
Visual inspection is critical in many maintenance, repair, and overhaul operations and is often the 

primary defense against premature failure caused by unresolved surface defects. Traditionally, 

visual inspection is conducted by human operators in a time-consuming and subjective process. 

Recent advancements in deep learning have the potential to provide accurate detection of defects, 

leading to reduced inspection times. Several methodologies have been developed using 

convolutional neural networks (CNNs) to classify surface defects; however, these methods often 

rely on singular models to make detections. This makes them susceptible to inherent biases and 

variances introduced during the training process. Ensembling is a technique used to minimize the 

errors of CNNs through combining the outputs of multiple models. This paper presents an 

automated inspection methodology utilizing stacked ensembles of CNNs to classify defects on 

images of aircraft surfaces. The proposed framework is evaluated with images obtained from a 

borescope inspection of aircraft propeller blade bores. It is shown that the ensemble method 

improves inspection accuracy over conventional single-model deep learning methods. 

Furthermore, the error reduction provided by the ensemble method reduces false alarms at decision 

boundaries that minimize missed detections. The proposed method is shown to improve the 

reliability of automated detection systems, which can avoid catastrophic scenarios on critical 

systems such as aircraft propellers. 
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Introduction 
 
Visual inspections are ubiquitous within maintenance, repair, and overhaul (MRO) operations. In 

particular, they comprise over 80% of total inspections for large transport aircraft and are often 

the fastest and most economical method of detecting surface defects before they reach dangerous 

sizes1. Traditionally, visual inspections are conducted by human operators that scan the surface 

of the aircraft for indications of cracks, corrosion, disbonding, and incidental damage. Operators 

are equipped with visual aids such as mirrors and borescopes and recent advancements have 

introduced automated imaging technologies that allow for remote inspections. While these 

technologies have increased the amount and quality of available data, humans are still the 

primary decision makers on the acceptability of a part or surface. Human visual inspection is 

costly, time-consuming, and subject to human errors that can be exacerbated by mental fatigue or 

boredom. This has inspired research into the development of autonomous inspection systems to 

provide accurate and objective defect detection for improved inspection efficiency and reduced 

maintenance downtimes.  

 

Prior literature on automated inspection systems with computer vision can be broadly 

categorized into heuristic-based methods2-5 and machine learning (ML) methods6-8,12-17. 

Heuristic-based methods seek to identify and extract textural and color features from images 

using rudimentary algorithms such as edge detection, histogram thresholding, and wavelet 

transforms9. Predefined discriminant functions are used to classify various defects from the 

extracted features. ML-based methods consist of various shallow learning algorithms trained on 

handcrafted image features to obtain a classification function. The performance of both methods 

is highly reliant on the quality of the input features and saturates as the amount of data 
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increases10. They are difficult to apply to a wide range of defects as feature extraction becomes 

increasingly cumbersome as the number of defect classes increase. Furthermore, it is difficult to 

represent the complex defects and backgrounds found in many aircraft inspections with simple 

features. 

 

Deep learning (DL) has received substantial interest in recent years in applications of automated 

visual inspection. DL algorithms contain multiple trainable layers of feature representation that 

suppress irrelevant variations in background and lighting11. Unlike conventional ML algorithms, 

DL eliminates the need for human feature engineering by combining feature extraction and 

classification within the model structure. Convolutional neural networks (CNNs) are considered 

the current state-of-the-art for many image classification tasks and have shown promising results 

in defect detection for aircraft visual inspections12-14. Such inspections typically encounter 

uncertain imaging conditions and large variability in defect and surface morphology that limits 

the effectiveness of heuristic and ML-based methods. Prior CNN-based methods have focused 

on frameworks consisting of a single CNN model; however, it is known that ensembles of 

classifiers can improve classification performance. Ensembles are designed to increase accuracy 

by combining the predictions of multiple classifiers through a higher-level function. Ensemble-

based methodologies have previously been developed for PCB assembly15, pipeline health 

monitoring16, and fatigue crack detection17. Ensembles of CNNs have been used in wagon 

component inspection18 and car body inspection19.  

