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1. Introduction

The structure of the cycles of a graph is a rich topic with challenging problems. 
Consider for instance three famous covering problems on the set of all cycles of a graph: 
The double cover conjecture states that for any bridgeless graph there exists a list of 
cycles that contains every edge twice. Goddyn’s conjecture further states that if G is a 
bridgeless graph and C is a cycle in G, then there exists a double cover of G containing 
the cycle C. An m-cycle k-cover is a list of m Eulerian subgraphs covering each edge 
exactly k times. For example, every bridgeless graph admits a 7-cycle 4-cover, but it is 
an open problem to decide whether every cubic bridgeless graph has a 6-cycle 4-cover. 
For details see [1–3] and references therein. Motivated by such covering and packing 
problems using cycles, and relying on the linear structure, this paper studies the lattice 
generated by the cycles of an undirected connected graph G, i.e., the set of all integer 
linear combinations of 0/1-incidence vectors of cycles of G. We call it the cycle lattice of 
the graph G.

Studying the lattices generated by incidence vectors of combinatorial objects is a 
technique which has been used to model combinatorial problems. A classical example is 
of course the case of directed graphs, which has many applications (see the survey [4]). 
The technique has also been used in several cases for undirected graphs, including for 
matchings, cuts, and cycles (see [5–8] and references therein). From these last examples 
we take inspiration; we provide theoretical and computational results about the bases of 
the cycle lattice of an undirected connected graph, and some consequences.

In what follows G = (V, E) will denote a connected undirected graph with vertices 
V and edges E. In general, we allow loops and parallel edges unless otherwise noted. A 
cycle is a connected subgraph of G with each vertex having degree two, and we write 
C(G) for the collection of cycles of G. We will usually regard cycles and trees as subsets 
of E.

If A ⊆ E, then let χA ∈ ZE denote the characteristic vector of A. For a collection A
of subsets of E, define the lattice of A by

Lat(A) :=
{ ∑

A∈A
nAχA : nA ∈ Z

}
⊆ ZE .

If K is a field, or more generally an Abelian group, then we define the K-linear hull of 
A to be

Lin. HullK(A) := Lat(A) ⊗Z K =
{ ∑

A∈A
nAχA : nA ∈ K

}
.

We are interested in studying the properties of these spaces when A = C(G). The 
lattice Lat(C(G)) we call the cycle lattice of G, and the Q-linear hull Lin. HullQ(C(G))
we call the rational cycle space of G. In Section 3 we give structural and algorithmic 
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results on the cycle lattice of a graph, while in Section 4 we explore the consequences of 
these results on the K-linear hulls of graph cycles for different choices of K.

The classical binary cycle space of G in particular fits into this framework as the 
linear hull for the choice K = Z/2Z. In our more general setting, we are able to give a 
dimension formula for arbitrary fields K, and we describe a structural characterization of 
linear hulls for general Abelian groups which sheds light on the special role played in this 
theory by fields of characteristic 2. It is also worth mentioning that several authors have 
considered the case of directed graphs, which have different behavior. For more details 
on the other linear spaces generated by cycles, see [4].

The following result by Goddyn (see [5, Prop. 2.1]) is our starting point. It charac-
terizes the rational cycle space via series classes of E (i.e., e, f ∈ E are in series if they 
are in the same cycles).

Proposition 1.1. Let G = (V, E) be a graph. Then the rational cycle space
Lin. HullQ(C(G)) is given by

{
p ∈ QE : pe = 0 for any bridge e, and pe = pf for e and f in series

}
.

In particular, Proposition 1.1 implies that the rational cycle space and the cycle lattice 
of G are full-dimensional if and only if G has no bridges and no nontrivial series classes, 
or equivalently when the graph is 3-edge-connected. In our analysis we will see that 
there is no loss of generality in assuming that G is 3-edge-connected (in particular see 
Lemma 2.7).

Our contributions

Our first main result on the cycle lattice is a key building block utilized throughout 
the paper.

Theorem 1. Let G = (V, E) be a 3-edge-connected graph, and let T ⊆ E be a spanning 
tree of G. Consider the sets

CT :=
{

χci(e,T ) : e ∈ E \ T
}

and XT := {2χt : t ∈ T} ,

where ci(e, T ) denotes the unique cycle contained in T ∪ e ⊂ E. Then the collection 
CT ∪ XT is a basis for the cycle lattice of G. Moreover, the determinant of this lattice is 
given by

det
(

Lat(C(G))
)

= 2|T |.

The lattice bases provided by this result are a natural extension to the well-known 
fundamental cycle bases of the binary cycle space, but have the disadvantage that they 
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include elements which are not cycles. With some additional work, we are able to al-
gorithmically produce lattice bases consisting only of cycles. Note that this is in stark 
contrast to the lattices of other natural collections such as matchings [7] and cuts [6], 
which do not always have bases consisting of sets in the generating collection.

A collection of cycles of G is called a lattice cycle basis if its indicator vectors form a 
basis of the cycle lattice. In Section 3, we show the existence of lattice cycle bases of a 
graph G, and we give two algorithmic constructions for such bases.

A lattice cycle basis is called a semi-fundamental basis with respect to a spanning 
forest F if it consists of all of the fundamental cycles of F , along with some additional 
cycles containing exactly two edges outside of F , called semi-fundamental cycles. In 
Section 3.2, we describe an efficient algorithm to compute semi-fundamental lattice cycle 
bases of a graph G with respect to a choice of spanning forest in quadratic time, producing 
the following.

Theorem 2. Let G be a connected graph with m edges and n vertices. Then a lattice cycle 
basis of G exists, and can be constructed in time O(mn). If T is any spanning tree of G, 
then the basis may be chosen to be semi-fundamental with respect to T .

A potentially useful property of the semi-fundamental bases given by this algorithm 
is that all cycles included have length bounded by 2 diam(T ); see Corollary 3.8. In par-
ticular, this bound may be quite nontrivial for common classes of graphs with high 
connectivity such as expander graphs and small-world networks [9,10]. Several papers 
investigate the variety of different cycle lengths possible in a graph, for example [11–13], 
and our length bound indicates that in many cases, the cycles in a lattice basis may be 
chosen from a very restricted set. Additionally, lattice generators with sparse support 
are relevant to applications in several areas of optimization; see [14] and references.

If G, H are graphs, then G is called a topological one-edge extension of H if it is 
obtained from H by connecting two vertices, either existing in H or created by dividing 
edges of H in two, by a new edge. (See Definition 3.9.) If G is 3-edge-connected, then 
a sequence of topological one-edge extensions starting at the single-vertex graph and 
ending at G is called a topological extension sequence of G. In particular, a graph G is 
known to be 3-edge-connected if and only if it admits a topological extension sequence, 
and we present an algorithm to produce such a sequence.

Theorem 3. Let G be a 3-edge-connected graph with n vertices and m edges. Then a 
topological extension sequence for G exists, and can be constructed in time O(mn).

If G0, G1, . . . , Gk is a topological extension sequence of a graph G, then a nested 
sequence (Ci) with Ci a lattice cycle basis of Gi is called a compatible chain of lattice 
cycles bases. In Section 3.3, we give a different algorithm for a basis of the cycle lattice 
which produces a topological extension sequence and a compatible chain of lattice cycle 
bases.
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Theorem 4. Let G be a 3-edge-connected graph with m edges and n vertices. Then a 
topological extension sequence of G and a compatible chain of lattice cycle bases can be 
constructed in time O(mn).

The construction of the above algorithm can additionally be extended to general 
connected graphs using the reduction of Lemma 2.7.

Finally, in Section 4 we relate the cycle lattice of a graph to the A-linear hull for A
an Abelian group. The main structural result is given by the following.

