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Structural vibration tions. This assumption makes these approaches suitable for open areas; however, real
Non-isotropic multilateration buildings have various types of obstructions (e.g., walls, furniture, etc.) which affect wave

propagation velocities and hence significantly reduce localization accuracy. Therefore, the
prior work requires unobstructed paths between footsteps and sensors for accurate occu-
pant localization, which increases the sensing density requirement and thus, instrumenta-
tion and maintenance costs. We have observed that the obstruction mass is one of the key
factors in affecting the wave propagation velocity and reducing the localization accuracy.
Therefore, to overcome the obstruction challenge, we localize footsteps by considering dif-
ferent velocities between the footsteps and sensors depending on the existence and mass
of obstruction on the wave path. Specifically, we (1) detect and estimate the mass of the
obstruction by characterizing the wave attenuation rate, (2) use this estimated mass to find
the propagation velocities for localization by modeling the velocity-mass relationship
through the lamb wave characteristics, and (3) introduce a non-isotropic multilateration
approach which robustly leverages these propagation velocities to locate the footsteps
(and the occupants). In field experiments, we achieved average localization error of 0.61
meters, which is (1) the same as the average localization error when there is no obstruction
and (2) 1.6X improvement compared to the baseline approach.
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1. Introduction

Step-level occupant localization is useful in various smart building applications such as senior/healthcare and energy
management. For example, knowing the footstep location enables non-intrusive patient monitoring in common residential
and commercial buildings through estimating gait-related features such as stride length and walking speed. This allows
timely diagnosis and treatment of diseases such as dementia, chronic obstructive pulmonary disease, and muscular dystro-
phy [1-5]. Further, knowing the location of the occupants inside the building enables efficient heating and cooling which
ensures the comfort of the occupants while reducing the energy consumption [6-8]. Some of the current sensing approaches
for occupant localization include mobile-based [9-12], Radio-Frequency-based (RF) [13-15], and pressure-based [16-18]
approaches. However, the application of these approaches in real-life scenarios is limited due to installment and mainte-
nance requirements. Mobile-based approaches require the occupants to carry or wear a device which might be difficult to
enforce in some applications (e.g., senior/healthcare) [9-12]. On the other hand, RF-based and pressure-based sensing either
require dense sensor deployment or extensive calibration for step-level occupant localization [13-18].

To overcome these limitations, prior work has explored non-intrusive human footstep location estimation using struc-
tural vibrations [19]. The intuition is that footsteps induce floor vibrations, which propagate through the floor structure
to multiple sensors and arrive at different sensors at different times. These Time Differences of Arrival (TDoA) of waves
between various sensor pairs are used to localize the occupants through multilateration approach. This approach assumes
that the wave propagation velocities between the footstep and the sensors are similar (i.e., isotropic behaviour) and there-
fore, is suitable for open spaces. However, in real life structures, there are various types of obstruction (e.g., walls, furniture,
etc.) which affect the floor structural properties and hence the wave propagation velocity [20]. In turn, these changes in
propagation velocity can significantly reduce the occupant localization accuracy. Therefore, to maintain the localization
accuracy, the prior works require multiple sensors with unobstructed wave propagation path to footsteps in every room
which increases the instrumentation and maintenance costs [19,21-24].

In this paper, we introduce an obstruction-invariant footstep-vibration-based occupant localization approach which con-
siders different wave propagation velocities between the footstep and various sensors depending on the existence and the
mass of the obstruction. By considering the obstruction effect, we improve the localization performance of the vibration-
based sensing in obstructive indoor settings while reducing the instrumentation and maintenance requirements. To achieve
this goal, the main research challenges are that (1) the relationship between the wave propagation velocity and the obstruc-
tion mass is unknown and structure-dependent and (2) for each footstep, the existence and the mass of obstruction on the
vibration wave path is also unknown. To overcome these challenges, we first characterize the frequency-dependent atten-
uation of the footstep-induced vibrations to find the existence and mass of the obstruction on the path between the footstep
and each sensor using the signal energy. Then, we employ the lamb wave propagation characteristics to model the velocity-
mass relationship which is suitable for various structures. This relationship enables finding the wave propagation velocities
between the footstep and the sensors. Finally, we introduce a non-isotropic and grid-search-based multilateration approach
which estimates the footstep location when the propagation velocities between the footstep and different sensors are dif-
ferent. The objective of this paper is to design a novel, practical, and end-to-end sensing approach for occupant localization
in obstructive indoor settings. To validate the system performance, we use field experiments in multiple structure with
human participants.

