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ABSTRACT

Visual inspection is critical in many maintenance, repair, and overhaul operations and is often the
primary defense against premature failure caused by unresolved surface defects. Traditionally,
visual inspection is conducted by human operators in a time-consuming and subjective process.
Recent advancements in deep learning have the potential to provide accurate detection of defects,
leading to reduced inspection times. Several methodologies have been developed using
convolutional neural networks (CNNs) to classify surface defects; however, these methods often
rely on singular models to make detections. This makes them susceptible to inherent biases and
variances introduced during the training process. Ensembling is a technique used to minimize the
errors of CNNs through combining the outputs of multiple models. This paper presents an
automated inspection methodology utilizing stacked ensembles of CNNs to classify defects on
images of aircraft surfaces. The proposed framework is evaluated with images obtained from a
borescope inspection of aircraft propeller blade bores. It is shown that the ensemble method
improves inspection accuracy over conventional single-model deep learning methods.
Furthermore, the error reduction provided by the ensemble method reduces false alarms at decision
boundaries that minimize missed detections. The proposed method is shown to improve the
reliability of automated detection systems, which can avoid catastrophic scenarios on critical

systems such as aircraft propellers.
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Introduction

Visual inspections are ubiquitous within maintenance, repair, and overhaul (MRO) operations. In
particular, they comprise over 80% of total inspections for large transport aircraft and are often
the fastest and most economical method of detecting surface defects before they reach dangerous
sizes!. Traditionally, visual inspections are conducted by human operators that scan the surface
of the aircraft for indications of cracks, corrosion, disbonding, and incidental damage. Operators
are equipped with visual aids such as mirrors and borescopes and recent advancements have
introduced automated imaging technologies that allow for remote inspections. While these
technologies have increased the amount and quality of available data, humans are still the
primary decision makers on the acceptability of a part or surface. Human visual inspection is
costly, time-consuming, and subject to human errors that can be exacerbated by mental fatigue or
boredom. This has inspired research into the development of autonomous inspection systems to
provide accurate and objective defect detection for improved inspection efficiency and reduced

maintenance downtimes.

Prior literature on automated inspection systems with computer vision can be broadly
categorized into heuristic-based methods?* and machine learning (ML) methods®®!%17,
Heuristic-based methods seek to identify and extract textural and color features from images
using rudimentary algorithms such as edge detection, histogram thresholding, and wavelet
transforms’. Predefined discriminant functions are used to classify various defects from the
extracted features. ML-based methods consist of various shallow learning algorithms trained on

handcrafted image features to obtain a classification function. The performance of both methods

is highly reliant on the quality of the input features and saturates as the amount of data



increases'®. They are difficult to apply to a wide range of defects as feature extraction becomes
increasingly cumbersome as the number of defect classes increase. Furthermore, it is difficult to
represent the complex defects and backgrounds found in many aircraft inspections with simple

features.

Deep learning (DL) has received substantial interest in recent years in applications of automated
visual inspection. DL algorithms contain multiple trainable layers of feature representation that
suppress irrelevant variations in background and lighting'!. Unlike conventional ML algorithms,
DL eliminates the need for human feature engineering by combining feature extraction and
classification within the model structure. Convolutional neural networks (CNNs) are considered
the current state-of-the-art for many image classification tasks and have shown promising results
in defect detection for aircraft visual inspections'?!'4. Such inspections typically encounter
uncertain imaging conditions and large variability in defect and surface morphology that limits
the effectiveness of heuristic and ML-based methods. Prior CNN-based methods have focused
on frameworks consisting of a single CNN model; however, it is known that ensembles of
classifiers can improve classification performance. Ensembles are designed to increase accuracy
by combining the predictions of multiple classifiers through a higher-level function. Ensemble-
based methodologies have previously been developed for PCB assembly!®, pipeline health
monitoring'®, and fatigue crack detection'”. Ensembles of CNNs have been used in wagon

component inspection'® and car body inspection'®.