Theorem 5. Let G = (V, E) be a 3-edge-connected graph with m edges and n vertices, 
and let A be an Abelian group. Then

Lin. HullA(C(G)) � (2A)n−1 ⊕ Am−n+1.

This result is applied in Theorem 6 to the case when A is a field, generalizing known 
results about the classical binary cycle space:

Theorem 6. Let G = (V, E) be a 3-edge-connected graph with m edges and n vertices, 
and let K be a field of characteristic p. Then Lin. HullK(C(G)) is a K-vector space of 
dimension

dimK

(
Lin. HullK(C(G))

)
=

{
m, if p 	= 2,

m − n + 1, if p = 2.

If p 	= 2, then any lattice basis of Lat(C(G)) reduces modulo p to a linear basis of 
Lin. HullK(C(G)). If p = 2, then any basis of the classical binary cycle space maps to a 
linear basis of Lin. HullK(C(G)) under the natural inclusion map.

The remainder of the paper is organized as follows. In Section 2 we give a brief 
overview of relevant background material and prior results in graph theory, and discuss 
preliminary computational results and our computational model. In Section 3.1 we study 
the basic structure of the cycle lattice and derive Theorem 1, and in Sections 3.2 and 
3.3 we present two approaches for producing lattice cycle bases of graphs, in particular 
proving Theorems 2, 3 and 4. In Section 4 we summarize several consequences of our 
results for linear hulls of cycles with respect to fields and Abelian groups, and we give 
proofs of Theorems 5 and 6.

Acknowledgments: We thank Prof. Andras Frank for his comments about the algorithmic 
aspects of this problem. We acknowledge Mr. Yuanbo Li for his work, during a Summer 
REU, on an earlier version of this paper regarding the relationship of the lattice of 
cycles and the Tutte decomposition. We thank the reviewers and editors for their help 
and feedback. The first author is supported by the DFG (German Research Foundation) 
within the project number 413995221. The second author was partially supported by 
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2. Preliminaries

In the following, we introduce preliminary material which will be needed throughout 
the remainder of the work. First we give a brief overview of the ideas in graph theory 
that will be assumed as background. After this, we discuss the computational model that 
will be used for our algorithmic assertions, and we develop a computational reduction, 
Lemma 2.7, which will be essential for our analysis in Section 3.

2.1. Graph theory

We briefly provide the graph theory concepts necessary to understand our results. For 
standard background from graph theory, including basic definitions and notations, we 
refer to [2].

Here and throughout this work, graphs are allowed to have loops and parallel edges. 
Let G = (V, E) be an undirected graph with vertices V and edges E. If v is a vertex 
of G, then its degree deg(v) is the number of non-loop edges incident to v plus twice 
the number of loops incident to v. A (simple) path P of length k in G is a subgraph of 
G with distinct vertices {x0, x1, . . . , xk} and edges {x0x1, x1x2, . . . , xk−1xk}. A (simple)
cycle of length k + 1 in G is a subgraph of G consisting of a simple path along with an 
additional edge connecting its endpoints.

If e ∈ E, then the deletion of e from G is the graph G \ e obtained from G by 
removing the edge E, and the contraction of e in G is the graph G/e obtained from G by 
combining its endpoints into a single vertex, and removing e from the result. The cycles 
of G \ e are exactly the cycles of G which do not contain e, and the cycles of G/e are the 
inclusion-minimal nonempty subgraphs within the set of graphs {C/e : C a cycle of G}.

If E1, E2 ⊆ E are disjoint sets of edges, then a graph may be obtained by deleting 
the edges of E1 and contracting the edges of E2 in any order. The resulting graph is 
independent of the order chosen, and is denoted G \ E1/E2. A graph which can be 
obtained in this way from G is called a minor of G.

An edge e ∈ E is called a bridge if e is contained in no cycle of G, and edges e, f ∈ E

are said to be in series if e ∈ C implies f ∈ C for every cycle C. The relation of being 
in series is an equivalence relation on E whose equivalence classes are called the series 
classes of G. A series class is called non-trivial if it has more than one element, and
trivial otherwise.

The graph G is connected if it contains a path between any two vertices, and it is
k-edge-connected if G \ E1 is connected for any set E1 of k − 1 or fewer edges. Most 
importantly for our purposes, a connected graph is 2-edge-connected if and only if it has 
no bridges, and is 3-edge-connected if and only if it has no bridges and no nontrivial 
series classes.
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Edge connectivity of a graph is related to the following version of the well-known 
Menger’s theorem (see for instance [2, Sec. 3.3]), which is critical to our proofs.

Proposition 2.1 (Menger’s theorem, edge version). Let G be an undirected graph and let 
u, v ∈ V (G) be distinct vertices. Then the minimum number of edges which can be deleted 
from G to disconnect u and v is equal to the maximum number of edge-disjoint paths 
connecting u and v.

In particular, if G is k-edge-connected and u, v ∈ V , then there exist k edge-disjoint 
paths connecting u and v.

Suppose G is connected, and let T ⊆ E be a spanning tree of G. Recall that for each 
edge e ∈ E \T , there is a unique cycle contained in the edge set T ∪e, which is called the
fundamental cycle of e with respect to T and is denoted ci(e, T ). For each edge t ∈ T , 
the forest T \ t has two connected components, which induces a cut of G between the 
corresponding vertex sets. This cut is called the fundamental cut or fundamental bond
of t with respect to T , and is denoted bo(t, T ). Fundamental cycles and fundamental 
cuts exhibit the following duality (see e.g., [15, Lem. 7.3.1]).

Lemma 2.2. Let G = (V, E) be a connected graph and let T ⊆ E be a spanning tree. If 
t ∈ T and e ∈ E \ T , then

e ∈ bo(t, T ) if and only if t ∈ ci(e, T ).

The well-studied binary cycle space of G is defined as Lat(C(G)) ⊗ (Z/2Z), and can 
be thought of as the vector subspace of (Z/2Z)E spanned by the indicator vectors of 
C(G). It is known that the collection of all fundamental cycles with respect to a fixed 
spanning tree of G gives a basis of this space; the following result summarizes this and 
other related properties.

Proposition 2.3 ([2, Sec. 1.9]). Let G = (V, E) be a connected graph with binary cycle 
space B. Then:

• B is the collection of characteristic vectors of Eulerian subgraphs of G.
• If T ⊆ E is a spanning tree of G, then 

{
χci(e,T ) : e ∈ E \ T

}
is a basis of B.

• The dimension of B is |E| − |V | + 1.

2.2. Computational model and graph reductions

The structure of graph cycle lattices can in many cases be reduced to the case of 
3-edge-connected graphs. In the following we give details of this reduction, and describe 
the computational model we use for algorithmic complexity bounds. The key result 
connecting cycle lattices of 3-edge-connected graphs with those of general graphs is 
found in Lemma 2.7.
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Let G = (V, E) be a graph with m edges and n vertices. We will assume that V is a 
totally ordered set, and that G is represented as an ordered adjacency list. In particular, 
inspecting the edges of G adjacent to a vertex v takes time O(deg(v)), and inspecting 
all of the edges of G takes time O(m). If E1, E2 ⊆ E are disjoint, then the graph minor 
G \ E1/E2 can be computed in time O(mn) by deleting all of the edges of E1 ∪ E2 from 
G and merging the remaining adjacencies of vertices connected by a path in E2.

Lemma 2.4. Let G = (V, E) be a connected graph with m edges and n vertices, and let T
be a spanning tree of G. Then the fundamental cycles and fundamental cuts of T can be 
computed in time O(mn).

