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Abstract. We present new stochastic geometry theorems that give bounds on the probability that m random
data classes all contain a point in common in their convex hulls. These theorems relate to the
existence of maximum likelihood estimators in multinomial logistic regression, to the separability of
data, and to the computation of centerpoints of data clouds.
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1. Introduction. Convex geometry has been shown to be a valuable tool for the mathe-
matical foundations of data science (see, e.g., [1, 2, 3, 5, 13] and the many geometric references
there). Our paper further develops connections between combinatorial convex geometry and
supervised learning. Before we discuss our results, we discuss our key motivation.

Logistic regression is a well-known nonlinear model in multivariate statistics and super-
vised learning [14]. Statistical inference and classification for this model relies on the theory of
maximum likelihood estimation. In the multiclass logistic regression we have n observations
(xi,yi),i=1,...,n. Here x; is a vector of d real or discrete variables and y; is a variable that
takes discrete values ¢y, co, ..., ¢y, the indicators of class membership. The logistic approach
connects the response in y; to the covariates x; via the model

exp(z;3;)
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where the entries of the vectors B, € R? are the regression coefficients. We let E, be the set

of data point indices ¢, where x; was labeled as y; = ¢s. In this model, the log-likelihood is
given by the function
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A mazimum likelihood estimate (MLE) is defined to be any maximizer of this function.
Finding conditions for the existence of the MLE amounts to specifying the conditions under
which MLE-based inference for these important models is possible. Unfortunately, one diffi-
culty arising in machine learning is that the MLE for the logistic model does not exist in all
situations.

There are two common approaches for multi-class classification: “one-versus-rest” and
“one-versus-one.” In “one-versus-rest,” we train C separate binary classification models. Each
classifier f. for ¢ € {1,...,C} is trained to determine whether or not an example is part of
class c or not. To predict the class for a new sample x, we run all C classifiers on & and choose
the class with the highest score: § = argmax.c(1 . o} fe(x). In “one-versus-one” regression,
we train (g) separate binary classification models, one for each possible pair of classes. To
predict the class for a new sample @, we run all (g) classifiers on @ and choose the class with
the most votes.

Albert and Anderson proved that the existence of the MLE is determined by how the
data classes overlap [1, 21]. In “one-versus-one” multiclass logistic regression, the desired
MLESs exist if, for any pair of classes, say a and b, the convex hull of the samples from class
a intersect with the convex hull of the samples from class b. Similarly, for “one-versus-rest,”
the desired MLEs exist if the convex hull of the samples from any single class intersects with
the convex hull of the remaining points. Although an appealing criterion for existence, this
geometric characterization leads to another practical question: How much training data do we
need, as a function of the dimension of the covariates of the data, before we expect the MLEs
for multiclass logistic models to exist with high probability?

This question can be partially addressed using the geometric work of Cover [8] (adapting
a technique originally due to Schlafli [20]), an investigation of class overlaps in random bi-
colorings for any large point set in general position, a sort of stochastic extension of Radon’s
theorem. Suppose that the n points z; € R%s are drawn i.i.d. from a continuous probability
distribution and labeled into two classes with equal probability, i.e., m = 2,¢; = 1,¢c9 = —1
with P(y; = 1|z;) = 1/2. If we assume that class labels are independent from «;, Cover’s
result can be used to show that under an asymptotic regime where d and n grow but d/n — k
with probability tending to one, the convex hulls of the two types of colored points overlap if
k < 1/2, or they are separated if £ > 1/2. When the class labels are not independent from the
x;, the problem is more difficult. In this case, Candes and Sur [5] proved that a similar phase
transition occurs, and is parametrized by two scalars measuring the overall magnitude of the
unknown sequence of regression coefficients. Their analysis of the general two-class logistic
regression problem relies on the analysis of the geometry of convex cones from [2].

Our paper presents generalizations and variations of Cover’s results to more than two
colors using Twerberg partitions. A partition of a data set into m > 2 classes is Tverberg
if the intersection of all the convex hulls of all the classes is nonempty. Tverberg’s theorem
guarantees Tverberg partitions exists with sufficiently large data sets and it is a key result
in combinatorial geometry (see [4, 9] and the dozens of references there). Section 2 presents
background on Tverberg-type theorems and some relevant prior work. Our new versions of
Tverberg’s theorem are presented in section 3. They yield three main applications we discuss
next. All our proofs are based on basic combinatorial geometry and probability. They are
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presented in section 4.

