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Abstract
Tverberg’s theorem says that a set with sufficiently many points in R

d can always
be partitioned into m parts so that the (m − 1)-simplex is the (nerve) intersection
pattern of the convex hulls of the parts. The main results of our paper demonstrate
that Tverberg’s theorem is just a special case of a more general situation, where other
simplicial complexes must always arise as nerve complexes, as soon as the number
of points is large enough. We prove that, given a set with sufficiently many points, all
trees and all cycles can also be induced by at least one partition of the point set. We
also discuss how some simplicial complexes can never be achieved this way, even for
arbitrarily large sets of points.
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1 Introduction

The celebrated theorem of Helge Tverberg states (see [2] and references therein):

Tverberg’s Theorem ([27]) Every set S with at least (d + 1)(m − 1) + 1 points in
Euclidean d-space R

d can be partitioned into m parts P = S1, . . . , Sm such that
all the convex hulls of these parts have nonempty intersection. The special case of a
bi-partition, m = 2, is called Radon’s lemma.

The nerve (intersection pattern) of the convex hulls in Tverberg’s theorem is very
specific, a simplex; our paper investigates other possible nerves. Informally, the main
results of our paper demonstrate that, given sufficiently many points, other kinds of
nerves can always be induced by a suitable partition of the point set. In particular, we
show that any tree or cycle can be induced as the nerve.

Our geometric results are naturally motivated from two independent research direc-
tions. First of all, there is Ramsey theory (see [11]) where one studies how every
sufficiently large system must contain a large well-organized subsystem. Here “suffi-
ciently large” is governed by Ramsey numbers. In geometry a classical example of a
Ramsey-type theorem is Erdős–Szekeres’ theorem saying that every sufficiently large
point set in the plane must contain a sub-configuration forming a convex k-gon (in
this case the constant is hard to compute; see [24] and references there). We stress
that Tverberg’s theorem is also Ramsey-type, although in this case the constant is
explicit and easy. Our paper proves new Ramsey–Tverberg-type results, where nerve
structures are shown to arise once we have sufficiently many points. Our results are
also a kind of universality result, in the spirit of Pór [19]. We will see our results
depend on some universal Ramsey-like constants too and we use Ramsey numbers of
hypergraphs for our geometric estimates.

A second motivation comes from clustering and data classification [4,7]. Cluster-
ing algorithms aim to “color” or “label” data points by groups that share common
characteristics (see [10,13] and references there). Classification is then a partitioning
of the data set. Two sets of points will intersect if they share members with both char-
acteristics. When doing a classification researchers face the question, is the proposed
partition of data showing intrinsic data properties, unique to the particular input data
points, or is this a mere artifact appearing in all data sets after having a sufficiently
large data set? Our Tverberg-type theorems with altered nerves will be relevant to
data science when analyzing the statistical significance of a proposed classification in
large-scale data sets.

To state our results preciselywebeginwith some terminology andnotation typical of
geometric topological combinatorics (see [15,26] for details, especially on simplicial
complexes discussed here). Let F = {F1, . . . , Fm} be a family of convex sets in R

d .
The nerveN (F) of F is the simplicial complex with vertex set [m] := {1, 2, . . . ,m}
whose faces are I ⊂ [m] such that ⋂i∈I Fi �= ∅.

Given a collection of points S ⊂ R
d and an n-partition into n color classes P =

S1, . . . , Sn of S, we define the nerve of the partition, N (P), to be the nerve complex
N ({conv(S1), . . . , conv(Sn)}), where conv(Si ) is the convex hull of the elements in
the color class i . Similarly, given a partition P , we define the intersection graph of the
partition, denoted N 1(P), as the 1-skeleton of the nerve of P .
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Given a simplicial complex K , and a finite set of points S in R
d , we say that

K is partition induced on S if there exists a partition P of S such that the nerve
of the partition is isomorphic to K . We say that K is d-partition induced if there
exists at least one set of points S ⊂ R

d such that K is partition induced on S. These
types of complexes are special cases of the convex set representable complexes, i.e.,
those complexes which are nerves of families of convex sets (see [25] for details). It
was shown by Perelman [17] that every d-dimensional simplicial complex is (2d +
1)-partition induced on some point set. This result is in fact optimal, because the
barycentric subdivision of the d-skeleton of a (2d + 2)-dimensional simplex is not
2d-partition induced, see [28] and [25] for details.

Motivated by Tverberg’s theorem,we introduce another property of simplicial com-
plexes which is much stronger than being d-partition induced because it has to hold,
not in one, but in all point sets with sufficiently many points.

Definition 1.1 A simplicial complex K is d-Tverberg if there exists a constant
Tv(K , d) such that K is partition induced on all point sets S ⊂ R

d in general position
with |S| > Tv(K , d). The minimal such constant Tv(K , d) is called the Tverberg
number for K in dimension d.

Let us briefly examine the definition of d-Tverberg complexes. First of all, note one
can re-state the classical Tverberg’s theorem as follows:

Tverberg’s Theorem rephrased The (m − 1)-simplex is a d-Tverberg complex for all
d ≥ 1, with Tverberg number (d + 1)(m − 1) + 1.

Definition 1.1 can be compared with earlier work by Reay and others [18,20,22], who
asked what happens when we only demand that each k of the convex hulls intersect.
They looked for the smallest number n of points sufficient so that some partition
induces a nerve which contains the (k − 1)-skeleton of a simplex. In fact, Reay’s
conjecture says, for every n ≤ (d + 1)(m − 1) there exists an n point set X ⊂ R

d

such that no partition of X induces the complete graph Km as its intersection graph.
In contrast, we are looking for an exact nerve of general kind.

Definition 1.1 is most interesting for sets S ⊂ R
d in general position. The reason

is that for collinear points the only type of nerve complexes possible are those whose
graphs are interval graphs. Interval graphs have been classified [14] and in particular
are chordal. With Definition 1.1 the 4-cycle graph is not 1-Tverberg, because it is not
chordal, but we will show later that it is d-Tverberg for all d ≥ 2. Similarly, while
every d-Tverberg complex K is clearly d-partition induced, the converse is not true.
The complex in Fig. 1 is a graph that is partition induced on some planar point sets,
but not for points in convex position, regardless of how many points we use. Thus it
is not a 2-Tverberg complex. Details are presented in Appendix A.

The key contribution of our paper is generalization of the classical Tverberg
theorem, with other simplicial complexes—not just simplices—being d-Tverberg
complexes.

