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1. Introduction

The structure of the cycles of a graph is a rich topic with challenging problems.
Consider for instance three famous covering problems on the set of all cycles of a graph:
The double cover conjecture states that for any bridgeless graph there exists a list of
cycles that contains every edge twice. Goddyn’s conjecture further states that if G is a
bridgeless graph and C'is a cycle in G, then there exists a double cover of G containing
the cycle C. An m-cycle k-cover is a list of m Eulerian subgraphs covering each edge
exactly k times. For example, every bridgeless graph admits a 7-cycle 4-cover, but it is
an open problem to decide whether every cubic bridgeless graph has a 6-cycle 4-cover.
For details see [1-3] and references therein. Motivated by such covering and packing
problems using cycles, and relying on the linear structure, this paper studies the lattice
generated by the cycles of an undirected connected graph G, i.e., the set of all integer
linear combinations of 0/1-incidence vectors of cycles of G. We call it the cycle lattice of
the graph G.

Studying the lattices generated by incidence vectors of combinatorial objects is a
technique which has been used to model combinatorial problems. A classical example is
of course the case of directed graphs, which has many applications (see the survey [4]).
The technique has also been used in several cases for undirected graphs, including for
matchings, cuts, and cycles (see [5-8] and references therein). From these last examples
we take inspiration; we provide theoretical and computational results about the bases of
the cycle lattice of an undirected connected graph, and some consequences.

In what follows G = (V, E) will denote a connected undirected graph with vertices
V and edges E. In general, we allow loops and parallel edges unless otherwise noted. A
cycle is a connected subgraph of G with each vertex having degree two, and we write
C(Q) for the collection of cycles of G. We will usually regard cycles and trees as subsets
of E.

If AC E, then let x4 € Z* denote the characteristic vector of A. For a collection A
of subsets of F, define the lattice of A by

Lat(A) := {Z nAXA I Na € Z} - VA

AcA

If K is a field, or more generally an Abelian group, then we define the K-linear hull of
A to be

Lin.HullK(.A) = Lat(.A) Rz K= {Z nNAXA - A € K}
AcA

We are interested in studying the properties of these spaces when A = C(G). The
lattice Lat(C(G)) we call the cycle lattice of G, and the Q-linear hull Lin. Hullg (C(G))
we call the rational cycle space of G. In Section 3 we give structural and algorithmic
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results on the cycle lattice of a graph, while in Section 4 we explore the consequences of
these results on the K-linear hulls of graph cycles for different choices of K.

The classical binary cycle space of G in particular fits into this framework as the
linear hull for the choice K = Z/2Z. In our more general setting, we are able to give a
dimension formula for arbitrary fields K, and we describe a structural characterization of
linear hulls for general Abelian groups which sheds light on the special role played in this
theory by fields of characteristic 2. It is also worth mentioning that several authors have
considered the case of directed graphs, which have different behavior. For more details
on the other linear spaces generated by cycles, see [4].

The following result by Goddyn (see [5, Prop. 2.1]) is our starting point. It charac-
terizes the rational cycle space via series classes of E (i.e., e, f € E are in series if they
are in the same cycles).

Proposition 1.1. Let G = (V,E) be a graph. Then the rational cycle space
Lin. Hullg (C(G)) is given by

{p € QF : p. =0 for any bridge e, and p. =pys fore and f in sem’es} .

In particular, Proposition 1.1 implies that the rational cycle space and the cycle lattice
of G are full-dimensional if and only if G has no bridges and no nontrivial series classes,
or equivalently when the graph is 3-edge-connected. In our analysis we will see that
there is no loss of generality in assuming that G is 3-edge-connected (in particular see
Lemma 2.7).

Our contributions

Our first main result on the cycle lattice is a key building block utilized throughout
the paper.

Theorem 1. Let G = (V, E) be a 3-edge-connected graph, and let T C E be a spanning
tree of G. Consider the sets

Cr = {Xei(er) : €€ E\T} and Xr:={2x; :teT},
where ci(e,T) denotes the unique cycle contained in T Ue C E. Then the collection
Cr U X7 is a basis for the cycle lattice of G. Moreover, the determinant of this lattice is
given by

det(Lat(C(G))) = 2/1.

The lattice bases provided by this result are a natural extension to the well-known
fundamental cycle bases of the binary cycle space, but have the disadvantage that they
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include elements which are not cycles. With some additional work, we are able to al-
gorithmically produce lattice bases consisting only of cycles. Note that this is in stark
contrast to the lattices of other natural collections such as matchings [7] and cuts [6],
which do not always have bases consisting of sets in the generating collection.

A collection of cycles of G is called a lattice cycle basis if its indicator vectors form a
basis of the cycle lattice. In Section 3, we show the existence of lattice cycle bases of a
graph G, and we give two algorithmic constructions for such bases.

A lattice cycle basis is called a semi-fundamental basis with respect to a spanning
forest F' if it consists of all of the fundamental cycles of F', along with some additional
cycles containing exactly two edges outside of F, called semi-fundamental cycles. In
Section 3.2, we describe an efficient algorithm to compute semi-fundamental lattice cycle
bases of a graph G with respect to a choice of spanning forest in quadratic time, producing
the following.

Theorem 2. Let G be a connected graph with m edges and n vertices. Then a lattice cycle
basis of G exists, and can be constructed in time O(mn). If T is any spanning tree of G,
then the basis may be chosen to be semi-fundamental with respect to T .

A potentially useful property of the semi-fundamental bases given by this algorithm
is that all cycles included have length bounded by 2 diam(7T); see Corollary 3.8. In par-
ticular, this bound may be quite nontrivial for common classes of graphs with high
connectivity such as expander graphs and small-world networks [9,10]. Several papers
investigate the variety of different cycle lengths possible in a graph, for example [11-13],
and our length bound indicates that in many cases, the cycles in a lattice basis may be
chosen from a very restricted set. Additionally, lattice generators with sparse support
are relevant to applications in several areas of optimization; see [14] and references.

If G, H are graphs, then G is called a topological one-edge extension of H if it is
obtained from H by connecting two vertices, either existing in H or created by dividing
edges of H in two, by a new edge. (See Definition 3.9.) If G is 3-edge-connected, then
a sequence of topological one-edge extensions starting at the single-vertex graph and
ending at G is called a topological extension sequence of G. In particular, a graph G is
known to be 3-edge-connected if and only if it admits a topological extension sequence,
and we present an algorithm to produce such a sequence.