In summary, the core contributions of this paper are:

e We present a step-level occupant localization approach which is robust to the existence of obstructions (e.g., furniture
and walls) using footstep-induced floor vibration.

 We employ physical principles of lamb wave propagation to characterize the effects of the obstruction mass on the wave
attenuation rate and propagation velocity. This characterization enables estimating the existence and mass of the
obstruction and in turn, the footstep-sensor wave propagation velocities for new footsteps. Finally, we leverage these
velocities to locate the occupants using our non-isotropic multilateration approach.

e We evaluate the step-level occupant localization when there exists an obstruction in various structures with different
structural materials and characteristics.

The rest of the paper is organized as follows: First, we discuss the related works and how our work is distinguished from
them (in Section 2). Then, we discuss the physical intuition behind lamb wave propagation characteristics and how it is
affected by the addition of an obstruction mass (in Section 3). Next, we discuss our obstruction-invariant occupant localiza-
tion approach (in Section 4). Finally, we describe our evaluation procedure, including the experiments we conducted and the
analysis results (in Section 5), and conclude our work.

2. Related work

In this section, we explore the related work and the remaining research gap for different aspects of vibration-based occu-
pant localization in obstructed indoor settings. We first discuss the existing approaches for analyzing the addition of mass on
the floor. Then, we describe the general source localization and the vibration-based occupant localization approaches.
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2.1. Mass addition for wave propagation and structural vibration control

Existence of mass on the floor affects the structural dynamic properties as well as the vibration wave propagation char-
acteristics. Based on this effect, adding a series of masses (and mass dampers) in designated locations on the floor have been
used to control the structural vibrations and noise of the floors [25-28]. The main goal of this process is to modify the modal
characteristics of the floor to attenuate the vibration noise and improve the living condition for the residents. Further, the
effect of mass on wave propagation velocity has been studied for guiding and focusing flexural lamb waves via adding elastic
metamaterial masses [29,30]. However, these approaches are not suitable in our problem. First, they are focused on the for-
ward problem of how the addition of mass affects the structural vibrations, whereas our problem is an inverse problem (i.e.,
finding mass based on the structural vibration). Second, they develop a physical model which is difficult in real-life floors for
which the structural parameters and configuration are often unknown and uncertain. To overcome these limitations, we
introduce a physics-guided, data-driven approach to (1) estimate the obstruction mass using the structural vibration and
(2) characterize the relationship between the obstruction mass and wave propagation velocity.

2.2. Floor-vibration-based occupant localization

The objective of the floor-vibration-based occupant localization is to estimate the unknown footstep location using the
vibration signals received in multiple sensors of known location. This field of study is a building-scale version of vibration
source localization, which is common in the field of earthquake engineering and seismology [31-33]. The main current
approaches for occupant localization include classification-based approaches, TDoA-based approaches, and physical-
model-based approaches. The classification approach aims to match the signals received in various locations to a set of sig-
nals from known locations [34]. TDoA-based approaches leverage the fact that the vibration waves caused by the footsteps
arrive at different sensors at different times. A common approach to leverage these TDoAs is multilateration [19,22-24].
Multilateration is based on the fact that the possible locations of the footstep given a specific Time Difference of Arrival
(TDoA) between two sensors and wave propagation velocity form a hyperbola. Having more sensors results in additional
TDoAs and hyperbolas whose intersection is the footstep location. Alternatively, the sign of the TDoAs can be used to locate
the footstep by recurrent division of the search space [35].

However, obstructions such as walls and furniture affect the wave propagation characteristics. This effect results in either
extensive calibration requirements, higher sensing requirements, or reduced localization performance for the classification-
based and TDoA-based approaches. The physical-model-based approaches compare the vibration measurements with the
physical model predictions to estimate the occupant location. Hence, they potentially can handle the obstruction effect
by including it in the physical model [6,36]. However, these approaches require knowing the structural characteristics for
modeling which might not be known in many buildings. In this paper, based on lamb wave properties, we characterize
the relationship between the wave propagation velocity and the obstruction mass to enable TDoA-based occupant localiza-
tion. This approach does not require extensive calibration or knowing the structural characteristics.

