Data-driven algorithm selection and tuning
in optimization and signal processing

Jesus A. De Loera, Jamie Haddock, Anna
Ma & Deanna Needell

Annals of Mathematics and Artificial
Intelligence

ISSN 1012-2443

Ann Math Artif Intell
DOI 10.1007/s10472-020-09717-z

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer
Nature Switzerland AG. This e-offprint is

for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Annals of Mathematics and Artificial Intelligence
https://doi.org/10.1007/510472-020-09717-z

®

Check for
updates

Data-driven algorithm selection and tuning
in optimization and signal processing

Jesus A. De Loera' - Jamie Haddock? © . Anna Ma3 - Deanna Needell?

Accepted: 27 October 2020Published online: 12 November 2020
© Springer Nature Switzerland AG 2020

Abstract

Machine learning algorithms typically rely on optimization subroutines and are well known
to provide very effective outcomes for many types of problems. Here, we flip the reliance
and ask the reverse question: can machine learning algorithms lead to more effective
outcomes for optimization problems? Our goal is to train machine learning methods to auto-
matically improve the performance of optimization and signal processing algorithms. As a
proof of concept, we use our approach to improve two popular data processing subroutines
in data science: stochastic gradient descent and greedy methods in compressed sensing. We
provide experimental results that demonstrate the answer is “yes”, machine learning algo-
rithms do lead to more effective outcomes for optimization problems, and show the future
potential for this research direction. In addition to our experimental work, we prove rele-
vant Probably Approximately Correct (PAC) learning theorems for our problems of interest.
More precisely, we show that there exists a learning algorithm that, with high probability,
will select the algorithm that optimizes the average performance on an input set of problem
instances with a given distribution.

Keywords Automated machine learning - Compressed sensing - Neural networks -
Algorithm selection - Hyperparameter tuning

Mathematics Subject Classification (2010) 65K10 - 90C26 - 68T05 - 68T07

b4 Jamie Haddock
jhaddock @math.ucla.edu

Jests A. De Loera
deloera@math.ucddavis.edu

Anna Ma
anna.ma@uci.edu

Deanna Needell

deanna@math.ucla.edu

1 University of California, Davis, CA, USA
2 University of California, Los Angeles, CA, USA
3 University of California, Irvine, CA, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-020-09717-z&domain=pdf
http://orcid.org/0000-0002-1449-2574
mailto: jhaddock@math.ucla.edu
mailto: deloera@math.ucddavis.edu
mailto: anna.ma@uci.edu
mailto: deanna@math.ucla.edu

J.A.De Loera et al.

1 Introduction

Machine learning is a popular and powerful tool that has emerged at the forefront of a vast
array of applications (most famously in image processing). At their core, neural nets rely
on solving nonlinear optimization problems. From this point of view, improving key opti-
mization subroutines and other auxiliary data processing methods directly helps to improve
learning methods. Here, we aim to use basic machine learning algorithms to improve opti-
mization and signal processing subroutines by choosing the best algorithm or the best choice
of parameters in concrete instances.

Practitioners of optimization and signal processing know that for a given input instance,
there are choices among several algorithms or internal parameters that require fine-tuning
in order to obtain the best performance (e.g., should one use the simplex method or interior-
point methods?). These choices often lead to drastically different performances and thus
such decisions are crucial in many applications. The questions we consider here are: What
is the best algorithm to use given a new data instance? What is the best choice of param-
eters for a given data instance? Often humans can use their expertise and experience to
narrow down algorithm or parameter choices, but what can be done by the nonexpert user
to make sound decisions? In our approach, which we refer to as the empirical algorithm
selection and tuning approach, we use available individual problem instances as data to
train a neural network that can assist in the tuning of parameters or in algorithm selection.
This approach does not require a human expert to reduce the algorithm or parameter search
space and can therefore be utilized by nonexperts during the optimization process. We
illustrate our approach with stochastic gradient descent and greedy methods in compressed
sensing.

1.1 Our contributions

In this work we study the problems of algorithm selection in compressed sensing and
of parameter tuning for Stochastic Gradient Descent (SGD) algorithms. In both cases
we wish to train a recommendation or classification algorithm that can output an opti-
mal algorithmic decision (method, parameters, etc.) for a given input data set. Note that
in contrast to previous work in step size tuning for SGD, our work does not require that
iteration specific step sizes be computed at every step. We mostly study these problems
from the experimental point of view, but we also prove PAC (probably approximately
correct) learning theorems for our problems of interest. Our main contributions are as
follows.

— In Section 2 we apply our methodology, through concrete experiments, to the selection
of compressed sensing algorithms. Here we concentrate on selecting the best among
three well-known greedy algorithms for solving the compressed sensing problem: Hard
Thresholding Pursuit (HTP) [24], Normalized Iterative Hard Thresholding (NIHT)
[12], and Compressive Sampling Matching Pursuit with Subspace Pursuit (CSMPSP)
[43, 46]. We have been inspired by the work of [11], where the authors catalog optimal
algorithm selection through brute force experimental testing. Although our machine
learning approach is useful precisely when such a rigorous catalog is not available, the
work of [11] will be used as validation of our framework.

— In Section 3 we apply our methodology, through concrete experiments, to the selection
of the best step size in the popular stochastic gradient descent algorithm [49], which
itself is used as a subroutine in many learning frameworks. Unfortunately, tuning the

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

step size (also called the learning rate) is often more an art than a science, and the
selection can lead to drastically different overall behavior. We aim to alleviate this issue
by allowing for such selections to be done by the trained machine.

— InSection 5 we prove two PAC theorems about our SGD and compressed sensing appli-
cations. In particular, we prove that there exists a simple learning algorithm which, with
high probability, selects a learning rate, from among an interval of learning rates, that
achieves nearly the optimal average SGD performance for a given distribution of func-
tions. Additionally, we point out that there is a simple learning algorithm which, with
high probability, selects the compressed sensing algorithm from the finite set of con-
sidered greedy algorithms which achieves the optimal average performance for a given
distribution of functions.

For our experiments we use Neural Networks for classification. Neural Networks are
computing systems inspired by the biological neural networks. They have shown remark-
able success in various machine learning tasks including classification [36]. While there are
plenty of sophisticated, state of the art neural net architectures such as GoogLeNet [54],
ResNet [30], DenseNet [32] and CliqueNet [59], we will demonstrate that even simple
networks that do not have to be run on expensive remote processors can aid in algorithm
selection. This neural net learning approach is perfect for learning and modeling nonlin-
ear and complex relationships allowing, as the name suggests, the machine to learn data
relationships by itself.

1.2 Prior relevant work

One can trace the first interactions between machine learning and optimization at least to
the early 1990’s [53] and it is an interaction that continues to grow. The problem of interest
is that of efficiently automating the selection of algorithms or their parameter configura-
tions. It has attracted attention by many authors, and relies on multiple techniques. Within
Artificial Intelligence it has received several names: algorithm selection, algorithm config-
uration, self-adapting algorithms, or simply automated machine learning (autoML). We do
not attempt to be comprehensive on our survey of this vast body of literature. Instead, we
refer the reader to [60] for a more complete review on autoML and focus here on works that
are more relevant to the proceeding discussion.

Let us first mention that the list of tools and techniques used is very diverse. Naive
approaches to autoML began with simple grid searches over hyperparameter spaces. In the
work of [8], the authors propose random searches over the hyperparameter space. However,
these approaches do not incorporate any learning and each instance is independent of prior
knowledge or computation. In more recent years, researchers have been proposing more
sophisticated techniques. For example, in [38] the problem is approached as a Markov Deci-
sion problem. In [58] the problem is approached with techniques similar to the so-called
matrix completion method (see e.g. [14, 15]). A theoretical learning framework for algo-
rithm selection was presented in [28] with a follow up in [4]. Hyperparameter optimization
was formulated and solved as an infinite-armed bandit problem in [41]. Some authors have
used an empirical hardness model to predict the running time of algorithms and have applied
this approach to improve Satisfiability (SAT) solvers [21, 40]. While many of the afore-
mentioned approaches and many others [5, 6, 23, 48] require a preprocessing step before
algorithm or parameter selection can be performed, our approach simply uses the data that
encodes the problem (or even simpler attributes of the data) as input features to our learning
approach.

@ Springer

J.A.De Loera et al.