Before stating our first result, recall that the complete k-hypergraph with s vertices
is the hypergraph whose hyperedges are all the k-subsets of {1, 2, . . . , s}. When k = 2
this is exactly the complete graph Ks . The k-hypergraph Ramsey number Rk(m)

is the smallest integer N such that for every 2-coloring of the hyperedges of the
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Fig. 1 A 2-partition induced
one-dimensional complex that is
not 2-Tverberg
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complete k-hypergraph with N vertices, say with colors red and blue, it contains
either a red complete k-hypergraph with m vertices or a blue complete k-hypergraph
with m vertices. Here being a red (respectively blue) complete k-hypergraph means
all k-tuples are colored red (respectively blue). See more on Ramsey numbers in [5]
and references therein.

Theorem 1.2 All trees and cycles are d-Tverberg complexes for all d ≥ 2.

(A) Every tree Tn on n nodes is a d-Tverberg complex for d ≥ 2. The Tverberg number
Tv(Tn, d) exists and it is atmost Rd+1((d+1)(n−1)+1).More strongly,Tv(Tn, 2)
is at most

(4n−4
2n−2

) + 1.
(B) Every n-cycle Cn with n ≥ 4 is a d-Tverberg complex for d ≥ 2. The Tverberg

number exists and Tv(Cn, d) is at most nd + n + 4d.

The proof of Theorem 1.2 relies on several powerful non-constructive tools such
as the Ham-Sandwich theorem (see [15, Sect. 1.3]), a characterization of oriented
matroids of cyclic polytopes [6], and themulti-dimensional version of Erdős–Szekeres
theorem (this is due to Grünbaum [12] and Cordovil and Duchet [6], see also [3,
Chapter 9], and the survey [16]). These tools are enough to show the existence of a
Tverberg number Tv(Tn, d), but the bounds are far from tight. Details are presented
in Sect. 2.

We can prove the following general lower bound for the Tverberg numbers (see
Appendix A for the argument).

Lemma 1.3 For any connected simplicial complex K with n ≥ 2 vertices, if it exists,
Tv(K , d) ≥ 2n.

In addition to this general lower bound, we show that the upper bounds of Theorem 1.2
can indeed be improved by giving better bounds on theTverberg numbers of caterpillar
trees. Caterpillar trees are those in which all the vertices are within distance one of a
central path; these include paths and stars. See Sect. 3.

Theorem 1.4 If a tree Tn is a caterpillar tree with n nodes, then Tn is a d-Tverberg
complex for all d > 0, and its d-Tverberg number Tv(Tn, d) is no more than (d +
1)(n − 1) + 1.

In terms of intersection properties caterpillar graphs have been shown by Eckhoff [8]
to be precisely the trees that are also interval graphs. In other words, the previous
theorem implies that a tree Tn is also 1-Tverberg if and only if Tn is a caterpillar tree.
Furthermore, in dimension two we can give some info on Tverberg numbers for trees:
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Fig. 2 Only the 1-skeleton of the nerve is preserved by order-preserving bijection

Theorem 1.5

(A) The 2-Tverberg number Tv(Sn, 2) for a star tree with n nodes equals 2n.
(B) The 2-Tverberg numbers of the path and cycle with four nodes are Tv(P4, 2) = 9

and 11 ≤ Tv(C4, 2) ≤ 13.

The proof of Theorem 1.5 (B) requires exhaustive computer enumeration of all pos-
sible partitions, over all possible order types of point sets with fewer than ten points.
Luckily, these order types were classified in [1].

Recall that for an ordered set of points S = ( p1, p2, . . . , pn) ∈ R
d , the order

type (see [15, 9.3]) of S is defined as the mapping assigning to each (d + 1)-tuple
(i1, i2, . . . , id+1) of indices, 1 < i1 < i2 < . . . < id+1 ≤ n, the orientation of the (d+
1)-tuple ( pi1 , pi2 , . . . , pid+1

) (i.e., the sign of the determinant of the corresponding
matrix). The order type of S is encoded by the chirotope of S which is the sequence
of resulting

( n
d+1

)
signs of possible determinants. This is a vector of +1’s and −1’s,

with
( n
d+1

)
entries.

The proof of Theorem 1.5 (B) also uses the following lemma to ensure that it
suffices to check one representative configuration of points from each order type,
reducing calculations to finitely many cases. See details in Appendix A.

Lemma 1.6 Suppose S1 and S2 are two point sets inRd with the same order type, and
let σ be a bijection from S1 to S2 that preserves the orientation of any (d + 1)-tuple in
S1. Then any partition P = (P1, P2, . . . , Pn) of S1 and the corresponding partition
of S2 via σ , denoted σP = {σ(P1), σ (P2), . . . , σ (Pn)}, have the same intersection
graph N 1(P).

Lemma 1.6 cannot be extended to arbitrary nerve complexes as we see in the
example of Fig. 2. Despite the fact that the chirotope-preserving bijections do not
preserve the higher-dimensional skeleton of the nerve of a partition we can still make
use of Lemma 1.6 throughout our paper because our results are only about triangle-free
simplicial complexes, thus their nerve complexes equal their 1-skeleton.
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2 A Tverberg Theorem for Trees and Cycles

2.1 Proof of Theorem 1.2 (A) in the Plane

Because the case of dimension two exemplifies the key ideas very well and because we
can provide a better bound, we first give the proof of Theorem 1.2(A) in the plane. To
summarize the proof, first, we show in Theorem 2.1 that the result holds if the points
are arranged as the vertices of a convex polygon. Second, given any set S̄ with at least(4n−4
2n−2

)+ 1 points in the plane, we apply the Erdős–Szekeres theorem to deduce that S̄
has a sub-configuration S of 2n points in convex position. Then we apply Theorem 2.1
to obtain a partition of S whose nerve is the tree Tn , and finally, in Lemma 2.3, we
prove we can extend the partition of S to the rest of S̄ while preserving the nerve. Later
in Sect. 2.2 we present the general case in R

d following a similar strategy, but some
of the key steps are different.

Theorem 2.1 Let Tn be a tree with n nodes, and let S ⊂ R
2 be any 2n point set in

convex position. Then S admits a partition P such that its nerveN (P) is isomorphic
to Tn.

Proof The proof is by induction on n, the number of vertices in Tn . For an example of
the construction see Fig. 3. For n = 1, the tree consists of a single node and S is a set of
two points in R

2. Coloring both points with color 1 will trivially satisfy the theorem.
When n = 2, the only tree with two vertices is K2. Any set of four points in S, say
s1, s2, s3, s4 in counterclockwise order, can be partitioned with intersection graph K2.
Note that in this case, coloring the points in S = S1 ∪ S2 with two alternating colors
s1 = 1, s2 = 2, s3 = 1, s4 = 2 will yield the required partition.

For performing the induction step, we can assume Tn was obtained from a tree Tn−1
by adding the leaf node vn to a node vr ∈ Tn−1 such that {vn, vr } is an edge of Tn . Note
that in our labeling of the n nodes, r may not be n − 1, but all trees are constructed by
a sequence of leaf additions.