3. The physics behind obstruction effect on footstep-induced vibration wave propagation

We utilize the footstep-induced floor vibrations to localize the occupants in obstructive indoor settings. In this section, we
provide a brief background of the physics of the footstep-induced floor vibration wave propagation and how it is affected by
obstructions such as walls and furniture. The footsteps cause elastic vibration waves in the floor which travels outward from
the footstep location. These elastic vibration waves can be formulated as Lamb waves because (1) the floors are plates with
free surfaces on the top and bottom and (2) due to the low frequency nature of the footstep vibrations, the ratio of wave-
length to floor thickness is large in our application [37,19].

The Effect of Obstruction Mass on the Lamb Wave Attenuation Rate: The attenuation rate of the Lamb waves depends on the
floor mass and the frequency (i.e., higher frequency components show higher attenuation rate) [38]. The addition of the
obstruction results in larger mass which in turn results in additional frequency-dependent attenuation. In other words,
obstructions cause different levels of energy reduction across various frequency components of the vibration wave. For a speci-
ficcomponent, this attenuation can potentially be used to estimate the obstruction mass by modeling the relationship between
the obstruction mass and the component energies. However, these component energies also depend on the footstep force and
thus, it is difficult to find out if the energy reduction is caused by the addition of the mass or a lighter footstep. To negate the
effect of the footstep force, we instead model the relationship between the obstruction mass and the ratios of the different fre-
quency component amplitudes. The main intuitions are: (1) the obstruction-induced wave attenuation rate is frequency-
dependent and (2) for the small displacements caused by the footsteps, the structure behaves linearly and hence increasing
the footstep force results in a similar increase in all the frequency component amplitudes (e.g., if the footstep force is twice
as large, the amplitude of all the frequency components is approximately twice as large). Therefore, by considering the fre-
quency amplitude ratios, we keep the effect of the obstruction while negating the effect of the footstep force. Fig. 1 shows
the changes in a sample ratio for different mass levels (ratio of frequency amplitude at 10 Hz over the amplitude at 60 Hz). These
specific frequencies are chosen empirically for better illustration of the obstruction effect intuition. This figure shows that
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Fig. 1. The Effect of the Obstruction Mass on the Frequency Amplitude Ratios (ratio of frequency amplitude at 10 Hz over the amplitude at 60 Hz). This
figure shows that addition of the mass results in higher ratio between the amplitude of these components which means that the attenuation at 60 Hz is
more significant than the attenuation at 10 Hz.

addition of the mass results in higher ratio which means that the attenuation at 60 Hz is more significant than the attenuation at
10 Hz.

The Effect of Obstruction Mass on Lamb Wave Propagation Velocity: In general, Lamb waves show two infinite sets of prop-
agation modes: symmetric (S) and anti-symmetric (A). However, for low frequency footstep-induced vibrations, only the zer-
oth order modes (i.e., Sp and Ap) can exist and among them, the Ao modes are most pronounced in magnitude (while Sy modes
are barely visible and hence negligible) [39]. For asymmetrical modes of low frequency (i.e., long flexural waves), the wave
propagation velocity is estimated using [40]

_A o it p
éfA+2,up (M

where ¢ and 4 are the Lamé constants which describe the material properties, 2f is the thickness of the plate, ¢ is the
wavenumber, and p is the material density. This equation is based on the assumption of an infinite plate. One of the main
differences between a finite and infinite medium is the reflection and refraction effect which happens in the finite medium.
However, for localization purposes, the most important part of the vibration wave signal is the first arrival, which happens in
the shortest path (with no reflection). This first arrival is used for estimating the Time-Difference-of-Arrival (TDoA) between
sensors which is then mapped to the footstep location. Further, from our experiments, the waves dissipate between foot-
steps, thus each footstep can be assessed independently. Therefore, the assumption of an infinite plate is a reasonable
approximation for our localization problem. Based on this equation, for given floor thickness and material properties, the
wave propagation velocity depends on (1) the floor mass which can be affected by the obstruction mass and (2) the fre-
quency (i.e., is dispersive). We use these two principles in designing our obstruction-invariant occupant localization
approach, as will be discussed in Section 4.2. Fig. 2 shows that adding more mass results in lower wave propagation velocity.
This is shown by reduced ratio of the obstructed velocity to the unobstructed velocity (which does not change across mass
levels).