Theorem 3. Let G be a 3-edge-connected graph with n vertices and m edges. Then a
topological extension sequence for G exists, and can be constructed in time O(mn).

If Go,Gq,...,Gy is a topological extension sequence of a graph G, then a nested
sequence (C;) with C; a lattice cycle basis of G; is called a compatible chain of lattice
cycles bases. In Section 3.3, we give a different algorithm for a basis of the cycle lattice
which produces a topological extension sequence and a compatible chain of lattice cycle
bases.
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Theorem 4. Let G be a 3-edge-connected graph with m edges and n wvertices. Then a
topological extension sequence of G and a compatible chain of lattice cycle bases can be
constructed in time O(mn).

The construction of the above algorithm can additionally be extended to general
connected graphs using the reduction of Lemma 2.7.

Finally, in Section 4 we relate the cycle lattice of a graph to the A-linear hull for A
an Abelian group. The main structural result is given by the following.

Theorem 5. Let G = (V, E) be a 3-edge-connected graph with m edges and n vertices,
and let A be an Abelian group. Then

Lin. Hull4 (C(G)) ~ (2A)”‘1 @ ANt

This result is applied in Theorem 6 to the case when A is a field, generalizing known
results about the classical binary cycle space:

Theorem 6. Let G = (V, E) be a 3-edge-connected graph with m edges and n vertices,
and let K be a field of characteristic p. Then Lin. Hullgx (C(G)) is a K -vector space of
dimension

; 2
dimp (Lin. Hullc (C(G))) =4 Fp#2
m—-—n+1, ifp=2.
If p # 2, then any lattice basis of Lat(C(G)) reduces modulo p to a linear basis of
Lin. Hullg (C(G)). If p = 2, then any basis of the classical binary cycle space maps to a
linear basis of Lin. Hullx (C(G)) under the natural inclusion map.

The remainder of the paper is organized as follows. In Section 2 we give a brief
overview of relevant background material and prior results in graph theory, and discuss
preliminary computational results and our computational model. In Section 3.1 we study
the basic structure of the cycle lattice and derive Theorem 1, and in Sections 3.2 and
3.3 we present two approaches for producing lattice cycle bases of graphs, in particular
proving Theorems 2, 3 and 4. In Section 4 we summarize several consequences of our
results for linear hulls of cycles with respect to fields and Abelian groups, and we give
proofs of Theorems 5 and 6.

Acknowledgments: We thank Prof. Andras Frank for his comments about the algorithmic
aspects of this problem. We acknowledge Mr. Yuanbo Li for his work, during a Summer
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and feedback. The first author is supported by the DFG (German Research Foundation)
within the project number 413995221. The second author was partially supported by

Please cite this article in press as: G. Averkov et al., The lattice of cycles of an undirected graph, Linear
Algebra Appl. (2021), https://doi.org/10.1016/j.1aa.2020.10.027




LAA:15614

6 G. Averkov et al. / Linear Algebra and its Applications ess (sees) see—ses

NSF grant DMS-1802986. The third author gratefully acknowledges support from NSF
grant DMS-1818969.

2. Preliminaries

In the following, we introduce preliminary material which will be needed throughout
the remainder of the work. First we give a brief overview of the ideas in graph theory
that will be assumed as background. After this, we discuss the computational model that
will be used for our algorithmic assertions, and we develop a computational reduction,
Lemma 2.7, which will be essential for our analysis in Section 3.

2.1. Graph theory

We briefly provide the graph theory concepts necessary to understand our results. For
standard background from graph theory, including basic definitions and notations, we
refer to [2].

Here and throughout this work, graphs are allowed to have loops and parallel edges.
Let G = (V, E) be an undirected graph with vertices V and edges E. If v is a vertex
of G, then its degree deg(v) is the number of non-loop edges incident to v plus twice
the number of loops incident to v. A (simple) path P of length &k in G is a subgraph of
G with distinct vertices {xg, 1, ..., 2%} and edges {zor1, 2122, ..., 2p_12,}. A (simple)
cycle of length k 4+ 1 in G is a subgraph of G consisting of a simple path along with an
additional edge connecting its endpoints.

If e € E, then the deletion of e from G is the graph G \ e obtained from G by
removing the edge E, and the contraction of e in G is the graph G/e obtained from G by
combining its endpoints into a single vertex, and removing e from the result. The cycles
of G\ e are exactly the cycles of G which do not contain e, and the cycles of G/e are the
inclusion-minimal nonempty subgraphs within the set of graphs {C/e : C a cycle of G}.

If £y, FE; C FE are disjoint sets of edges, then a graph may be obtained by deleting
the edges of F; and contracting the edges of F5 in any order. The resulting graph is
independent of the order chosen, and is denoted G \ E1/F5. A graph which can be
obtained in this way from G is called a minor of G.

An edge e € F is called a bridge if e is contained in no cycle of G, and edges e, f € E
are said to be in series if e € C' implies f € C for every cycle C. The relation of being
in series is an equivalence relation on E whose equivalence classes are called the series
classes of G. A series class is called non-trivial if it has more than one element, and
trivial otherwise.

The graph G is connected if it contains a path between any two vertices, and it is
k-edge-connected if G\ E; is connected for any set F; of k — 1 or fewer edges. Most
importantly for our purposes, a connected graph is 2-edge-connected if and only if it has
no bridges, and is 3-edge-connected if and only if it has no bridges and no nontrivial
series classes.
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Edge connectivity of a graph is related to the following version of the well-known
Menger’s theorem (see for instance [2, Sec. 3.3]), which is critical to our proofs.

Proposition 2.1 (Menger’s theorem, edge version). Let G be an undirected graph and let
u,v € V(G) be distinct vertices. Then the minimum number of edges which can be deleted
from G to disconnect u and v is equal to the maximum number of edge-disjoint paths
connecting u and v.

In particular, if G is k-edge-connected and u,v € V', then there exist £k edge-disjoint
paths connecting u and v.

Suppose G is connected, and let T' C E be a spanning tree of G. Recall that for each
edge e € E'\ T, there is a unique cycle contained in the edge set T'Ue, which is called the
fundamental cycle of e with respect to T' and is denoted ci(e, T'). For each edge ¢t € T,
the forest T\ ¢ has two connected components, which induces a cut of G between the
corresponding vertex sets. This cut is called the fundamental cut or fundamental bond
of ¢ with respect to T, and is denoted bo(¢,T). Fundamental cycles and fundamental
cuts exhibit the following duality (see e.g., [15, Lem. 7.3.1]).