This paper proposes a computer vision inspection method utilizing ensembles of CNNs for the

automated classification of aircraft surface defects. The CNNs are pre-trained on a general image



set and fine-tuned for the inspection task to reduce training data requirements. The proposed
method shows improved detection accuracy over existing single-model CNN frameworks. The
component CNNs vary in structure and training data as increasing network diversity has been
shown to improve ensemble performance?. Three variations of stacked ensembles are
constructed, comprising of combinations of homogenous models, dimensionally-diverse models,
and structurally-diverse models. The decision boundaries of the ensembles are adjusted to
minimize missed detections for critical inspections where the cost of missed detections is high.
The proposed method is validated using image data collected from a borescope inspection of
aircraft propeller blades. The problem is approached as an image classification task due to the
low dataset though a similar ensemble approach may be applied to object detection or

segmentation networks for aircraft inspection.

The remainder of this paper is organized as follows: “Background” reviews the related works in
computer vision for defect detection and provides a brief introduction to ensembling techniques.
“Methods” describes the ensemble methodology used to detect surface defects. This includes a
description of the training and evaluation process, selection of hyperparameters, and dataset
generation. The experimental results and analysis are presented in “Results and Discussion”.
This section provides a comparison of the performance of ensembles and individual CNNs.

Finally, conclusions and recommendations for future work are provided in “Conclusions”.

Background

RELATED WORKS



Computer vision methods have been used in automated inspection for many years. Lee et al.?
utilized digital color analysis to develop linear multi-feature discriminant functions to detect the
presence of rust on steel bridges. Features were extracted through statistical analysis of the red,
green, and blue (RGB) color channels. Wang and Cheng?® employed Hough’s circular transform
to locate and characterize pitting corrosion in microscopic images. The method achieved greater
than 95% accuracy in pit detection with less than 10% error in its estimates of pit radius and
position. It was also shown to be capable of differentiating pits from other surface defects such
as scratches and inclusions on simulated data. Guo et al.* combined morphological filters and
Fisher’s discriminant analysis on gray level pixel gradients to segment highlight scratches on
steel surfaces. Gunatilake et al.® extracted gray level features from images of corroded aircraft
skins with discrete wavelet transform to train a 1-nearest neighbor clustering algorithm to
segment corroded and non-corroded surfaces. The algorithm was able to detect 95% of the
corrosion samples in the testing set. Hoang and Tran® utilized a sliding window with a support
vector machine (SVM) classifier to localize instances of corrosion within water pipelines.
Features were extracted using histogram analysis and gray-level co-occurrence matrices
(GLCMs). While accurate, the above techniques are often sensitive to varied illumination
conditions and the presence of complex backgrounds. Moreover, shallow machine learning
techniques are limited by the complexity of the handcrafted features and most lack generality and

reliability beyond specific, targeted applications.

With recent advancements in graphics processing units (GPUs) and the success of CNNs in
image classification challenges®!, there has been increased interest in CNNs for automated defect

detection. Nonetheless, the lack of expansive datasets continues to hinder the development of



these systems as most deep learning models require a training set of at least 1000 images per
defect class to obtain acceptable performance. As defect rates are low for aircraft inspections,
dataset generation is time-consuming and can be prohibitive. Prior works have implemented

22.23 and data augmentation®* to mitigating the issues associated with limited

transfer learning
data. Malekzadeh et al.'? used two pre-trained CNNss as feature extractors for an SVM classifier
to inspect aircraft fuselages. Experimental results showed a detection accuracy of 96.38% and
sensitivity of 96.48% on a testing set of 12 images. Shen et al.!* trained a fully convolutional
network (FCN) to identify and localize engine cracks and burns from borescope images with
high accuracy. Ramalingham et al.!* developed a mobile robot inspection platform equipped with
a lightweight CNN network to differentiate between stains and defects on aircraft skins. The
platform achieved a test accuracy of 96.2% with an average prediction confidence of 97%. These
prior studies have demonstrated the excellent performance of CNNs in aircraft inspection;

however, all of these methods utilize single CNN frameworks which are sensitive to poor model

selection and improper training. An ensemble framework is a possible solution for these issues.