 

This paper proposes a computer vision inspection method utilizing ensembles of CNNs for the 

automated classification of aircraft surface defects. The CNNs are pre-trained on a general image 
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set and fine-tuned for the inspection task to reduce training data requirements. The proposed 

method shows improved detection accuracy over existing single-model CNN frameworks. The 

component CNNs vary in structure and training data as increasing network diversity has been 

shown to improve ensemble performance20. Three variations of stacked ensembles are 

constructed, comprising of combinations of homogenous models, dimensionally-diverse models, 

and structurally-diverse models. The decision boundaries of the ensembles are adjusted to 

minimize missed detections for critical inspections where the cost of missed detections is high. 

The proposed method is validated using image data collected from a borescope inspection of 

aircraft propeller blades. The problem is approached as an image classification task due to the 

low dataset though a similar ensemble approach may be applied to object detection or 

segmentation networks for aircraft inspection. 

  

The remainder of this paper is organized as follows: “Background” reviews the related works in 

computer vision for defect detection and provides a brief introduction to ensembling techniques. 

“Methods” describes the ensemble methodology used to detect surface defects. This includes a 

description of the training and evaluation process, selection of hyperparameters, and dataset 

generation. The experimental results and analysis are presented in “Results and Discussion”. 

This section provides a comparison of the performance of ensembles and individual CNNs. 

Finally, conclusions and recommendations for future work are provided in “Conclusions”. 

 
 
Background 
 
RELATED WORKS 
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Computer vision methods have been used in automated inspection for many years. Lee et al.2 

utilized digital color analysis to develop linear multi-feature discriminant functions to detect the 

presence of rust on steel bridges. Features were extracted through statistical analysis of the red, 

green, and blue (RGB) color channels. Wang and Cheng3 employed Hough’s circular transform 

to locate and characterize pitting corrosion in microscopic images. The method achieved greater 

than 95% accuracy in pit detection with less than 10% error in its estimates of pit radius and 

position. It was also shown to be capable of differentiating pits from other surface defects such 

as scratches and inclusions on simulated data. Guo et al.4 combined morphological filters and 

Fisher’s discriminant analysis on gray level pixel gradients to segment highlight scratches on 

steel surfaces. Gunatilake et al.5 extracted gray level features from images of corroded aircraft 

skins with discrete wavelet transform to train a 1-nearest neighbor clustering algorithm to 

segment corroded and non-corroded surfaces. The algorithm was able to detect 95% of the 

corrosion samples in the testing set. Hoang and Tran6 utilized a sliding window with a support 

vector machine (SVM) classifier to localize instances of corrosion within water pipelines. 

Features were extracted using histogram analysis and gray-level co-occurrence matrices 

(GLCMs). While accurate, the above techniques are often sensitive to varied illumination 

conditions and the presence of complex backgrounds. Moreover, shallow machine learning 

techniques are limited by the complexity of the handcrafted features and most lack generality and 

reliability beyond specific, targeted applications.  

 

With recent advancements in graphics processing units (GPUs) and the success of CNNs in 

image classification challenges21, there has been increased interest in CNNs for automated defect 

detection. Nonetheless, the lack of expansive datasets continues to hinder the development of 
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these systems as most deep learning models require a training set of at least 1000 images per 

defect class to obtain acceptable performance. As defect rates are low for aircraft inspections, 

dataset generation is time-consuming and can be prohibitive. Prior works have implemented 

transfer learning22,23 and data augmentation24 to mitigating the issues associated with limited 

data. Malekzadeh et al.12 used two pre-trained CNNs as feature extractors for an SVM classifier 

to inspect aircraft fuselages. Experimental results showed a detection accuracy of 96.38% and 

sensitivity of 96.48% on a testing set of 12 images. Shen et al.13
 trained a fully convolutional 

network (FCN) to identify and localize engine cracks and burns from borescope images with 

high accuracy. Ramalingham et al.14 developed a mobile robot inspection platform equipped with 

a lightweight CNN network to differentiate between stains and defects on aircraft skins. The 

platform achieved a test accuracy of 96.2% with an average prediction confidence of 97%. These 

prior studies have demonstrated the excellent performance of CNNs in aircraft inspection; 

however, all of these methods utilize single CNN frameworks which are sensitive to poor model 

selection and improper training. An ensemble framework is a possible solution for these issues.  