Proof. We will record the fundamental cycles of T by computing the T × (E \ T ) binary 
matrix X with values

Xt,e =
{

1, t ∈ ci(e, T )
0, otherwise

.

This simultaneously computes the fundamental cycles and the fundamental cuts of T

because t ∈ ci(e, T ) if and only if e ∈ bo(t, T ) by Lemma 2.2.
The algorithm proceeds as follows. Initialize X to all zeros, and pick an arbitrary 

vertex v0 of T . Traverse T to compute for each vertex v ∈ V the path Pv in T from v0
to v. For each edge e ∈ E \ T , let v, v′ be its endpoints. Find the first edge at which Pv

and Pv′ differ, and set Xt,e to 1 for the subsequent edges of these paths.
The elements of T in a fundamental circuit ci(e, T ) are given by the unique path in T

between the endpoints of e, so we see that the edges recorded in this way represent the 
fundamental circuits of T as desired. The computational time O(mn) follows because 
each path Pv has at most n − 1 edges, and the number of edges e ∈ E \ T is bounded by 
m. �
Lemma 2.5. Let G = (V, E) be a connected graph with m edges and n vertices. Then the 
bridge elements and series classes of G can be computed in time O(mn).

Proof. Let T be a spanning tree of G, and let X be the T × (E \ T ) fundamental cycle 
matrix from Lemma 2.4, which can be computed in time O(mn). The bridge elements 
of G are those which appear in no fundamental cycle of T , and so can be identified as 
the indices of the all-zero rows of X.

For the series classes, note that if x, y ∈ E are in different series classes, then there are 
elements of the binary cycle space for which the x and y coordinates differ. In particular, 
since the fundamental cycles of T generate the binary cycle space, this implies that there 
is a fundamental cycle of T containing one of x, y but not the other. Thus to compute 
the series classes of G, it is sufficient to compute the partition of E corresponding to the 
common refinement of the partitions {C, E \ C} where C is a fundamental cycle with 
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respect to T . Because each cycle C has length at most n and there are m −n +1 = O(m)
such cycles, this refinement can be computed in time O(mn). �
Lemma 2.6. Let G = (V, E) be a connected graph, and let e ∈ E. Then:

1. If e is contained in a non-trivial series class of G, then C(G) and C(G/e) are in 
bijection by the map C 
→ C/e.

2. If e is a bridge of G, then C(G) = C(G \ e).

Let π : ZE → ZE\e be the standard projection map. In both of the cases above, π

induces a lattice isomorphism between the cycle lattice of G and the cycle lattice of the 
corresponding graph minor.

Proof. Part 1 follows because the cycles of G/e are the nonempty subgraphs in 
{C/e : C ∈ C(G)} which are minimal under inclusion of edge sets, and Part 2 follows 
because no cycle contains a bridge, and the cycles of G \ e are those of G not containing 
e. The projection π induces a lattice isomorphism in each case because it maps the in-
dicator vector of a cycle in G to the indicator vector of the corresponding cycle in G/e

or G \ e. �
If G is a connected graph, let Ĝ denote a graph obtained from G by deleting all 

bridges of G and contracting all but one element from each nontrivial series class of 
edges in G. The graph Ĝ is called a cosimplification of G. This induces a projection map 
π : E(G) → E(Ĝ) ∪ {ε}, where ε is a formal symbol disjoint from E(G), given by

π : e 
→
{

ε, e a bridge element
ê, otherwise

,

where ê denotes the representative of the series class in G of an edge e in Ĝ. The 
connected components of Ĝ are in particular 3-edge-connected, and this gives a graph 
reduction which is useful in studying cycles and cycle bases.

Lemma 2.7. Let G = (V, E) be a connected graph with m edges and n vertices. Then 
a cosimplification Ĝ can be computed in time O(mn). Let G1, . . . , Gk be the connected 
components of Ĝ, and let Ci be a lattice cycle basis of Gi for each i. Then a lattice cycle 
basis of G is given by C =

⋃
i

{
π−1(C) : C ∈ Ci

}
, which can be computed in time O(mn).

Proof. From Lemma 2.5, we can compute the bridges and series classes of G in time 
O(mn), from which the graph minor Ĝ can be constructed.

Lemma 2.6 implies that π induces a lattice isomorphism from Lat(C(G)) to Lat(C(Ĝ)). 
Since the cycle lattice of a graph admits a direct sum decomposition over connected 
components, the collection 

⋃
i Ci yields a lattice cycle basis of Ĝ. Thus, π−1 lifts to a 

lattice cycle basis of G.
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The computation of π−1 can be accomplished by checking each cycle for the presence 
of the series class representative for a non-trivial series class and extending, if the repre-
sentative is found, to include the whole series class in G. There are O(m) cycles in the 
basis of Ĝ, and O(n) nontrivial series classes, yielding a time bound of O(mn) for the 
computation. �
3. The cycle lattice of a graph

We now develop results relating to the cycle lattice of a graph, with an emphasis on 
understanding the structure of and algorithms for producing lattice bases. In Section 3.1, 
we prove basic structural results of the cycle lattice, and produce a simple lattice basis 
extending the fundamental cycle basis of the classical binary cycle space. In Section 3.2 we 
present an algorithm to produce semi-fundamental lattice cycle bases, and in Section 3.3
we present a different algorithm which sequentially expands lattice cycle bases for the 
graph minors in a topological extension sequence. Both algorithms will be seen to produce 
a lattice cycle basis in time O(mn), where m is the number of edges of the graph and n
is the number of vertices.

3.1. Lattice structure and a non-cycle basis

As a first step toward understanding the lattice structure, we make the following 
observation.

Lemma 3.1. Let G be a 3-edge-connected graph. For each e ∈ E, the vector 2χe is an 
element of Lat(C(G)). In particular, 2ZE ⊆ Lat(C(G)).

Proof. Let e ∈ E, and without loss of generality suppose e connects distinct vertices u
and v. Since G is 3-edge-connected, any minimal cut in G \ e disconnecting vertices u
and v contains at least two edges. By Menger’s theorem, there are edge-disjoint simple 
paths P and Q between u and v which exclude the edge e.

In particular, P ∪ e and Q ∪ e are cycles whose only common edge is e. Additionally, 
P ∪ Q is a (potentially non-simple) cycle of G, which can be written as a disjoint union 
of cycles, P ∪ Q = C1 ∪ · · · ∪ Ck. From this we obtain that

2χe = χP ∪e + χQ∪e −
∑

i

χCi

is in Lat(C(G)). �
As a first corollary, we obtain a basis-free description of the cycle lattice, analogous 

to Proposition 1.1.

Corollary 3.2. Let G = (V, E) be a graph. Then Lat(C(G)) is given by the collection of 
p ∈ ZE such that
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• pe = 0 for any bridge e.
• pe = pf for e and f in series.
•

∑
e∈N(v) pe is even for each vertex v, where N(v) is the neighborhood of edges incident 

to v.

Proof. The indicator vector of any cycle of G satisfies all of the above conditions, so this 
is likewise true for any element of the cycle lattice. Now suppose p ∈ ZE satisfies the 
conditions above, and let E1 = {e ∈ E : pe is odd}. By the parity condition,

0 ≡
∑

e∈N(v)

pe ≡
∑

e∈N(v)∩E1

pe ≡ |N(v) ∩ E1| (mod 2).