ENSEMBLES

Ensembles combine the predictions of multiple independent machine or deep learning models
using a higher-level algorithm. The models which comprise an ensemble are referred to as base
learners and are selected to maximize accuracy and diversity. A common strategy for designing
ensembles, overproduce and choose, introduced by Giacinto and Roli?® involves training a large
set of base learners and selecting the most error-diverse models. The main methods to obtain
sufficient diversity include varying the initial weights, varying the network architecture, varying

the network type, and varying the training data. Diverse models tend to make errors on different



subsets of the problem domain and the combination of their predictions is effective in reducing
the overall error and variability in the system?®. This protects against the selection of a base

learner with sub-optimal generalization performance.

There are two common approaches to deep learning ensembles, bagging®’ and stacking?®. In
bagging, the predictions of the base learners are combined using an average or majority vote
function. In stacking, a second-level machine learning algorithm, known as a meta-learner, is
trained on the predictions of the component models to output the final prediction. Unlike
bagging, stacking is resistant to differences in base learner accuracy. Ensembles can be extended
to multiple levels to further improve performance but are often limited in size by computational

restraints.

Several ensemble methodologies have been proposed for automated visual inspection. Wu, Liu,
and He'® compared the performance of four machine learning ensembles in the automated
inspection of sewer pipes. The highest classification accuracy was obtained using a RotBoost
ensembling method for decision trees. Dworakowski et al.!” proposed an ensemble of artificial
neural networks (ANNSs) to detect fatigue cracks on aircraft from the readings of embedded
piezoelectric sensors. The component ANNs were selected for their structural diversity and it
was shown that the ensembles had greater mean classification accuracy than any of the
individual ANNs. Fernandes et al.'® trained a bagged ensemble of homogenous CNNs for
railway wagon pad inspection using a small, unbalanced dataset of 334 grayscale images. The
method showed low precision on the majority no-defect class relative to its performance on the

smaller defect class. Chang et al.!” combined the region proposals of double YOLOV3 object



detection networks to identify defects on manufactured car bodies. The ensemble was shown to
outperform both the single model YOLOvV3 network and the trained human inspectors. A paired

imaging system was developed to minimize illumination variation and enhance defect saliency.

Methods

This study proposes using a stacked ensemble of CNNss to classify defect and defect-free aircraft
surfaces for MRO operations. To this end, five CNN architectures are trained on a dataset
comprised of borescope images of propeller bore surfaces. Error-diverse base learners are
selected to form three different stacked ensemble combinations. A logistic regression algorithm
is selected as the meta-learner. The architecture of the proposed stacked ensembles is shown in
figure 1. The ensembles are evaluated on a common testing set and a comparison of the
classification results between the ensembles and base learners are presented in “Results and

Discussion”. Figure 2 illustrates the overall framework of the proposed method.
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Fig. 1. Structure of the proposed stacked ensembles
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Fig. 2. Overall architecture of the proposed automated inspection framework

DATASET GENERATION

To create the dataset, images are gathered from a borescope inspection of aircraft propeller
bores. A central rectangular region of 672 x 448 pixels is extracted from each original image and
further divided into six 224 x 224 images. The original images are distorted and poorly
illuminated at the extremities of the field of view due to a manually controlled light source and
fisheye lens, hence the initial rectangular center crop. The split images of 224 x 224 pixels are
manually annotated by a subject matter expert. Defects are defined as incongruities in the image
surface. Cracks are usually long and thin whereas corrosion, which comprises the majority of the
defect samples, is characterized by regions of lower pixel intensity with clear boundaries. Other
defects include scratches and gouges. The annotated dataset is balanced to limit bias towards
either class and consists of 300 defect and 300 defect-free. Given the limited number of defect
samples, the defect class was not further differentiated into different defect types. Examples of
defect and defect-free surfaces included in the dataset can be found in figure 3. To combat