Lemma 2.2. Let G = (V, E) be a connected graph and let T C E be a spanning tree. If
teT ande € E\T, then

e € bo(t,T) if and only if t € ci(e, T).

The well-studied binary cycle space of G is defined as Lat(C(G)) ® (Z/2Z), and can
be thought of as the vector subspace of (Z/2Z)¥ spanned by the indicator vectors of
C(G). Tt is known that the collection of all fundamental cycles with respect to a fixed
spanning tree of G gives a basis of this space; the following result summarizes this and
other related properties.

Proposition 2.3 (/2, Sec. 1.9]). Let G = (V, E) be a connected graph with binary cycle
space B. Then:

e B is the collection of characteristic vectors of Eulerian subgraphs of G.
e IfT C FE is a spanning tree of G, then {Xci(&T) te€ B\ T} is a basis of B.
o The dimension of B is |E| — |V| + 1.

2.2. Computational model and graph reductions

The structure of graph cycle lattices can in many cases be reduced to the case of
3-edge-connected graphs. In the following we give details of this reduction, and describe
the computational model we use for algorithmic complexity bounds. The key result
connecting cycle lattices of 3-edge-connected graphs with those of general graphs is
found in Lemma 2.7.
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Let G = (V, E) be a graph with m edges and n vertices. We will assume that V' is a
totally ordered set, and that G is represented as an ordered adjacency list. In particular,
inspecting the edges of G adjacent to a vertex v takes time O(deg(v)), and inspecting
all of the edges of G takes time O(m). If Eq, Es C E are disjoint, then the graph minor
G\ E1/FE> can be computed in time O(mn) by deleting all of the edges of F; U Ey from
G and merging the remaining adjacencies of vertices connected by a path in Ej.

Lemma 2.4. Let G = (V, E) be a connected graph with m edges and n vertices, and let T
be a spanning tree of G. Then the fundamental cycles and fundamental cuts of T can be
computed in time O(mn).

Proof. We will record the fundamental cycles of T' by computing the T'x (E'\ T') binary
matrix X with values

1, tecile,T
Xt,e - 1(6 ) .
0, otherwise

This simultaneously computes the fundamental cycles and the fundamental cuts of T
because ¢ € ci(e,T) if and only if e € bo(t,T) by Lemma 2.2.

The algorithm proceeds as follows. Initialize X to all zeros, and pick an arbitrary
vertex vg of T. Traverse T to compute for each vertex v € V the path P, in T from vg
to v. For each edge e € E\ T, let v,v’ be its endpoints. Find the first edge at which P,
and P, differ, and set X . to 1 for the subsequent edges of these paths.

The elements of T in a fundamental circuit ci(e, T') are given by the unique path in T’
between the endpoints of e, so we see that the edges recorded in this way represent the
fundamental circuits of T as desired. The computational time O(mn) follows because
each path P, has at most n — 1 edges, and the number of edges e € E'\ T is bounded by
m. O

Lemma 2.5. Let G = (V, E) be a connected graph with m edges and n vertices. Then the
bridge elements and series classes of G can be computed in time O(mn).

Proof. Let T be a spanning tree of G, and let X be the T' x (F \ T') fundamental cycle
matrix from Lemma 2.4, which can be computed in time O(mn). The bridge elements
of G are those which appear in no fundamental cycle of T', and so can be identified as
the indices of the all-zero rows of X.

For the series classes, note that if z,y € E are in different series classes, then there are
elements of the binary cycle space for which the z and y coordinates differ. In particular,
since the fundamental cycles of T' generate the binary cycle space, this implies that there
is a fundamental cycle of T containing one of z,y but not the other. Thus to compute
the series classes of G, it is sufficient to compute the partition of E corresponding to the
common refinement of the partitions {C, E'\ C} where C is a fundamental cycle with
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respect to T'. Because each cycle C has length at most n and there are m—n+1 = O(m)
such cycles, this refinement can be computed in time O(mn). O

Lemma 2.6. Let G = (V, E) be a connected graph, and let e € E. Then:

1. If e is contained in a non-trivial series class of G, then C(G) and C(G/e) are in
bijection by the map C — Ce.
2. If e is a bridge of G, then C(G) = C(G \ e).

Let m : ZF — ZF\¢ be the standard projection map. In both of the cases above, m
induces a lattice isomorphism between the cycle lattice of G and the cycle lattice of the
corresponding graph minor.

Proof. Part 1 follows because the cycles of G/e are the nonempty subgraphs in
{C/e : C € C(G)} which are minimal under inclusion of edge sets, and Part 2 follows
because no cycle contains a bridge, and the cycles of G \ e are those of G not containing
e. The projection 7w induces a lattice isomorphism in each case because it maps the in-
dicator vector of a cycle in G to the indicator vector of the corresponding cycle in G/e
or G\e. O

If G is a connected graph, let G denote a graph obtained from G by deleting all
bridges of G and contracting all but one element from each nontrivial series class of
edges in G. The graph G is called a cosimplification of G. This induces a projection map

PN

m: B(G) = E(G) U{e}, where € is a formal symbol disjoint from E(G), given by

)

€, e a bridge element
e
é, otherwise

where & denotes the representative of the series class in G of an edge e in G. The
connected components of G are in particular 3-edge-connected, and this gives a graph
reduction which is useful in studying cycles and cycle bases.

Lemma 2.7. Let G = (V, E) be a connected graph with m edges and n vertices. Then
a cosimplification G can be computed in time O(mn). Let Gy,...,G} be the connected
components of G, and let C; be a lattice cycle basis of G; for each i. Then a lattice cycle
basis of G is given by C = J, {m~1(C) : C € C;}, which can be computed in time O(mn).

Proof. From Lemma 2.5, we can compute the bridges and series classes of G in time
O(mn), from which the graph minor G can be constructed.