Several authors have been directly concerned with algorithm selection and tuning for
optimization (see e.g., [2, 3, 34] and the many references therein). Recently a survey of
ways to use learning in combinatorial optimization was presented in [7]. In [9] the authors
redefine mixed integer convex optimization problems as a multiclass classification problem
where the machine learning predictor gives insights on the optimal solution. Optimization,
especially combinatorial optimization, relies on efficient heuristics. For example, Dai et
al. [33] develop a method to learn heuristics over graph problems. As another example,
branch-and-bound involves decisions about the branching variable. Users struggle to select
the best rule to perform this heuristic and several authors have proposed ways to use machine
learning to select the best branching rules (see [1, 34]). Machine learning methods have also
been useful in aiding the selection of reformulations and decompositions for mixed-integer
optimization. For example, [13, 37] used machine learning to decide which instances more
efficiently solve mixed-integer quadratic optimization problems. Note that many of these
works are combinatorial in nature. In comparison, our work demonstrates that our approach
can drive optimal selection even in continuous and analytical problems.

Most related to our work is the recent work of [31] where the authors use convolutional
neural nets (CNN) as a black box for algorithm selection. Their approach involves a two step
process. First, they capture a literal image of the landscape of the optimization problem and
then feed that image into a CNN to classify optimal algorithms for a given data instance. In
comparison to our approach, we do not require the intermediate step of concretely capturing
the landscape of the optimization problem at hand. We instead feed the input data directly
into the neural network, creating an even more rudimentary approach than what is proposed
in [31]. Despite its simplicity, our approach provides useful and promising results.

While there has been much work in the area of autoML and automated algorithm
selection, these automated approaches differ from ours in terms of their application to
new data. Our straightforward approach allows nonexpert practitioners to apply this algo-
rithm selection approach without the expertise required to preprocess the data or determine
meta-features that enable an effective learning approach. In addition, we demonstrate that
such simplistic approaches not only yield advantageous results, but can also be used for
continuous and analytical problems.

1.3 Notation
Here and throughout the paper, we write
Ax =y, (D

where A € R™*" is the measurement (or data) matrix, y € R is the measurement vector,
and x € R” is the signal being recovered. We use (-)* to denote the transpose operator and
()T denotes the pseudoinverse.

In the compressed sensing problem considered in Section 2, the measurement matrix is
underdetermined (m < n) and the signal is assumed to be sparse; in particular, we say x
is s-sparse when it has at most s nonzero entries. Furthermore, for any vector v, supp, (v)
returns the indices corresponding to the s largest in magnitude entries of v and Pr (v) returns
a vector whose entries are 0 outside of the support of set T and equal to v on the support
of T. For any set T C {1, ---,n}, a matrix A constrained to the columns indexed by T is
denoted by At € RmxITI,

In the least-squares problems considered in Section 3, the measurement matrix is overde-
termined (m >> n) and no sparsity assumption is made on the signal x. We use the recovery

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

error and the residual error at the M-th iteration of SGD, ||x); — x||2 and [|[Axy — yl2
respectively, to measure the performance of the algorithm with given learning rates.

In both Sections 2 and 3, we will make use of a maximum iteration cap to stop the
algorithm in question, which we denote M. The use of this stopping criterion is described
in detail in each section.

2 Application I: compressed sensing algorithm selection

We begin the investigation of our framework with a proof of concept inspired by the work
done in [11] where the authors rigorously test various compressed sensing methods under
various settings in a brute-force way. We will show that we can use neural networks to
recover the phase transitions that were acquired via rigorous testing in the aforementioned
paper. For this reason, we adopt a similar algorithmic and experimental setup. First, we will
explain the compressed sensing problem and notation used throughout, then we will present
three greedy algorithms. Following that, the experimental setup including the different sens-
ing matrices, signal initialization, and stopping criteria are discussed. Finally, we present
our experimental results and remark on our findings.

There is now an abundance of both theory and algorithms that guarantee robust and
accurate recovery of sparse signals, under various assumptions on the measurement matrix
A [22, 25]. For example, the so-called Restricted Isometry Property [16] guarantees such
recovery and random matrix constructions are shown to satisfy this property when the num-
ber of measurements m scales like s logn [50]. Under this or related assumptions, both
greedy (iterative) algorithms and optimization-based methods (e.g., L1-minimization) are
shown to produce accurate recovery results. In general, the performance of such algorithms
depends on the undersampling and oversampling rates which we denote as

m
§=—andp=—, (@)
n m

respectively. Furthermore, we refer to combinations of § and p as the (8, p) plane. By
observing the behavior of algorithms on the (8, p) plane, we can see how different
approaches act under various sampling rates.

We consider three greedy algorithms for solving the compressed sensing problem: Hard
Thresholding Pursuit (HTP) [24], Normalized Iterative Hard Thresholding (NIHT) [12],
and Compressive Sampling Matching Pursuit with Subspace Pursuit (CSMPSP) [43, 46].
The pseudocode for HTP, NIHT, and CSMPSP appears in Algorithms 1, 2, and 3 respec-
tively. These methods are all similar in spirit; they seek to recover the signal x from y while
also identifying the support of x, which is discovered iteratively. Each essentially uses a
proxy for the signal x (e.g., A*y) to identify a support estimate 7', then estimates x on that
support (e.g., x; = ATT y) , then computes the residual and repeats the process to locate
the remainder of x. HTP and NIHT use specially chosen step sizes (denoted wy) when
updating the estimate to x and recompute the support in each iteration, whereas CSMPSP
uses a union of prior estimates followed by pruning. See Algorithms 1, 2 and 3 and [12,
24, 43] for details about these approaches. What is important for our purpose is that each
algorithm may perform differently for a given set of inputs, leading to varying accuracy
on the output. Therefore, there is value in using machine learning tools to decide what is
the best choice of algorithm in a given problem instance. Also note that each algorithm

@ Springer

J.A.De Loera et al.

takes the same inputs, namely the measurement matrix A, the measurement vector y, and
an approximation for the number of nonzero entries s in the sparse signal.

Although the theory for these approaches holds uniformly, meaning it holds for any
sparse signal and matrix satisfying the assumptions, it has long been observed that the
algorithms actually behave quite differently on various kinds of signal and measurement
ensembles [11, 17, 26]. In fact, [11] documents an extensive comparison of these approaches
for various ensembles while ranging the parameters § and p. This latter work can be used
as a “lookup table,” when one knows the input information and wants to select the optimal
algorithm for their purpose. Their work, in some sense, motivates us to apply the machine
learning methodology to compressed sensing, as we have a comprehensive benchmark with
which to compare these methods. Note that these comparisons were made in a brute force
manner, where each method was run on each ensemble type over a fine grid of input parame-
ters. Such an exhaustive approach is not practical when the input domain is extremely large.
Moreover, in this setting, we have a greater understanding of how these greedy algorithms
will behave for a specific problem instances, making it an appropriate problem to verify and
validate our framework.

Algorithm 1 Hard thresholding pursuit.

1: procedure HTP(A, y, s)

2: Initialize xo = A™y, Tp = supp,(x0), X0 = Pr,(x0), ro =y — Axo, k=1
3: while stopping criteria not reached do

lA*re—1)7_, 13

4: wy =
k= A Ao, 13
5: Xi = Xk_1 + WA ri_
6: Ty, = supp, (xk)
7: X = A;ky
8: rp=y— Axjy_|
9: k=k+1
10: end while

11: end procedure

Algorithm 2 Normalized iterative hard thresholding.

1: procedure NIHT(A, y, s)

2: Initialize xo = A*y, Ty = supp,(xo), X0 = Pr,(x0),ro =y — Axo, k=1
3: while stopping criteria not reached do

l(A*re-Dz_, 113

+ k= A A reon 1B
5: Xp = Xp—1 +wrA*r_y
6: Ty = supp,(xk)

7: x; = Pr.(x)

8: ry=y— Axy

9: k=k+1

10: end while
11: end procedure

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

Algorithm 3 Compressive sampling matching pursuit with subspace pursuit.