overfitting, K-fold cross validation is applied to divide the dataset into discrete subsets. A test set
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of 100 images is randomly selected from the full dataset and withheld from training. 5-folds
cross validation is applied to the remaining 500 images to form the training and validation sets.
The ratio of training, validation, and testing sets is 4:1:1. Five combinations of training and
validation sets are created. The models are tuned for the validation set and then evaluated on the

common testing set. This allows for a direct comparison of model performance.
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Fig. 3. Sample images: (A) defect images and (B) defect-free images

BASE LEARNERS

Several CNN architectures previously developed for the ImageNet challenge?! are selected as the
base learners. The Visual Geometry Group developed the VGG architecture in 2014 and
showed that network depth is critical in improving classification performance with CNNs.
GoogLeNet*® was designed with small receptive kernels, decreasing the number of network
parameters per layer which allowed for deeper networks and improved computational efficiency.
ResNet’! was designed to combat the vanishing gradient issue of large, deep networks and

achieved better than human classification performance on the ImageNet challenge. ResNet
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models with 18, 34, and 50 layers are used in this study. Varying the structure and training data
of the selected CNNs is used to induce error diversity. Batch normalization is applied to the

VGG network to improve speed and performance through regularization®2.

The base learners are pre-trained on the ImageNet dataset before being fine-tuned for the
borescope detection task. To increase the size and diversity of the training set, data augmentation
is implemented by randomly flipping the training images horizontally. This allows the CNN to
learn more invariant features and helps prevent overfitting. Image rotations, brightness and
contrast adjustment, and the addition of Gaussian noise were also tested but found to result in no
improvement in model performance. To update the model weights, a cross entropy loss function
is used to define the error between the model output and the target label during training. The
weights are updated in the direction of decreasing error through a stochastic gradient descent
(SGD) optimization algorithm with momentum. Momentum accelerates the SGD function
towards convergence, allowing it to escape local minima or saddle points**=4. Recently, adaptive
optimization algorithms such as Adam have become popular in deep learning but SGD with
momentum has been shown in a recent study to outperform adaptive methods on a binary

classification task with the same amount of hyperparameter tuning>>.

Several hyperparameters are defined in the training of the base learners. These include learning
rate, batch size, and number of epochs. The learning rate determines the step size of the weight
update as defined by the SGD function. A small learning rate converges slowly whereas a large
learning rate may result in fluctuations of the optimizer at the minimum?®®. The initial learning
rate is set to 0.001 and a scheduler decays the learning rate by a factor of 10 every seven epochs.

This allows for faster convergence early in the training while preventing overshooting in the later
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iterations. Batch size refers to the number of training images per iteration. Batch size is set to 25
for the ResNet and GoogLeNet networks. VGG11 bn is trained with a batch size of 5 due to lack
of memory on the training device. The number of epochs refers to the number of full passes
through the training set. As training for too many epochs may lead to overfitting, the networks
were trained for 50 epochs to determine an early stopping point where the validation accuracy
has not changed for several epochs. From this analysis, the number of epochs was set to 25. Each
of the base learners is trained twice on the five combinations of training and validation sets for a
total of 50 models. During training, the hyperparameters are optimized to maximize performance
on the validation set. This increases the risk of overfitting, a training error that occurs when the
trained model is too closely fit to the training data and is consequently unable to make accurate
classifications on the testing data. The inclusion of both a validation and testing set allows for
easy detection of overfitting through comparison of the model performance on both sets. The
addition of data augmentation and early stopping of training also help prevent overfitting. For the
duration of this paper, networks will be used to denote the different CNN architectures whereas