Lemma 2.6 implies that 7 induces a lattice isomorphism from Lat(C(G)) to Lat(C(G)).
Since the cycle lattice of a graph admits a direct sum decomposition over connected
components, the collection (J;C; yields a lattice cycle basis of G. Thus, 7! lifts to a
lattice cycle basis of G.
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The computation of 71 can be accomplished by checking each cycle for the presence
of the series class representative for a non-trivial series class and extending, if the repre-
sentative is found, to include the whole series class in G. There are O(m) cycles in the
basis of G, and O(n) nontrivial series classes, yielding a time bound of O(mmn) for the
computation. 0O

3. The cycle lattice of a graph

We now develop results relating to the cycle lattice of a graph, with an emphasis on
understanding the structure of and algorithms for producing lattice bases. In Section 3.1,
we prove basic structural results of the cycle lattice, and produce a simple lattice basis
extending the fundamental cycle basis of the classical binary cycle space. In Section 3.2 we
present an algorithm to produce semi-fundamental lattice cycle bases, and in Section 3.3
we present a different algorithm which sequentially expands lattice cycle bases for the
graph minors in a topological extension sequence. Both algorithms will be seen to produce
a lattice cycle basis in time O(mn), where m is the number of edges of the graph and n
is the number of vertices.

3.1. Lattice structure and a non-cycle basis

As a first step toward understanding the lattice structure, we make the following
observation.

Lemma 3.1. Let G be a 3-edge-connected graph. For each e € E, the vector 2x. is an
element of Lat(C(Q)). In particular, 2ZF C Lat(C(G)).

Proof. Let e € E, and without loss of generality suppose e connects distinct vertices u
and v. Since G is 3-edge-connected, any minimal cut in G \ e disconnecting vertices u
and v contains at least two edges. By Menger’s theorem, there are edge-disjoint simple
paths P and @ between u and v which exclude the edge e.

In particular, P Ue and @ U e are cycles whose only common edge is e. Additionally,
P UQ is a (potentially non-simple) cycle of G, which can be written as a disjoint union
of cycles, PUQ = C7 U ---U Cy. From this we obtain that

2Xe = XPue T XQue — Z Xc;

7

is in Lat(C(G)). O

As a first corollary, we obtain a basis-free description of the cycle lattice, analogous
to Proposition 1.1.

Corollary 3.2. Let G = (V, E) be a graph. Then Lat(C(Q)) is given by the collection of
p € ZF such that
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e pe =0 for any bridge e.

o Do =pys fore and f in series.

. ZeeN(v) De is even for each vertex v, where N (v) is the neighborhood of edges incident
to v.

Proof. The indicator vector of any cycle of G satisfies all of the above conditions, so this
is likewise true for any element of the cycle lattice. Now suppose p € Z¥ satisfies the
conditions above, and let Ey; = {e € E : p. is odd}. By the parity condition,

0= Z De = Z pe = |N(v)NEy| (mod 2).

e€N(v) eEN(v)NEy

Since each vertex v is incident to an even number of edges of Fj, this implies that Ey
induces an Eulerian subgraph of G, which thus can be decomposed into a disjoint union
of a collection C" of cycles. Letting p’ = p — > e Xo, we see that p’ has only even
coordinates.

Passing to a cosimplification G of G, the projection of p’ lies in the cycle lattice of G
by Lemma 3.1. Because p’ is zero on bridges and equal on all elements of a series class,
the cycle decomposition of the projection lifts to a cycle decomposition of p’ in G. Thus,
p’ lies in the cycle lattice of G, and consequently so does p. O

The fact that 2Z% is a sublattice of Lat(C(Q)) for 3-edge-connected G means that we
can view the quotient Lat(C(G))/2ZF as a subspace of the binary vector space (Z/27Z)F.
This allows us to directly compute the determinant of the lattice.

Proposition 3.3. Let G = (V,E) be a 3-edge-connected graph with cycle lattice L =
Lat(C(Q)). Then det(L£) = 2IVI-1,

Proof. The determinant of £ can be expressed in terms of group indices as [ZE : E],
which implies
9|E|
det(L)

= [£:22F] = 2dimz 2z (£/227),

Here, the first equality is by comparison of determinants, and the second is by interpreting
the lattice quotient £/2Z% as a vector subspace of Z¥/2ZF. By Proposition 2.3, the
space of cycles over Z/27Z has dimension |E| — |V| + 1, from which we can compute
det(L) directly. O

With explicit formulas for the dimension and the determinant of Lat(C(G)), we are
now able to produce an explicit lattice basis by producing an appropriate number of
lattice vectors with the correct determinant. This is accomplished by extending the
collection of indicator vectors of fundamental cycles ci(e,T) with respect to a fixed
spanning tree 7', as follows.
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Proposition 3.4. If G = (V, E) is a 3-edge-connected graph and T is a spanning tree of
G, let

Cr = {Xei(er) : €€ E\T} and Xr:={2x; :teT}.
Then the collection Cr U X is a basis for Lat(C(QG)).

We present two short proofs of this fact, one of which directly applies our computation
for the determinant of Lat(C(G)), and a second of independent interest which uses the
duality between fundamental cycles and fundamental cuts.

Proof 1. We have that X1 C Lat(C(G)) by Lemma 3.1. Note that the vectors in CpUXp
are naturally identified with the edges of G. Then for a fixed ordering on F for which
the elements of T come before the elements of E \ T', the matrix of column vectors of
Cr U Xr induced by this ordering on both the rows and columns can be seen to have the
following block structure,

QI‘T‘ A
0 gy |’

where [}, is the k x k identity matrix, and A is the matrix whose columns are the indicator
vectors of ci(e, T) \ e for e € E\T. From this block structure we see that the determinant
of these lattice vectors is 2/VI=1. Thus, by Proposition 3.3, the collection forms a lattice
basis of Lat(C(G)), as desired. O

Our second proof of Proposition 3.4 relies on the notion of fundamental bonds we
discussed earlier.

Proof 2. We have that Xp C Lat(C(G)) by Lemma 3.1. Since the lattice has dimension
|E| = |Cr U X7| by Proposition 1.1, it is sufficient to show that Cr U X¢ generates any
cycle of G.

For this, let p = x¢ be the indicator vector of a cycle in G, and note that since the
intersection of a cycle with a cut has even cardinality, we have

Zpe =0 (mod 2),

ecD

for any cut D of G. Letting ¢ = ZGGE\T PeXci(e, 1), We see that for each e € £\ T the
e-components of ¢ and p are equal. Further, for each ¢t € T', the t-component of ¢ can be
written as

qt = Z Pe = Z Pe — Dt-

e€eE\T ecbo(t,T)
s.t. teci(e,T)
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Denoting the sum in the latter expression above by S;, note that S; + p; is the sum of
the components of p across the fundamental cut bo(t,T"), which is even. This implies
that S; — p; is even. Letting oy = (S¢ — pt)/2, we have

P=aq+ Y a(2x).

teT

Thus p = x¢ is generated by Cr U X7, and this concludes the proof. 0O

Note that while the above material is formulated in the setting of graphs, the results
may be extended to the more general class of binary matroids satisfying the lattice of
circuits property (see [5, Sec. 2]). We omit these details here, but the arguments involved
are substantially similar.