1:
2
3
4:
5:
6
7
8
9

10:

11:
12:

procedure CSMPSP(A, y, s)
Initialize xo = A™y, Ty = supp; (xo), X0 = Pr,(x0),ro =y — Axo, k=1
while stopping criteria not reached do
Sk = supp(A*rg—1)
Ag = Tr—1 U Sk
Xp = Aj\ky
Ty = supp, (xg)
Xp = Py (xg)
rp=y— Axy
k=k+1
end while
end procedure

2.1 Experimental setup

We consider three randomly generated measurement matrices for this setting: Gaussian,
Sparse, and Discrete Cosine Transform (DCT). Entries of the Gaussian matrices are drawn

i.i.

d. from N (0, %) so that in expectation, they have normalized columns. Sparse measure-

ment matrices have p = 7 nonzero entries in each column where the value of the nonzero

entries is drawn from {+ p_%} with equal probability. Finally the DCT measurement matri-
ces consist of m randomly subsampled rows of the n x n full DCT matrix. The number

of

measurements m is determined by § and the vector x being recovered has s nonzero

entries (determined by p) and takes on values {£1} with equal probability where é and p
are as defined in (2). The measurement vector y = Ax where A is one of the three types of
measurement matrices and x is the signal to be recovered.

We terminate any algorithm when it satisfies one of the following stopping criteria.

Convergence - An algorithm is convergent if the residual error is small enough. In
particular, if
|Ax, — y|l < 0.0013.

Divergence - An algorithm is divergent if the residual error is larger than a factor of the
norm of the initial residual:

Ax; — yl = 100]|Axo — yl|.

Slow Progress I - After 750 iterations of NIHT or 150 iterations of CSMPSP or HTP,
we begin to check for slow progress. For the first version of “slow progress” we check
whether the residual has made any significant progress over the last 15 iterations:

max [Axe—it1 — Il — | Axe—i — ylll < 107°.

Slow Progress II - After 750 iterations of NIHT or 150 iterations of CSMPSP or HTP,
we check whether the convergence rate is close to 1:

1
Axp e — i

(ll Xi—15 ,V||> < 0.99.
lAxi; — yll

Maximum Iteration - An algorithm that runs for longer than 60 minutes (discounting
time for computing metrics) or M iterations (where M = 900 for NIHT and M = 200
for CSMPSP and HTP) has reached the allowable computation time and is terminated.

@ Springer

J.A.De Loera et al.

It should be noted the algorithm stopping criteria of (1)—(4) are as in [11] while the last exit
was added to keep from a single experiment from running for too long. Practically, the last
stopping criteria reflects a computational time constraint.

2.2 Experiments

In the following set of experiments, we train neural networks to classify whether or not
an algorithm can recover a signal in the standard compressed sensing problem (1). The
experiment requires three phases: creating training data, training the neural network, and
testing the neural network.

In the first phase, training data with labels are created to input into the neural network.
The training data set comprises of 2241 samples. For each matrix type (Gaussian, Sparse,
DCT), there are 747 training points on the (8, p) plane (See (2)). For each (8, p) pair, we
run Algorithms 1, 2, and 3 until the algorithm satisfies one of the stopping criteria discussed
in Section 2.1. In order for a given algorithm to be labeled as “successful” at recovering
signals for a specified (8, p) and measurement matrix, 50 of the 100 randomly generated
samples must have satisfied the “convergence” stopping criteria. This phase is completed in
MATLAB using version R2014b on a desktop running Linux.

The training data from the first phase and labels are used to train neural networks in the
second phase. The input variables used by the neural network are the signal dimension n,
the number of measurements m, the number of nonzero entries s, and an indicator variable
that indicates the measurement matrix. The second phase is accomplished using Python 3

fo 0000000000000000000
fb 0000000000000000000
D000 0000000000000000

flb 0000000000000000000
b 0000000000000000000
f00000000000000000000

fo 000000000000000000
fp 000000000000000000
fD000000000000000000

c POOO0O0O0O000000000000000 POOOOOO0O0O0O000000000000 POOOOO0O00000000000000
Rl RPO0000000000000000000 RPOO000000000000000000 RPO00000000000000000
3 PDOO0O0O0O0O0O0O000000000000 D0 0000000000000 0000O0 PODOO0OO0O0O0O000000000000
S fHOO0O00O00000000000000 0000000000 000000000 fHOO0O0000O0000000000
b 6000000000000000000 k5 6000000000000000000 k5 6000000000000000
POOO000000000000000000 PDOO0O00000000000000000 POOO00000000000000
° 0.5 0.5 g8
C
>3
o
G
sparse dct
2 1 1
3
[}
[0}
o
&
= 0. 0.5 0.5
©
RS
=
[}
[}
©
O o- 0 0

Fig. 1 Recovery for phase transitions of various types of measurement matrices for HTP. (Test validation
accuracy = 0.969)

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

and Keras 2.1 with TensorFlow as a back end. We set up the neural network to contain
two hidden layers, the first with three nodes and a second layer with nine nodes, and offer
the following intuition for the neural network structure. The purpose of the first layer is to
determine the measurement matrix type while the second layer classifies whether or not an
algorithm will be successful. The hidden layers utilize ReLu as their activation function,
with the exception of the final output layer which uses the sigmoid function. Approximately
90% of the available data is used to train our neural network for each algorithm and the
remaining 10% is used to measure validation accuracy on the trained network.

Figures 1, 2 and 3 present the computational results for HTP, NIHT, and CSMPSP respec-
tively. In each subplot, the horizontal axis represents the value of § and the vertical axis
represents the value of p. Furthermore, each figure can be broken down as follows. Each
column isolates a specific measurement matrix: Gaussian, sparse, and DCT (left to right).
The first row of each figure shows the training (8, p) pairs (i.e., data created in first phase
of experiment) along with their labels, indicated by the color of the data point. Here, yellow
points indicate that an algorithm is “successful” and blue points indicate that the algorithm
is not successful. In the second row of each figure, we show results produced by the trained
neural network from the second phase on test data created by uniformly sampling the (8, p)
plane. The accuracy of the trained networks on validation data is reported in the captions of
each figure. For all experiments, the signal dimension n = 2'? while m and k are computed
according to the specified § and p.

These numerical experiments show that even a simple neural network is able to approxi-
mately determine whether or not a given greedy algorithm and (8, p) pairing will result in
successful signal recovery. In particular, the yellow regions in the second row of each figure

1 flh 0000000000000000000 1 fp 0000000000000000000 1 flh 000000000000000000
flo 0000000000000000000 fo 0000000000000000000 fo 000000000000000000
D0 000000000000000000 RO 0000000000000000000 RO 0 00000000000000000
c fO0000000000000000000 PP 0000000000000000000 f000000000000000000
- AP0 000000000000000000 RP0000000000000000000 AP 0000000000000000
> PO 0 000000000000000000 PO O 000000000000000000 D0 00000000000000
— f0000000000000000000 f0000000000000000000 fOO000000000000000
- f0000000000000000000 PO 0000000000000000000 P00 0000000000000
PO 0000000000000000000 PO 0000000000000000000 PO 0000000000000
T 05z gggggggggggg& 0.5 g ggéggggggggﬁ 0.5 g gggggﬁa
= :
= 0.5 0.5 0.5
=

Fig. 2 Recovery for phase transitions of various types of measurement matrices for NIHT. (Test validation
accuracy = 0.964)

@ Springer

J.A.De Loera et al.

fb 0000000000000000000
fp 0000000000000000000
f0000000000000000000

fb 0000000000000000000
fo 0000000000000000000
fO0000000000000000000

fb 0000000000000000000
fo 0000000000000000000
fO0000000000000000000

c fO0000000000000000000 f00000000000000000000 fP0000000000000000000
= fP0000000000000000000 RP0000000000000000000 RP0000000000000000000
S PO 000000000000000000 fn0000000000000000000 fn0000000000000000000
b 000000000000 0000000 D0 000000000000000000 0000000000 000000000
o PO 0000000000000000000 Ao 0000000000000000000 Ao 0000000000000000000
PO O0000000000000000000 PO 0000000000000000000 f0000000000000000000
T 05 05 g 0.5
c
>
(e}
S
; ' sparse
(2]
=
3>
(%]
s
S
= 0.5 0.5
[\
Q
=
[72]
2]
8

0 0.5 1

Fig.3 Recovery for phase transitions of various types of measurement matrices for CSMPSP. (Test validation
accuracy = 0.963)

not only roughly approximate the yellow regions in the first row but they also noticeably
vary across both algorithm and measurement matrix to match the input training data, as
desired.