models will be used to describe unique trained iterations of the networks

ENSEMBLE DESIGN

Stacked ensembles consisting of three CNN base learners and a logistic regression meta-learner
are constructed from the set of trained base learners. The logistic regression algorithm is a small
ML algorithm suitable for binary classification problems and allows for easy fine-tuning of the
decision boundary. Moreover, given the small data size, the algorithm is less prone to overfitting
than other techniques such as SVMs. The logistic regression is trained on the outputs of the base

learners to update the regression coefficients as defined by:
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where p is the class probability, X, are the distinct independent inputs, and by are the regression
coefficients. To evaluate the impact of network diversity on ensemble performance, three
variations of stacked ensembles are constructed as shown in Table 1. Ensemble A is
homogeneous whereas Ensembles B and C vary in depth and structure, respectively. When

constructing the ensembles, the base learners are selected to maximize accuracy and error

diversity.
Table 1. Component base learners of the three stacked ensembles
Ensemble Base Learners
Ensemble A 3x ResNet18
Ensemble B ResNet18, Resnet34, Resnet50
Ensemble C ResNet18, GooglLeNet, VGG11 bn
TOOLS

PyTorch®’ is an open-source deep learning framework developed by Facebook and used to
program the networks. The logistic regression algorithm was trained using the scikit-learn*®
machine learning library. Training and evaluation are conducted on a laptop computer with a

GeForce GTX 1050Ti GPU, Intel 17-8750H CPU, and 8GB of RAM.

Results and Discussion

Standard performance metrics such as accuracy, recall, precision, and F1 score are used to

evaluate the developed models. Precision measures the proportion of positive detections that
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contained defects while recall describes the proportion of defects that were detected. F1 score is
the harmonic mean of precision and recall and reflects the tradeoff between the two component
metrics. Defect images are considered the positive class while defect-free images form the
negative class. The equations for precision, recall, and F1 score are defined in equations (2)-(4)
respectively. TP, FP, and FN represent the total number of true positives, false positives, and
false negatives respectively. For most aircraft inspections, false positives are preferred as false

negatives may lead to critical failures.

P

recision = ——— 2
P TP+ FP @
recall = _Ir 3)
TP+ FN
Fleo precision x recall @)
precision + recall

BASE LEARNER PERFORMANCE

Table 2 shows the detection results of the base learners. The metrics presented are averaged over
10 runs. The Shapiro-Wilks test with a significance level of 0.05 determined that the data is non-
normal, therefore, the non-parametric Mann-Whitney U-test is used to compare the mean
performances of the base learners. The U-test assumes that the data is independent and non-
normal. A sample U-test with an a-level of 0.05 comparing ResNet18 to the other base learners

is shown in Table 3.
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Table 2. Comparison of performance of different single-model CNN architectures on test images

Network Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

ResNet18 98.10 0.99 98.20 1.48 98.03 1.60 98.10 0.99

ResNet34 96.80 1.40 97.40 1.90 96.26 1.70 96.82 1.40

ResNet50 97.40 0.97 97.80 1.75 97.06 1.62 97.41 0.97

GoogleNet 93.60 1.96 96.40 1.58 91.43 3.38 93.81 1.85

VGG11_bn 95.00 2.36 98.40 1.35 91.52 4.00 95.25 2.14

Table 3. Mann-Whitney U-test comparing ResNet18 to the other base learners

H,: Group 1 < Group 2, H,: Group 1 > Group 2
a = 0.05, N = 10 for both groups

Group 1 Group 2 Accuracy F1 Score

VA p VA p
ResNet18 ResNet34 2.103 0.018 1.797 0.036
ResNet18 ResNet50 1.349 0.088 1.033 0.151
ResNet18 GoogleNet 3.770 8.15E-5 3.753 8.73E-5
ResNet18 VGG11_bn 2.926 0.002 2.466 0.007