Proposition 3.4 provides a lattice basis of Lat(C(G)) which is useful for many ap-
plications, but includes elements outside of the generating collection of cycle indicator
vectors. We next consider lattice bases consisting only of cycle indicator vectors.

Definition 3.5. If C’ is a collection of cycles of a graph G whose indicator vectors form a
basis of the lattice Lat(C(G)), we call C’ a lattice cycle basis of G.

We emphasize that in the above definition, the additive structure is over Z rather than
over Z /27 as in the classical binary cycle space, so that a priori it is not clear if a lattice
cycle basis of a graph always exists. Indeed, in the context of lattices, a generating set
does not always contain a basis. For example, the set {2,3} generates the lattice Z, but
{2, 3} contains no basis of Z. Somewhat surprisingly, such a phenomenon never occurs
for the generator set {xc : C' € C(G)} of the lattice Lat(C(QG)). In the following sections,
we provide two constructions for such lattice cycle bases.

3.2. Semi-fundamental lattice cycle bases

We now describe an algorithm to produce a cycle basis using the fundamental cycles
of a spanning tree, and some additional cycles which we call semi-fundamental.

Definition 3.6. Let G = (V, E) be a connected graph, let T be a spanning tree of G, and
lete, f € G\T, e# f.If ci(e,T) and ci(f,T) intersect in at least one edge of T', we call
the symmetric difference

cilfef,T) :=ci(e,T) Aci(f,T)

a semi-fundamental cycle of G with respect to the tree T

A lattice cycle basis C’ of G is called semi-fundamental with respect to T if C’ contains
all of the fundamental cycles with respect to T, and all other cycles of C’ are semi-
fundamental with respect to T
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The following lemma provides a key inductive step for the subsequent algorithm.

Lemma 3.7. Let G = (V, E) be a 3-edge-connected graph with at least two vertices, and
let T be a spanning tree of G. Then there exist two fundamental cycles of T that intersect
in a single edge of T.

Proof. We first prove that if there exist two fundamental cycles C, C* whose intersection
is a path P of positive length k, then there exist two fundamental cycles whose intersec-
tion is a single edge of this path. If P has length 1 then C' and C’ are already sufficient
to conclude, so suppose that P has length at least 2.

Let vy, ..., v be the vertices of P occurring on P in this order, let e be the edge joining
vg with v and €’ the edge joining vi_; with vg. Since e # €, the forest T\ {e, e’} has
three connected components. Let Hp be the component which contains P\ {e,e’}, and let
H and H’ be the connected components containing the vertices vy and vy, respectively.

Since G is 3-edge-connected, G \ {e, €’} is connected, and some edge = ¢ T’ connects
Hp to either H or H'. Without loss of generality, assume that = connects Hp to H. In
particular, the fundamental cycle C” = ci(z,T) contains e and avoids e’. Consequently,
PNC" is a nonempty proper subpath of P that contains the edge e and does not contain
e.

Since C and C”’ diverge at vy, the edges of C'\ P and C’\ P incident to vy are distinct.
In particular, at least one of these edges is distinct from the edge of C” \ P incident
to vg. So, suppose without loss of generality C and C” diverge at vg. Since €’ is in C
but not in C”, there is another vertex v; with 1 < j < k at which C and C” diverge.
Consequently, the intersection P’ = C N C” of fundamental cycles C and C” is a proper
sub-path of P of length strictly less than k.

To conclude the lemma, note that if ¢ € T', then the 3-edge-connectivity of G implies
that bo(t,T") contains at least two distinct edges e1,eq € E'\ T. In particular ci(e;,7") N
ci(ea,T) > t is a nonempty path of T'. Thus there exist two fundamental cycles of T with
nonempty intersection, so by reverse induction we conclude that there exist fundamental
cycles sharing exactly one edge. O

We next prove Theorem 2, giving an algorithm to efficiently produce a semi-
fundamental lattice cycle basis.

Theorem 2. Let G be a connected graph with m edges and n vertices. Then a lattice
cycle basis of G exists, and can be constructed in time O(mn). If T' is any spanning tree

of G, then the basis may be chosen to be semi-fundamental with respect to 7.

Proof. Assume first that G = (V, E) is 3-edge-connected. We inductively construct se-
quences

(tk)ke{L...,nq}’ (ek)ke{l,...,nfl}’ (fk>k€{1,...,n71}’ (1)
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where the sequence (tx)ke(1,...,n—1} gives an ordering of the edges of T', while e, and fi
are edges outside of T'. Suppose that t1,...,t;_1 have already been constructed, and let

Gi = G/{tl,...7ti_1} and E = T/{tl,...,ti_l}. (2)

In particular, G; is 3-edge-connected since this property is preserved by graph contrac-
tion, and 7} is a spanning tree of G;. By Lemma 3.7, there exist edges ¢;, f; € G; \ T; =
G\ T such that the fundamental cycles of e; and f; with respect to T; in G; satisfy

ci(es, Ti) Nei( fi, Ti) = {t:}

for some t; € T;. We will show that the pairs of edges (e;, f;) define semi-fundamental
cycles of T' which produce a semi-fundamental lattice cycle basis.
The fundamental cycles of T" are preserved under tree contractions, in the sense that

ci(e, Tk) = ci(e, T)/{tl, ey tk:—l}

holds for every k and every e € E'\ T. Consequently, ¢; is a common edge of the cycles
ci(eg,T) and ci(fx,T), which implies that the semi-fundamental cycles ci(e fx,T) are
well-defined. Thus, let

C'={ci(e,T) : e€ G\T} U {ci(exfr,T) : ke {l,...,n—1}},
and let A be the lattice generated by C’. For Ay = ci(e,T) N ci(fx, T), we have

2X A, = Xei(ew,T) T Xei(fo,T) = Xei(en fi,7) € A

By construction, t, € Ap C {t1,...,tx}. Thus, 2x¢, = 2xa, — ZteAk\{tk} 2x¢. By
induction on k we see that 2y, € A for every k€ {1,...,n—1}.

It follows that A contains the basis of Lat(C(G)) from Proposition 3.4, and conse-
quently, A = Lat(C(G)). Taking into account that C’ consists of m = dim(Lat(C(G)))
cycles, we conclude that C’ is a lattice cycle basis of G.