3 Application lI: stochastic gradient descent learning rate selection

We now further test our machine learning framework with an exploration of learning rate
schedule selection for the stochastic gradient descent (SGD) algorithm. In this set of exper-
iments, we demonstrate that one can use neural networks to select a learning rate schedule
which improves the behavior of SGD on a given instance, provided proper training data.
After a brief introduction to the vast body of literature regarding the convergence behavior
of SGD and corresponding learning rates, we discuss our experimental results and comment
on our findings. In Section 3.1, we describe in detail the design of our neural network frame-
work. We additionally describe the construction of the training and testing data provided to
the network in each experiment.

SGD is a ubiquitous first-order iterative method for convex optimization. The classical
SGD algorithm for optimizing f (x) works as follows: After selecting a learning rate (or step
size) schedule «; and an initialization x = x, we randomly select an index i € {1, ..., m}.
While the stopping criteria is not satisfied, we update x; = x,_; — &,V fi(x;—1). The appli-
cations in which SGD is la méthode du jour are diverse and cut across many scientific fields,
with perhaps the hottest application currently being in the training of neural networks. The

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

performance of SGD depends heavily on the selected learning rate (or step size) schedule,
{a,}t"i 1» and parameters of the objective function such as the Lipchitz constant or strong
convexity parameter [45, 47, 49, 52]. Parameter tuning SGD can also be interpreted as an
algorithm selection problem. There are numerous proposed line search methods for select-
ing learning rates and methods for performing one-dimensional optimization on the learning
rate to speed convergence [18, 42, 44, 55]. In practice, learning rate selection can be quite
ad hoc and there are popular heuristics for updating the learning rate [27].

Recently, practitioners and theorists alike have turned their attention to adaptive learn-
ing rate schedules, in which the learning rate assigned to a component updates according
to information gleaned from the sample [19, 20, 35, 51, 61]. Recent adaptive learning rate
approaches approximate Lipschitz parameters and use this to approximately compute a
learning rate [47, 57].

Our work presents a machine learning framework which allows practitioners to choose
a learning rate schedule without knowledge of objective function parameters. As a proof
of concept, we focus on solving least-squares problems, but we stress that our framework
could be applied to more complex objective functions. This framework offers practitioners
an alternative to heuristics and unknown objective function parameters.

3.1 Experiments

In each of the experiments presented below, we apply SGD to solve a least-squares problem
|Ax — y||% defined by measurement matrix A and measurement vector y. The goal of our
machine learning framework is to train a neural network to select the optimal learning rate
schedule (out of a fixed set of schedules) for a given input linear system represented by its
measurement vector, y; we specify the measure with which we compare learning rates in
each section below. These experiments also require the same three phases as in Section 2:
creating training data, training the neural network, and testing the behavior of SGD with the
neural network predicted learning rates.

In the first phase, we generate data points consisting of measurement vectors y and labels
that indicate the optimal learning rate schedule. We compare only two types of learning rate
schedules: the constant learning rate o; = ¢ and the epoch-based learning rate schedule oy =
c1 % CZUH/ C3J; these constants are defined in each experiment below. To select the optimal
learning rate schedule and assign a label to each data point, we run M = 5000 iterations of
SGD and assign the label of the learning rate schedule that resulted in the smallest recovery
error, ||x s — x||2 where x is the signal. This phase is completed in MATLAB using version
R2017a on a laptop running macOS. In each experiment, our input data points form two
classes which correspond to each of the learning rate schedules. The consistent systems are
optimally solved with the constant learning rate schedule, while the inconsistent systems are
optimally solved with the epoch-based learning rate schedule; this decreasing learning rate
schedule helps SGD avoid the larger convergence horizon of the inconsistent systems. These
data points are labeled accordingly and the neural network task of predicting the optimal
learning rate schedule is equivalent to predicting to which set of systems each data point
belongs. In each experiment, the data set consists of 3000 measurement vectors, a portion
of which is used for training and the remaining data set is reserved for testing.

In the second phase, we train a neural network with the training portion of the data set,
consisting of the measurement vectors y and the optimal learning rate schedule labels for
each system. The second phase is performed in Python 3 and Keras 2.1 with TensorFlow as
a backend. The neural network architecture we adopt has one hidden layer with 30 nodes.
The intuition for this choice of network architecture is that in our experimental setup the

@ Springer

J.A.De Loera et al.

network only needs to determine which systems are consistent; as a linear problem, we
expect that a thin, simple architecture should be successful. The hidden layer nodes use
ReLU as the activation function and the final output layer uses the sigmoid function. In the
experiments below, we sample 75%, 50%, and 25% of the data to train the neural network
and reserve the remaining data for testing validation accuracy.

In the third phase, we measure the validation accuracy of the trained neural network
predictions on the test set. Additionally, we use the neural network predicted learning rate
schedules to solve each least-squares problem in the test set with M = 5000 iterations of
SGD and measure the resulting average recovery error, ||x3 — x||2, and average residual
error, || Ax jr — y|l2 over the test set. We compare these average error measures for the neural
network predicted learning rates with the average errors solving the test set using only the
constant learning rate schedule and only the epoch-based learning rate schedule.

3.1.1 Synthetic linear systems

In this experiment, we train a neural network to recommend either the constant learning
rate a; = 0.01 or the epoch-based learning rate schedule ; = 0.01 x 0.31/71/100] Here we
set A to be a fixed 1000 x 100 matrix with Gaussian random variable entries drawn i.i.d.
from N'(0, 1), and we design two types of linear systems with this matrix, consistent and
inconsistent. For the set of consistent linear systems, we set y = Ax/||Ax|» where x is a
Gaussian vector. For the set of inconsistent systems, we set the error e = v — A(A*A) A
where v is a Gaussian random variable, so that e is orthogonal to the column space of A.
We then set y = Ax/||Ax|2 + e/|lell> and normalize so that y has ||y|l» = 1. The set of
consistent systems are optimally solved with the constant learning rate schedule and the set
of inconsistent systems are optimally solved with the epoch-based learning rate schedule.
We train the neural network with random subsets of a collection of 3000 linear system
measurement vectors y, 1500 of which are consistent and 1500 of which are inconsistent. In
our experiment, we measure the average validation accuracy of the neural network predic-
tions on the remaining test measurement vectors for ten trials in which we randomly sample
subsets of 75%, 50%, and 25% training data of the 3000 measurement vectors; the average
validation accuracies are listed in Table 1. Furthermore, we list the average recovery error,

Table 1 Average test set validation accuracies of trained neural network (averaged over 10 trials), average
resulting recovery error ||xj — x||2 and residual error ||Axj — y||2 on test set for constant learning rate,
epoch-based learning rate, and the neural network (NN) predicted learning rates on synthetic linear systems.
Smallest error and residual values are bolded for each experiment

Train Validation X —x|2

% Accuracy Const. Epoch NN Pred.
75% 86.00% 0.01142 0.01525 0.00909
50% 77.01% 0.01138 0.01530 0.01064
25% 66.32% 0.01116 0.01524 0.01177
Train |Axp — yli2

% Const. Epoch NN Pred.

75% 0.50980 0.64512 0.45912

50% 0.50806 0.64590 0.49707

25% 0.49739 0.64027 0.53053

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

llxa — x]|2, and average residual error, || Ax) — y||2, for the approximation computed by
M = 5000 SGD iterations using first the constant learning rate schedule, then the epoch-
based learning rate schedule, and finally the neural network predicted learning rate for each
system. These measures are listed in Table 1; the smallest average error is bold-faced in each
row. Note that the average recovery error and average residual error for the neural network
predicted learning rates are lower than those of the constant learning rate or epoch-based
learning rate for the neural networks trained with 75% and 50% of the data. We suspect that
the errors associated with the learning rates predicted by the neural network trained with
25% of the data are not the lowest because of the low neural network validation accuracy,
which is in turn due to the small amount of training data.