By the induction hypothesis, for any set S′ with exactly 2n − 2 points in convex
position inR2, there exists a partitionP ′ of S′ into n−1 color classes, where each color
i ∈ {1, 2, . . . , n − 1} is used twice, such that Tn−1 = N (P ′). Thus, we may assume
that there exists a two-to-one “coloring function” C : S′ → [n−1] that associates two
points in S′ with a color i (the color of node vi ).

Let S be a set of 2n points in convex position inR2, ordered in a clockwise manner,
say S = {s1, s2, . . . , s2n}, and assume without loss of generality that s1 is at twelve
o’clock. Next, consider the set S′ := S \ {s2, s2n}. To this set S′ we can apply the
induction hypothesis, it is properly colored and gives Tn−1. Now we show how to add
color n to the remaining points in S to give Tn . There are two cases.

Case 1 If C(s1) = r , then extend P ′ to a partition P of S by assigning color n to the
points s2 and s2n . Thus P = P ′ ∪ {s2, s2n}. Let Ln be the line through s2 and s2n .
Observe that on one side of Ln , say L+

n , there is only s1. Then the other points in S
′ are

contained in the other open half plane L−
n . In particular, one point, say s j , is such that

C(s j ) = r . Thus s1 and s j have color r . Then conv(s2, s2n) and conv(s1, s j ) intersect
soN (P) contains the edge (r , n). Furthermore, for any i �= n, r , we have thatN (P)
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Fig. 3 Example of a tree with seven nodes shown as partition induced on a set S of 14 points in convex
position

does not contain the edge (i, n), since the points with color i are contained in L−
n and

so their convex hull cannot intersect conv(s2, s2n). Thus the nerve of P is Tn .
Before starting Case 2 consider the relabeling of S′ := S \ {s2, s2n} = {x1 =

s1, x2 = s3, . . . , x2n−2 = s2n−1}.
Case 2 If C(s1) �= r , then we know that on one side of the line Ln (through s2 and
s2n) there are two points in S′, say xi , xi+k (as above) such that C(xi ) = C(xi+k) = r
for i ≥ 3 and 1 < k ≤ (2n − 2) − i . Apply to S′ the following new coloring
C̄ : S′ → [n − 1] defined as C̄(x j ) = C(x j+2n−i−1) mod 2n − 2; that is, the rotation
that sends the corresponding color in xi to x1. Observe that this rotation preserves all
the intersection patterns that existed before (by Lemma 1.6), and thusN (P ′) is Tn−1.
Lastly, we are now in the position to apply Case 1 again, so the theorem follows.

This completes the proof that any set S of 2n points in convex position in the plane
has a partition whose nerve is isomorphic to any given tree Tn . ��

To extend our result to the case that the points are in general position, we will
use a famous theorem in combinatorial geometry, the Erdős–Szekeres theorem. This
theorem says that every sufficiently large set of points in general position contains a
subset of k points in convex position. The fact that this number N = N (k, 2) exists
for every k was first established in a seminal paper of Erdős and Szekeres [9], who
proved the following bounds on N (k, 2):

2k−2 + 1 ≤ N (k, 2) ≤
(
2k − 4

k − 2

)

+ 1.

Ahandful of recent papers have improved the upper bound (see for instance [16] for an
excellent survey and a very recent paper by Suk [24] showing that N (k, 2) = 2k+o(k)).

By the Erdős–Szekeres theorem we know that
(4n−4
2n−2

) + 1 points always contain a
2n-gon. Then, we can use Theorem 2.1. Finally we explain how to extend the partition
(or coloring) given by Theorem 2.1 to the rest of the points in S̄.
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Fig. 4 From left to right:
Illustration of the construction at
steps 1 and 2, and the resulting
partition

Definition 2.2 Let S be a set of points in Rd and let P = S1, . . . , Sn be an n-partition
of S into n color classes that yields a specific nerveN (P). We say thatP is extendable
if for all S̄ containing S, there is a partition P̄ = S̄1 . . . S̄n of S̄ extending P (meaning
Si ⊂ S̄i for all i) such that N (P̄) is isomorphic to N (P).

Observe that in general, such an extension is not necessarily possible; for example,
Fig. 4 shows a set of six vertices, and a partition in three color classes (see left side of
the figure), that is not extendable. Note that any extension that includes the midpoint
will change the intersection pattern (see right side of the figure). Surprisingly, in the
case of the nerves of the partitions obtained in Theorem 2.1 (and Theorem 2.4 in the
next subsection), this extension is possible.

Lemma 2.3 Let Tn be a given tree on n nodes and let S be a set of 2n points in convex
position in the plane. Then the partition P obtained in the proof of Theorem 2.1 is
extendable.

Proof Let S̄ be an arbitrary finite set of points in R
d such that S ⊂ S̄. We begin by

assuming that the “color partition function” C : S → [n] is the one given in Theorem
2.1. It yields a partition P of S with nerve N (P) isomorphic to Tn , and n is the last
color added. Recall that we denoted by vr the node in Tn−1 such that {vn, vr } is the
leaf of Tn in which we added vn .

The extension of P will be given through induction on n, by a “color partition
function” C̄n : S̄ → [n] as follows.
– For n = 1, let C̄1(x) = 1 for every point in S̄.
– For the induction step, the extension C̄n−1 : S̄ → [n − 1] exists by induction
hypothesis. Here is how we obtain the extension C̄n : Let S j denote the set of points
in S of color v j , or j for simplicity. Consider the line Ln through Sn (it is given by
points S2 and S2n in Theorem 2.1), and recall that this line leaves only one element
of Sr on one side, say L+

n , and the rest of the points of S on the other side L−
n . We

define C̄ : S̄ → [n] as follows: C̄n(x) = C̄n−1(x) when x ∈ L−
n , C̄n(x) = r when

x ∈ conv(Sr ), and, finally, C̄n(x) = n when x ∈ closure(L+
n ) but x /∈ conv(Sr ).

Here closure(L+
n ) denotes the closed half-plane on the right of Ln .

Observe that, by the induction process, the intersection patterns of S̄1, . . . , S̄n−1
are the same in L−

n by construction. Furthermore, closure(L+
n ) does not intersect any

other element in the partition, so no new intersections occur. ��
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Fig. 5 The extension of the partition in Fig. 3. The left figure is the extension up to n = 4, the central figure
is the extension up to n = 6, and the right figure is up to n = 7

2.2 Proof of Theorem 1.2 (A) inRd

Next, we will show a general dimension version of Theorem 2.1. The pattern of the
proof is very similar to the planar case, but we will need to use properties of cyclic
polytopes and their oriented matroids. A parametrized curve α : R → R

d is a d-order
curve (sometimes called alternating) when no affine hyperplane H in R

d meets the
curve in more than d points. An example is the famous moment curve. See [3,6,23].