 

ENSEMBLES 
 
Ensembles combine the predictions of multiple independent machine or deep learning models 

using a higher-level algorithm. The models which comprise an ensemble are referred to as base 

learners and are selected to maximize accuracy and diversity. A common strategy for designing 

ensembles, overproduce and choose, introduced by Giacinto and Roli25 involves training a large 

set of base learners and selecting the most error-diverse models. The main methods to obtain 

sufficient diversity include varying the initial weights, varying the network architecture, varying 

the network type, and varying the training data. Diverse models tend to make errors on different 
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subsets of the problem domain and the combination of their predictions is effective in reducing 

the overall error and variability in the system26. This protects against the selection of a base 

learner with sub-optimal generalization performance.  

 

There are two common approaches to deep learning ensembles, bagging27 and stacking28. In 

bagging, the predictions of the base learners are combined using an average or majority vote 

function. In stacking, a second-level machine learning algorithm, known as a meta-learner, is 

trained on the predictions of the component models to output the final prediction. Unlike 

bagging, stacking is resistant to differences in base learner accuracy. Ensembles can be extended 

to multiple levels to further improve performance but are often limited in size by computational 

restraints.  

 

Several ensemble methodologies have been proposed for automated visual inspection. Wu, Liu, 

and He16 compared the performance of four machine learning ensembles in the automated 

inspection of sewer pipes. The highest classification accuracy was obtained using a RotBoost 

ensembling method for decision trees. Dworakowski et al.17 proposed an ensemble of artificial 

neural networks (ANNs) to detect fatigue cracks on aircraft from the readings of embedded 

piezoelectric sensors. The component ANNs were selected for their structural diversity and it 

was shown that the ensembles had greater mean classification accuracy than any of the 

individual ANNs. Fernandes et al.18 trained a bagged ensemble of homogenous CNNs for 

railway wagon pad inspection using a small, unbalanced dataset of 334 grayscale images. The 

method showed low precision on the majority no-defect class relative to its performance on the 

smaller defect class. Chang et al.19 combined the region proposals of double YOLOv3 object 
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detection networks to identify defects on manufactured car bodies. The ensemble was shown to 

outperform both the single model YOLOv3 network and the trained human inspectors. A paired 

imaging system was developed to minimize illumination variation and enhance defect saliency.  

 
Methods 
 
This study proposes using a stacked ensemble of CNNs to classify defect and defect-free aircraft 

surfaces for MRO operations. To this end, five CNN architectures are trained on a dataset 

comprised of borescope images of propeller bore surfaces. Error-diverse base learners are 

selected to form three different stacked ensemble combinations. A logistic regression algorithm 

is selected as the meta-learner. The architecture of the proposed stacked ensembles is shown in 

figure 1. The ensembles are evaluated on a common testing set and a comparison of the 

classification results between the ensembles and base learners are presented in “Results and 

Discussion”. Figure 2 illustrates the overall framework of the proposed method.  

 

 

Fig. 1. Structure of the proposed stacked ensembles 
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Fig. 2. Overall architecture of the proposed automated inspection framework 
 

DATASET GENERATION 

To create the dataset, images are gathered from a borescope inspection of aircraft propeller 

bores. A central rectangular region of 672 x 448 pixels is extracted from each original image and 

further divided into six 224 x 224 images. The original images are distorted and poorly 

illuminated at the extremities of the field of view due to a manually controlled light source and 

fisheye lens, hence the initial rectangular center crop. The split images of 224 x 224 pixels are 

manually annotated by a subject matter expert. Defects are defined as incongruities in the image 

surface. Cracks are usually long and thin whereas corrosion, which comprises the majority of the 

defect samples, is characterized by regions of lower pixel intensity with clear boundaries. Other 

defects include scratches and gouges. The annotated dataset is balanced to limit bias towards 

either class and consists of 300 defect and 300 defect-free. Given the limited number of defect 

samples, the defect class was not further differentiated into different defect types. Examples of 

defect and defect-free surfaces included in the dataset can be found in figure 3. To combat 

overfitting, K-fold cross validation is applied to divide the dataset into discrete subsets. A test set 
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of 100 images is randomly selected from the full dataset and withheld from training. 5-folds 

cross validation is applied to the remaining 500 images to form the training and validation sets. 