3.1.2 Computerized tomography systems

In this experiment, we again train a neural network to recommend either the constant learn-
ing rate o; = 0.01 or the epoch-based learning rate schedule a; = 0.01 % 0.95L/+1/100],
We input two types of linear systems, consistent and inconsistent. Each data point input is
the measurement vector y from a computerized tomography system of equations, Ax =y
(generated by code adapted from the regularization toolbox by PC Hansen [29]). We fix
the matrix A to be a CT matrix generated by the command tomo (20, 10) ; here N = 20
is the discretization parameter (number of pixels along one edge of the square image) and
f = 101is the oversampling factor. This matrix represents the ray directions which are sam-
pled through the signal (image). We then produce consistent CT systems by applying the CT
matrix A to the signal x, which is an image from the MNIST database [39], producing the
measurement vector y = Ax and then normalizing so that ||y|l2 = 1. These measurement
vectors contain a linear combination of the pixels through which the tomography rays pass.
This set of systems is optimally solved with the constant learning rate. We produce inconsis-
tent CT systems with error e = v — A(A*A)T A*v where v is a Gaussian random variable,
so that e is orthogonal to the column space of A. The measurement vector y for these incon-
sistent CT systems is y = Ax/||Ax||2 4+ 0.5 % e/| e]|2 normalized so that ||y||2 = 1, where
x is an image from the MNIST database. This set of systems is optimally solved with the
epoch-based learning rate schedule.

To evaluate these methods, we measure the average validation accuracy of the neural
network predictions on the remaining test measurement vectors for ten trials in which we
randomly sample subsets of 25%, 50%, and 75% training data of the 3000 measurement vec-
tors; the average validation accuracies are listed in Table 2. Furthermore, we list the average
recovery error, ||xp — x||2, and average residual error, ||[Axj — y||2, for the approxima-
tion computed by M = 5000 SGD iterations using first the constant learning rate schedule,
then the epoch-based learning rate schedule, and finally the neural network predicted learn-
ing rate for each system. These measures are listed in Table 2; the smallest average error
is bold-faced in each row. Note that the average recovery error and average residual error
for the neural network predicted learning rates are lower than those of the constant learning
rate or epoch-based learning rate, except for the average residual error of the neural network
trained with 50% of the data.

In order to visualize the potential improvement offered by using the trained neural net to
select optimal step sizes for each tomography system, we plot in Fig. 4 a recovered image
using 5000 SGD iterations with each learning rate schedule, and the original image. The
neural network predicts the correct optimal learning rate schedule on these systems.

These numerical experiments show that a simple neural network trained with proper
training data can predict learning rates which improve the recovery error of SGD on a set of

@ Springer

J.A.De Loera et al.

Table 2 Average test set validation accuracies of trained neural network (averaged over 10 trials), average
resulting recovery error ||x — x||2 and residual error ||Ax) — y|2 on test set for constant learning rate,
epoch-based learning rate, and the neural network (NN) predicted learning rates on computerized tomography
linear systems. Smallest error and residual values are bolded for each experiment

Train Validation X3 —x|2

% Accuracy Const. Epoch NN Pred.
75% 88.19% 0.00669 0.00687 0.00584
50% 79.68% 0.00669 0.00685 0.00550
25% 85.42% 0.00664 0.00683 0.00538
Train lAxpm — yl2

% Const. Epoch NN Pred.

75% 0.25087 0.26671 0.25121

50% 0.25247 0.26792 0.24717

25% 0.24885 0.26469 0.24323

given systems. We emphasize that this approach is promising for data sets in which knowl-
edge of the data (e.g., consistency of linear systems, approximate Lipschitz parameters, etc.)
is limited. Depending upon the makeup of the given data set and the choice of learning rate
schedules, choosing to use a single schedule on all data sets may be the optimal choice (in

Consistent

Inconsistent

Constant Epoch-based Signal

Fig. 4 Recovered signals on consistent system using 5000 SGD iterations with constant learning rate (top
left; recovery error 0.00278), epoch-based learning rate (top middle; recovery error 0.00555), and original
signal (top right). Recovered signals on inconsistent system using 5000 SGD iterations with constant learning
rate (bottom left; recovery error 0.01117), epoch-based learning rate (top middle; recovery error 0.00899),

and original signal (bottom right). The neural network correctly predicts the optimal learning rates on these
systems

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

average recovery error), but this approach is useful if you do not have much knowledge
about the data set. We illustrate this with a toy situation plotted in Fig. 5. We plot the aver-
age recovery error versus the proportion of the test set systems that are inconsistent. For
this visualization, we use the recovery errors from the experiment in Fig. 4 to approximate
the average recovery errors for each learning rate schedule on each set of systems. For the
neural network predicted average recovery error, we assume that the neural network predic-
tions are 80% accurate on both the inconsistent systems and the consistent systems. In this
toy example, we see that the neural network predictions outperform the other learning rate
schedules when the proportion of inconsistent systems in the test set is between approx-
imately 30% and 80%. However, we additionally note that the neural network predicted
learning rates never result in a significantly worse average recovery error than the optimal.
Thus, if you know very little about your data set (e.g., how many systems are inconsistent)
then our framework offers an efficient method to decrease the resulting average recovery
error over all data.

4 Remarks on computational savings

Here, we estimate the computational cost associated to the approach we have proposed
and illustrate how it could save computational effort over brute force hyperparameter or
algorithm selection. For example, we consider the scenario in which one has N problem
instances each of which are represented with m features. Let S denote the number of algo-
rithms or hyperparameters to optimize over to find the most computationally efficient. Now,
if the cost of evaluating each algorithm or hyperparameter scales with f(m, M, €) where
M is a cap on the number of iterations and € is a desired solution accuracy, then the cost of
the brute force approach to selecting the optimal algorithm or hyperparameter scales with

O(NSf(m, M, e)).

x107

(=1

Average rec OVCIY Crror

X /,/ === Constant J
L’ = =Epoch-based
= NN predicted
2 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Proportion of test set systems that are inconsistent
Fig.5 The average recovery error on the test set versus the proportion of the test set systems that are incon-

sistent when using only the constant learning rate, only the epoch-based learning rate, or the 80% accurate
neural network predicted learning rates

@ Springer

J.A.De Loera et al.

Meanwhile, we can instead analyze our approach with a simple feed-forward neural
network with L layers, each with no more than K nodes. Consider the cost of employ-
ing the brute-force approach on a fraction B of the N problem instances to form training
data, training the neural network with this data, and employing the network to predict
on the remaining (1 — PB) fraction of the N problem instances. Forming the training
data requires O(BNSf(m, M, €)) effort, the training epochs (backpropagation) requires
OPBNK 2L?) effort, and predicting (forward propagation) on the remaining data requires
O(@(1 — B)NKL); this estimation uses standard complexity bounds for backpropaga-
tion and forward propagation (see e.g., [10]). Thus, the effort required by these steps is
OPBNSf(m,M,e)+ NK 212). This can be much more efficient than using the brute-force
selection method for all data when the cost of training, K*L?, is significantly smaller than
the algorithm computational cost, f(m, M, €).

5 Relevant PAC theorems

Although the focus of our paper has been in training neural networks to select the optimal
algorithm or hyperparameter for a specific instance of a given input class, one will notice in
our experimental sections that we present the average accuracy of optimal selection over the
entire class of inputs in the previous sections. Rather than attempting to learn the optimal
algorithm for individual inputs, one instead may appeal to PAC (probably approximately
correct) learning for algorithm selection where results guarantee one can learn the optimal
algorithm for average behavior over distribution of inputs. Here, instead of selecting the
optimal algorithm for a given input, the goal is to select the optimal algorithm for the average
performance over a class of inputs. Results in PAC learning provide a selection method to
choose an algorithm that, with high probability, is precisely the algorithm that performs best
on average in the distribution of instances. For example, in [28], the authors prove that there
exists a simple learning method which, with high probability, selects the optimal learning
rate for average gradient descent (GD) performance given a distribution over a class of input
problems.

5.1 Stochastic gradient descent

In what follows, we prove that there exists a simple learning algorithm which, with
high probability, selects nearly the optimal learning rate from an interval of learning rates
for the average performance of SGD on an input set of functions which satisfy a stan-
dard set of assumptions. In particular, we prove this in the same manner as [28], who
prove the parallel result for nonstochastic gradient descent. Our result shows that the
trivial learning algorithm (1 + €, §)-learns the optimal learning rate which minimizes
the average number of SGD iterations on the set of input objective functions. Here,
the trivial learning algorithm computes the average performance of each learning rate
on a sample in a brute force manner and selects the best performing one. This is the
learning rate that is then selected, as it is expected to be the best performing on aver-
age over the entire distribution. The precise definition of (e, §)-learning is provided in
Definition 1.

Definition 1 [28] The learning algorithm L (e, §)-learns the optimal algorithm in A from

m samples if, for every distribution D over I, with probability at least 1 —§ over m samples
X1,X2,++,Xxm ~ D, L outputs an algorithm A € A with error at most «.