In what follows we will use ordered cyclic d-polytopes Cm(d) which are obtained
as the convex hull of m vertices S := {x1, x2, . . . , xm} along a d-order curve in R

d ,
and thus wemay order the vertices of this polytope in an increasing sequential manner,
say α(t1) = x1 < α(t2) = x2 < · · · < α(tm) = xm . Ordered cyclic polytopes are
very special because every subpolytope is also cyclic with respect to the same vertex
order, i.e., the corresponding oriented matroid is alternating. Alternating means the
chirotope has all positive signs. See Section 9.4 in the book [3].

Theorem 2.4 Let Tn be any tree with n nodes, and let S be the vertices of an ordered
cyclic d-polytope Cm(d) with m = (n − 1)(d + 1) + 1 vertices in R

d . Then, there
exists a partition P of S such that the nerve N (P) is isomorphic to Tn.

Proof As we mentioned before, for dimension two, we relied on Erdős–Szekeres to
build a convex polygon. For the general case in R

d , we need a multi-dimensional
version of the Erdős–Szekeres theorem which follows from an application of the
hypergraph Ramsey theorem [5]. The theorem we need was first given by Grünbaum

123



Discrete & Computational Geometry (2021) 65:916–937 925

1 2

1 1

1

2

2

1

21 3

1

1

2
2

2

2

3

3
v v

v v v

Fig. 6 Left: a tree on two nodes shown as a partition in a set S of five vertices of the cyclic polytope C5(3).
Right: a tree on three nodes as a partition of the nine vertices of another cyclic polytope in R

3, this time
C9(3)

[12, Exercise 7.3.6] and Cordovil and Duchet [6] using oriented matroid methods.
See [3, Proposition 9.4.7] for a short proof. The theorem shows the existence of a
number N = N (k, d) such that every set of N points in general position in R

d

contains the vertices of an ordered cyclic d-polytope. N is bounded from above by the
hypergraph Ramsey number Rd+1(m) (see the introduction) ensuring the existence of
an alternating oriented matroid (hence an ordered cyclic polytope with m vertices).

According to [23], when an oriented matroid is alternating, then its cyclic d-
polytope is on a d-order curve in Rd and every subpolytope of it is also cyclic. This is
quite a useful fortuity, since it is well known, that in odd dimensions there exist com-
binatorial cyclic polytopes containing subpolytopes which are not cyclic (see page
104 of the same paper). By these facts, we know that if S̄ is a set of points in general
position in R

d with at least Rd+1((n − 1)(d + 1) + 1) points, then S̄ contains a set
S consisting of the m = (n − 1)(d + 1) + 1 vertices of an ordered cyclic d-polytope
Cm(d).

Let Cm(d) denote an ordered cyclic d-polytope, with m vertices and assume as
before S := {x1, x2, . . . , xm} along the curve. As in the case of the plane, the proof
will be given by induction on n, the number of nodes of the tree Tn (Fig. 5).

If n = 1, again there is nothing to prove. If n = 2, the only tree with two vertices
is K2. Then by Radon’s theorem, any set of d + 2 points in S can be partitioned into
S = S1 ∪ S2 with 2 ≤ |Si | ≤ d for i ∈ {1, 2}, and intersection graph K2, see Fig. 6,
left.

For the induction step, suppose Tn was obtained from Tn−1 by adding the node
vn to a node vr ∈ Tn−1 such that {vn, vr } is a leaf of Tn , and assume that Tn−1 is
the nerve of some set N (P ′) where the set S′ are the vertices of the ordered cyclic
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polytope with exactly (n − 1)(d + 1) − d vertices in Rd and P ′ = {S′
1, S

′
2, . . . , S

′
n−1}

are the color classes with colors 1, 2, . . . , n−1, respectively, via a “coloring function”
C′ : S′ → [n − 1].

Let k be the maximum number in [n] such that xk is in S′
r . Next, in Cm(d) con-

sider the subpolytope Q of (n − 1)(d + 1) − d vertices, obtained as the convex hull
conv (x1, x2, . . . , xk, xk+d+2, . . . , xm), and let R be the polytope consisting of the
convex hull of the complement of Q and xk , thus R = conv ({xk, xk+1, . . . , xk+d+1}).
Note both Q and R are ordered cyclic polytopes and Q ∩ R = {xk}. Thus, by the
induction hypothesis there exists a partition of the vertices of Q into n−1 color classes
whose nerve is isomorphic to Tn−1 as before. Next, by Radon’s lemma there exists a
partition into two color classes A and B of the d + 2 vertices of R.

Say xk ∈ A, then define a “coloring function” C : S → [n] in the following way:
C(x) = C′(x) if x is a vertex of Q, C(x) = r if x ∈ A, and, finally, C(x) = n if x ∈ B.
That is, Sn ∩ Sr �= ∅.

Observe that there exists a facet Fn of Q, and therefore a (d − 1)-hyperplane
Hn = 〈Fn〉, containing xk, xk+d+2, and some other vertices of Q, that leaves Q
completely contained in the closure of one of the sides of this hyperplane, say H−

n ,
and leaving points {xk+1, . . . , xk+d+1} on the other side. (For instance, if the vertices
of Fn are V (Fn) = {xk, xk+d+2, y1, y2, . . . , yd−2}, according to the Gale evenness
condition this could be defined in the following way: If d is even, y1, y2, . . . , yd−2 are
consecutive vertices before xk if k ≥ m/2, or after xk+d+2 if k ≤ m/2. If d is odd,
k ≥ m/2 and if k �= m then yd−2 = xm and y1, y2, . . . , yd−3 are consecutive vertices
before xk , and if k = m then y1 = x1 and y2, . . . , yd−2 are consecutive vertices
before xk . Similarly, if k ≤ m/2 and k �= 1 then y1 = x1 and y2, . . . , yd−2 are
consecutive vertices after xk+d+2, and if k = 1 then yd−2 = xm and y1, y2, . . . , yd−3
are consecutive vertices after xk+d+2). Therefore Hn strictly separates every point of
color different than r andm frompoints of color n and therefore no further intersections
occur. By the construction, the parts of P consist of the n color classes determined by
the coloring C. The nerve N (P) is isomorphic to Tn . ��
To finish the proof we just need to “extend”, as we did in the case of the plane, the
partition given in Theorem 2.4 (for the vertices of Cm(d)) to a partition P̄ of S̄ in
such a way that the nerve N (P̄) is preserved. Lemma 2.5 below guarantees that this
is always possible, finishing the proof of Theorem 1.2 (A).

Lemma 2.5 Let Tn be a given tree and let S be the vertices of an ordered cyclic polytope
with m = (n−1)(d+1)+1 vertices inRd . Then the specific partitionP of S obtained
in Theorem 2.4 is extendable to any set S̄ containing S with the same nerve complex.