Since each vertex v is incident to an even number of edges of E1, this implies that E1
induces an Eulerian subgraph of G, which thus can be decomposed into a disjoint union 
of a collection C′ of cycles. Letting p′ = p −

∑
C∈C′ χC , we see that p′ has only even 

coordinates.
Passing to a cosimplification Ĝ of G, the projection of p′ lies in the cycle lattice of Ĝ

by Lemma 3.1. Because p′ is zero on bridges and equal on all elements of a series class, 
the cycle decomposition of the projection lifts to a cycle decomposition of p′ in G. Thus, 
p′ lies in the cycle lattice of G, and consequently so does p. �

The fact that 2ZE is a sublattice of Lat(C(G)) for 3-edge-connected G means that we 
can view the quotient Lat(C(G))/2ZE as a subspace of the binary vector space (Z/2Z)E. 
This allows us to directly compute the determinant of the lattice.

Proposition 3.3. Let G = (V, E) be a 3-edge-connected graph with cycle lattice L =
Lat(C(G)). Then det(L) = 2|V |−1.

Proof. The determinant of L can be expressed in terms of group indices as 
[
ZE : L

]
, 

which implies

2|E|

det(L) =
[
L : 2ZE

]
= 2dimZ/2Z

(
L/2ZE

)
.

Here, the first equality is by comparison of determinants, and the second is by interpreting 
the lattice quotient L/2ZE as a vector subspace of ZE/2ZE . By Proposition 2.3, the 
space of cycles over Z/2Z has dimension |E| − |V | + 1, from which we can compute 
det(L) directly. �

With explicit formulas for the dimension and the determinant of Lat(C(G)), we are 
now able to produce an explicit lattice basis by producing an appropriate number of 
lattice vectors with the correct determinant. This is accomplished by extending the 
collection of indicator vectors of fundamental cycles ci(e, T ) with respect to a fixed 
spanning tree T , as follows.
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Proposition 3.4. If G = (V, E) is a 3-edge-connected graph and T is a spanning tree of 
G, let

CT :=
{

χci(e,T ) : e ∈ E \ T
}

and XT := {2χt : t ∈ T} .

Then the collection CT ∪ XT is a basis for Lat(C(G)).

We present two short proofs of this fact, one of which directly applies our computation 
for the determinant of Lat(C(G)), and a second of independent interest which uses the 
duality between fundamental cycles and fundamental cuts.

Proof 1. We have that XT ⊆ Lat(C(G)) by Lemma 3.1. Note that the vectors in CT ∪XT

are naturally identified with the edges of G. Then for a fixed ordering on E for which 
the elements of T come before the elements of E \ T , the matrix of column vectors of 
CT ∪ XT induced by this ordering on both the rows and columns can be seen to have the 
following block structure,

[
2I|T | A

0 I|E\T |

]
,

where Ik is the k×k identity matrix, and A is the matrix whose columns are the indicator 
vectors of ci(e, T ) \e for e ∈ E \T . From this block structure we see that the determinant 
of these lattice vectors is 2|V |−1. Thus, by Proposition 3.3, the collection forms a lattice 
basis of Lat(C(G)), as desired. �

Our second proof of Proposition 3.4 relies on the notion of fundamental bonds we 
discussed earlier.

Proof 2. We have that XT ⊆ Lat(C(G)) by Lemma 3.1. Since the lattice has dimension 
|E| = |CT ∪ XT | by Proposition 1.1, it is sufficient to show that CT ∪ XT generates any 
cycle of G.

For this, let p = χC be the indicator vector of a cycle in G, and note that since the 
intersection of a cycle with a cut has even cardinality, we have

∑
e∈D

pe ≡ 0 (mod 2),

for any cut D of G. Letting q =
∑

e∈E\T peχci(e,T ), we see that for each e ∈ E \ T the 
e-components of q and p are equal. Further, for each t ∈ T , the t-component of q can be 
written as

qt =
∑

e∈E\T

pe =
∑

e∈bo(t,T )

pe − pt.
s.t. t∈ci(e,T )
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Denoting the sum in the latter expression above by St, note that St + pt is the sum of 
the components of p across the fundamental cut bo(t, T ), which is even. This implies 
that St − pt is even. Letting αt = (St − pt)/2, we have

p = q +
∑
t∈T

αt(2χt).

Thus p = χC is generated by CT ∪ XT , and this concludes the proof. �
Note that while the above material is formulated in the setting of graphs, the results 

may be extended to the more general class of binary matroids satisfying the lattice of 
circuits property (see [5, Sec. 2]). We omit these details here, but the arguments involved 
are substantially similar.

Proposition 3.4 provides a lattice basis of Lat(C(G)) which is useful for many ap-
plications, but includes elements outside of the generating collection of cycle indicator 
vectors. We next consider lattice bases consisting only of cycle indicator vectors.

Definition 3.5. If C′ is a collection of cycles of a graph G whose indicator vectors form a 
basis of the lattice Lat(C(G)), we call C′ a lattice cycle basis of G.

We emphasize that in the above definition, the additive structure is over Z rather than 
over Z/2Z as in the classical binary cycle space, so that a priori it is not clear if a lattice 
cycle basis of a graph always exists. Indeed, in the context of lattices, a generating set 
does not always contain a basis. For example, the set {2, 3} generates the lattice Z, but 
{2, 3} contains no basis of Z. Somewhat surprisingly, such a phenomenon never occurs 
for the generator set {χC : C ∈ C(G)} of the lattice Lat(C(G)). In the following sections, 
we provide two constructions for such lattice cycle bases.

3.2. Semi-fundamental lattice cycle bases

We now describe an algorithm to produce a cycle basis using the fundamental cycles 
of a spanning tree, and some additional cycles which we call semi-fundamental.

Definition 3.6. Let G = (V, E) be a connected graph, let T be a spanning tree of G, and 
let e, f ∈ G \ T , e 	= f . If ci(e, T ) and ci(f, T ) intersect in at least one edge of T , we call 
the symmetric difference

ci(ef, T ) := ci(e, T ) Δ ci(f, T )

a semi-fundamental cycle of G with respect to the tree T .
A lattice cycle basis C′ of G is called semi-fundamental with respect to T if C′ contains 

all of the fundamental cycles with respect to T , and all other cycles of C′ are semi-
fundamental with respect to T .
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The following lemma provides a key inductive step for the subsequent algorithm.

Lemma 3.7. Let G = (V, E) be a 3-edge-connected graph with at least two vertices, and 
let T be a spanning tree of G. Then there exist two fundamental cycles of T that intersect 
in a single edge of T .

Proof. We first prove that if there exist two fundamental cycles C, C ′ whose intersection 
is a path P of positive length k, then there exist two fundamental cycles whose intersec-
tion is a single edge of this path. If P has length 1 then C and C ′ are already sufficient 
to conclude, so suppose that P has length at least 2.

Let v0, . . . , vk be the vertices of P occurring on P in this order, let e be the edge joining 
v0 with v1 and e′ the edge joining vk−1 with vk. Since e 	= e′, the forest T \ {e, e′} has 
three connected components. Let HP be the component which contains P \{e, e′}, and let 
H and H ′ be the connected components containing the vertices v0 and vk, respectively.

Since G is 3-edge-connected, G \ {e, e′} is connected, and some edge x /∈ T connects 
HP to either H or H ′. Without loss of generality, assume that x connects HP to H. In 
particular, the fundamental cycle C ′′ = ci(x, T ) contains e and avoids e′. Consequently, 
P ∩C ′′ is a nonempty proper subpath of P that contains the edge e and does not contain 
e′.

Since C and C ′ diverge at v0, the edges of C \P and C ′ \P incident to v0 are distinct. 
In particular, at least one of these edges is distinct from the edge of C ′′ \ P incident 
to v0. So, suppose without loss of generality C and C ′′ diverge at v0. Since e′ is in C
but not in C ′′, there is another vertex vj with 1 ≤ j < k at which C and C ′′ diverge. 
Consequently, the intersection P ′ = C ∩ C ′′ of fundamental cycles C and C ′′ is a proper 
sub-path of P of length strictly less than k.