The ratio of training, validation, and testing sets is 4:1:1. Five combinations of training and 

validation sets are created. The models are tuned for the validation set and then evaluated on the 

common testing set. This allows for a direct comparison of model performance.  

 

 
 

Fig. 3. Sample images: (A) defect images and (B) defect-free images 
 

 
BASE LEARNERS 
 
Several CNN architectures previously developed for the ImageNet challenge21 are selected as the 

base learners. The Visual Geometry Group developed the VGG29 architecture in 2014 and 

showed that network depth is critical in improving classification performance with CNNs. 

GoogLeNet30 was designed with small receptive kernels, decreasing the number of network 

parameters per layer which allowed for deeper networks and improved computational efficiency. 

ResNet31 was designed to combat the vanishing gradient issue of large, deep networks and 

achieved better than human classification performance on the ImageNet challenge. ResNet 
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models with 18, 34, and 50 layers are used in this study. Varying the structure and training data 

of the selected CNNs is used to induce error diversity. Batch normalization is applied to the 

VGG network to improve speed and performance through regularization32.  

 
 
The base learners are pre-trained on the ImageNet dataset before being fine-tuned for the 

borescope detection task. To increase the size and diversity of the training set, data augmentation 

is implemented by randomly flipping the training images horizontally. This allows the CNN to 

learn more invariant features and helps prevent overfitting. Image rotations, brightness and 

contrast adjustment, and the addition of Gaussian noise were also tested but found to result in no 

improvement in model performance. To update the model weights, a cross entropy loss function 

is used to define the error between the model output and the target label during training. The 

weights are updated in the direction of decreasing error through a stochastic gradient descent 

(SGD) optimization algorithm with momentum. Momentum accelerates the SGD function 

towards convergence, allowing it to escape local minima or saddle points33,34. Recently, adaptive 

optimization algorithms such as Adam have become popular in deep learning but SGD with 

momentum has been shown in a recent study to outperform adaptive methods on a binary 

classification task with the same amount of hyperparameter tuning35.    

 

Several hyperparameters are defined in the training of the base learners. These include learning 

rate, batch size, and number of epochs. The learning rate determines the step size of the weight 

update as defined by the SGD function. A small learning rate converges slowly whereas a large 

learning rate may result in fluctuations of the optimizer at the minimum36. The initial learning 

rate is set to 0.001 and a scheduler decays the learning rate by a factor of 10 every seven epochs. 

This allows for faster convergence early in the training while preventing overshooting in the later 
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iterations. Batch size refers to the number of training images per iteration. Batch size is set to 25 

for the ResNet and GoogLeNet networks. VGG11_bn is trained with a batch size of 5 due to lack 

of memory on the training device. The number of epochs refers to the number of full passes 

through the training set. As training for too many epochs may lead to overfitting, the networks 

were trained for 50 epochs to determine an early stopping point where the validation accuracy 

has not changed for several epochs. From this analysis, the number of epochs was set to 25. Each 

of the base learners is trained twice on the five combinations of training and validation sets for a 

total of 50 models. During training, the hyperparameters are optimized to maximize performance 

on the validation set. This increases the risk of overfitting, a training error that occurs when the 

trained model is too closely fit to the training data and is consequently unable to make accurate 

classifications on the testing data. The inclusion of both a validation and testing set allows for 

easy detection of overfitting through comparison of the model performance on both sets. The 

addition of data augmentation and early stopping of training also help prevent overfitting. For the 

duration of this paper, networks will be used to denote the different CNN architectures whereas 

models will be used to describe unique trained iterations of the networks 

 
 
ENSEMBLE DESIGN 
 
Stacked ensembles consisting of three CNN base learners and a logistic regression meta-learner 

are constructed from the set of trained base learners. The logistic regression algorithm is a small 

ML algorithm suitable for binary classification problems and allows for easy fine-tuning of the 

decision boundary. Moreover, given the small data size, the algorithm is less prone to overfitting 

than other techniques such as SVMs. The logistic regression is trained on the outputs of the base 

learners to update the regression coefficients as defined by:  
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where p is the class probability, Xn are the distinct independent inputs, and bk are the regression 

coefficients. To evaluate the impact of network diversity on ensemble performance, three 

variations of stacked ensembles are constructed as shown in Table 1. Ensemble A is 

homogeneous whereas Ensembles B and C vary in depth and structure, respectively. When 

constructing the ensembles, the base learners are selected to maximize accuracy and error 

diversity. 