The results in Table 3 show that ResNet18 has a greater mean, accuracy, recall, and F1 score
than all of the networks expect ResNet50. The U-test did not find any significant difference
between the mean results of ResNet18 and ResNet50. VGG11 _bn has the greatest mean
precision but its accuracy suffers due to its low recall rate. The large standard deviation in the
recalls of GooglLeNet and VGG11 bn suggests overfitting due to the unstable performance
commonly exhibited by overfit models. However, this is unlikely as the networks simultaneously
show consistent high precision and overfitting would result as a performance decline in both
precision and recall. Rather, the imbalance between Type I and Type II error indicates that the
decision boundary that determines the final class prediction is misaligned. The output of the

networks contains the likelihoods that the input images belongs to either the defect or defect-free
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class. For binary classification, the decision boundary is typically set at 50% and the majority
class becomes the final prediction. When the Type I and Type II errors are unbalanced, such as
with the GoogLeNet and VGG networks, lowering the decision boundary serves to balance the

errors and decrease missed detections at the cost of increased false alarms.

A comparison of network performance on several commonly misclassified images is shown in
figure 4. The values of the heatmap indicates the proportion of the ten models in each network
that misclassified the corresponding image. The intra-network error diversity is a result of
variations in training and validation data while error diversity between networks may be
attributed to variations in both data and network structure. VGG11 _bn has the added complexity
of a different batch size, which influences the weight update of the SGD optimizer. Image 1 in
figure 4 is a false positive and the remainder are false negatives. The defects are highlighted in
red. The missed defects are either small with ambiguous edges, located in the extremities of the
image, suffer from low contrast, or some combination of the previous listed factors. Small salient
features tend to disappear within the filtering and downsampling in the convolutional and
pooling layers of a CNN. While the networks showed overall high precision, a single defect-free
image was misclassified by all of the networks. The false positive can be attributed to the rough

surface finish as the majority of the other defect-free surfaces present in the dataset are smooth.
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Fig. 4. Comparison of misclassifications by various networks. Values represent the proportion of
models in each network that misclassified each image.

To further illustrate the impact of defect saliency, occlusion maps are generated for several

defect images by sliding a gray 16 x 16 region across the image and mapping the correct class

probability as a function of gray region position. The mapping was performed on a ResNet18

model and the features most relevant to the classification are shown in dark red. Defects with

high contrast are clearly defined in the corresponding heatmap and the contributions of the

surrounding surface to the class prediction are negligible. Occlusion maps of defects that are low
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contrast, small, or have poorly defined edges see greater influence from the surroundings which

may lead to low prediction confidence and misclassifications.

-

Fig 5. Occlusion maps of several defect images with a ResNet18 model.

COMPARISON OF RESULTS

The detection performance of the stacked ensembles can be seen in Table 4. The results are
averaged over 10 runs. Again, a Shapiro-Wilks test was used to determine non-normality and the
one-tailed Mann-Whitney U-test with a significance level of 0.05 is used to compare the mean
performance of the ensembles. As the base learners of Ensemble C had lower mean accuracies
than those of Ensembles A and B, it was expected that Ensemble C would be outperformed by
the other two ensembles. However, the U-test showed that the mean performance metrics of the
various ensembles are not significantly different. This is attributed to the accuracy of the
ResNet18 network and the optimized regression coefficients of the logistic regression meta-
learner. ResNet18 outperforms the VGG11 bn and GoogLeNet networks and is weighted more

heavily by the logistic regression algorithm in the ensemble. This minimizes the errors of the
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GoogLeNet and VGG11 _bn models but also makes the ensemble more susceptible to training
biases in ResNet18. To improve ensemble reliability, the base learners should be diverse in
errors and similar in performance. Many of the constructed ensembles achieved perfect accuracy
but given the limited dataset, this does not necessarily reflect operational performance. The
results indicate that the proposed ensemble method achieves greater accuracy than the methods
developed by Malekzadeh et al.!> and Ramalingham et al.!4; however, it is difficult to compare

the performance of the various methods due to the differences in datasets and data domains.