Existence of MLE on multiclass logistic regression. As a consequence of our stochastic
Tverberg theorems, Theorems 3.1, 3.2, 3.3, 3.4, and 3.5, we provide a sufficient condition for
all these MLEs to exist with high probability. It is worth remarking our results apply to multi-
class logistic regression, only in settings where the labels and covariates are independent, but
we expect further generalizations could be possible.

Here a sequence of events X,,,n > 1, occurs with with high probability if lim,,_,., P(X,) =

1. We say f(z) > g(x) if lim, 00 % =

Corollary 1.1 (stochastic Tverberg theorems applied to multinomial logistic regression). Fix
€ > 0, and let F' be a centrally symmetric continuous probability distribution.
Then we present the following:

1. Let D,,, m € N, denote a sequence of labeled point sets generated by drawing f(m)
points from F, and then independently assigning each point a label in [m] with uniform
probability. Let X, denote the event that the MLE exists between the data correspond-
ing to every pair of labels in D,,. Then X,, occurs with high probability as long as

f(m) > (14 e)mlogy(m) In(In(m)).

2. Fizm, 6 > 0, and let Gy, t € N, denote a sequence of labeled point sets generated
by drawing g(t) points from F, and then independently assigning each point a label in
[m] with uniform probability. Let Y; denote the event that the MLE exists between the
data corresponding to every pair of labels in Gy, even after any t points (which can be
thought of as outliers) are removed. Then Y; occurs with high probability as long as
g(t) > (1+9)mt.
The same bound applies to “one-versus-rest” logistic regression, since MLE existence in that
case 1s a weaker condition.

Data separability and MLE tolerance. = The second application of our results relates
measuring data separability and the answer to the question: How robust is the existence of
MLEs for multiclass logistic models under removal of outliers or corrupted data points?

From the research of [1], we know nonseparability of data classes is important for the
existence of MLE. More recently, when studying binomial logistic regression, Freund, Grigas,
and Mazumder [11] introduced the following notion to quantify the extent that a dataset is
nonseparable (where a~ := —min{a, 0} denotes the negative part of a):

n

1
DegNSEP* := énin — Z[yi,@Ta:i]_

eRP N

i=1

st. 18] = 1.

DegNSEP* is thus the smallest (over all normalized vectors 3) average misclassification
error of the model B over the n observations. Freund, Grigas, and Mazumder showed that
the condition number DegNSEP* informs the computational properties and guarantees of the
standard deterministic first-order steepest descent solution method for logistic regression.



4 JESUS A. DE LOERA AND THOMAS HOGAN

Denote by AX a linear perturbation of the data set X by adding, a possibly different
perturbation vector, to each data point. Thus (X + AX,y) effects a translation of the points
in X. Define PertSEP* as the smallest (or more precisely, the infimum thereof) perturbation
AX of the feature data X which will render the perturbed problem instance (X + AX,y)
separable. To formalize this notion, we can view the perturbation AX as a linear operator,
and define the operator norm notation |AX]| , := maxg, g <1[|AX 8|4 on the space R™"*P.
Then we can write

1
PertSEP* := inf —[|A]|.
AXn

s.t. (X + AX,y) is separable.

In Proposition 2.4 of [11] it is shown that DegNSEP* = PertNSEP*.

In this paper we introduce a new parameter PertSEP*; simply defined as the Lo norm
of the smallest perturbation of the feature data X which will render the perturbed problem
instance (X + AX,y) separable. In other words, it is the minimal number of data points we
could move to make the data set separable, normalized by the total number of data points.
Namely,

PertSEP*) = inf - | Ao
AX N ’

s.t. (X + AX,y) is separable.

Now we connect our separability parameter PertSEP*( to the robustness of the existence
of MLEs. A partition of data is t-tolerant when the intersection pattern of the convex hulls
of the color classes or subsets remains the same, even after any ¢ points are removed. See
Figure 1.1 for an example of a 1-tolerant Tverberg partition.

<

Figure 1.1. A Twverberg partition in three data classes with tolerance one. All three convexr hulls intersect,
even after any point is removed.

It is our observation that ¢-tolerant partitions correspond to robust MLE existence. Any t
points, possibly corrupted or outlier data, can be removed and still the convex hulls of the data
of each class intersect. The following theorem shows that the tolerance of a Radon partition
is given by PertSEP*.