Fig. 3 shows an intuitive illustration of the effects of the obstruction on the wave propagation attenuation and velocity.
This figure shows the footstep caused by an occupant walking and two sensors of the same distance to the footstep. To reach
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Fig. 2. The effect of the obstruction mass on the wave propagation velocity. This figure shows that adding more mass results in lower wave propagation
velocity.
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Fig. 3. The obstruction effect intuition. The obstruction affect the signals in both time and frequency domain. These observations are the cornerstone of our
obstruction-invariant occupant localization approach.

one of these sensors, the footstep-induced vibration wave propagates through an obstruction. The frequency domain repre-
sentations of the vibration signals show the frequency-dependent nature of obstruction-induced attenuation. For example,
the frequency component of 140 Hz has higher attenuation than the component of 60 Hz. In this figure, we have normalized
both signals to have the same maximum to reduce the differences caused by footstep force. On the other hand, the time
domain representations of the signals show that the vibration waves reach the obstructed sensor later than the unobstructed
sensor. Considering the same footstep-sensor distance, we can conclude that the wave propagation velocity is lower for the
obstructed case. This observation is in line with the lamb wave propagation characteristics mentioned in Eq. (1). These
observations and principles form the cornerstone of our obstruction-invariant occupant localization approach which is dis-
cussed in Section 4.

4. Obstruction-invariant occupant localization

Our approach improves robustness to obstructions by accounting for velocity differences when obstructions of different
mass are present. To this end, the approach consists of three main modules: (1) footstep detection, (2) obstruction charac-
terization, and (3) step-level localization. The different stages of this approach are presented in Fig. 4.

4.1. Footstep detection module

The footstep detection module collects the floor vibration data and then extracts the parts of signal that correspond to
footstep-induced floor vibration responses. Data collection is performed using geophones which are low cost vibration sen-
sors that measure the vertical velocity of floor vibration [41]. Then, the vibration signals are amplified using an op-amp to
improve their resolution [42]. Finally, the signals are digitized and transferred to PC for further analysis. An example of our
sensing system is presented in Fig. 5.

The ambient vibration signal sensed by our system consists of impulsive vibration events (such as footsteps, object falls,
and door closings) and periodic or white background noise (such as machinery or measurement noise). To ensure we are
localizing footsteps and not the other irrelevant impulsive events, we extract the footsteps from a mixture of possible impul-
sive excitations. To this end, we first detect any impulsive excitations using a variance-based anomaly detection method and
then distinguish between footsteps and other impulses using a model-transfer-based SVM classifier [43,44].

The variance-based anomaly detection approach finds the parts of the signal which are of higher variance compared to
the ambient noise. To this end, we consider a sliding window over the signal and for each window evaluate the null hypoth-
esis Hy : 02, = ¢2 (i.e., the windowed signal is noise) against the alternative hypothesis H; : 62, # ¢2. In these equations, g2 is
the variance of the windowed signal and &2 is the variance of the ambient noise which is found based on a part of signal with
no impulsive vibration event. This test is a Chi-squared test because the variance of a Gaussian ambient noise follows a
scaled Chi-squared distribution. The signal windows for which the null hypothesis is rejected are detected as impulsive exci-
tations [19]. The model-transfer-based SVM classifier aims to train a footstep model which distinguishes the footsteps from
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other impulsive excitations across different structures. To this end, we first project the data into a space in which the struc-
tural effects are minimized and therefore, the data mainly represents the excitations. Then, we train a SVM classifier in the
projected space [43,45,44]. Fig. 5 shows an example of the impulse detection process.
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Impulse Detection

v

Model-Transfer-Based Footstep Classification

____________________________________________________ ;___________________________

Obstruction Mass Estimation

v

Wavelet Decomposition

Obstruction Characterization $
(Sec 4.2)

Scale Component Selection

Component 2 ]

Component 1 A
Obst. Wave Prop.
Velocity Estimation

| S S SR

Energy-Based TDoA
Estimation

. . Non-Isotropic Multilateration
Obstruction-Invariant

Footstep Location Estimation I
(Sec 4.3) v

Component-Based Location Averaging

v

Obstruction-Invariant
Occupant Location

Fig. 4. Obstruction-invariant occupant localization approach.
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Fig. 5. An example of footstep-induced floor vibration signals measured by a geophone.
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4.2. Obstruction characterization module

Our obstruction characterization module first detects and estimates the obstruction mass and then finds the wave prop-
agation velocities when the wave propagates through the obstruction.