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

We now introduce our set of input objective functions, assumptions on these functions,
the class of algorithms (which are represented simply by their associated learning rate),
and additional necessary definitions. Each algorithm in the class of algorithms are defined
as SGD with learning rate p (denoted A,). Here we consider SGD with fixed learning
rate p, which is given as above with stopping criterion E||x; — x*|| < 7. In detail, the
algorithm initializes with X = X, and then randomly selects i € {1, ..., m} and updates
X; = X;—1 — pV fi (X¢—1) until E||x; — x*|| < 7. In order to determine the iterate ¢ for which
the stopping criteria is satisfied, one can solve for x*!, store it, and compute approximation
errors at every iteration for different orderings of randomly selected samples. Of course, the
number of orderings one must average over depends upon the conditioning of the problem
and the concentration of the errors.

Let D be a distribution over the input set of instances [T = {(F,Xxg)} where F is
the objective function and X¢ is the initial point for SGD. We assume several standard
assumptions on the objective function F. In particular, the minimization problem defined
by F(x) = i1, fi(x),

min F(x),
has solution x* that satisfies F(x*) = > /L, f;(x*) = 0 and V f; (x*) = 0. Each component
function of F' is Lipschitz with constant L;, so

IV fitw) =V fi@ll2 < Lillw — zl|2,

for all i = {1,...,m} and any w,z € R". For example, when solving consistent linear
systems, F(z) = %Zl'-":l((a,-, z) — y;)> where a; € R” then V f;(z) = (asz — y;)a; and
one can show

2
Li = lla;l.

We define
L =supl;. 3)

L

In addition, we point out that each component satisfies the co-coercivity property, which
guarantees

IVfi(w) =V fi@)|3 < Litw — 2, V fi,(W) = V f;(2).
We additionally assume that there exists a known constant ¢ so that

Er—1llg" (%0, p) = x| < (1 =) lIxe—1 —x"[, “

for some known constant ¢ so that E| g’ (X, p) — x*|| < (1 — ¢)' X where ||xg — x*|| < X
for some initialization xq. Like [28], we call this the guaranteed progress property.

Our goal is now to show that there exists a learning function L that (1 + €, §)-learns the
algorithm A, € A that minimizes the expected number of iterations required to achieve the

I'Since the goal of this work is to be able to select the optimal learning rate for average performance over
a (possibly extremely large) set of input problems, we consider the cost of this step on the relatively small
sample to be acceptable.

@ Springer

J.A.De Loera et al.

stopping criterion on an element of /7 sampled according to D. We let (A, x) denote the
algorithm execution of SGD with fixed step size 1 and initialization x. We denote the num-
ber of iterations required to reach the previously defined stopping criterion Cost (A, X),
SO

Cost(A,, x) = min{r : E||x, — x*|| < t}. (5)

We let one step of SGD be denoted as

g(x, p) ==x— pV fi(x). (6)
Finally, we define
D(p) =max({1, Lp — 1}). N
and
H =log(t/LX)/log(1 — c).)

We additionally remark that the proof of our main result in this section uses the pseudo-
dimension of a family of algorithms. The pseudo-dimension naturally extends the VC
dimension [56] from binary valued functions to functions that take on real values. This
definition is complex and would unnecessarily complicate our manuscript since we only
consider the pseudo-dimension of finite sets. For this reason, we leave this definition out
and direct readers to Section 3.2 of the excellent paper [28]. Here, we need only the fact
that the pseudo-dimension of a finite set of algorithms N is log, | N|.

The following lemmas lead up to our main theoretical guarantees for the learnability of
optimal step size for SGD and was inspired by the results shown for Gradient Descent (GD)
in [28]. In particular, we use a similar approach to [28] where Lemmas 1- 3 are adaptations
of Lemmas 3.16-3.18 in [28] from GD to SGD.

The proof of the main theorem uses Lemma 1, which captures the norm difference
between one iteration SGD with different initial points and Lemma 2, which captures the
norm difference between ¢ iterations of SGD with different initial points and different
step sizes. The proof also utilizes Lemma 3, which shows that under mild conditions, the
difference between (5) for two different algorithms, A, and A,;, is bounded.

Lemma 1 For all w, z, and p, we have
lg(w, p) — gz, p)I| < D(p)llw —z]|,
where g(w, p) and D(p) are as defined in (6) and (7) respectively.

Proof Manipulating the norm yields

Iw — pV fi (W) — 2+ pV f (@) |2
Iw —z|* + P2V fi(W) = V fi@) > = 2p(Ww — 2, V fi(W) — V fi(2))

2
lw —z|> + p*[IV fi(W) — V fi@)||* — §||Vﬁ<w> - Vf@I?

lig(w, p) — g(z, p)|I?

IA

IA

2
lw —z|> + p* IV fi(W) — V fi@)||* — f"nvmm - V@I?

2 2 2
w—z|” + (/O (P - Z)) IV fitw) =V fi@|

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

where the first inequality follows from the co-coercivity property. Now, if p < %, then

llg(w, p) — g(z, p)|| < |lw — z|| so for this case we may set D(p) = 1. If p > %, we have
that

A

2
lg(w, p) — gz, pI* < Ilw—2z|* + (p (p - Z)) IV fi(w) — V £; @)

2
< llw—z*+ (p (p - Z)) Li|lw —z|)?
2
< llw—z*+ (p (p - Z)) L?||lw —z|?
< (Lp— 1 |lw -2,
therefore in this case we may take D(p) = Lp — 1, as desired. (I

Using the bound on the divergence between SGD steps with the same learning rates
provided by Lemma 1, we now bound the divergence between ¢+ 1 SGD steps with different
learning rates beginning at the same point. We show that this is linear in the difference
between the learning rates, the constants L, X, and ¢, and grows with D(p).

Lemma 2 For any t, and p < n, we have

D(p)’LX
Elg™x, p) — g x.)l = (n - P

where ||xo — x*[| < X, g"t(x, p) = g(g' " (x, p), p) and L, ¢, g(x, p), and D(p) are as
defined in (3), (4), (6), and (7) respectively.

Proof We first bound || g(w, p) — g(z, n)|:

lg(w, p) — gz, M = llgw, p) —z+nVfi(z) — pV fi(z) + pV fi (@) ||
lg(w, p) — g(z, p) + (n — PV fi (@]

lgw, p) — gz, o)l + 1 — L)V i @
D(p)|w—z| + (n — p) IV fi@)].

D(p)lIlw —z| + (n — p)IIV fi(z) = V fi x)].

IANIA I

Substituting w = g’ (x, p) and z = g’ (x, n):

g x, p) — g x, Il < D(p)lg'(x. p) — &' X, Ml + (1 — PV fi (8" (x,) — Vi (x*)]|
<D()g'x, p)— g & ml+n—pLilgx n) —x*|.

Using the guaranteed progress assumption and the expectation conditional on the first ¢
iterations, we have:

EE |lg" (x, p) — &' (x, n)ll
< D(p)EE|Ig'(x, p) — &' x, m)|| + (n — p) LiEE, || g" (x, n) — x*|.

@ Springer

J.A.De Loera et al.

Iterating the expectation, we have:

EE g™ x, p) — g x,)l < D()Elg' (x, p) — &' X, mIl + (1 — p)LX (1 — ¢)’
t

< D(p)'lIxo — Xoll + (n = PILX Y D(p)'(1 —¢)'
i=0

t
D(p)'(n = PILX Y D(p) (1 = ¢
i=0
t
D(p) (n—p)LX Y (1 =)
i=0
D)'LX

A

IA

=m=p)

O

Our final lemma uses the fact that the divergence between ¢ + 1 SGD steps with different

learning rates is bounded to show that the cost of the SGD algorithms with these learning

rates is “Lipschitz-like.” In particular, if the difference between the learning rates is suffi-

ciently small then the difference between the number of iterations necessary for the SGD
algorithms is at most one.

Lemma 3 Forall x with |x—x*|| < X, and p, n suchthat0 < n—p < %D(p)_H we have

|cost(Ap, X) — cost(Ay, x)| < 1,

where cost(A, z) is as defined in (5) and t is the error tolerance. The variables L, D(p),
and H are as defined in (3), (7), and (8) respectively.