Proof Let S̄ be an arbitrary finite set of points in R
d such that S ⊂ S̄. Let S j denote

the set of points in S of color v j , or j for simplicity. Let us begin by assuming that
the “color partition function” C : S → [n], given in Theorem 2.4, yields a partition P
of S with nerve N (P) isomorphic to Tn . The extension of P of S will be given by
induction on the number of nodes n.

– In the case n = 1 assign C̄1(x) = 1 for every point x in S̄.
– For the induction step note that the induction hypothesis guarantees the extension
C̄n−1 : S̄ → [n − 1] exists.
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To begin observe that polytopes Q and R defined in Theorem 2.4 satisfy that Q∩ R =
{xk} so (Q\{xk})∩(R\{xk}) = ∅. Recall that there exists a (d−1)-hyperplane Hn that
leaves points of color r on both sides of the hyperplane, and strictly separates points
of color n and all those of other colors. Furthermore, Q is completely contained in the
closure of one of the sides of this hyperplane, say H−

n (see the proof of Theorem 2.4).
Then “color partition function” C̄n : S̄ → [n] is given as follows: C̄n(x) = C̄n−1(x) if
x ∈ H−

n , C̄n(x) = r if x ∈ Sr , and C̄n(x) = n if x ∈ closure(H+
n ) and x /∈ Sn .

As before, closure(H+
n ) is the closed half-hyperplane containing only points in R

of colors n and r . Observe that, by the induction process, the intersection patterns of
S̄1, . . . S̄n−1 are the same in H−

n by construction, and closure(H+
n )∩ Sr �= ∅ yields the

leaf {vr , vn}. Furthermore, Sn ⊂ closure(H+
n ) does not intersect any other elements

in the partition since they are contained in H−
n , so no further intersections occur. ��

2.3 Proof of Theorem 1.2 (B)

Suppose that S̄ is a set of at least nd + n + 4d points in general position in R
d . We

start by projecting the points onto a generic 2-plane H where we can assume, without
loss of generality, that the points of S̄ have distinct projections onto it. Let S be the
projection of S̄, now planar points.

Lemma 2.6 There exists a disk D containing all these projected planar points in S,
and a subdivision D′ of D into n sectors such that:

(i) Each sector contains at least d + 1 points.
(ii) No two adjacent sectors form a combined angle of more than π radians.

Proof We start by picking a line L1 with at least �(nd + n + 4d)/2� points on both
sides of L1. Denote by L−

1 and L+
1 , respectively, the open half-spaces defined by L1

and by M+
1 , M−

1 the points of S on the two half-spaces of L1. Applying the Ham
Sandwich Theorem (see [15, Sect. 1.3]) to the sets M−

1 and M+
1 , we can find a line

L2 so that L1 and L2 together separate the plane into four regions, say R1, R2, R3,
and R4 with at least �(nd + n + 4d)/4� projected points in each region. Note that
�(nd + n + 4d)/4� ≥ d + 1 points.

Denote by p the point in the plane where L1 and L2 intersect, and let D be a disk
centered at p that contains all the projected points.Nowwechoose arcs emanating from
p to subdivide each of the four regions R1, R2, R3, and R4 into as many subregions,
containing at least d + 1 points (note that each of the Ri has at least d + 1 points in
them by construction). This can be done as follows.

If R′
i has at least 2d + 2 points, then take a line emanating from p and rotate it

until it divides Ri into two regions, one with d + 1 points, denoted Ri1, and the other
with the remaining (at least d + 1) points in Ri , denoted R′

i . Otherwise do nothing.
Repeating this process as many times as possible, we will obtain a subdivision of each
Ri into subregions, all but one of which have exactly d + 1 points, and none of which
has more than 2d+1 points. We call the final regions of this recursive process sectors.

Since the original four regions R1, R2, R3, R4 satisfy property (ii) of the lemma,
and the process of subdivision is made to show (i) holds after subdividing the four
regions, all we have left to do is to check there are n sectors. For this, let k1, k2, k3,

123



928 Discrete & Computational Geometry (2021) 65:916–937

and k4 denote the respective number of sectors formed from each of the four regions,
and j1, j2, j3, and j4 denote the number of points in each region. It suffices to show
that k1 + k2 + k3 + k4 ≥ n because we can always merge adjacent sectors within the
same region Ri , while preserving claims (i) and (ii).

Our procedure for generating subdivisions guarantees that ji ≤ ki (d + 1) + d
for all i = 1, 2, 3, 4. Summing these inequalities up we get j1 + j2 + j3 + j4 ≤
(k1 + k2 + k3 + k4)(d + 1) + 4d, so

nd + n + 4d ≤ (k1 + k2 + k3 + k4)(d + 1) + 4d,

which implies that k1 + k2 + k3 + k4 ≥ n. This completes the proof of the lemma. ��
Nowwewill use the the subdivision D′, whose existence is guaranteed by Lemma 2.6,
to find our desired partition of the data points whose partition nerve is an n-cycle.

We construct a partition one sector at a time. In the first step, we notice that one
of the n sectors, say Q1, has at least d + 2 points by the pigeonhole principle. Use
Radon’s lemma to partition the points in Q1 into two sets S1 and S2 so that the convex
hulls of S1 and S2 intersect.

In the second step, we denote the slice on the left to Q1 as Q2. By Radon’s lemma,
any point x2 in S2 from step one, combined with the (at least) d + 1 points in Q2 can
be partitioned into two sets S′

2 and S3 so that the convex hulls of S2 and S3 intersect.
Without loss of generality we can assume that x2 ∈ S′

2, and then set S2 = S2 ∪ S′
2.

In step k, where 3 ≤ k ≤ n − 1, we continue in the same way. We denote the slice
on the left to Qk−1 as Qk . By Radon’s lemma, any point xk in Sk from step k − 1,
combined with the (at least) d + 1 points in Qk+1 can be partitioned into two sets S′

k
and Sk+1 so that the convex hulls of S′

k and Sk+1 intersect. Without loss of generality
we can assume that xk−1 ∈ S′

k−1, and then set Sk = Sk ∪ S′
k . Finally, in step n − 1 we

set S1 = S1 ∪ Sn .
We claim that the nerve of the resulting partition P = {S1, S2, . . . , Sn} is the n-

cycle. This is a consequence of two facts: We used Radon’s lemma to guarantee that
any two subsets appearing in the same sector have intersecting convex hulls. Each
subset appears in at most two sectors, and since two adjacent sectors have a combined
angle of at most π radians, there is a line separating any two subsets that do not appear
in the same sector. Thus we have that conv(Si ) ∩ conv(S j ) �= ∅ if and only if there is
some sector containing points from both Si and S j . If we let vi denote the vertex of
the nerve corresponding to subset Si , we see that the edges ofN (P) consist precisely
of (vn, v1) and (vi , vi+1) where i ∈ [n − 1]. This completes the proof.
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3 Improved Tverberg Numbers of Special Trees and in Low
Dimensions

3.1 Proof of Theorem 1.4: Better Bounds for Tverberg Numbers of Caterpillar Trees

To make the notation easier, we adopt the following convention throughout the proof
of Theorem 1.4: All point sets S ⊂ R

d are indexed in increasing order with respect to
their first coordinate. That is, if S = {x1, x2, . . . , xn}, with xi = (xi1, xi2, . . . , xid),
then we assume that x11 ≤ x21 ≤ . . . ≤ xn1. Furthermore, by rotating the axes, we
can assume that no two points have the same first coordinate and that the previous
inequalities are strict.