To verify the algorithmic part of the assertion, we need to expand on the procedure
of constructing C’' suggested above. The procedure relies on the constructive proof of
Lemma 3.7, so we first explain how to convert the proof of Lemma 3.7 into an efficient
algorithm.

In order to find two fundamental cycles that have common edges, pick an edge t of T,
determine the two trees in the forest 7'\ {¢} and then iterate through the edges e € E to
detect those edges that connect the two trees in 7'\ {t}. There will be at least two such
edges by 3-edge-connectedness of G. This procedure gives a pair C, C’ of intersecting
fundamental cycles. The proof of Lemma 3.7 continues by explaining how to decrease the
number of edges in the intersection C' N C’ by exchanging one of the two fundamental
cycles C,C’ with another one. Every exchange is based on deletion of two edges e, €’
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from T and looking at edges that connect the trees in the forest T'\ {e,e’}. Every cycle
exchange can be carried out in time O(m) using similar ideas.

The algorithm emerging from Lemma 3.7 produces a sequence (C;,C}), i =1,...,s
of pairs of fundamental cycles with {t} := CsNC% C ... C C1NCY, spending O(m) time
units for each pair. After contraction of the edge t in the main iteration, one can reuse
the pairs (C;/t,C}/t), i < s of contracted cycles in the following iterations. With this
approach, every pair of cycles so computed is used as a pair ci(e;, T3), ci(f;, T;) for some
i. Thus, the algorithm spends O(m) time units per edge of T, and this amounts to the
total running time O(mn).

Now suppose G is a general connected graph with spanning tree T. By Lemma 2.7, a
cosimplification Gof G may be constructed in time O(mn). We further require that G be
constructed so that only edges of T" are contracted, which is possible because each non-
trivial series class of G contains at most one edge outside of 7. Under this construction,
the edges in T'N G form a spanning forest of the cosimplification.

Let G; = (Vi, E;),i = 1,...,k be the connected components of G with mq,...,mg
edges and nq,...,n, vertices respectively, and let T; = T'N E; be the spanning tree of
G; induced by T under the cosimplification. Each G; is 3-edge-connected, so a semi-
fundamental lattice cycle basis C; of G; with respect to T; may be constructed in time
O(m;n;). By the second part of Lemma 2.7, these lattice cycle bases may be lifted to
a lattice cycle basis of G in time O(mn), for a total computational time of O(mn +
>, ming) = O(mn).

Last, we argue that this lifted lattice cycle basis is semi-fundamental with respect to
T.1f C € C; and C is the lifting of C to G, then CNT; = C NT because the edges
contracted to form G were all edges of T. Hence fundamental and semi-fundamental
cycles of T; in G; are lifted to fundamental and semi-fundamental cycles of T in G.
Additionally, because the edges E\ T are given by | J, E; \ T}, each fundamental cig(e, T)
is given by the lifting of a fundamental cycle cig, (e;, T;) for some i and some e; € E;. O

The following observation highlights a potentially useful property of the lattice cycle
bases produced by the above algorithm: the lengths of cycles in a semi-fundamental basis
are controlled by the diameter of the underlying spanning tree.

Corollary 3.8. Let G = (V, E) be a connected graph with m edges and n > 2 vertices,
and let T be a spanning tree of G. Then a lattice cycle basis of G may be constructed in
time O(mn) such that each cycle has length at most 2 diam(T').

Proof. Any semi-fundamental lattice cycle basis with respect to T has the desired prop-
erty. In particular, a fundamental cycle of T has length at most diam(7T") + 1, and a
semi-fundamental cycle, as the symmetric difference of two intersecting fundamental
cycles, has length at most 2diam(7T"). O
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3.3. Lattice cycle bases by topological extension

We now present a different approach for the construction of lattice cycle bases. This
approach is dynamic in the sense that lattice bases are built up for a sequence of succes-
sively larger graph minors, and the extensions at each step may be chosen independently.
Throughout this section, if F C E are sets and x € Q¥ then we write (x)r for the stan-
dard projection of x onto QF.

Definition 3.9. For graphs G and H, we write H < G, and say that G is a topological
one-edge extension of H, if G is obtained from H by one of the following operations:

(A) A new edge e is added between existing, possibly equal, vertices a and b of H.

(B) An edge f of H is divided into two edges f1, fa by a new vertex a, and a new edge
e is added between a and an existing vertex b of H.

(C) Two distinct edges f and g of H are each divided into two edges f1, fo and g1, g2
by new vertices a and b respectively, and a new edge e is added between a and b.

We say that the type of the topological one-edge extension H < G is one of (A),
(B), or (C), depending on which of the above operations G is derived from. From the
definition, we see that H is a graph minor of G obtained by deleting the new edge e and
contracting one edge from each split pair, depending on the type of the extension.

Example 3.10. The complete graph K, on four vertices is a topological one-edge extension
of the 3-edge bond graph. In particular, the extension is of type (C), and can be realized
by picking f and g to be any pair of distinct edges in the 3-edge bond.

For a topological one-edge extension H < G, the cycle lattice of H naturally embeds
into the cycle lattice of G. Specifically, H is obtained from G\ e by contracting zero, one,
or two edges, and each contracted edge is part of a non-trivial series class of G \ e. The
isomorphism of cycle lattices of H and G\ e then follows from Lemma 2.6, and the cycle
lattice of G \ e canonically embeds into the cycle lattice of G because C(G \ €) C C(G).

The embedding of cycle lattices may be described by a linear map QFH) — QF(©)
which depends on the type of the extension as follows:

(T)E()\f] EH\S

A): ze |F B(H) B): =z~ v hn
(4) LI A
0 )
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[(@)pm\(1.9} ] 2OD\(S 0}
Tf f1
T
): z— d f2
Tg g1
Tg g2
L 0 n €

Topological one-edge extension can be seen to be compatible with 3-edge-connectivity
by the following result, whose proof is straightforward.

Lemma 3.11. If H 5 G and H is 3-edge-connected, then G is 3-edge-connected as well.

In fact, 3-edge-connectivity of a graph can be characterized in terms of topological one-
edge extensions. The following result is essentially the case [ = 1 of a theorem of Mader
[16] characterizing (2 + 1)-edge-connected graphs, and can be viewed as a counterpart
of Tutte’s 1966 theorem characterizing 3-vertex-connectivity. See [17, Thm. 7.13] and |2,
Thm. 3.2.2] for details.