Theorem 1.2. Suppose that X = X1 U X9, | X| = n is a Radon partition with tolerance
precisely equal to t. Then viewing X as a labeled dataset (with (X,y) = {(x,—1) : « €
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X1} U{(x,1,) : x € X3}), we have that

PertSEP*) = t/n.

Theorem 1.2, combined with a result of Soberén, has a corollary, stated precisely later,
which roughly says that PertSEP* of a randomly bipartitioned point set asymptotically
approaches 1/2. This is the highest possible value one could hope for since, by definition,
PertSEP*( of any two class data set is bounded above by 1/2. In fact, this result extends
easily to the multiclass setting. In other words, for a large randomly m-partitioned data set,
we expect PertSEP*, of every pair of data classes to be close to 1/2—independent of both
the dimension of the covariates, as well as the number of classes m. One can guarantee that,
with sufficiently many samples, the t tolerance can be guaranteed; thus the MLE exists even
with removal of outliers.

Centerpoints of data sets. In 1975, Tukey [24] introduced centerpoints, sometimes called
Tukey medians, as a generalization of the notion of median for high-dimensional data. Cen-
terpoints are useful in a variety of applications in nonparametric multivariate data analysis
(see e.g., [9, 19, 17] and the references there for more details). To define centerpoints, we
first define the depth for a point p, relative to a data cloud .S, as the smallest number of data
points in a closed half-space with boundary through p. We say a point p has half-space depth
k in S if that every half-space containing p contains at least k points in S. A centerpoint
of an n point data set S C R? is a point p such that every half-space containing p has at
least 775 points in S, thus it is a point of depth at least 7. Unfortunately, computing a
centerpoint is difficult, and the current best randomized algorithm constructs a centerpoint
in time O(n®*! 4+ nlogn) [6, 15]. Thus, finding an approximate centerpoint of a data set is of
interest.

Tverberg’s theorem shows a way to find a centerpoint. This is because the intersection
point of a Tverberg partition, called a Twerberg point, must be a point of half-space depth one
in each of the m = [dLHW color classes. Hence an effective way to compute Tverberg partitions
is desirable as a method to obtain centerpoints. The proof of Radon’s lemma is constructive
and, in fact, one of the most notable randomized algorithms for computing approximate
centerpoints works by repeatedly replacing subsets of d 4+ 2 points by their Radon point. In
contrast, no known polynomial time algorithm exists for computing exact Tverberg points.
Thus, fast algorithms for approximate Tverberg points have been introduced in [7, 16, 18].
Our third main application is a simple algorithm for finding a Tverberg partition among a set
of i.i.d. points drawn from a distribution which is balanced about a point p. Here and in the
rest of the paper, balanced about a point p means every hyperplane through p partitions the
distribution into two sets of equal measure.

As a result one can compute approximate centerpoints. The random models for sampling

points will be explained in subsection 2.1.

Corollary 1.3 (randomized generation of approximate centerpoints).  If we fiz a 6 > 0, then
sample and label n random points from the Random equipartition model, then with probability
approaching one as n — oo, a random balanced labeling of the points into (1 — 5)(@)
classes gives a Tverberg partition.
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Similarly, if we sample n random points from the random allocation model, then with
probability approaching one as n — oo, a random uniform labeling of the points into (1 —
5)(m) classes yields Tverberg partition.

2. Our methods: Tverberg-type theorems. We start with formal definitions and
background. We remember the famous original version of Tverberg’s theorem [25] which
generalizes Radon’s lemma to m-partitions (see [4, 9] for references and the central importance
of this theorem in convex geometry).

Definition 2.1. Given a set S C R%, a Tverberg m-partition of S is a partition of S into
m subsets S, ..., Sy with the property that all m convex hulls of the S; intersect. In other
words, we have

ﬂ conv(S;) # .

1€[m)]
The case m = 2 is called a Radon partition.

Theorem: (H. Tverberg 1966). Every set S with at least (d+1)(m—1)+1 points in Euclid-
ean d-space has at least one m-Tverberg partition (with tolerance zero).

The notion of tolerant Tverberg theorems was pioneered by Larman [12]. Here is the
definition.

Definition 2.2. Given a set S C R?, a Tverberg m-partition of S with tolerance t is a
partition of S into m subsets Si,..., Sy with the property that all m convex hulls of the S;

intersect after any t-points are removed. In other words, for all {x1,...,x;} € S, we have
m conv(S; \ {x1,...,x}) # @.
1€[m]

The following result is due to Soberén and Strausz [23].