Table 1. Component base learners of the three stacked ensembles 

Ensemble Base Learners 

Ensemble A 3x ResNet18 
Ensemble B ResNet18, Resnet34, Resnet50 
Ensemble C ResNet18, GoogLeNet, VGG11_bn 

 

TOOLS 

PyTorch37 is an open-source deep learning framework developed by Facebook and used to 

program the networks. The logistic regression algorithm was trained using the scikit-learn38 

machine learning library. Training and evaluation are conducted on a laptop computer with a 

GeForce GTX 1050Ti GPU, Intel i7-8750H CPU, and 8GB of RAM. 

 

Results and Discussion 
 
Standard performance metrics such as accuracy, recall, precision, and F1 score are used to 

evaluate the developed models. Precision measures the proportion of positive detections that 
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contained defects while recall describes the proportion of defects that were detected. F1 score is 

the harmonic mean of precision and recall and reflects the tradeoff between the two component 

metrics. Defect images are considered the positive class while defect-free images form the 

negative class. The equations for precision, recall, and F1 score are defined in equations (2)-(4) 

respectively. TP, FP, and FN represent the total number of true positives, false positives, and 

false negatives respectively. For most aircraft inspections, false positives are preferred as false 

negatives may lead to critical failures. 

 

 TPprecision
TP FP

=
+

 (2) 

 TPrecall
TP FN

=
+

 (3) 

 1 2 precision recallF
precision recall

 ×
=  + 

 (4) 

 

BASE LEARNER PERFORMANCE 

Table 2 shows the detection results of the base learners. The metrics presented are averaged over 

10 runs. The Shapiro-Wilks test with a significance level of 0.05 determined that the data is non-

normal, therefore, the non-parametric Mann-Whitney U-test is used to compare the mean 

performances of the base learners. The U-test assumes that the data is independent and non-

normal. A sample U-test with an α-level of 0.05 comparing ResNet18 to the other base learners 

is shown in Table 3.  
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Table 2. Comparison of performance of different single-model CNN architectures on test images 

 
Network  Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%) 

  Mean Std. Dev  Mean Std. Dev  Mean Std. Dev  Mean Std. Dev 
ResNet18  98.10 0.99  98.20 1.48  98.03 1.60  98.10 0.99 
ResNet34  96.80 1.40  97.40 1.90  96.26 1.70  96.82 1.40 
ResNet50  97.40 0.97  97.80 1.75  97.06 1.62  97.41 0.97 

GoogLeNet  93.60 1.96  96.40 1.58  91.43 3.38  93.81 1.85 
VGG11_bn  95.00 2.36  98.40 1.35  91.52 4.00  95.25 2.14 

 
 

Table 3. Mann-Whitney U-test comparing ResNet18 to the other base learners 
 

H0: Group 1 ≤ Group 2, H1: Group 1 > Group 2 
α = 0.05, N = 10 for both groups 

Group 1 Group 2 Accuracy  F1 Score 
  Z p  Z p 

ResNet18 ResNet34 2.103 0.018  1.797 0.036 
ResNet18 ResNet50 1.349 0.088  1.033 0.151 
ResNet18 GoogLeNet 3.770 8.15E-5  3.753 8.73E-5 
ResNet18 VGG11_bn 2.926 0.002  2.466 0.007 

 
 