Proposition 3.12 (Growing a 3-edge-connected graph from a single vertex). A graph G is
3-edge-connected if and only if

Go G .. .G =G
holds for some graphs Gy, ..., Gy, where Gy is a single vertex.

We call a sequence of topological one-edge extensions as in the above a topological
extension sequence for G. The following describes an algorithm to efficiently produce
such a sequence.

Theorem 3. Let G be a 3-edge-connected graph with n vertices and m edges. Then a
topological extension sequence for G exists, and can be constructed in time O(mn).

Proof. If H is any graph, let Top(H) denote the topological representative of H, defined
as the graph obtained from H by suppressing vertices of degree 2. We will produce
a topological extension sequence for G presented as a decomposition of E(G) into a
sequence of edge-disjoint paths Py, ..., Py, where the graphs G; := Top(Py U ... U P))
satisfy

Go =G & B aL=0a.

To start, let Py be any vertex of G, and let P, be a path starting and ending at
the vertex of Py. Throughout, let H; == Py U...U P;. For ¢ > 2, suppose ¢ — 1 paths
Py, ... P;_1 and corresponding subgraphs Hy, ..., H;_; have already been constructed.
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If H;_1 = G, then the algorithm terminates. Otherwise, E(G) \ E(H;_1) is nonempty,
and because GG is connected, there is a vertex v; of H;_1 which is incident to an edge
not contained in H;_;. We then use depth-first search to generate a path P, C G\ H;_1
starting at v;, ending at some vertex of H; 1, and containing no edges or interior vertices
in Hifl.

If degy, ,(vi) > 2 orif H;_; is a cycle graph, then any path P; using only edges and
interior vertices outside H;_; is sufficient. If degy, ,(v;) = 2 and H;_; is not a cycle
graph, then v; is an interior vertex of a path @; with end vertices of degree at least 3 in
H,_ 1, and with interior vertices of degree exactly 2 in H;_1. In this case, we search for a
path P; starting at v; and ending at some vertex w; of H;_; which is not also an interior
vertex of @);. This ensures that P; induces a topological one-edge extension of G;_; of
type either (B) or (C), and does not connect two new vertices on the same edge in G;_.
Such a path exists because otherwise the removal of the two edges of Q; incident with
its endpoints would disconnect G, contradicting 3-edge-connectedness.

As an optimization, after each path is completed in this way, inspect the edges of G
for edges incident to two vertices of degree at least 3 in H;. If e is such an edge, then the
additional path P consisting only of the edge e may be added to the output sequence.
The additional paths of this form do not require depth-first search in G, and the overall
computational cost of adding these paths can be seen to be O(mn).

The correctness of the algorithm follows from Lemma 3.11. For the running time, we
note that the number of iterations requiring a depth-first search is at most 3n. This
follows because each path P; formed by a depth-first search either contains a vertex
outside of H;_1, or has an endpoint in H; 1 of degree 2. In either of these cases, some
vertex of G with degree less than 3 in H;_; has strictly larger degree in H;, and this can
occur at most 3n times throughout the construction. Thus the search-based steps are
computed in time O(mn). Because the single-edge paths between degree 3 vertices are
also computed in time O(mn), the result follows. 0O

In the following we provide an explicit construction to extend a basis of the cycle
lattice from a 3-edge-connected graph to a topological one-edge extension. This provides
the primary tool which we will use to inductively construct lattice cycle bases from
scratch.

Proposition 3.13. Let H be a 3-edge-connected graph, and let G be a topological one-edge
extension of H with m edges. Then a set of cycles exists whose indicator vectors extend
any basis of Lat(C(H)) to a basis of Lat(C(G)). Such a set can be computed in time
O(m).

Proof. Let B = {b1,...,b,} be a lattice basis of Lat(C(H)). We argue by cases for
the three possible types of the topological one-edge extension H = G. We will use
the notation for such extensions described in Definition 3.9, and we will write ® for the
natural linear map embedding Lat(C(H)) into Lat(C(G)). In each case, once an extending
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collection of cycles C' C C(G) of the correct cardinality has been determined, we verify
that the collection ®(B) U {x¢ : C € C'} is a basis of Lat(C(G)) by checking that the
new collection has determinant equal to det(Lat(C(G))).

For type (A), a cycle C in G which contains e can be constructed in time O(m) by
finding a simple path P between a and b in H. Then we have

det(®(B), xc) = det {lg b(;n } le} E<8H>

= det(B).

Thus the determinant of the new collection is equal to det( Lat(C(H))) = det(Lat(C(G))),
and we can let C' = {C'}.

For type (B), we can construct Cy,Cy € C(G) satisfying C; N {f1, f2,e} = {fi,e} in
time O(m) as follows. If v; is the endpoint of f in H incident to f; in G, then a simple
path P; can be found between v; and b in the connected graph H \ f, and we can set
C; = P, U{f;,e}. Setting A = det(®(B), xcy, X0, ), We have

[(bl)E(H)\f o (bm)E(E)\f | XP2 XPIW E(H)\f
A = det (bl)f c (bm)f 0 1 f1
(bl )f T (bm)f 1 0 f2
0 0 1 1 e

1 -1
= det(B) - det L 1] )
where the last line is by subtracting the row indexed by f; from the row indexed by
fo and taking determinants along the block diagonal. In this case, the determinant of
the new collection is given by 2det(Lat(C(H))) = det(Lat(C(G))), so the collection
C' = {C1, Cy} satisfies the desired conditions.

For type (C), we construct three cycles Cy, Cy, and C satisfying C;N{ f1, f2, g1, g2, e} =
{fi,gi,e} for i = 1,2, and C N {f1, f2,91,92,¢} = {f1,92,e}. For i = 1,2, let v; be the
endpoint of f incident to f; in G, and let w; be the endpoint of g incident to g; in G.
Since H is 3-edge-connected, the deletion H \ {f, ¢} remains connected. Thus we can
find simple paths Py, P, P in H \ {f, g} in time O(m) where P; joins v; and w; and P
joins vy and wy. Then we can set C; = P; U{f;, gi,e} and C = PU{f1, g2, €}. Setting
A = det(®(B), xc, Xcs, X ), We have

[(b1)B(HN\{f.9} (bm)E(HN\{f.g} | XP. XP» XP| E(H)\{f.g}
(b1)s o (bm)y 10 1 h

A — det (bl)g U (bm)g 1 0 0 91
(b1)f o (bm)s o 1 0 f2
(bl)g (bm)g 0 1 1 g2
0 0 11 1]
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—-11-1
=det(B)-det|-11 1],
11 1

where the last line is by subtracting the rows indexed by f; and g; from the rows
indexed by fo and go and taking determinants along the block diagonal. In this case,
the determinant of the new collection is given by 4 det(Lat(C(H))) = det(Lat(C(G))),
so the collection C' = {C4, Ca, C} satisfies the desired conditions. O

If Go 25 Gy = -+ 25 G, is a topological extension sequence, define a compatible
chain of lattice cycle bases to be a nested sequence Cy C C; C --- C Cg, where C; is a
lattice cycle basis of G; for each i. The following aggregates the preceding results to give
an algorithm which produces a topological extension sequence and a compatible chain of
lattice cycles bases of a 3-edge-connected graph G. In particular, this produces a lattice
cycle basis of G.