Theorem: (Soberdn, Strausz 2012). Every set S with at least (t + 1)(m — 1)(d +1) + 1
points in R has at least one Tverberg m-partition with tolerance t. In other words, S can be

partitioned into m parts Si,..., Sy so that for all {x1,...,x¢} € S, we have
() conv(Si\ {z1,...,2:}) # 2.
1€[m)|

More recently, Soberén proved the following bound [22]. Let N denote the smallest positive
integer such that a Tverberg m-partition with tolerance ¢ exists among any N points in
dimension d. Then N = mt + O(y/t) for fixed m and d. The proof of this result relies on the
probabilistic method and, as Soberén remarked, can, in fact, be used to prove a stochastic
Tverberg-type result, which we will revisit later.

2.1. Two random models for stochastic Tverberg theorems. Before stating our main
results, we introduce two models for random data point sets. In both models we will use
the term colors instead of subsets or subclass. Hereafter, when we refer to a continuous
distribution on R? we mean continuous with respect to the Lebesgue measure on RZ. We
defer proofs of the new results stated until the next section.
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Our first model is a so-called random equipartition model i.e., we ensure that every color
has the same number of points. More specifically, given integers m and n and a continuous
probability distribution D on RY, we let Emn,p denote a random equipartitioned point set
with mn points, consisting of m colors, and n points of each color, distributed independently
according to D.

Our second model is a random allocation model. Given integers k and m and a continuous
probability distribution D on R?, we let R k,p denote a random point set with k points i.i.d.
according to D, which are randomly colored with one of m colors with uniform probability
(i.e., probability 1/m for choosing a color).

Results for the equipartition model can often be extended to the random allocation model
via the following.

Observation 2.3. The probability that a random allocation of k points into m colors is
an m-Tverberg partition with tolerance t is bounded below by the probability that a random
allocation of k points into m colors has at least n points per color, times the probability that
an equipartition of nm points into m colors is Tverberg with tolerance t.

Using these two probabilistic models we can state all the stochastic versions of Radon and
Tverberg’s theorem. To begin we can restate Cover’s result as follows.

Theorem: (T. Cover 1965). If D is a continuous probability distribution on R?, then

d
-1
P(Ronp is Radon) =1 — 27"+ Z (n ) >
k=0

In particular, we have
P(RQ,Q(d+1),D 18 Radon) B 1/2

Furthermore, for any € > 0 and any sequence of continuous probability distributions {D;},i €
7. where each Dy is a distribution on R%, we have

lim P(Ry (14¢)2i,p, s Radon) =1

1—00
and
lim P(Ry,(1—e)2i,p, i Radon) = 0.
1—00
To the best of the authors’ knowledge, the first generalization of Cover’s 1964 result to
more than two colors appeared only recently in Soberén’s paper [22].

Theorem: P. Soberén 2018. Let N,t,d, m be positive integers, and let € > 0 be a real num-
ber. Given N points in R?, a random allocation of them into m parts is a Tverberg partition
with tolerance t with probability at least 1 — €, as long as

€

t41< N/m— \/; [(d+ 1)(m — 1)N In(Nm) + N'In <1>]
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This result is quite remarkable. For any fixed m,d, and ¢, it shows that the probability
of a random allocation of N points in R? in m colors having tolerance at least (1 — §)N/m
approaches one as N goes to infinity. On the other hand, by the pigeonhole principle, any
partition of N points into m colors must have one color with at most N/m points. Thus, for
a fixed number of colors m, the tolerance of a random partition is asymptotically as high as
it could possibly be! By Theorem 1.2, this result yields the following corollary.

Corollary 2.4. For any sequence {R 2 ,p)},k € N of partitioned point sets with D a distri-
bution on R?, and any € > 0, we have | PertSEP*(R2,k,q)) — 1/2| < € with high probability.

3. Our new stochastic Tverberg theorems. Now we present all our geometric results.

First, we extend Corollary 2.4 to the multiclass setting. More generally, for fixed d and
m, for any large randomly m-partitioned data set, we expect PertSEP*( of every pair of data
points to be close to 1/2.

Theorem 3.1. Fiz e > 0. For any distribution D on R? and any sequence {R(mk,D)}, keN
of m-partitioned point sets Ry k,py = {X1,..., Xm}, we have

lim < min PertSEP*(X; U X ;) = 1/2)
k—o00 Xi,XjER(myk’[»

with high probability.