The results in Table 3 show that ResNet18 has a greater mean, accuracy, recall, and F1 score 

than all of the networks expect ResNet50. The U-test did not find any significant difference 

between the mean results of ResNet18 and ResNet50. VGG11_bn has the greatest mean 

precision but its accuracy suffers due to its low recall rate. The large standard deviation in the 

recalls of GoogLeNet and VGG11_bn suggests overfitting due to the unstable performance 

commonly exhibited by overfit models. However, this is unlikely as the networks simultaneously 

show consistent high precision and overfitting would result as a performance decline in both 

precision and recall. Rather, the imbalance between Type I and Type II error indicates that the 

decision boundary that determines the final class prediction is misaligned. The output of the 

networks contains the likelihoods that the input images belongs to either the defect or defect-free 
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class. For binary classification, the decision boundary is typically set at 50% and the majority 

class becomes the final prediction. When the Type I and Type II errors are unbalanced, such as 

with the GoogLeNet and VGG networks, lowering the decision boundary serves to balance the 

errors and decrease missed detections at the cost of increased false alarms.  

 

A comparison of network performance on several commonly misclassified images is shown in 

figure 4. The values of the heatmap indicates the proportion of the ten models in each network 

that misclassified the corresponding image. The intra-network error diversity is a result of 

variations in training and validation data while error diversity between networks may be 

attributed to variations in both data and network structure. VGG11_bn has the added complexity 

of a different batch size, which influences the weight update of the SGD optimizer. Image 1 in 

figure 4 is a false positive and the remainder are false negatives. The defects are highlighted in 

red. The missed defects are either small with ambiguous edges, located in the extremities of the 

image, suffer from low contrast, or some combination of the previous listed factors. Small salient 

features tend to disappear within the filtering and downsampling in the convolutional and 

pooling layers of a CNN. While the networks showed overall high precision, a single defect-free 

image was misclassified by all of the networks. The false positive can be attributed to the rough 

surface finish as the majority of the other defect-free surfaces present in the dataset are smooth.  
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Fig. 4. Comparison of misclassifications by various networks. Values represent the proportion of 
models in each network that misclassified each image. 

 
 
To further illustrate the impact of defect saliency, occlusion maps are generated for several 

defect images by sliding a gray 16 x 16 region across the image and mapping the correct class 

probability as a function of gray region position. The mapping was performed on a ResNet18 

model and the features most relevant to the classification are shown in dark red. Defects with 

high contrast are clearly defined in the corresponding heatmap and the contributions of the 

surrounding surface to the class prediction are negligible. Occlusion maps of defects that are low 
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contrast, small, or have poorly defined edges see greater influence from the surroundings which 

may lead to low prediction confidence and misclassifications.   

 

 

Fig 5. Occlusion maps of several defect images with a ResNet18 model.  

 
COMPARISON OF RESULTS 

The detection performance of the stacked ensembles can be seen in Table 4. The results are 

averaged over 10 runs. Again, a Shapiro-Wilks test was used to determine non-normality and the 

one-tailed Mann-Whitney U-test with a significance level of 0.05 is used to compare the mean 

performance of the ensembles. As the base learners of Ensemble C had lower mean accuracies 

than those of Ensembles A and B, it was expected that Ensemble C would be outperformed by 

the other two ensembles. However, the U-test showed that the mean performance metrics of the 

various ensembles are not significantly different. This is attributed to the accuracy of the 

ResNet18 network and the optimized regression coefficients of the logistic regression meta-

learner. ResNet18 outperforms the VGG11_bn and GoogLeNet networks and is weighted more 

heavily by the logistic regression algorithm in the ensemble. This minimizes the errors of the 
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GoogLeNet and VGG11_bn models but also makes the ensemble more susceptible to training 

biases in ResNet18. To improve ensemble reliability, the base learners should be diverse in 

errors and similar in performance. Many of the constructed ensembles achieved perfect accuracy 

but given the limited dataset, this does not necessarily reflect operational performance. The 

results indicate that the proposed ensemble method achieves greater accuracy than the methods 

developed by Malekzadeh et al.12 and Ramalingham et al.14; however, it is difficult to compare 

the performance of the various methods due to the differences in datasets and data domains.  

 

The Wilcoxon signed-rank test is used to compare the performance of the base learners and 

ensembles. The test assumes non-normality and dependence. The test was performed with a α-

level of 0.05 and the resulting Z scores and p-values for the accuracy and F1 score are found in 

Table 6. The Wilcoxon test shows that the stacked ensembles have greater mean accuracies, 

precisions, recalls, and F1 scores than their component base learners.  