To conclude the lemma, note that if t ∈ T , then the 3-edge-connectivity of G implies 
that bo(t, T ) contains at least two distinct edges e1, e2 ∈ E \ T . In particular ci(e1, T ) ∩
ci(e2, T ) � t is a nonempty path of T . Thus there exist two fundamental cycles of T with 
nonempty intersection, so by reverse induction we conclude that there exist fundamental 
cycles sharing exactly one edge. �

We next prove Theorem 2, giving an algorithm to efficiently produce a semi-
fundamental lattice cycle basis.

Theorem 2. Let G be a connected graph with m edges and n vertices. Then a lattice 
cycle basis of G exists, and can be constructed in time O(mn). If T is any spanning tree 
of G, then the basis may be chosen to be semi-fundamental with respect to T .

Proof. Assume first that G = (V, E) is 3-edge-connected. We inductively construct se-
quences

(
tk

)
,

(
ek

)
,

(
fk

)
, (1)
k∈{1,...,n−1} k∈{1,...,n−1} k∈{1,...,n−1}
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where the sequence (tk)k∈{1,...,n−1} gives an ordering of the edges of T , while ek and fk

are edges outside of T . Suppose that t1, . . . , ti−1 have already been constructed, and let

Gi := G/{t1, . . . , ti−1} and Ti := T/{t1, . . . , ti−1}. (2)

In particular, Gi is 3-edge-connected since this property is preserved by graph contrac-
tion, and Ti is a spanning tree of Gi. By Lemma 3.7, there exist edges ei, fi ∈ Gi \ Ti =
G \ T such that the fundamental cycles of ei and fi with respect to Ti in Gi satisfy

ci(ei, Ti) ∩ ci(fi, Ti) = {ti}

for some ti ∈ Ti. We will show that the pairs of edges (ei, fi) define semi-fundamental 
cycles of T which produce a semi-fundamental lattice cycle basis.

The fundamental cycles of T are preserved under tree contractions, in the sense that

ci(e, Tk) = ci(e, T )/{t1, . . . , tk−1}

holds for every k and every e ∈ E \ T . Consequently, tk is a common edge of the cycles 
ci(ek, T ) and ci(fk, T ), which implies that the semi-fundamental cycles ci(ekfk, T ) are 
well-defined. Thus, let

C′ := {ci(e, T ) : e ∈ G \ T } ∪ {ci(ekfk, T ) : k ∈ {1, . . . , n − 1}} ,

and let Λ be the lattice generated by C′. For Ak := ci(ek, T ) ∩ ci(fk, T ), we have

2χAk
= χci(ek,T ) + χci(fk,T ) − χci(ekfk,T ) ∈ Λ.

By construction, tk ∈ Ak ⊆ {t1, . . . , tk}. Thus, 2χtk
= 2χAk

−
∑

t∈Ak\{tk} 2χt. By 
induction on k we see that 2χtk

∈ Λ for every k ∈ {1, . . . , n − 1}.
It follows that Λ contains the basis of Lat(C(G)) from Proposition 3.4, and conse-

quently, Λ = Lat(C(G)). Taking into account that C′ consists of m = dim(Lat(C(G)))
cycles, we conclude that C′ is a lattice cycle basis of G.

To verify the algorithmic part of the assertion, we need to expand on the procedure 
of constructing C′ suggested above. The procedure relies on the constructive proof of 
Lemma 3.7, so we first explain how to convert the proof of Lemma 3.7 into an efficient 
algorithm.

In order to find two fundamental cycles that have common edges, pick an edge t of T , 
determine the two trees in the forest T \ {t} and then iterate through the edges e ∈ E to 
detect those edges that connect the two trees in T \ {t}. There will be at least two such 
edges by 3-edge-connectedness of G. This procedure gives a pair C, C ′ of intersecting 
fundamental cycles. The proof of Lemma 3.7 continues by explaining how to decrease the 
number of edges in the intersection C ∩ C ′ by exchanging one of the two fundamental 
cycles C, C ′ with another one. Every exchange is based on deletion of two edges e, e′
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from T and looking at edges that connect the trees in the forest T \ {e, e′}. Every cycle 
exchange can be carried out in time O(m) using similar ideas.

The algorithm emerging from Lemma 3.7 produces a sequence (Ci, C ′
i), i = 1, . . . , s

of pairs of fundamental cycles with {t} := Cs ∩ C ′
s � . . . � C1 ∩ C ′

1, spending O(m) time 
units for each pair. After contraction of the edge t in the main iteration, one can reuse 
the pairs (Ci/t, C ′

i/t), i < s of contracted cycles in the following iterations. With this 
approach, every pair of cycles so computed is used as a pair ci(ei, Ti), ci(fi, Ti) for some 
i. Thus, the algorithm spends O(m) time units per edge of T , and this amounts to the 
total running time O(mn).

Now suppose G is a general connected graph with spanning tree T . By Lemma 2.7, a 
cosimplification Ĝ of G may be constructed in time O(mn). We further require that Ĝ be 
constructed so that only edges of T are contracted, which is possible because each non-
trivial series class of G contains at most one edge outside of T . Under this construction, 
the edges in T ∩ Ĝ form a spanning forest of the cosimplification.

Let Gi = (Vi, Ei), i = 1, . . . , k be the connected components of Ĝ with m1, . . . , mk

edges and n1, . . . , nk vertices respectively, and let Ti = T ∩ Ei be the spanning tree of 
Gi induced by T under the cosimplification. Each Gi is 3-edge-connected, so a semi-
fundamental lattice cycle basis Ci of Gi with respect to Ti may be constructed in time 
O(mini). By the second part of Lemma 2.7, these lattice cycle bases may be lifted to 
a lattice cycle basis of G in time O(mn), for a total computational time of O(mn +∑

i mini) = O(mn).
Last, we argue that this lifted lattice cycle basis is semi-fundamental with respect to 

T . If Ĉ ∈ Ci and C is the lifting of Ĉ to G, then Ĉ ∩ Ti = C ∩ T because the edges 
contracted to form Ĝ were all edges of T . Hence fundamental and semi-fundamental 
cycles of Ti in Gi are lifted to fundamental and semi-fundamental cycles of T in G. 
Additionally, because the edges E \T are given by 

⋃
i Ei \Ti, each fundamental ciG(e, T )

is given by the lifting of a fundamental cycle ciGi
(ei, Ti) for some i and some ei ∈ Ei. �

The following observation highlights a potentially useful property of the lattice cycle 
bases produced by the above algorithm: the lengths of cycles in a semi-fundamental basis 
are controlled by the diameter of the underlying spanning tree.

Corollary 3.8. Let G = (V, E) be a connected graph with m edges and n ≥ 2 vertices, 
and let T be a spanning tree of G. Then a lattice cycle basis of G may be constructed in 
time O(mn) such that each cycle has length at most 2 diam(T ).

Proof. Any semi-fundamental lattice cycle basis with respect to T has the desired prop-
erty. In particular, a fundamental cycle of T has length at most diam(T ) + 1, and a 
semi-fundamental cycle, as the symmetric difference of two intersecting fundamental 
cycles, has length at most 2 diam(T ). �
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3.3. Lattice cycle bases by topological extension

We now present a different approach for the construction of lattice cycle bases. This 
approach is dynamic in the sense that lattice bases are built up for a sequence of succes-
sively larger graph minors, and the extensions at each step may be chosen independently. 
Throughout this section, if F ⊆ E are sets and x ∈ QE , then we write (x)F for the stan-
dard projection of x onto QF .