Our second theorem is a stochastic Tverberg result similar to Soberén’s and Cover’s but
for equipartitions (without considering tolerance).

Theorem 3.2 (stochastic Tverberg theorem for equipartitions).  Suppose D is a probability
distribution on R® that is balanced about some point p € R, in the sense that every hyperplane
through p partitions D into two sets of equal measure. Then

d—1 mn
(1= (355 (")) s i T < a2y 1-274p

In fact, the previous theorem is asymptotically tight in the number of colors m. This
is shown by our next theorem, which establishes an interesting threshold phenomenon for
Tverberg partitions.

Theorem 3.3 (Tverberg threshold phenomena for equipartitions).  Let D be a continuous
probability distribution in R? balanced about some point p € R Consider the sequence of
random equipartitioned point sets Ep, f(m),p, where m € N, and n = f(m) depends on m.
Then En, f(my,p s Tverberg with high probability if f(m) > loga(m), and &, fm),p is not
Twverberg with high probability if f(m) < logy(m).

We note that the number of points needed to reach the conclusion in Theorem 3.3 is
independent of the dimension, as in the aforementioned result of Soberén [22].

The next two theorems adapt both Cover’s result and Theorem 3.2 to the setting of
tolerance.
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Theorem 3.4 (stochastic Tverberg with tolerance for equipartition).  Suppose D is a prob-
ability distribution on R? that is balanced about some point p € R%, then

2d\\ "
P(Epmn,p is Tverberg with tolerance t) > ( — 9~ n/2d] Z < n/ ))

For the case of random bipartitions, we can adapt Cover’s result to obtain a stochastic
Radon theorem with tolerance.

Theorem 3.5 (stochastic Radon with tolerance for random allocation). If D is a continuous
probability distribution on R?, then

t
P(Rak,p is Radon with tolerance t) > 1 — <2_U€/(2d+2)J Z (Lk/(%j + 2)J>> .
i=0

In particular, we have

P(Ra i p is Radon with tolerance |k/(4d+4)]) > 1/2.

For random allocations with more than two colors, we will use some developments on
random allocation problems, including the following notation. If balls are thrown into m urns
uniformly and independently, let N,,(n) equal the number of throws necessary to obtain at
least m balls in each urn.

Corollary 3.6 (stochastic Tverberg for random allocation). Suppose D is a probability
distribution on R? that is balanced about some point p € RY.
1. Then

2]\
P(Ryk,p is Tverberg with tolerance t) > P(Ny(m) < k) (1 — o~ ln/2d] Z ( n/ ))

2. For the case of Tverberg without tolerance, we also have

d—1 m
1s Tverber n(m — |27t n—1
P(Rumx.p is Tverberg) > P(Ny,(m) < k) (1 (2 ;::0< i )))

3. Suppose Ry, r(m),p, m € N is a sequence of random partitioned point sets, where
n = f(m) depends on m.
Then R, f(my,p is Tverberg with high probability if f(m) > mlogy(m)In(In(m)).

4. Proofs of our results.

Proof of Theorem 1.2. Let M denote the minimal number of points perturbed among any
perturbation that makes (X,y) separable, and let N denote the minimal number of points
needing to be removed from (X, y) to make (X, y) separable. Then PertSEP*,(X,y) is equal
to M /n, and the tolerance t of X1, X5 is equal to N. It suffices to show that M = N. To see
that M > N, note if @1, ...xy in X are moved so that the resulting set (X', 3’) is separable,
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then (X \ {x1,z2,...,xn},y \ {y1,...yn}) is also separable. To see that M < N, suppose
that (X \ {x1,z2,...,xnm},y \ {y1,...ynm}) is separable by a hyperplane h. Then moving
x1,...,x) to the appropriate sides of the hyperplane determined by h, we can construct a
separable dataset (X’,y’), obtained from moving M points from (X, y). [ |

Proof of Theorem 3.1. For fixed m,d, and §, let T(N) denote the event that a random
allocation of N points in R? in m colors has tolerance at least (1 — §)N/m. By Soberén’s
theorem above, P(T'(NN)) asymptotically approaches one as N goes to infinity. In particular,
for fixed ¢ > 0, we can pick N such that P(T(N)) > 1 — (. Now, for fixed m and ¢, let E;(N)
denote the event that a random allocation of N points into m colors has between (1 —€)N/m
and (1 4+ €)N/m points of color i, where i € [m]. By the law of large numbers, P(E;(N))
approaches one as N goes to infinity. As the m + 1 events E;(N), where j = {0,1,...,m},
all have probability approaching one, the probability of the intersection of all these events
also approaches one. This can be seen by applying the union bound to their complements.
Thus, for any fixed ez > 0, there exists N’ € N such that the E;(N’), where j = {0,1,...,m},
simultaneously occur with probability (1 — e). Thus, if we pick an N > max(N, N’), by
the union bound, we have with probability 1 — ¢ — €2, that T(N) and E;(N’), where j =
{0,1,...,m}, simultaneously occur.