Based on the lamb wave propagation characteristics, this propagation velocity is frequency-dependent (aka, the disper-
sion effect [22,19]) and depends on the obstruction mass, as discussed in Section 3. Therefore, we first decompose the signal
into scale components using a time frequency representation and select a subset of scale components with high energy in all
the sensors. Then, for each chosen scale component, we estimate the wave propagation velocity knowing the obstruction
mass.

4.2.1. Obstruction mass estimation

To detect and estimate the obstruction mass, we characterize the wave attenuation rates caused by the obstruction. Based
on the discussion in Section 3, we characterize the relationship between the obstruction mass and the ratios of the amplitude
of various frequency components (which are estimated using fft [46]). Further, for the small displacements caused by the
footsteps, the structure behaves linearly and thus, we assume a linear relationship between the frequency amplitude ratios
and the mass levels. However, considering the ratios between various frequency components results in a large number of
ratio features which in turn increase the chance of model over-fitting. Therefore, we first choose a subset of the ratios for
training a mass-ratio model. To this end, we first divide the footstep vibration data into training, validation, and test sets.
Then, using the training data, we choose a subset of the ratios which have (1) low standard deviation across the samples
in the training set (to improve the robustness) and (2) large correlation coefficient with the mass levels (to ensure the lin-
earity and improve accuracy). Then, among the chosen ratios, we employ a greedy wrapper approach to select the ratio fea-
tures which result in lower validation error [47]. These remaining feature are then used for training a linear model which is
used for detecting and predicting the obstruction mass using the footstep-induced vibration events in the test set. This model
is trained for the footsteps that happen in a specific location (e.g., the entrance of the apartment in real-life applications).

4.2.2. Wavelet decomposition

To characterize the dispersive (i.e., frequency-dependent) wave propagation velocities, we have decomposed the signal
using the wavelet transform which is suitable for analyzing and decomposing non-stationary signals (e.g., impulsive signals
such as footsteps) [19,48]. The wavelet decomposition can be described as [49],

+oo

T(a,b) = w(a) / X(5)'¥; ,(5)ds 2)
in which w(a) is a weighting function and P, 4(s) is the dilated and time-shifted version of the basis function which is called
the mother wavelet '(s). In this paper, we have chosen the Mexican hat wavelet as the mother wavelet because it provides a
good representation of the footstep-induced vibration signal characteristics [50]. To select the range of the scales to be ana-
lyzed, we have used two notions: (1) geophones are second-degree high pass filters for frequencies lower than 10 Hz [51]
and (2) the bandwidth of geophone is 240 Hz [41]. Therefore, the range of the scales we have used for this analysis is
between 25 and 300 (i.e., approximately 20 and 250 Hz for sampling rate of 25.6 kHz and Mexican hat wavelet).

4.2.3. Scale component selection

Using all the scale components for localization is not suitable because (1) it is computationally expensive and (2) it
decreases the localization performance because the obstruction-induced attenuation potentially causes low-energy scale
components with low Signal-to-Noise-Ratio (SNR) which result in large localization errors. Therefore, to overcome the addi-
tional obstruction-induced attenuation, we choose a subset of the scale components with high energies in all the sensors for
localization. Specifically, we first average the scale component energies across the sensors and then choose the n compo-
nents with the highest average energy. Choosing the n is an important part of this process. On the one hand, choosing higher
n results in reduced effect of noise and outliers. On the other hand, choosing scales of low energy results in large errors in
location estimation. This trade-off will be discussed in more detail in Section 5.4.2. In this paper, we have empirically chosen
n=2.

4.2.4. Obstructed wave propagation velocity estimation
We estimate the propagation velocity of the vibration wave travelling through an obstruction based on Lamb wave prop-
agation characteristics. Specifically, based on Eq. (1), we estimate the obstructed velocity as the ratio of the unobstructed
velocity for a given scale (or frequency) component through
2 4p2F A H
Vobs _3 é f},+2‘u Pat+Mops (3)
2 - 2f
v Ry

unobs A2 pg

where p and 4 are the Lamé constants which describe the material properties, 2f is the thickness of the plate, ¢ is the
wavenumber, p, is the mass of the floor per unit of area, m, is the mass of the obstruction, and V,,s and Vs are the
obstructed and unobstructed velocities. We can simplify this equation because (1) we use specific decomposed scale com-
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ponents and hence the wavenumber is constant, (2) the Lamé constants depend on the Poisson ratio and the modulus of elas-
ticity, which are a function of the structural material and therefore do not change with obstruction, and (3) we assume that
the obstruction does not affect the effective thickness of the floor because it simply sits on the floor or has minimal connec-
tion to the floor and hence, there is no significant structural integrity (which is true for most common obstructions such as
furniture and non-load-bearing partition walls). Therefore, we have