We first prove the special case of stars in Theorem 1.4 as a lemma. A caterpillar is
a sequence of stars, thus we can later use induction again.

Lemma 3.1 For any (d + 1)(n − 1) + 1 points in Rd , we can find a partition of those
points with nerve Stn, the star tree on n vertices (i.e., with n − 1 spokes).

Proof We prove this by induction on n. For n = 1, the partition of one point to
get St1 is obvious. Now assume the result is true for some n. We need to show that
any (d + 1)n + 1 points can be partitioned with partition nerve Stn+1. Let M =
(n − 1)(d + 1) + 1. By induction hypothesis, the subset {x1, . . . , xM } ⊂ S admits a
partitionP = {A1, . . . , An}withN (P) � Stn .Without loss of generality, assume that
A1 is the central vertex of the star graph. Let x ∈ S be some point in A1. By Radon’s
lemma, there is a way to partition the d + 2 points x, xM , xM+1, . . . , xM+d+1 into
two sets X ,Y with conv(X) ∩ conv(Y ) �= ∅, and we can assume that x ∈ X . The set
conv(Y ) intersects conv(A1 ∪ X) but does not intersect any of conv(Ai ), 2 ≤ i ≤ n,
because every point in Y has larger first coordinate than any point in Ai . Then we see
{A1 ∪ X , A2, . . . , An,Y } is a partition which will induce the star graph Stn . ��
Proof of Theorem 1.4 Now we prove that for every caterpillar tree Tn with at most n
nodes, every set S with at least (d + 1)(n − 1) + 1 points in R

d admits a partition P
with N (P) � Tn . An illustration of the partition constructed in the proof is given in
Fig. 7. The proof is by induction on the length of the central path in Tn , which we will
denote by m. The induction hypothesis says that for every m ∈ N and any caterpillar
tree Tn with n vertices and a central path of length m the following two statements
hold:

(i) Every set S of (d+1)(n−1)+1 points inRd admits a partitionP withN (P) � Tn .
(ii) Denote by v the last vertex of the central path, and denote byStk+1 the star subgraph

induced by v and its k neighbors. Then the subsets in P corresponding to vertices
in Stk+1 are comprised of the (d+1)k+1 points in S with largest first coordinate.

If the length of the central path is one, both parts of the induction hypothesis follow
by applying Lemma 3.1. Assume the result holds if the central path is of lengthm. We
consider caterpillar graphs that have central paths of length m + 1. Let G be such a
graph with n vertices. We consider the endpoint of the path vm+1 and the vertex prior
vm . If we consider the subgraph of G consisting of the path v1, . . . , vm and all vertices
adjacent to it except vm+1, this is a caterpillar graph with a path of length m. Let p
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Fig. 7 An example of caterpillar
graph G with nine vertices

A B C D

A
B C D

Fig. 8 An example of how a set of points can be partitioned with nerve G. The vertical lines indicate how
we start with a Radon partition of the leftmost d + 2 points, then partition the points from left to right,
considering d + 1 more points at each step. Notice there are extra points on the right, which are added to
the subset corresponding to the last vertex on the central path

denote the number of vertices of this graph. By induction hypothesis, we can represent
this graph using the (d+1)(p−1)+1 points x1, . . . , x(d+1)(p−1)+1. We will have the
partition {A1, . . . , Ap}where we take A1 to be the set corresponding to vm . Then take
a point x ∈ A1 and the next d + 1 points x(d+1)(p1)+2, . . . , x(d+1)(p1)+d+2 to have a
Radon partition X ,Y with x ∈ X . Our new partition will be {A1∪X , A2, . . . , Ap,Y }.
Y will correspond to the vertex vm+1 and will not intersect any of the other sets due to
having larger first coordinate. In addition, A1 ∪ X will not intersect any new sets by
how we have arranged the points due to the induction hypothesis. Now, as in the proof
of the lemma, we can add new sets by considering d + 1 points in iteration for each of
the other vertices adjacent to vm+1. Since there were n− p vertices and we used d +1
points for each, in total we used (d+1)(n−1)+1+(d+1)(n− p) = (d+1)(n−1)+1
points. This is the desired number (Fig. 8).

Thus we have proven the induction hypothesis. To complete the proof of the the-
orem, we note that if we have more than (d + 1)(n − 1) + 1 points, we can apply
the induction hypothesis to find the desired partition of the (d + 1)(n − 1) + 1 points
x1, x2, . . . x(d+1)(n−1)+1, then add any remaining points to the subset corresponding
to the endpoint of the central path in the caterpillar graph. ��

3.2 Proof of Theorem 1.5: Tverberg Numbers of Trees in Dimension Two

Now we focus on the situation in two dimensions.

Lemma 3.2 Let S ∈ R
2 be a set of points in the plane. Denote by L p1 p2 the line

segment between points p1 and p2. Suppose that there exists p1, p2 ∈ S such that
L p1 p2 separates the remaining points of S into two sets A, B and such that for any
a ∈ A, b ∈ B, we have that Lab intersects L p1 p2 . Then it is possible to pair off
elements ai ∈ A, bi ∈ B, so that for i, j = 1, . . . ,min(|A|, |B|), i �= j , Lai bi does
not intersect La j b j . When both A, B have equal size, the pairing process yields a
perfect matching of the points in A, B.