Definition 3.9. For graphs G and H, we write H e−→ G, and say that G is a topological 
one-edge extension of H, if G is obtained from H by one of the following operations:

(A) A new edge e is added between existing, possibly equal, vertices a and b of H.
(B) An edge f of H is divided into two edges f1, f2 by a new vertex a, and a new edge 

e is added between a and an existing vertex b of H.
(C) Two distinct edges f and g of H are each divided into two edges f1, f2 and g1, g2

by new vertices a and b respectively, and a new edge e is added between a and b.

We say that the type of the topological one-edge extension H
e−→ G is one of (A), 

(B), or (C), depending on which of the above operations G is derived from. From the 
definition, we see that H is a graph minor of G obtained by deleting the new edge e and 
contracting one edge from each split pair, depending on the type of the extension.

Example 3.10. The complete graph K4 on four vertices is a topological one-edge extension 
of the 3-edge bond graph. In particular, the extension is of type (C), and can be realized 
by picking f and g to be any pair of distinct edges in the 3-edge bond.

For a topological one-edge extension H e−→ G, the cycle lattice of H naturally embeds 
into the cycle lattice of G. Specifically, H is obtained from G \e by contracting zero, one, 
or two edges, and each contracted edge is part of a non-trivial series class of G \ e. The 
isomorphism of cycle lattices of H and G \ e then follows from Lemma 2.6, and the cycle 
lattice of G \ e canonically embeds into the cycle lattice of G because C(G \ e) ⊆ C(G).

The embedding of cycle lattices may be described by a linear map QE(H) → QE(G), 
which depends on the type of the extension as follows:

(A) : x 
→
[

x
0

]
E(H)

e
(B) : x 
→

⎡
⎢⎢⎣

(x)E(H)\f

xf

xf

0

⎤
⎥⎥⎦

E(H)\f

f1

f2

e
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(C) : x 
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(x)E(H)\{f,g}
xf

xf

xg

xg

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

E(H)\{f,g}

f1

f2

g1

g2

e

Topological one-edge extension can be seen to be compatible with 3-edge-connectivity 
by the following result, whose proof is straightforward.

Lemma 3.11. If H e−→ G and H is 3-edge-connected, then G is 3-edge-connected as well.

In fact, 3-edge-connectivity of a graph can be characterized in terms of topological one-
edge extensions. The following result is essentially the case l = 1 of a theorem of Mader 
[16] characterizing (2l + 1)-edge-connected graphs, and can be viewed as a counterpart 
of Tutte’s 1966 theorem characterizing 3-vertex-connectivity. See [17, Thm. 7.13] and [2, 
Thm. 3.2.2] for details.

Proposition 3.12 (Growing a 3-edge-connected graph from a single vertex). A graph G is 
3-edge-connected if and only if

G0
e1−→ G1

e2−→ · · · ek−→ Gk = G

holds for some graphs G0, . . . , Gk, where G0 is a single vertex.

We call a sequence of topological one-edge extensions as in the above a topological 
extension sequence for G. The following describes an algorithm to efficiently produce 
such a sequence.

Theorem 3. Let G be a 3-edge-connected graph with n vertices and m edges. Then a 
topological extension sequence for G exists, and can be constructed in time O(mn).

Proof. If H is any graph, let Top(H) denote the topological representative of H, defined 
as the graph obtained from H by suppressing vertices of degree 2. We will produce 
a topological extension sequence for G presented as a decomposition of E(G) into a 
sequence of edge-disjoint paths P0, . . . , Pk, where the graphs Gi := Top(P0 ∪ . . . ∪ Pi)
satisfy

G0
e1−→ G1

e2−→ · · · ek−→ Gk = G.

To start, let P0 be any vertex of G, and let P1 be a path starting and ending at 
the vertex of P0. Throughout, let Hi := P0 ∪ . . . ∪ Pi. For i ≥ 2, suppose i − 1 paths 
P0, . . . Pi−1 and corresponding subgraphs H0, . . . , Hi−1 have already been constructed. 
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If Hi−1 = G, then the algorithm terminates. Otherwise, E(G) \ E(Hi−1) is nonempty, 
and because G is connected, there is a vertex vi of Hi−1 which is incident to an edge 
not contained in Hi−1. We then use depth-first search to generate a path Pi ⊆ G \ Hi−1
starting at vi, ending at some vertex of Hi−1, and containing no edges or interior vertices 
in Hi−1.

If degHi−1
(vi) > 2 or if Hi−1 is a cycle graph, then any path Pi using only edges and 

interior vertices outside Hi−1 is sufficient. If degHi−1
(vi) = 2 and Hi−1 is not a cycle 

graph, then vi is an interior vertex of a path Qi with end vertices of degree at least 3 in 
Hi−1, and with interior vertices of degree exactly 2 in Hi−1. In this case, we search for a 
path Pi starting at vi and ending at some vertex wi of Hi−1 which is not also an interior 
vertex of Qi. This ensures that Pi induces a topological one-edge extension of Gi−1 of 
type either (B) or (C), and does not connect two new vertices on the same edge in Gi−1. 
Such a path exists because otherwise the removal of the two edges of Qi incident with 
its endpoints would disconnect G, contradicting 3-edge-connectedness.

As an optimization, after each path is completed in this way, inspect the edges of G
for edges incident to two vertices of degree at least 3 in Hi. If e is such an edge, then the 
additional path P consisting only of the edge e may be added to the output sequence. 
The additional paths of this form do not require depth-first search in G, and the overall 
computational cost of adding these paths can be seen to be O(mn).

The correctness of the algorithm follows from Lemma 3.11. For the running time, we 
note that the number of iterations requiring a depth-first search is at most 3n. This 
follows because each path Pi formed by a depth-first search either contains a vertex 
outside of Hi−1, or has an endpoint in Hi−1 of degree 2. In either of these cases, some 
vertex of G with degree less than 3 in Hi−1 has strictly larger degree in Hi, and this can 
occur at most 3n times throughout the construction. Thus the search-based steps are 
computed in time O(mn). Because the single-edge paths between degree 3 vertices are 
also computed in time O(mn), the result follows. �

In the following we provide an explicit construction to extend a basis of the cycle 
lattice from a 3-edge-connected graph to a topological one-edge extension. This provides 
the primary tool which we will use to inductively construct lattice cycle bases from 
scratch.

Proposition 3.13. Let H be a 3-edge-connected graph, and let G be a topological one-edge 
extension of H with m edges. Then a set of cycles exists whose indicator vectors extend 
any basis of Lat(C(H)) to a basis of Lat(C(G)). Such a set can be computed in time 
O(m).

Proof. Let B = {b1, . . . , bm} be a lattice basis of Lat(C(H)). We argue by cases for 
the three possible types of the topological one-edge extension H

e−→ G. We will use 
the notation for such extensions described in Definition 3.9, and we will write Φ for the 
natural linear map embedding Lat(C(H)) into Lat(C(G)). In each case, once an extending 
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collection of cycles C′ ⊆ C(G) of the correct cardinality has been determined, we verify 
that the collection Φ(B) ∪ {χC : C ∈ C′} is a basis of Lat(C(G)) by checking that the 
new collection has determinant equal to det

(
Lat(C(G))

)
.

For type (A), a cycle C in G which contains e can be constructed in time O(m) by 
finding a simple path P between a and b in H. Then we have

det(Φ(B), χC) = det
[
b1 · · · bm χP

0 · · · 0 1

]
E(H)

e

= det(B).