Proof Assume without loss of generality that cost(A,,x) < cost(A4,, x). Define j =
cost(A,, x) and note that j < H. By Lemma 3.17 for SGD,

2 i—1
; ; TC _gD()'LX
Ellg’ (%, p) = g/ (x, m)|| < - D(p) R 72 <

TC.
By the triangle inequality,
Ellg/(x, p) —x*|| < Ellg/ (x, p) — g/ x,)| + Ellg’ (x,) —x*|| < tc+ 7

where the t term follows from the fact that j = cost(A,, X).

Now, note that if we have E[|g/ (x, p) — x*|| < 7 then cost(A,,x) = j = cost(Ay, X).
Thus, we assume that we have not reached the stopping criterion and therefore E|| gl (x, p)—
x*| > 7. By the guaranteed progress in expectation condition, we have E| g/t (x, p) —
x*| < (1 — ¢)E|lg’ (x, p) — x*||, which provides the expected improvement

Elg’ (x, p) = x*I| = Ellg’ " (x, p) = x*|| = cEllg’ (x, p) — x*|| > ct.

Thus, we have cost(A,, X) = j + 1 since, rearranging, we have

Ellg/*(x, p) —x*|| <Ellg/(x, p) —x*| —ct <tc+T—TCc =T.

O

Finally, the previous sequence of lemmas motivates us to discretize the learning rate
interval, which provides us a finite set of SGD algorithms to consider. Previous results of

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

[28] show that the optimal algorithm in this finite set of algorithms can be (e, §)-learned
by the trivial learning algorithm with a finite set of samples. We then need only apply our
last lemma to show that the cost between any nearby learning rate and one of the learning
rates in the discretization is at most one to give that the optimal algorithm in A can be
(1 + €, §)-learned by the trivial learning algorithm.

Theorem 1 (SGD: learnability of step size in stochastic gradient descent) Let A = {A, :
o € lp1, pul} where p; and p, are lower and upper bounds for choices of step size
respectively. The trivial learning algorithm (1 + €, §)-learns the optimal algorithm in A

using
2
m= 0((5) max{l,ln(l/ﬁ), H log, (M)}),
€ TC

samples from D. Here, T is the error tolerance, X is the uniform upper bound on the approx-
imation error over all iterates, i.e., X such that for all x iterates from SGD, ||x — x*|| < X
and the variables L, ¢, D(p), and H are as defined in (3), (4), (7), and (8).

Proof Let N = {p; :== p; —|—1 D(,ou) 2 i < pu} U{py,}. Note that since D(p) is an
increasing function, we have WD(,OM) H < “ v D(p)~ H for all p € [p1, pu]. Thus, for

any p € [py, p,] there exists p* € N such that |,0 —pl < %D(p) H

Now, since Ay is a finite set, the pseudo-dimension of Ay = {Ap : p € N} is at most
log |N|. Let Ly be the trivial learning algorithm that returns the algorithm from Ay that
has the best average performance on our sampled subset of 7. Then, by Corollary 3.4 of
[28], Ly (e, §)-learns the optimal algorithm in Ay using

H\2
m=0((%) @y +masm)
samples.

Finally, Lemma 3 guarantees that for every p there exists n € N so that the difference in
the expected costs of A, and A, is less than or equal to 1. Thus, the learning algorithm L y
(1 + ¢, 8§)-learns the optimal algorithm in all of .4 using

H 2
= 0<<?> (dy + 1n(1/a>)),

HY2(dy + In(1/6)). Note that
2

samples.

—

Now, we simply manipulate

< (logy IN| + 1In(1/6))

2 'L'Cz
<) <1°g2< <an(p)H) * 1) ““(1/8))
<£> (max {Hlog2 (M) 1}) +ln(1/8)>
€ TC

2
2<ﬁ> max{Hlogz <2p”Lj(f(p”)>,1,1n(1/a)}.
C

€

IA

H\2
<?> (dy + In(1/8))

IA

IA
m‘m o |

Thus, we have our desired bound on the sample size. O

@ Springer

J.A.De Loera et al.

5.2 Compressed sensing

For the CS application, there are a finite number of algorithms to select from therefore, by
Corollary 3.4 of [28], we can conclude the following.

Remark 1 Fix parameters € > 0, § € (0, 1], a set of problem instances [], and a perfor-
mance measure cost, COST. The set A is the set of algorithms (HTP, NIHT, and CSMPSP)
with pseudo-dimension at most d = log, |.A| and the trivial algorithm (2¢, §)—learns the

optimal algorithm from A from m > ¢ (g)2 (d +1In (%)) samples where ¢ is a constant
and H is the upper bound on COST.

6 Conclusion

We have presented a simple machine learning data-driven approach for empirical algorithm
selection or parameter tuning that is widely applicable. Given data and a collection of algo-
rithms or parameters from which to choose, our empirical algorithm selection and tuning
approach can be utilized to obtain automatic recommendations. We showcased its broad
potential by applying it to compressed sensing and stochastic gradient descent. Addition-
ally, we proved PAC theorems for these problems of interest. More specifically, we showed
that there exists a learning algorithm which, with high probability, selects the algorithm
that optimizes the average performance on an input set of problem instances with a given
distribution.

We must of course address the disadvantages of empirical algorithm selection. Our
approach does not formally prove our selection is optimal for all input instances, but instead
only with respect to available data. In addition, due to limitations in the existing theory of
machine learning, there is no theoretical recipe to choose the features or NN architecture
used during training. However, we find it encouraging that these limitations are not so much
limitations of our approach, but are standard drawbacks of the theory of machine learning.
All of these disadvantages present interesting mathematical directions that are actively being
pursued.

On the other hand, there are multiple advantages to using our approach. Foremost, it
is very basic and simple but yields advantageous results. A user does not require expert
level knowledge of optimization algorithms to make good decisions. Our approach is a
pragmatic way to justify algorithmic choices based on available data, and we provide some
level of consistency and rigor for evaluating algorithms’ performance. Moreover, human
experts tend to narrow algorithmic choices to one popular setup which leads to a one-size-
fits-all situation. Our approach allows variability of the choice of algorithm or parameters
depending on the concrete instance and, most importantly, results in clear improvement of
running times or computational cost (measured in number of iterations).

As long as we have a choice of algorithms, or parameter values that determine the behav-
ior of an algorithm, the same process of training a neural network can be used to obtain
automatic recommendations. This basic approach presents the possibility that in the future,
software will integrate some way of collecting data in order to improve itself. Futuristic
code will adapt its own parameters based on historic experience and executions of prior
instances. We predict this will be useful in the self-improvement of machine learning tech-
niques and thus in related fields such as computational mathematics that utilize machine
learning.

@ Springer

Data-driven algorithm selection and tuning in optimization and signal...

Acknowledgments This material was supported the National Science Foundation grant number DMS-
1440140 while the authors were in residence at the Mathematical Science Research Institute in Berkeley,
California, during the Fall 2017 semester. De Loera was funded by NSF DMS-1522158, NSF DMS-1818969,
and NSF TRIPODS grant (NSF Award no. CCF-1934568). Needell was funded by NSF CAREER DMS-
1348721 and NSF BIGDATA 1740325.

References

12.

13.

14.
. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6),

16.
17.

18.
19.
20.

21.

22.
23.
24.

25.

. Alvarez, A.M., Louveaux, Q., Wehenkel, L.: A machine learning-based approximation of strong

branching. INFORMS J. Comput. 29(1), 185-195 (2017)

. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M.W., Pfau, D., Schaul, T., Shillingford, B., De

Freitas, N.: Learning to learn by gradient descent by gradient descent. In: Adv. Neur. In., pp. 3981-3989
(2016)

. Balcan, M., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: Int. Conf. Mach. Learn.,

pp. 353-362 (2018)

. Balcan, M., Nagarajan, V., Vitercik, E., White, C.: Learning-theoretic foundations of algorithm configu-

ration for combinatorial partitioning problems. In: Proc. Conf. Learn. Th., pp. 213-274 (2017)

. Balte, A., Pise, N., Kulkarni, P.: Meta-learning with landmarking: A survey. Int. J. Comput. Appl. 105(8)

(2014)

. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning. In: International

conference on machine learning, pp. 199-207 (2013)

. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological

tour d’horizon. arXiv:1811.06128 (2018)

. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1),

281-305 (2012)

. Bertsimas, D., Stellato, B.: The voice of optimization. Mach. Learn., 1-29 (2020)
10.
11.

Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

Blanchard, J.D., Tanner, J.: Performance comparisons of greedy algorithms in compressed sensing.
Numer. Linear Algebr. 22(2), 254-282 (2015)

Blumensath, T., Davies, M.E.: Normalized iterative hard thresholding: Guaranteed stability and perfor-
mance. IEEE J. Sel. Top. Signa. 4(2), 298-309 (2010)

Bonami, P, Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer quadratic programming
problems. In: van Hoeve, W.J. (ed.) Integration of Constraint Programming, Artificial Intelligence, and
Operations Research - 15th International Conference, CPAIOR 2018, Delft (2018). The Netherlands,
June 26-29 Proceedings, volume 10848 of Lecture Notes in Computer Science, pp. 595-604. Springer
Candes, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925-936 (2010)

717 (2009)

Candes, E.J., Tao, T.: Decoding by linear programming. IEEE T. Inform. Theory 51, 4203—4215 (2005)
Davenport, M., Needell, D., Wakin, M.B.: Signal cosa space MP for sparse recovery with redundant
dictionaries. IEEE T. Inform. Theory 59(10), 6820 (2012)

De, S., Yadav, A., Jacobs, D., Goldstein, T.: Big batch SGD: Automated inference using adaptive batch
sizes. arXiv:1610.05792 (2017)

Défossez, A., Bach, F.: Adabatch: Efficient gradient aggregation rules for sequential and parallel
stochastic gradient methods. arXiv:1711.01761 (2017)

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res. 12(7), 2121-2159 (2011)

Eggensperger, K., Lindauer, M., Hutter, F.: Neural networks for predicting algorithm runtime distribu-
tions. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IICAI 2018, pp. 1442-1448. Stockholm, Sweden (2018). ijcai.org

Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press
(2012)

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust
automated machine learning. In: Adv. Neur. In., pp. 2962-2970 (2015)

Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal.
49(6), 2543-2563 (2011)

Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing, vol. 1. Birkhéuser, Basel
(2013)

@ Springer

http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1610.05792
http://arxiv.org/abs/1711.01761

J.A. De Loera et al.

26.
27.
28.
29.

30.

32.

33.

34.

35.
. Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep convolutional neural

37.

38.
39.
40.
41.
42.
43.

44,
45.

46.
47.
48.

49.
50.

51.
52.
53.

54.

Gu, X., Needell, D., Tu, S.: On practical approximate projection schemes in signal space methods. SIAM
Undergraduate Research Online 9, 422434 (2016)

Goyal, P, Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., He,
K.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv:1706.02677 (2017)

Gupta, R., Roughgarden, T.: A PAC approach to application-specific algorithm selection. SIAM J.
Comput. 46(3), 992-1017 (2017)

Hansen, P.C.: Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed
problems. Numer. Algorithm. 6(1), 1-35 (1994)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. CVPR IEEE,
pp. 770-778 (2016)

. He, Y., Yuen, S.Y.: Black box algorithm selection by convolutional neural network. arXiv:2001.01685

(2019)

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks.
In: Proceedings if CVPR IEEE, pp. 4700-4708 (2017)

Khalil, E.B., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms
over graphs. In: Guyon, LI., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan,
S.V.N,, Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, pp. 6348—6358, Long Beach (2017)

Khalil, E.B., Dilkina, B., Nemhauser, G.L., Ahmed, S., Shao, Y.: Learning to run heuristics in tree search.
In: Proceedings Int Joint Conf. Artif., pp. 659-666 (2017)

Kingma, D.P., Adam, J.B.a.: A method for stochastic optimization. arXiv:1412.6980 (2014)

networks. In: Adv. Neur. In., pp. 1097-1105 (2012)

Kruber, M., Lubbecke, M.E., Parmentier, A.: Learning when to use a decomposition. In: Salvagnin,
D., Lombardi, M. (eds.) Integration of Al and OR Techniques in Constraint Programming - 14th Inter-
national Conference, CPAIOR 2017, Padua (2017). Proceedings, volume 10335 of Lecture Notes in
Computer Science, pp. 202-210. Springer

Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In: Int. Conf.
Mach. Learn., pp. 511-518 (2000)

LeCun, Y., Cortes, C., Burges, C.: The MNIST database of handwritten digits. Available at http://yann.
lecun.com/exdb/mnist/, Accessed: 21 Dec 2018 (2010)

Leyton-Brown, K., Hoos, H.H., Hutter, F., Xu, L.: Understanding the empirical hardness of NP-complete
problems. Commun. ACM 57(5), 98-107 (2014)

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A novel bandit-based
approach to hyperparameter optimization. J. Mach. Learn. Res. 18(185), 1-52 (2018)

Mahsereci, M., Hennig, P.: Probabilistic line searches for stochastic optimization. In: Adv. Neur. In.,
pp- 181-189 (2015)

Maleki, A., Donoho, D.L.: Optimally tuned iterative reconstruction algorithms for compressed sensing.
IEEE J. Sel. Top Signa. 4(2), 330-341 (2010)

Massé, P.-Y., Ollivier, Y.: Speed learning on the fly. arXiv:1511.02540 (2015)

Moulines, E., Bach, F.R.: Non-asymptotic analysis of stochastic approximation algorithms for machine
learning. In: Adv. Neur. In., pp. 451-459 (2011)

Needell, D., Tropp, J.: CosaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl.
Comput. Harmon. A. 26(3), 301-321 (2009)

Needell, D., Ward, R., Srebro, N.: Stochastic gradient descent, weighted sampling, and the randomized
Kaczmarz algorithm. In: Adv. Neur. In., pp. 1017-1025 (2014)

Pfahringer, B., Bensusan, H., Giraud-Carrier, C.G.: Meta-learning by landmarking various learning
algorithms. In: ICML, pp. 743-750 (2000)

Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400407 (1951)
Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements.
Comm. Pure Appl. Math. 61, 1025-1045 (2008)

Schaul, T., Zhang, S., LeCun, Y.: No more pesky learning rates. In: Int. Conf. Mach. Learn., pp. 343-351
(2013)

Shamir, O., Zhang, T.: Stochastic gradient descent for non-smooth optimization Convergence results and
optimal averaging schemes. In: Int. Conf. Mach. Learn., pp. 71-79 (2013)

Smith, K.A.: Neural networks for combinatorial optimization: a review of more than a decade of
research. INFORMS J. Comput. 11(1), 15-34 (1999)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of CVPR IEEE, pp. 1-9 (2015)

Springer

http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/2001.01685
http://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1511.02540

Data-driven algorithm selection and tuning in optimization and signal...

55.

56.

57.

58.

59.

60.

61.

Tan, C., Ma, S., Dai, Y.-H., Qian, Y.: Barzilai-Borwein step size for stochastic gradient descent. In: Adv.
Neur. In., pp. 685-693 (2016)

Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their
probabilities. In: Measures of Complexity, pp. 11-30. Springer (2015)

Wu, X., Ward, R., Bottou, L.: WNGrad Learn the learning rate in gradient descent. arXiv:1803.02865
(2018)

Yang, C., Akimoto, Y., Kim, D.W., Udell, M.: OBOE: Collaborative filtering for AutoML initializa-
tion. In: Proceedings of 25th ACM SIGKDD International Conf. Knowledge Discovery & Data Mining,
pp- 1173-1183 (2019)

Yang, Y., Zhong, Z., Shen, T., Lin, Z.: Convolutional neural networks with alternately updated clique.
In: Proceedings of CVPR IEEE, pp. 2413-2422 (2018)

Yao, Q., Wang, M., Chen, Y., Dai, W., Yi-Qi, H., Yu-Feng, L., Wei-Wei, T., Qiang, Y., Yang, Y.: Taking
human out of learning applications A survey on automated machine learning. arXiv:1810.13306 (2018)
Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv:1212.5701 (2012)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/1803.02865
http://arxiv.org/abs/1810.13306
http://arxiv.org/abs/1212.5701

	Data-driven algorithm selection and tuning in optimization and signal...
	Abstract
	Introduction
	Our contributions
	Prior relevant work
	Notation

	Application I: compressed sensing algorithm selection
	Experimental setup
	Experiments

	Application II: stochastic gradient descent learning rate selection
	Experiments
	Synthetic linear systems
	Computerized tomography systems

	Remarks on computational savings
	Relevant PAC theorems
	Stochastic gradient descent
	Compressed sensing

	Conclusion
	References