Proof Suppose we have points p1 and p2 as hypothesized and partition the remaining
points into A and B. Let L be the line between p1 and p2. To pair off the points,

123



Discrete & Computational Geometry (2021) 65:916–937 931

Fig. 9 In the first case, there is a partition which divides the remaining points into two sets of equal size.
Then we can pair off points so that the segment connecting them intersects the dividing line, but no other
segment

we consider the vertices of conv(A ∪ B). Since L separates the points of A and B,
we must have that there is a pair of adjacent vertices of conv(A ∪ B) such that one,
a1, is a member of A and the other, b1, a member of B. The segment between this
pair cannot intersect the segment between any other pair of points as this segment
forms the boundary of the convex hull. We pair off these two points and then consider
conv(A \ {a1} ∪ B \ {b1}). We see that L separates A \ {a1} and B \ {b1}, so we can
repeat this argument to pair off a2 and b2. Continuing in this fashion until we have
paired off all the elements (perfect matching situation) or we ran out of points in either
A or B, we will have a pairing (a1, b1), (a2, b2), . . . , (an, bn) where Lai bi does not
intersect La j b j for i �= j . ��

Proof of Theorem 1.5 (A) Let A ∈ R
2 be a collection of 2n points in general position in

the plane. Our initial goal will be to find two points which can separate the remaining
points into two sets of equal size n − 1 so we can apply Lemma 3.2. This will not
always be possible, so we will try to make the size of the two sets as close as possible
by separating instead with a triangle-bounded set. In both cases the separating set
(either a segment, or a triangle-bounded set), will be the center of the star tree.

To do this, wewill consider the vertices of the convex hull of A.We pick arbitrarily a
vertex p1 of conv(A) and order the remaining vertices p2, . . . , pk in counterclockwise
orderwhere k is the number of vertices. For each i = 2, . . . , k, we divide the remaining
points of A into two sets Bi ,Ci where Bi is the set of points in A to the left of L p1 pi
and Ci is the set of points to the right of L p1 pi . We note that the size of Bi decreases
from 2n − 2 to 0 as i increases and the size of Ci increases from 0 to 2n − 2.

We consider two cases. The first case is that there exists i such that |Bi | = |Ci | =
n − 1 and then we can apply the above lemma as the line segment between every
pair of points in Bi ×Ci intersects L p1 pi since L p1 pi separates Bi and Ci and p1, pi
are vertices of conv(A). Then we have a (perfect) pairing (b1, c1), . . . , (bn−1, cn−1)

where for any two pairs the segments do not intersect, but each intersects L p1 pi . Then
the partition {{b1, c1}, . . . , {bn−1, cn−1}, { p1, pi }} is a partition which induces the
star graph Stn . For an example of this case and how to partition the points, see Fig. 9.

123



932 Discrete & Computational Geometry (2021) 65:916–937

Fig. 10 In the second case, we find a central dividing triangle of a given point configuration. Then we
pair off as many points on opposite sides of the triangle as possible using Lemma 3.2, and make points
in the interior of the triangle singletons until we have n subsets. Any extra points are added to the subset
containing the central dividing triangle

The second case is that there does not exist such a vertex pi . In this case, we find
an index i such that |Bi | > |Ci | and |Bi+1| < |Ci+1|. Set D = { p1, pi , pi+1} and
notice that conv(D) must contain at least one point of A in its interior. D will form
the center vertex of our star graph. See Fig. 10 for a depiction of this central triangle.

To construct the remaining subsets of our partition, we first count the number of
points in each of the Bi and Ci . If we let I denote the interior of Bi \ Bi+1, then we
see that |Bi+1| = |Bi |− |I |−1 and |Ci+1| = |Ci |+ |I |+1. This is because at each i ,
we are moving the points from the interior of conv({ p1, pi , pi+1}) and the point pi
from Bi to Ci+1.

Now we will assemble pairs of points, one from Bi+1 and one from Ci , to form
disjoint segments which will intersect conv(D) using Lemma 3.2 with separating
line segment L p1 pi+1

. If we let m = min (|Bi+1|, |Ci |), we pair off the points,
{{b1, c1}, . . . , {bm, cm}}, so that the segments between any two points do not inter-
sect but each intersects the central triangle. Note that this set may be empty as one
of |Bi+1| and |Ci | may be zero. Then to fill out the remaining subsets, we add sin-
gleton sets {x1}, . . . , {xn−1−m} from the interior I . Each xi is a singleton set which
intersects conv(D), but will not intersect any of the segments since the points are in
general position. After constructing these sets, there may be remaining points (left
over unmatched points in either Bi+1 or Ci ), Y , which are still unassigned. These can
be added to the set D without introducing new intersections. Then our final partition
is {D ∪ Y , {b1, c1}, . . . , {bm, cm}, {x1}, . . . , {xn−1−m}}.

This procedure will work provided that there are enough points in the interior I and
on either side of the triangle conv({p1, pi , pi+1}) to have n−1 setswhose convex hulls
intersect conv(D). Therefore, if we can show thatm+|I | = min (|Bi+1|, |Ci |)+|I | ≥
n−1, we will be done. To see this note that for any i , we have |Bi |+|Ci |+2 = 2n just
by counting the points in each set. Then since |Bi+1| = |Bi |− |I |−1 and |Bi | > |Ci |,
we can write

|Bi+1| > |Ci | − |I | − 1 = 2n − 3 − |Bi | − |I |. (1)

Substituting |Bi | = |Bi+1| + |I | + 1 in (1) and rearranging, we get |Bi+1| > n − 2−
|I | ≥ n − 1− |I |. Similarly, using that |Ci+1| > |Bi+1|, |Bi+1| = |Bi | − |I | − 1, and
|Ci+1| = |Ci | + |I | + 1, we get |Ci | > |Bi | − 2|I | − 2. Since |Bi | + |Ci | + 2 = 2n,

123



Discrete & Computational Geometry (2021) 65:916–937 933

we can finally write |Ci | > n − 2− |I | ≥ n − 1− |I |. Then we have that the number
of intersections we can have equals min (|Bi+1, |Ci |) + |I | ≥ n − 1 which is exactly
enough to form a nerve complex equal to the star graph on n vertices. ��
Proof of Theorem 1.5 (B) As a consequence of Lemma 1.6, when enumerating partition
induced graphs it is enough to consider the partitions of point sets of combinatorial
types. We can check whether a given simplex complex is 2-partition induced on a
representative for each order type.

To complete part (B) we rely on an explicit computer enumeration of all order
types on small point set provided by [1]. It turns out, that the point configuration
displayed in Fig. 11 is the only point configuration for which it is impossible to
generate P4. Its specific coordinatization is A(222, 243), B(238, 13), C(131, 50),
D(154, 105), E(166, 145), F(134, 106), G(174, 188), H(18, 51). For every other
point configuration of eight or less vertices, we found a partition which induced the
path graph P4. From this we assert that Tv(P4, 2) ≥ 9. Since we also found a partition
inducing P4 for every single order type on nine points, we are sure that Tv(P4, 2) = 9
because in the case of 10 or more points, we can use the weaker bound given in the
proof of the second part of Theorem 1.4.