Therefore, with probability 1 — ¢ — ez, each pair of colors has at most (1+ €)2N’/m points
and is a Radon partition of tolerance at least (1 — §)N’/m (the tolerance of each bipartition
is a priori bounded below by the tolerance of the m-partition). By Theorem 1.2, PertSEP*,
of each pair is at least (1 — 0)/2(1 + €) with probability (1 — e3). Since d, (, €, and ey were
arbitrary, this completes the proof.

Proof of the lower bound in Theorem 3.2. After a possible translation, we can assume with-
out loss of generality that D is balanced about the origin. We will prove that

d—1 m
—1
<1 — <2n+1 Z (n . >)> < P(Em,n,D is Tverberg)
k=0

by bounding from below the probability that the origin is a Tverberg point. We may assume
without loss of generality that none of the randomly selected points are the origin. Further-
more, we can radially project the points onto a sphere of radius smaller than the minimal
norm of the projected points, since that will not affect whether the origin is a Tverberg point.
After this projection, we may assume the points are uniformly sampled on a small sphere
centered at the origin. The origin is then a Tverberg point as long as the points from each
color contain the origin in their convex hull. This is equivalent to showing no color has all
of its points contained in one hemisphere. For a fixed color, the probability of the n points
of that color being contained in one hemisphere was computed by Wagner and Welzl [26]
(generalizing the celebrated result of Wendel [27] addressing the case when D is rotationally
invariant about the origin) as

(4.1) (2‘”“ :i:; (” . 1)) : m
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Using this to compute the probability that none of the m color classes is contained in one
hemisphere, we obtain the desired bound above.

Proof of the upper bound in Theorem 3.2. Again, we assume without loss of generality
that D is balanced about the origin. We will first treat the case d = 1, and then explain
how to obtain the bound for arbitrary d. To bound the probability of a Tverberg partition
from above, we bound the probability of the complement below. We let E denote the event
that the convex hulls have empty intersection. In dimension one, F is contained in the event
that there is at least one color class with all points less than zero, and at least one color
class with all points greater than zero. Since we assume that the origin equipartitions D, we
can rephrase this as the probability that among m people each flipping n fair coins, there
is at least one person with all heads and at least one person with all tails, that is, denoting
by H and T the events that at least one person gets all heads or tails respectively, we have
P(E) > P(HNT). We have

PHNT)=PH)+P(T)-P(HUT)=P(H)+P(T)—- (1 -P(HUT)).
Since P(H) =P(T) = (1 —27")™ and P((HUT)¢) = 1 — (1 — 27"*1)™_this yields
P(HNT) =1+ (1—27""H)"m —2(1 —27™)™,
The probability of a Tverberg partition is thus bounded as follows:
P(Emn.p is Tverberg) <1 —P(E) <1 -P(HNT)=2(1-2"")™ — (1 —27"TH)m,

This proves the desired bound for dimension one. For higher dimensions, we note that
if we let p;, denote the projection onto the ith axis for ¢ < d, we have that the signs of
p1(x),...,pq(x) are independent Bernoulli random variables with probability 1/2 (as the hy-
perplane orthogonal to the ith axis equipartitions D by the assumption that D is balanced
about the origin). Thus to have a Tverberg partition, we must have that no pair of the color
classes are separated by the origin after projecting onto the d coordinate axes. Since these d
events are independent, the probability of this happening is bounded as follows:

P(Emn,p is Tverberg) < (2(1 —2T)™ (1 — 2*n+1)m)d.

Proof of Theorem 3.3. We will show that &, () p is Tverberg with high probability if
f(m) > logy(m). Fix an € > 0. We set n = (1 + ¢€)logy(m) and apply the lower bound in
Theorem 3.2 to deduce that

d—1 m
: —(1+€)* m n—1
P(Epmn,p is Tverberg ) > (1 — <2 (1-+€)+log, (m)+1 E < i >>>

k=0

(=g C)

Choosing a constant K so that Kn? > 2 Zi;é (";1), we have
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(1 — Knim~0+)ym < P(Epmn,p is Tverberg).