The Wilcoxon signed-rank test is used to compare the performance of the base learners and
ensembles. The test assumes non-normality and dependence. The test was performed with a a-
level of 0.05 and the resulting Z scores and p-values for the accuracy and F1 score are found in
Table 6. The Wilcoxon test shows that the stacked ensembles have greater mean accuracies,

precisions, recalls, and F1 scores than their component base learners.

Table 4. Performance of different stacked ensembles on test images

Ensemble Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Mean  Std. Dev Mean  Std. Dev Mean  Std. Dev Mean  Std. Dev

Ensemble A 99.80 0.42 99.61 0.83 100.00 0.00 99.70 0.48
Ensemble B 99.50 0.527 99.22 1.01 99.80 0.63 99.5 0.52
Ensemble C 99.60 0.52 99.80 0.62 99.40 0.97 99.6 0.52
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Table 5. Wilcoxon ranked-test results between base learners (Group 1) and ensembles (Group 2)

H,: Group 1 2 Group 2, H,: Group 1 < Group 2
o =0.05, N =10 for all Group 1 and 2

Group 1 Group 2 Accuracy F1 Score (%)
VA p VA p
ResNet18 -2.641 0.004 -2.611 0.004
ResNet34 -2.768 0.003 -2.754 0.003
ResNet50 Ensemble A -2.796 0.002 -2.756 0.003
GoogleNet -2.768 0.003 -2.754 0.003
VGG11_bn 2.771 0.003 -2.756 0.003
ResNet18 -2.663 0.004 -2.611 0.004
ResNet34 -2.773 0.003 -2.756 0.003
ResNet50 Ensemble B -2.819 0.002 -2.756 0.003
GoogleNet -2.757 0.003 -2.754 0.003
VGG11_bn -2.773 0.003 -2.754 0.003
ResNet18 -2.401 0.008 -2.347 0.009
ResNet34 -2.627 0.004 -2.754 0.003
ResNet50 Ensemble C -2.627 0.004 -2.754 0.003
GoogleNet -2.762 0.002 -2.752 0.003
VGG11_bn -2.763 0.002 -2.756 0.003

In aircraft visual inspection, it is critical to eliminate false negatives. With single CNN-based
frameworks, this often entails either retraining with modified parameters and data or adjusting
the decision boundary to eliminate false negatives at the cost of additional false positives.
Retraining results cannot be guaranteed due to the stochastic nature of the algorithms and
additional data is often unavailable. Ensembling can eliminate false negatives by selecting error-
diverse learners. This can be done with little to no increase in the rate of false positives due to the
overall error reduction provided by ensembles. An ensemble constructed to eliminate false

positives is shown in figure 6.
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Fig. 6. Elimination of false negatives in ensemble through selection of error-diverse base learners

Decision boundary adjustment may also be applied to the meta-learner to further fine-tune
performance. This offers two main advantage over boundary adjustment at the base learner level:
1) The error reduction provided by ensembles allows for a lower rate of false positives at high
recall rates and vice versa. 2) Boundary adjustment at the meta-learner level is simpler and less
cumbersome than adjusting the thresholds for each of the base learners. Precision-recall (PR)
curves are plotted in figure 7 to illustrate the effects of boundary adjustment on mean precision
and recall. The decision boundary is incremented from 0 to 100 % at intervals of 5 % and model
performance is evaluated at each step. At a recall rate of 100 %, Ensembles A, B, and C attain
precisions 0f 99.61, 96.91, and 82.69 % respectively. ResNet34 attains the highest precision for a

base learner at 77.43 %. The area under the PR curve (AUC) is also commonly used to compare
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the overall performance of the classifier. A perfect classifier has an AUC of 1.0 and of the

models in this study, Ensemble A has the greatest AUC of 0.99.
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Fig. 7. Precision-recall curves of (A) base learners and (B) ensembles

COMPUTATIONAL PERFORMANCE COMPARISON

A comparison of the computational costs for each network is presented in Table 6. The networks
were trained for 25 epochs with a batch size of 5 to obtain training times. The ensemble
components were trained sequentially rather than in parallel. As expected, the computational
resources scale with the complexity of the network. The ensembles require the most computation
resources as they are a combination of the various base learners and the logistic regression meta-
learner. The logistic regression algorithm contributes very little to the overall computational
costs of the ensembles, adding 3 ms to the training time and 0.753 KB to the network size. The
complexity of the ensembles can be reduced through the selection of lightweight base learners

and pruning of network parameters to remove weights of low relevance.
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Table 6. Comparison of computation costs of different networks. Training times are reported for
25 epochs and batch size of 5. Inference times are for a single 224 x 224 image.