Similarly for the cycle C4. We have the configuration with coordinates A(0, 0),
B(8, 5), C(18, 3), D(7, 4), E(14, 5), F(10, 8), G(11, 7), H(14, 17), I (11, 6),
J (12, 12), which gives the desired lower bound. The upper bound is given by fol-
lowing the proof of Theorem 1.2 (B), except starting with any set of 13 points (the
bound given in the theorem is higher since it accounts for divisibility issues that can
occur in certain cases). ��

4 Final Remarks and Open Problems

In this paper we generalized Tverberg’s theorem by showing that many simplicial
complexes, which we call Tverberg complexes, are always induced by the nerve of
some partition of any sufficiently large set of points in a fixed dimension. The study
of Tverberg complexes is part of the study of simplicial complexes that are nerves of
convex sets. We conclude by listing a few open questions:

1. What is the exact value of Tv(Tn, d)where Tn is a tree with n nodes? Is (d+1)(n−
1) + 1 the correct value? What about the case d = 2?

2. What is the computational complexity of determining if a point configuration can
partition induce a given simplicial complex?

3. What is the computational complexity of computing the Tverberg numbers of a
given Tverberg complex, such as a tree?

4. Are there topological versions of Tverberg theorems for other simplicial com-
plexes?

5. Is there a graph G that is not 3-Tverberg?
6. Is there a simplicial complex K that is not d-Tverberg for any d?
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Fig. 11 Two point configuration
which cannot be partitioned to
induce, respectively, P4 (top; on
eight points) and C4 (bottom; on
ten points)
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Appendix A: Proofs of Auxiliary Lemmas

We include proofs of some supplementary lemmas mentioned in the introduction.

Proof of Lemma 1.3 Suppose by contradiction that Tv(K , d) < 2n. Let S ⊂ R
d be a

set of points in convex position with |S| = Tv(K , d). By the pigeonhole principle,
if we partition S into n disjoint subsets, there must be at least one subset that is a
singleton {x}. Since K is connected, the node corresponding to the singleton {x} is
connected, by an edge, to at least one other node, implying that {x} is in the convex
hull of another subset. However, this is a contradiction as the points are in convex
position. ��

123



Discrete & Computational Geometry (2021) 65:916–937 935

Fig. 12 Graph K F
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Fig. 13 Partitioned point set
with nerve K
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Proof of Lemma 1.6 To show that N 1(P) = N 1(σ (P)) it suffices to show that
conv(Pi1) ∩ conv(Pi2) �= ∅ if and only if conv(σ (Pi1)) ∩ conv(σ (Pi2)) �= ∅ for
all i1, i2 ∈ [n]. Suppose conv(Pi1) ∩ conv(Pi2) �= ∅. Then they contain respectively
P ′
i1

and P ′
i2
, which are an inclusion minimal Radon partition of S1. Since σ is an

order-preserving bijection, σ is an isomorphism between oriented matroids (see, for
instance, [21]) determined by S1 and S2. The minimal Radon partitions in S1 corre-
spond to the circuits of the oriented matroids and therefore are preserved under σ .
Thus conv(σ (P ′

i1
)) ∩ conv(σ (P ′

i2
)) �= ∅. The reverse implication is shown by the

reasoning applied to σ−1. ��
As we mentioned in the introduction, the graph K in Fig. 12 is 2-partition induced (in
particular, by the partitioned point set in Fig. 13), but not 2-Tverberg, as implied by
the following lemma:

Lemma A.1 Suppose S is any set of points in convex position in R
2. Then the graph

K in Fig. 12 is not partition induced on S.

A B C

A

C

B

Proof We note that since K is a triangle free graph, it suffices to show that it is
not the intersection graph of any partition of points in convex position. We argue by
contradiction. Suppose that there is a set of points in convex position partitioned so
that the graph above is their intersection graph. By Lemma 1.6 we may assume the
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points are arranged on the boundary of a disc D. Call the convex hull of the points
corresponding to each node i by region i . In the rest of the proof of Lemma A.1, we
will rely on the following.

Claim Consider the independent set of nodes {A, B,C} in Fig. 12. Up to exchanging
their labels (note that the graph is symmetric about A, B,C), there are two possible
arrangements of the regions A, B, and C, pictured in Fig. 5.

Proof of the claim The regionM−B has two connected components. If regions A and
C lie in different connected components ofM− B, then regions A, B, and C must be
arranged as in Fig. 5. Otherwise, A and C lie in the same connected component, say
N , ofM− B. If we walk clockwise around the boundary ofN , we can only alternate
twice between being in regions A and C , reducing to the two possibilities shown. ��
By the claim, we see that A, B, and C must be arranged (up to symmetry) as in one
of the two cases pictured above. If they are arranged as in Fig. 5, note that regions E
and F both intersect regions A, B, and C . In that case it is easy to see that regions E
and F must intersect, which is a contradiction.

If the regions are arranged as in Fig. 5, consider those regions D, F ,G, and H . Note
that the region D intersects A, B,C . Also, region F is disjoint from all the regions B
through H , while is intersecting A. Similarly, region G is disjoint from all the regions
A through H except B. Also region H is disjoint from all the regions A through H
except C . Considering the two cases: F,G, H lie in the same connected component
of M − D, or F,G, H lie in different connected components of M − D, it is easy
to see that, in both cases, F , G, and H must be arranged as A, B, and C are in Fig. 5.
Then I , J are disjoint but both intersect F , G, and H , which is a contradiction by the
argument above. Thus K cannot be the nerve of a set of points in convex position. ��
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24. Suk, A.: On the Erdős–Szekeres convex polygon problem. J. Am.Math. Soc. 30(4), 1047–1053 (2017)
25. Tancer, M.: d-Representability of simplicial complexes of fixed dimension. J. Comput. Geom. 2(1),

183–188 (2011)
26. Tancer, M.: Intersection patterns of convex sets via simplicial complexes: a survey. In: Thirty Essays

on Geometric Graph Theory, pp. 521–540. Springer, New York (2013)
27. Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. 41, 123–128 (1966)
28. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im R

n . PhD thesis, Georg-
August-Universität, Göttingen (1967)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1805.07197

	Tverberg-Type Theorems with Altered Intersection Patterns (Nerves)
	Abstract
	1 Introduction
	2 A Tverberg Theorem for Trees and Cycles
	2.1 Proof of Theorem 1.2(A) in the Plane
	2.2 Proof of Theorem 1.2(A) in mathbbRd
	2.3 Proof of Theorem 1.2(B)

	3 Improved Tverberg Numbers of Special Trees and in Low Dimensions
	3.1 Proof of Theorem 1.4: Better Bounds for Tverberg Numbers of Caterpillar Trees
	3.2 Proof of Theorem 1.5: Tverberg Numbers of Trees in Dimension Two

	4 Final Remarks and Open Problems
	Acknowledgements
	Appendix A: Proofs of Auxiliary Lemmas
	References