We will show that the limit as m approaches infinity of the left-hand side is bigger than
e~% for any § > 0. Fix § > 0. As n? ~ O(In(m)?), there exists an M such that Kn%m=¢ < §
for all m > M. Consequently, (1 — Kn%m~0+9)m > (1 — §m=1)™ for all m > M. Thus

lim (1 — Kn®m~0F)™ > lim (1 —6m )™ =e?.

m—o0 m—0o0

Since § was arbitrary, we see that the probability of a Tverberg partition tends to one.

Now we show that &, ¢(m) p is not Tverberg with high probability if f(m) < logy(m).
As before, we fix an e greater than zero apply the upper bound in Theorem 3.2 with n =
(1 — €)loga(m) to obtain

P(Emn.p is Tverberg) < (2(1 — m™ )™ — (1 — 2m~ o)™y,

For any v > 0, when m is large, both terms inside the parentheses are smaller than (1 —
ym~1)™. Since limy, 00 (1 —7ym~1)™ = €77, the probability of a Tverberg partition converges
to zero as m approaches infinity.

Proof of Theorem 3.4. Again, we assume without loss of generality that D is balanced
about 0. Let S denote the set of points of some fixed color. Then we assume that |S| = n, and
we can partition S into |n/2d| subsets Si,...,S|,/2q) With S; > 2d for each i. By Wagner
and Welzl’s result (see (4.1) above), for each ¢, conv(S;) contains the origin with probability
at least 1/2. By independence, the probability that less than ¢ + 1 of the S; contain the
origin is less than 2~ 17/2d St (L”/;dj). On the other hand, if at least ¢t + 1 of the conv(S;)
contain the origin, then by pigeonhole principle conv(S \ {x1,...,x:}) contains the origin for
any ¢1,...,x; € S. Thus, with probability at least 1 — 2~ "/2d] 25:1 (L"/fdj), we have that
conv(S) \ {x1,...,x:}) contains the origin. Since this probability is independent for each of
the m colors, the result follows. |

Using a similar strategy combined with Cover’s result, we give the proof of Theorem 3.5
below.

Proof of Theorem 3.5. Given k points in R? colored red and blue by random allocation, we
arbitrarily partition them into |k/(2d + 2)]| groups of size at least 2d 4 2. By Cover’s result,
for each fixed group, the convex hulls (of the red and blue points) in that group intersect
with probability at least 1/2. For each of the |k/(2d + 2)] groups, we think of the event
that the convex hulls in that group intersect as a “success.” Then the probability that at
least t + 1 groups have intersecting convex hulls is bounded below by the probability that a
binomial process with |k/(2d + 2)] trials and success probability 1/2 has at least ¢ + 1 total
successes. Computing this binomial probability yields the theorem. (If at least ¢t + 1 groups
have intersecting convex hulls, then removing at most ¢ points leaves at least one group with
intersecting convex hulls.) [ ]

Proof of Corollary 3.6. We split the proof according to the three respective parts of the
statement.
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1. This follows from Observation 2.3 combined with Theorem 3.4.

2. The result for the special case of Tverberg without tolerance then follows the same
reasoning as part (1), except using Theorem 3.2 in place of Theorem 3.4.

3. To show the asymptotic result, we use a result on urn models due to Erdos and Renyi
[10] saying that

Tim P <N“;L(m < log(n) + (m — 1) log(log(n)) + :c> — eap <—<m€_1)|> .

This implies that for any € > 0 and sequence of log(log(m))loga(m)(1 + €) points
allocated into m urns, we have at least loga(m)(1 + €/2) points in each urn with
high probability. Then we apply Theorem 3.3, which says that any equipartition of a
point set into m colors and logs(m)(1 4 €/2) points per color is Tverberg with high
probability. |

Proof of Corollary 1.1. For part one, note that a direct application of Corollary 3.6, part
3 implies that the D,, are Tverberg m-partitions with high probability. Since the MLE exists
for any two classes in every Tverberg partition, we therefore have that the MLE exists between
any two classes in D,,, with high probability.