 
Table 4. Performance of different stacked ensembles on test images 

 
Ensemble  Accuracy (%)  Precision (%)  Recall (%)  F1 Score (%) 

  Mean Std. Dev  Mean Std. Dev  Mean Std. Dev  Mean Std. Dev 
Ensemble A  99.80 0.42  99.61 0.83  100.00 0.00  99.70 0.48 
Ensemble B  99.50 0.527  99.22 1.01  99.80 0.63  99.5 0.52 
Ensemble C  99.60 0.52  99.80 0.62  99.40 0.97  99.6 0.52 
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Table 5. Wilcoxon ranked-test results between base learners (Group 1) and ensembles (Group 2) 
 

H0: Group 1 ≥ Group 2, H1: Group 1 < Group 2 
α = 0.05, N = 10 for all Group 1 and 2 

Group 1 Group 2 Accuracy  F1 Score (%) 
  Z p  Z p 

ResNet18 

Ensemble A 

-2.641 0.004  -2.611 0.004 
ResNet34 -2.768 0.003  -2.754 0.003 
ResNet50 -2.796 0.002  -2.756 0.003 

GoogLeNet -2.768 0.003  -2.754 0.003 
VGG11_bn -2.771 0.003  -2.756 0.003 
ResNet18 

Ensemble B 

-2.663 0.004  -2.611 0.004 
ResNet34 -2.773 0.003  -2.756 0.003 
ResNet50 -2.819 0.002  -2.756 0.003 

GoogLeNet -2.757 0.003  -2.754 0.003 
VGG11_bn -2.773 0.003  -2.754 0.003 
ResNet18 

Ensemble C 

-2.401 0.008  -2.347 0.009 
ResNet34 -2.627 0.004  -2.754 0.003 
ResNet50 -2.627 0.004  -2.754 0.003 

GoogLeNet -2.762 0.002  -2.752 0.003 
VGG11_bn -2.763 0.002  -2.756 0.003 

 
 

In aircraft visual inspection, it is critical to eliminate false negatives. With single CNN-based 

frameworks, this often entails either retraining with modified parameters and data or adjusting 

the decision boundary to eliminate false negatives at the cost of additional false positives. 

Retraining results cannot be guaranteed due to the stochastic nature of the algorithms and 

additional data is often unavailable. Ensembling can eliminate false negatives by selecting error-

diverse learners. This can be done with little to no increase in the rate of false positives due to the 

overall error reduction provided by ensembles. An ensemble constructed to eliminate false 

positives is shown in figure 6.   
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Fig. 6. Elimination of false negatives in ensemble through selection of error-diverse base learners 
 

 
Decision boundary adjustment may also be applied to the meta-learner to further fine-tune 

performance. This offers two main advantage over boundary adjustment at the base learner level: 

1) The error reduction provided by ensembles allows for a lower rate of false positives at high 

recall rates and vice versa. 2) Boundary adjustment at the meta-learner level is simpler and less 

cumbersome than adjusting the thresholds for each of the base learners. Precision-recall (PR) 

curves are plotted in figure 7 to illustrate the effects of boundary adjustment on mean precision 

and recall. The decision boundary is incremented from 0 to 100 % at intervals of 5 % and model 

performance is evaluated at each step. At a recall rate of 100 %, Ensembles A, B, and C attain 

precisions of 99.61, 96.91, and 82.69 % respectively. ResNet34 attains the highest precision for a 

base learner at 77.43 %. The area under the PR curve (AUC) is also commonly used to compare 
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the overall performance of the classifier. A perfect classifier has an AUC of 1.0 and of the 

models in this study, Ensemble A has the greatest AUC of 0.99.  