Vobs ,0
S 4
V unobs Pq + Mops ( )

Using Eq. (4), we estimate the obstructed velocity based on the unobstructed wave propagation velocity, the mass of
obstruction, and the mass per unit of area of the floor. The unobstructed velocity can be estimated either using additional
unobstructed sensors or during the time that the obstruction is not present (through either calibration or our prior
calibration-free approach [19]). The obstruction mass was estimated in Section 4.2.1. Finally, the floor mass can be estimated
using the specification sheets and the available structural drawings.

4.3. Obstruction-invariant footstep location estimation module

This module performs step-level and obstruction-invariant occupant localization using our non-isotropic multilateration
approach which considers different wave propagation velocities between the footsteps and sensors based on the obstruction
mass on the wave path. To this end, we first estimate the Time of Arrivals (ToA) for the vibration signals using an energy-
based approach. Then, we utilize these ToAs and the propagation velocities (estimated in Section 4.2.4) for step-level local-
ization through a non-isotropic multilateration approach. We perform this location estimation for the scale components
selected in Section 4.2.3 and combine their estimations to find the step-level occupant location.

4.3.1. Energy-based TDoA estimation

To find the TDoA between the signals, we have estimated the time where a certain percentage of the energy of footstep-
induced vibration happens for each sensor. Generally, current approaches for estimating the TDoA are either threshold-based
[19,52] or similarity-based (e.g., cross-correlation) [53]. This energy-based approach is more robust than the current
approaches because it is less affected by (1) missing peaks compared to the peak-based approaches and (2) signal distortions
caused by reflections, dispersion, and multipath compared to the similarity-based approaches [54]. We have observed that
considering the transient part of the vibration signals for finding the TDoAs result in more accurate estimations. With that in
mind, too small of a value for this threshold results in finding the TDoA using the noisy part of the signal and too large of a
value results in missing the arrival time of the signals. In our experiments, we have empirically found that 15% to be a suit-
able threshold in this middle range representing the vibration signal arrivals.

4.3.2. Non-isotropic multilateration and component-based location averaging

Our non-isotropic multilateration formulation, which is able to consider various propagation velocities in different direc-
tions, has two main steps: (1) the simulation step and (2) the filtering step. The objective of the simulation step is to find the
possible TDoA ranges caused by a footstep. To this end, we first define a Possible Location Set (PLS) for the footstep (e.g.,
inside the boundary of the room). Then, we estimate the sensor-footstep distances for various locations inside the PLS.
Finally, we estimate the TDoAs for various sensor pairs for a given wave propagation velocity array. This wave propagation
velocity array contains the velocities between the footstep location and each one of the sensors and is achieved from Sec-
tion 4.2.4. Therefore, the simulation step results in a Possible TDoA Set (PTS) for locations in PLS. The objective of the filtering
step is to find the locations in the PLS which result in TDoAs similar to the measured TDoAs. Specifically, we first find the
actual TDoA values for various sensor pairs (as discussed in Section 4.3.1) and then, filter the TDoAs in PTS which are similar
to the actual TDoAs. Finally, we find the locations in PLS which correspond to the remaining TDoAs in PTS. The detailed steps
of our non-isotropic multilateration is presented in Algorithm 1. Finally, to improve the accuracy and robustness of our loca-
tion estimation approach, we average multiple location estimations from the scale components selected in Section 4.2.3.

Algorithm 1. The non-isotropic multilateration approach

1: Define the Possible Location Set (PLS) of the Footstep ~Simulation Step |
2: for PLS; in PLS do
3: for §; in sensor-locations do

dy = [|X; - S|,
TOAj = dl} / vj
end for

: TDoA; = ToA — ToA[1]
Possible TDoA Set (PTS) < TDoA;
end for
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10:
11: Estimate the actual pairwise TDoAs (AT) oFiltering Step |

12: Define Required-Number-of-Estimations (RNE), init-thresh, update-thresh;
13: thresh « init-thresh