Network Network size (MB)  Training time (s) Inference time (ms)
ResNet18 106 350 34
ResNet34 178 430 38
ResNet50 376 558 42
GoogleNet 119 344 34
VGG11 bn 689 619 42
Ensemble A 318 1050 102
Ensemble B 660 1338 114
Ensemble C 915 1303 110
Conclusions

In this study, a stacked ensemble framework is proposed for automated detection of surface
defect for aircraft visual inspection. Stacked ensembles comprising of three CNN base learners
are trained to identify cracks, corrosion, scratches, and gouges in propeller bores using transfer
learning and data augmentation to reduce dataset requirements. Using the Wilcoxon signed-rank
test, the resulting ensembles are shown to have greater mean accuracies than the individual base
learners. The ensembles also compare favorably against single model CNN-based detection
methods in prior literature. There were no significant differences in performance between the
three ensemble combinations despite diversity in the structure and depth of their component
models. It is shown that error-diverse stacked ensembles can compensate for variability in base
learner performance and protect against inherent biases or variances present within individual
models, providing increased accuracy and reliability in detection tasks. Furthermore, it is shown
that decision threshold adjustment at the meta-learner level is effective in maintaining precision

for applications that require maximum recall. At decision boundaries corresponding to 100 %
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recall, the ensembles achieved a mean precision 15.64 % higher than that of the highest precision

base learner, ResNet34.

Several limitations exist for the proposed method. Ensembles are incapable of improving the
generalization performance of its base learners, making them reliant on accurate, diverse
component models for their performance. Sufficient base learners may be difficult to obtain in
practice due to general limitations of CNN methods as well as the existence of correlated errors
across models. Moreover, it is difficult to automate the selection of ensemble components and
the process to develop ensembles for new inspection tasks is tedious. Ensembles are

computationally expensive, limiting their performance for high speed applications.

In future work, the use of ensembles in this study can be expanded to detect multiple defect
classes to evaluate the error reduction provided in multi-class applications. Furthermore, moving
beyond classification, ensembles can be applied to improve the performance of detection
algorithms that seek to localize objects of interest using bounding boxes. As object detection
methods such as YOLO or SSD rely on CNNs as classifiers, an ensemble approach could see
similar performance benefits. This would remove the inefficiency associated with windowing to

localize and highlight the defect within the original image.
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Figure Captions

Fig. 1. Structure of the proposed stacked ensembles
Fig. 2. Overall architecture of the proposed automated inspection framework
Fig. 3. Sample images: (A) defect images and (B) defect-free images

Fig. 4. Comparison of misclassification by various networks. Values represent the proportion of
models in each network that misclassified each image.

Fig 5. Occlusion maps of several defect images with a ResNet18 model.
Fig. 6. Elimination of false negatives in ensemble through selection of error-diverse base learners

Fig. 7. Precision-recall curves of (A) base learners and (B) ensembles
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Table Captions

Table 1. Component base learners of the three stacked ensembles

Table 2. Comparison of performance of different single-model CNN architectures on test images
Table 3. Mann-Whitney U—-test comparing ResNet18 to the other base learners

Table 4. Performance of different stacked ensembles on test images

Table 5. Wilcoxon ranked-test results between base learners (Group 1) and ensembles (Group 2)

Table 6. Comparison of computation costs of different networks. Training times are reported for
25 epochs and batch size of 5. Inference times are for a single 224 x 224 image
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