For part two, consider F' and Gy = {X1,...,X,,} as hypothesized, and apply Theorem
3.1 with F'= D, and Gy = {R(mmx,p)}, k € N. Then we have that

kh—>nolo (Xig}ijnth PertSEP*((X; U X ;) = 1/2>
with high probability. In particular, for fixed § and ¢, we can find N such that

(4.2) minx,; x;ecyPertSEP*o(X; U X ;) = (1 —0)/2

holds with probability 1 —e. Then, applying Theorem 1.2 to (4.2), for each pair X;, X;, we

have a Radon partition with tolerance (|X;| + |X;|)(1 — 0)/2 with probability 1 — €. This
implies that min;e, (| X:]) > (mingep (| X:]) + max;ep, (1X:))/(1 = 6)/2, and thus

. Gil(1 = 9)

mine ) (| X)) > max;ep, (| X:[)(1 —6)/(1+6) > m+0)
In light of this and (4.2), for each pair X;, X;, we actually have a Radon partition with
tolerance ‘Tanll(ig)@ with probability 1 —e. As € and § were arbitrary, the theorem follows. H

Proof of Corollary 1.3. According to our Theorem 3.3, a random equipartition of n such
points into (1 — §)n/logy(n) sets should produce a Tverberg partition with probability ap-
proaching one as n — oo. Similarly, for the random allocation model, we can use Corollary 3.6,
part 3, which shows that a random partition of n such points into (1 —d§)n/(logy(n) In(in(n)))
sets should produce a Tverberg partition with probability approaching one as n — oo. |
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5. Conclusions. This paper presented applications of Tverberg-type results to data sci-
ence. We end with a summary and a few natural open questions.

The majority of our applications were to the existence of the maximume-likelihood es-
timator. Table 5.1 summarizes our geometric theorems (middle column) as well as their
corresponding consequences to the existence of the maximum-likelihood estimator in terms of
the size of the data set (right column). We included the tolerant existence of MLE.

Table 5.1
Stochastic analogues of Tverberg’s theorem and their implications for existence of MLFEs. By “Likely MLE
FEzistence,” we mean that one can bound below the probability of MLE existence as a function of the number of
input data points, according to the corresponding theorems in the “Stochastic” column.

Deterministic version Stochastic version Likely MLE existence

Radon Cover’s theorem [8] pair of data classes (mentioned above)

Tverberg Thm 3.2, 3.3 all pairs of data classes
(Corollary 1.1 part 1)

Radon with tolerance Thm 3.5 pair of data classes with outliers removed
(Corollary 1.1 part 2)

Tverberg with tolerance | Thm 3.6, 3.4, [22] all pairs of classes with outliers removed
(Corollary 1.1 part 2)

An important question remains open: How do these results generalize when the class labels
are not independent of the features? Our results hold only in the cases of independence. It
would be desirable to obtain stochastic Tverberg theorems for collections of points that are
not i.i.d., similar to the generalization of [5] in the case of two colors. We were unable to
complete the technical details for such a result.

As we pointed out, PertSEP* is related to computational performance. We do not know
of a connection of PertSEP*0 to computational properties related to logistic regression, so
this is another interesting open question.

Finally, we summarize the performance and time complexity of various algorithms for
obtaining Tverberg partitions, including our own (last two rows), in Table 5.2.

Table 5.2
Approximate Tverberg partitions for balanced distributions, where n is the total number of points. Below
is our prior work and results.

Method Number of colors Time complexity
Tverberg [25] [(n+1)/(d+1)] PPAD (unknown if polynomial)
Mulzer, Werner [16] n/(4d + 1)* d0Ueedp,
Rolnick, Soberén [18] | n/d(d + 1)* with error prob. ¢ | weakly poly. in n,d and log(1/e)
Random equipartition O(b@%) O(n)
Random allocation O(m) O(n)

We gave the first probabilistic construction for Tverberg partitions (without tolerance)
that is asymptotically optimal in the number of colors. For the case of Tverberg with toler-
ance, Soberén gave a probabilistic bound which is asymptotically optimal for obtaining large
tolerance in a random partition. Corollary 3.6 part 3 presents improvements on Soberdén’s
bound when the number of colors is large relative to the desired tolerance. In fact, manipu-
lating Soberén’s result we could have obtained a corollary of the format, but ours is stronger.
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On the other hand, our Theorem 3.5 yields a weaker expected tolerance than Soberéns result,
but our proof is shorter and more elementary. A natural open question is whether one could
obtain a bound that encapsulates all of these results as special cases.
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