Theorem 4. Let G be a 3-edge-connected graph with m edges and n vertices. Then a
topological extension sequence of G and a compatible chain of lattice cycle bases can be
constructed in time O(mn).

Proof. From Theorem 3, a topological extension sequence Gy — Gy 25 -+ -2 G, = G
of G can be computed in time O(mn), and such an extension sequence has length O(m).
Inductively we produce a lattice cycle basis C; of G; for each i by extending C;_1.

As an auxiliary data structure, we maintain a spanning tree T; of G; at each step of
the induction as follows. For each edge x divided in two by the topological extension
Gi_1 =5 Gy, if © € Ty_1, then include both of the resulting edges in T}, and if ¢ T 1,
then include only one of the resulting edges in T;. In particular, e; ¢ T; for any 3.

For each topological one-edge extension G;_1 <% G; of type (B) or (C), Proposi-
tion 3.13 shows how to construct C; from C;_; in time O(m). Any topological one-edge
extension of these types adds at least one new vertex, so there are at most O(n) such
extensions in the sequence, and the overall time needed for computing these lattice cycle
bases is O(mn).

For topological one-edge extensions of type (A), an extending cycle can be produced
from any path between the endpoints of e; excluding this new edge. In particular, we
make use of the path between the endpoints of e; in the spanning tree T;, which can be
computed in time O(n). Since there are O(m) such extensions in the extension sequence,
the overall time needed for computing these lattice cycle bases is also O(mn). O

As for Theorem 2, this O(mn) algorithm for producing a lattice cycle basis for 3-edge-
connected graphs extends by Lemma 2.7 to an O(mn) algorithm for arbitrary connected
graphs. It is interesting to note that the extensions at each step of the above construction
are independent of the other steps, which implies a multiplicative mode of growth for
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the number of lattice cycle bases of a 3-edge-connected graph in terms of its number of
edges.

4. Applications to linear hulls

The results discussed so far in this paper focus on the Abelian group structure of
the cycle lattice, whose properties are closely connected to the combinatorics of the
underlying graph. We now present some consequences of these results to the A-linear
hull of cycles of a graph G with respect to an Abelian group A. In the following, we view
Lin. Hull4(C(G)) as a subgroup of A¥ ~ ZF @7 A.

Theorem 5. Let G = (V, E) be a 3-edge-connected graph with m edges and n vertices,
and let A be an Abelian group. Then

Lin. Hull4 (C(G)) ~ (24)" "1 @ Am—"+L,

Proof. Let T be a spanning tree of G, and let ¢g : A¥ — AF be defined by

¢o i ar> ZatXt + Z QeXci(e,T)+

teT e€e E\T

By Proposition 3.4, the vectors Cr = {Xci(e,r) : € € E\ T} with the vectors Xp =
{2x¢ : t € T} give a lattice basis of Lat(C(G)). Consequently, for a € AT and b € AP\,

(150(201, b) = Z at(2Xt> + Z beXci(e,T)

teT e€E\T

is an element of Lin. Hull4(C(G)), and in particular ¢¢ restricts to a homomorphism
¢: (2A)T @ APNT — Lin. Hull4(C(Q)).

Because X7 UCr is a basis of Lat(C(G)), we conclude that ¢ is surjective. To show that
¢ is injective, suppose a € AT and B € AP\T such that ¢(2a,b) = 0. Each coordinate
e € E\ T has a nonzero value in the sum ¢(2a,b) only for the summand corresponding
to the cycle indicator vector Xci(e,1), S0 we conclude that b = 0. Subsequently, each
coordinate ¢ € T has a nonzero value in the remaining sum ¢(2a, 0) only for the summand
corresponding to the indicator vector x:, so we likewise have 2a = 0. O

For finite Abelian groups, the previous result gives a simple method to determine
the primary decomposition of Lin. Hull4(C(G)) from the primary decomposition of A.
Each p-primary group Cpx, p # 2 in the decomposition of A introduces m copies in the
primary decomposition of Lin. Hull4(C(G)), and each 2-primary group Cox introduces
m —n + 1 copies of Cyr along with n — 1 copies of Cor—1.

As another application of Theorem 5, we may apply the result to an arbitrary field
to obtain the following.
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Theorem 6. Let G = (V, E) be a 3-edge-connected graph with m edges and n vertices,
and let K be a field of characteristic p. Then Lin. Hullx (C(G)) is a K-vector space of
dimension

i .f 2’

dimpc (Lin. Hull(C(G))) =4 ifp#

m—n+1, ifp=2.

If p # 2, then any lattice basis of Lat(C(G)) reduces modulo p to a linear basis of
Lin. Hullg (C(G)). If p = 2, then any basis of the classical binary cycle space maps to a
linear basis of Lin. Hullg (C(G)) under the natural inclusion map.

Proof. Let U = Lin. Hullg (C(G)). By Theorem 5, the K-dimension of U is given by
dimg ((2K)"~! @ K™ "*!). When K has characteristic 2, we have 2K = {0}, and
otherwise, 2K = K.

For the vector space bases, the argument of Theorem 5 shows that the image of the
lattice basis B of Proposition 3.4 in U generates the linear hull. If p # 2, then B has
as many vectors as the dimension, and thus forms a vector space basis of U. If B is a
lattice basis of Lat(C(G)), then its image in U is a Z-invertible linear transformation of
B, and thus also forms a vector space basis.

If p = 2, then the n — 1 vectors 2x; of B map to 0 in U, and the remaining m —n +1
vectors By form a basis of U, again by dimension considerations. The collection By forms
a basis of the binary cycle space of G by Proposition 2.3, so any basis B, of the binary
cycle space is an invertible transformation of By over Z /27 C K, and thus likewise maps
to a vector space basis of U. O
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