 

 
 

Fig. 7. Precision-recall curves of (A) base learners and (B) ensembles 
 

COMPUTATIONAL PERFORMANCE COMPARISON 

A comparison of the computational costs for each network is presented in Table 6. The networks 

were trained for 25 epochs with a batch size of 5 to obtain training times. The ensemble 

components were trained sequentially rather than in parallel. As expected, the computational 

resources scale with the complexity of the network. The ensembles require the most computation 

resources as they are a combination of the various base learners and the logistic regression meta-

learner. The logistic regression algorithm contributes very little to the overall computational 

costs of the ensembles, adding 3 ms to the training time and 0.753 KB to the network size. The 

complexity of the ensembles can be reduced through the selection of lightweight base learners 

and pruning of network parameters to remove weights of low relevance.  
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Table 6. Comparison of computation costs of different networks. Training times are reported for 
25 epochs and batch size of 5. Inference times are for a single 224 x 224 image.  

 
Network Network size (MB) Training time (s) Inference time (ms) 

ResNet18 106 350 34 
ResNet34 178 430 38 
ResNet50 376 558 42 

GoogLeNet 119 344 34 
VGG11_bn 689 619 42 
Ensemble A 318 1050 102 
Ensemble B 660 1338 114 
Ensemble C 915 1303 110 

 
 
Conclusions 
 
In this study, a stacked ensemble framework is proposed for automated detection of surface 

defect for aircraft visual inspection. Stacked ensembles comprising of three CNN base learners 

are trained to identify cracks, corrosion, scratches, and gouges in propeller bores using transfer 

learning and data augmentation to reduce dataset requirements. Using the Wilcoxon signed-rank 

test, the resulting ensembles are shown to have greater mean accuracies than the individual base 

learners. The ensembles also compare favorably against single model CNN-based detection 

methods in prior literature. There were no significant differences in performance between the 

three ensemble combinations despite diversity in the structure and depth of their component 

models. It is shown that error-diverse stacked ensembles can compensate for variability in base 

learner performance and protect against inherent biases or variances present within individual 

models, providing increased accuracy and reliability in detection tasks. Furthermore, it is shown 

that decision threshold adjustment at the meta-learner level is effective in maintaining precision 

for applications that require maximum recall. At decision boundaries corresponding to 100 % 



25 
 

recall, the ensembles achieved a mean precision 15.64 % higher than that of the highest precision 

base learner, ResNet34.  

 

Several limitations exist for the proposed method. Ensembles are incapable of improving the 

generalization performance of its base learners, making them reliant on accurate, diverse 

component models for their performance. Sufficient base learners may be difficult to obtain in 

practice due to general limitations of CNN methods as well as the existence of correlated errors 

across models. Moreover, it is difficult to automate the selection of ensemble components and 

the process to develop ensembles for new inspection tasks is tedious. Ensembles are 

computationally expensive, limiting their performance for high speed applications.  

 

In future work, the use of ensembles in this study can be expanded to detect multiple defect 

classes to evaluate the error reduction provided in multi-class applications. Furthermore, moving 

beyond classification, ensembles can be applied to improve the performance of detection 

algorithms that seek to localize objects of interest using bounding boxes. As object detection 

methods such as YOLO or SSD rely on CNNs as classifiers, an ensemble approach could see 

similar performance benefits. This would remove the inefficiency associated with windowing to 

localize and highlight the defect within the original image.  
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Figure Captions 
 
Fig. 1. Structure of the proposed stacked ensembles 

Fig. 2. Overall architecture of the proposed automated inspection framework 

Fig. 3. Sample images: (A) defect images and (B) defect-free images 

Fig. 4. Comparison of misclassification by various networks. Values represent the proportion of 
models in each network that misclassified each image. 

Fig 5. Occlusion maps of several defect images with a ResNet18 model. 

Fig. 6. Elimination of false negatives in ensemble through selection of error-diverse base learners 

Fig. 7. Precision-recall curves of (A) base learners and (B) ensembles  



31 
 

Table Captions 
 
Table 1. Component base learners of the three stacked ensembles 
 
Table 2. Comparison of performance of different single-model CNN architectures on test images 
 
Table 3. Mann-Whitney U¬-test comparing ResNet18 to the other base learners 
 
Table 4. Performance of different stacked ensembles on test images 
 
Table 5. Wilcoxon ranked-test results between base learners (Group 1) and ensembles (Group 2) 
 
Table 6. Comparison of computation costs of different networks. Training times are reported for 
25 epochs and batch size of 5. Inference times are for a single 224 x 224 image 
 