Thus the determinant of the new collection is equal to det
(

Lat(C(H))
)

= det
(

Lat(C(G))
)
,

and we can let C′ = {C}.
For type (B), we can construct C1, C2 ∈ C(G) satisfying Ci ∩ {f1, f2, e} = {fi, e} in 

time O(m) as follows. If vi is the endpoint of f in H incident to fi in G, then a simple 
path Pi can be found between vi and b in the connected graph H \ f , and we can set 
Ci = Pi ∪ {fi, e}. Setting Δ = det(Φ(B), χC1 , χC2), we have

Δ = det

⎡
⎢⎢⎢⎣
(b1)E(H)\f · · · (bm)E(H)\f χP2 χP1

(b1)f · · · (bm)f 0 1
(b1)f · · · (bm)f 1 0
0 · · · 0 1 1

⎤
⎥⎥⎥⎦

E(H)\f

f1

f2

e

= det(B) · det
[

1 −1
1 1

]
,

where the last line is by subtracting the row indexed by f1 from the row indexed by 
f2 and taking determinants along the block diagonal. In this case, the determinant of 
the new collection is given by 2 det

(
Lat(C(H))

)
= det

(
Lat(C(G))

)
, so the collection 

C′ = {C1, C2} satisfies the desired conditions.
For type (C), we construct three cycles C1, C2, and C satisfying Ci∩{f1, f2, g1, g2, e} =

{fi, gi, e} for i = 1, 2, and C ∩ {f1, f2, g1, g2, e} = {f1, g2, e}. For i = 1, 2, let vi be the 
endpoint of f incident to fi in G, and let wi be the endpoint of g incident to gi in G. 
Since H is 3-edge-connected, the deletion H \ {f, g} remains connected. Thus we can 
find simple paths P1, P2, P in H \ {f, g} in time O(m) where Pi joins vi and wi and P
joins v1 and w2. Then we can set Ci = Pi ∪ {fi, gi, e} and C = P ∪ {f1, g2, e}. Setting 
Δ = det(Φ(B), χC1 , χC2 , χC), we have

Δ = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(b1)E(H)\{f,g} · · · (bm)E(H)\{f,g} χP1 χP2 χP

(b1)f · · · (bm)f 1 0 1
(b1)g · · · (bm)g 1 0 0
(b1)f · · · (bm)f 0 1 0
(b1)g · · · (bm)g 0 1 1
0 · · · 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

E(H)\{f,g}

f1

g1

f2

g2

e
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= det(B) · det

⎡
⎢⎣−1 1 −1

−1 1 1
1 1 1

⎤
⎥⎦ ,

where the last line is by subtracting the rows indexed by f1 and g1 from the rows 
indexed by f2 and g2 and taking determinants along the block diagonal. In this case, 
the determinant of the new collection is given by 4 det

(
Lat(C(H))

)
= det

(
Lat(C(G))

)
, 

so the collection C′ = {C1, C2, C} satisfies the desired conditions. �
If G0

e1−→ G1
e2−→ · · · ek−→ Gk is a topological extension sequence, define a compatible 

chain of lattice cycle bases to be a nested sequence C0 ⊂ C1 ⊂ · · · ⊂ Ck, where Ci is a 
lattice cycle basis of Gi for each i. The following aggregates the preceding results to give 
an algorithm which produces a topological extension sequence and a compatible chain of 
lattice cycles bases of a 3-edge-connected graph G. In particular, this produces a lattice 
cycle basis of G.

Theorem 4. Let G be a 3-edge-connected graph with m edges and n vertices. Then a 
topological extension sequence of G and a compatible chain of lattice cycle bases can be 
constructed in time O(mn).

Proof. From Theorem 3, a topological extension sequence G0
e1−→ G1

e2−→ · · · ek−→ Gk = G

of G can be computed in time O(mn), and such an extension sequence has length O(m). 
Inductively we produce a lattice cycle basis Ci of Gi for each i by extending Ci−1.

As an auxiliary data structure, we maintain a spanning tree Ti of Gi at each step of 
the induction as follows. For each edge x divided in two by the topological extension 
Gi−1

ei−→ Gi, if x ∈ Ti−1, then include both of the resulting edges in Ti, and if x /∈ Ti−1, 
then include only one of the resulting edges in Ti. In particular, ei /∈ Ti for any i.

For each topological one-edge extension Gi−1
ei−→ Gi of type (B) or (C), Proposi-

tion 3.13 shows how to construct Ci from Ci−1 in time O(m). Any topological one-edge 
extension of these types adds at least one new vertex, so there are at most O(n) such 
extensions in the sequence, and the overall time needed for computing these lattice cycle 
bases is O(mn).

For topological one-edge extensions of type (A), an extending cycle can be produced 
from any path between the endpoints of ei excluding this new edge. In particular, we 
make use of the path between the endpoints of ei in the spanning tree Ti, which can be 
computed in time O(n). Since there are O(m) such extensions in the extension sequence, 
the overall time needed for computing these lattice cycle bases is also O(mn). �

As for Theorem 2, this O(mn) algorithm for producing a lattice cycle basis for 3-edge-
connected graphs extends by Lemma 2.7 to an O(mn) algorithm for arbitrary connected 
graphs. It is interesting to note that the extensions at each step of the above construction 
are independent of the other steps, which implies a multiplicative mode of growth for 
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the number of lattice cycle bases of a 3-edge-connected graph in terms of its number of 
edges.

4. Applications to linear hulls

The results discussed so far in this paper focus on the Abelian group structure of 
the cycle lattice, whose properties are closely connected to the combinatorics of the 
underlying graph. We now present some consequences of these results to the A-linear 
hull of cycles of a graph G with respect to an Abelian group A. In the following, we view 
Lin. HullA(C(G)) as a subgroup of AE � ZE ⊗Z A.

Theorem 5. Let G = (V, E) be a 3-edge-connected graph with m edges and n vertices, 
and let A be an Abelian group. Then

Lin. HullA(C(G)) � (2A)n−1 ⊕ Am−n+1.

Proof. Let T be a spanning tree of G, and let φ0 : AE → AE be defined by

φ0 : a 
→
∑
t∈T

atχt +
∑

e∈E\T

aeχci(e,T ).

By Proposition 3.4, the vectors CT =
{

χci(e,T ) : e ∈ E \ T
}

with the vectors XT =
{2χt : t ∈ T} give a lattice basis of Lat(C(G)). Consequently, for a ∈ AT and b ∈ AE\T ,

φ0(2a, b) =
∑
t∈T

at(2χt) +
∑

e∈E\T

beχci(e,T )

is an element of Lin. HullA(C(G)), and in particular φ0 restricts to a homomorphism 
φ : (2A)T ⊕ AE\T → Lin. HullA(C(G)).

Because XT ∪CT is a basis of Lat(C(G)), we conclude that φ is surjective. To show that 
φ is injective, suppose a ∈ AT and B ∈ AE\T such that φ(2a, b) = 0. Each coordinate 
e ∈ E \ T has a nonzero value in the sum φ(2a, b) only for the summand corresponding 
to the cycle indicator vector χci(e,T ), so we conclude that b = 0. Subsequently, each 
coordinate t ∈ T has a nonzero value in the remaining sum φ(2a, 0) only for the summand 
corresponding to the indicator vector χt, so we likewise have 2a = 0. �

For finite Abelian groups, the previous result gives a simple method to determine 
the primary decomposition of Lin. HullA(C(G)) from the primary decomposition of A. 
Each p-primary group Cpk , p 	= 2 in the decomposition of A introduces m copies in the 
primary decomposition of Lin. HullA(C(G)), and each 2-primary group C2k introduces 
m − n + 1 copies of C2k along with n − 1 copies of C2k−1 .

As another application of Theorem 5, we may apply the result to an arbitrary field 
to obtain the following.
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Theorem 6. Let G = (V, E) be a 3-edge-connected graph with m edges and n vertices, 
and let K be a field of characteristic p. Then Lin. HullK(C(G)) is a K-vector space of 
dimension

dimK

(
Lin. HullK(C(G))

)
=

{
m, if p 	= 2,

m − n + 1, if p = 2.

If p 	= 2, then any lattice basis of Lat(C(G)) reduces modulo p to a linear basis of 
Lin. HullK(C(G)). If p = 2, then any basis of the classical binary cycle space maps to a 
linear basis of Lin. HullK(C(G)) under the natural inclusion map.

Proof. Let U = Lin. HullK(C(G)). By Theorem 5, the K-dimension of U is given by 
dimK

(
(2K)n−1 ⊕ Km−n+1)

. When K has characteristic 2, we have 2K = {0}, and 
otherwise, 2K = K.

For the vector space bases, the argument of Theorem 5 shows that the image of the 
lattice basis B of Proposition 3.4 in U generates the linear hull. If p 	= 2, then B has 
as many vectors as the dimension, and thus forms a vector space basis of U . If B′ is a 
lattice basis of Lat(C(G)), then its image in U is a Z-invertible linear transformation of 
B, and thus also forms a vector space basis.

If p = 2, then the n − 1 vectors 2χt of B map to 0 in U , and the remaining m − n + 1
vectors B0 form a basis of U , again by dimension considerations. The collection B0 forms 
a basis of the binary cycle space of G by Proposition 2.3, so any basis B′

0 of the binary 
cycle space is an invertible transformation of B0 over Z/2Z ⊆ K, and thus likewise maps 
to a vector space basis of U . �
Declaration of competing interest

The authors declare that they have no known competing interests that could have 
appeared to influence the work reported in this paper.

References

[1] J. Bermond, B. Jackson, F. Jaeger, Shortest coverings of graphs with cycles, J. Comb. Theory, Ser. 
B 35 (3) (1983) 297–308.

[2] R. Diestel, Graph Theory, 5th edition, Graduate Texts in Mathematics, Springer-Verlag, Heidelberg, 
2017.

[3] C. Zhang, Integer Flows and Cycle Covers of Graphs, Pure and Applied Mathematics, vol. 205, 
Marcel Dekker, 1997.

[4] T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, K. Zweig, Cycle bases in 
graphs characterization, algorithms, complexity, and applications, Comput. Sci. Rev. 3 (4) (2009) 
199–243.

[5] L.A. Goddyn, Cones, lattices and Hilbert bases of circuits and perfect matchings, in: Graph Struc-
ture Theory, in: Contemporary Mathematics, vol. 147, American Mathematical Society, 1993, 
pp. 419–439.

[6] L.A. Goddyn, T. Huynh, T. Deshpande, On Hilbert bases of cuts, Discrete Math. 339 (2) (2016) 
721–728.

http://refhub.elsevier.com/S0024-3795(20)30510-3/bib110B6189C6D52382D9568DE1CBED5C91s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib110B6189C6D52382D9568DE1CBED5C91s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib796FEB84481C27EB2C74714E1DA7EC00s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib796FEB84481C27EB2C74714E1DA7EC00s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib8893503A5776DC1EE06A283C595B6638s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib8893503A5776DC1EE06A283C595B6638s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibA22E65C2A8B4E22FC9CAA8B26EAC7D68s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibA22E65C2A8B4E22FC9CAA8B26EAC7D68s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibA22E65C2A8B4E22FC9CAA8B26EAC7D68s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib7473F0F8F95EAC48960108A9CEBA43D2s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib7473F0F8F95EAC48960108A9CEBA43D2s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib7473F0F8F95EAC48960108A9CEBA43D2s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibD4D08B1FF6A062DA6A3FF2941D84B8C7s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibD4D08B1FF6A062DA6A3FF2941D84B8C7s1


JID:LAA AID:15614 /FLA [m1L; v1.297] P.24 (1-24)
24 G. Averkov et al. / Linear Algebra and its Applications ••• (••••) •••–•••
[7] L. Lovász, Matching structure and the matching lattice, J. Comb. Theory, Ser. B 43 (2) (1987) 
187–222.

[8] P.D. Seymour, Sums of circuits, in: J. Bondy, U. Murty, W. Tutte (Eds.), Graph Theory and Related 
Topics, Academic Press, 1979, pp. 341–355.

[9] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, Bull. Am. Math. Soc. 
43 (4) (2006) 439–561.

[10] B. Bollobás, O. Riordan, The diameter of a scale-free random graph, Combinatorica 24 (1) (2004) 
5–34.

[11] A. Gyárfás, J. Komlós, E. Szemerédi, On the distribution of cycle lengths in graphs, J. Graph 
Theory 8 (4) (1984) 441–462.

[12] P. Erdős, R.J. Faudree, C.C. Rousseau, R.H. Schelp, The number of cycle lengths in graphs of given 
minimum degree and girth, Discrete Math. 200 (1999) 55–60.

[13] J. Verstraëte, On the number of sets of cycle lengths, Combinatorica 24 (4) (2004) 719–730.
[14] I. Aliev, G. Averkov, J.A. De Loera, T. Oertel, Optimizing sparsity over lattices and semigroups, 

arXiv :1912 .09763, 2020.
[15] A. Björner, The homology and shellability of matroids and geometric lattices, in: Matroid Applica-

tions, in: Encyclopedia of Mathematics and Its Applications, vol. 40, Cambridge University Press, 
1992.

[16] W. Mader, A Reduction Method for Edge-Connectivity in Graphs, Annals of Discrete Mathematics, 
vol. 3, Elsevier, 1978, pp. 145–164.

[17] A. Frank, Connectivity and network flows, in: Handbook of Combinatorics 1, 1995, pp. 111–177.

http://refhub.elsevier.com/S0024-3795(20)30510-3/bib6AFA07FCBFA06E320E86FF8440047195s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib6AFA07FCBFA06E320E86FF8440047195s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib9145ADE779CD5BE08463A6E5B9083BBDs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib9145ADE779CD5BE08463A6E5B9083BBDs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib887DBC8C84CCD17D3679307AF8C54788s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib887DBC8C84CCD17D3679307AF8C54788s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib1148A97352D541479DB6E4925A9A11D6s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib1148A97352D541479DB6E4925A9A11D6s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibE14B391B7287028CB38BEC89627F678Fs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibE14B391B7287028CB38BEC89627F678Fs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib13A0E5F3E6A0071E5CFFBC96FD8383A8s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib13A0E5F3E6A0071E5CFFBC96FD8383A8s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib1DFA8270843C21C9F2AB49416A6AD258s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib760352F6E8FB11BB565091907FE01FFAs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bib760352F6E8FB11BB565091907FE01FFAs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibFC2D18F6648FE17E3D122728E2E21B5Fs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibFC2D18F6648FE17E3D122728E2E21B5Fs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibFC2D18F6648FE17E3D122728E2E21B5Fs1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibAE46FE2F1D66AB41A7FDAF2E3E77FD49s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibAE46FE2F1D66AB41A7FDAF2E3E77FD49s1
http://refhub.elsevier.com/S0024-3795(20)30510-3/bibC7BD58DEB6FB841FE3BF09C73DCBC807s1

	The lattice of cycles of an undirected graph
	1 Introduction
	Our contributions

	2 Preliminaries
	2.1 Graph theory
	2.2 Computational model and graph reductions

	3 The cycle lattice of a graph
	3.1 Lattice structure and a non-cycle basis
	3.2 Semi-fundamental lattice cycle bases
	3.3 Lattice cycle bases by topological extension

	4 Applications to linear hulls
	Declaration of competing interest
	References