14: while number-of-estimations < RNE do

15: forPTS; in PTS do

16: if PTS; + thresh < AT < PTS; + thresh then

17: ELS — PLS;
18: end if
19: end for

20: number-of-estimations « number of elements in ELS
21: thresh += update-thresh

22: end while

23: Estimated Location « mean(ELS)

5. Obstruction-invariant occupant localization evaluation

To understand the performance of our obstruction-invariant occupant localization approach, we conducted a set of exper-
iments with a human participant in real-world structures. We first introduce the experimental setup in Section 5.1. Then, we
validate the performance of our obstruction-invariant occupant localization approach. This evaluation consists of the general
performance as well as the performance of different modules of the approach (in Sections 5.2-5.6). Finally, we evaluate the
sensitivity of our approach to the changes in the footstep-sensor distance, mass level, scale components, and structure (in
Sections 5.7-5.10). Table 1 provides a summary of the different evaluation sections and objectives. It is necessary to mention
that the main objective of this evaluation is to validate our sensing system for occupant localization in obstructive indoor
settings and its different modules using real-world experiments. Rigorous evaluation of the inverse vibration problem
and its theory is part of our future work, which will be discussed in Section 6.

5.1. Experimental setup

To evaluate our approach, we have utilized a sensing system which measures the floor vibration via a geophone. Geo-
phone is a sensor which converts the vertical velocity of the floor to Voltage [41]. Fig. 6 shows a sample sensing node.
The collected signals are amplified approximately 200-2000X. After amplification and depending on the structure type
and footstep strike energy, the effective sensing range of our system for footstep detection is up to 20 meters in diameter.
Amplified signals are then digitized and transferred to a server using a 24-bit A/D converter. To ensure enough time resolu-
tion for accurate TDoA estimation, we have chosen sampling frequency of 25 kHz. (see Fig. 7).

Sensing Configuration: For the experiments, the subject walks in two different structures to show that our approach is
robust in across structures. The structures include a non-carpeted concrete floor on the ground level of a campus building
in Carnegie Mellon University and a non-carpeted an elevated wood framed mock floor. The difference between the natural
frequencies of these structures (i.e., 23.83 and 29.5 Hz, respectively) make them suitable to show the robustness of our
approach over various structures. Fig. 8 shows the two experimental locations. To mimic the effect of the obstruction mass,
we have used a plastic bin filled with sand. Based on the amount of the sand, we have achieved different levels of additional
mass between 0 and 60 kg. For each of the 13 mass levels considered, we have collected 5 traces of four steps from each
structure. To focus on the effect of the obstruction, these four step locations are chosen inside the polygon created by the
sensors. The reason is that for steps outside this polygon, multilateration performance decreases quickly and hence the

Table 1
Evaluation objectives in different sections.
Section Evaluation Objective

5.1 The sensing configuration
5.2 The overall footstep localization accuracy
53 The mass estimation performance
5.4 The scale component selection effect
5.5 The obstructed wave propagation velocity estimation performance
5.6 The non-isotropic multilateration performance
5.7 Sensitivity to different footstep-sensor distances
5.8 Sensitivity to changes in the obstruction mass
5.9 Sensitivity across different scale components
5.10 Sensitivity across different structures

9
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Fig. 6. The sensing node. These geophone sensors measures the vertical velocity of floor vibrations which is then amplified and transferred to a server for
analysis.
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Fig. 7. The sensing configuration.

results become too uncertain to effectively and accurately study the effect of the obstruction [19]. In this paper, we focus on
evaluating the effect of obstructions on the vibration waves and hence use one human subject. However, we have success-
fully localized multiple human subjects (one person walking at a time) in our prior work [19]. Therefore, we believe that our
approach can be used across different subjects. As the main contribution of this paper is to show the potential of addressing
the effect and challenges caused by the obstructions, we did not control the experiments in terms of the occupant velocity
and asked the occupants to walk in a natural and comfortable way. Further, the subject wears flat-bottom footwear. To
obtain the ground truth, we have taped the locations of the footsteps on the floor and asked the subjects to walk on these
locations.

Unobstructed Velocity: Our obstruction characterization module aims to find the obstructed velocity as a ratio of the unob-
structed velocity. This ensures that our approach is able to localize footsteps across various structures. To find the unob-
structed velocity, in our prior work, we have introduced a multilateration solution approach which estimates the location
and propagation velocity simultaneously [19]. However, the objective of this work is to study the obstruction effects and
therefore, to reduce the uncertainties in estimating the propagation velocities, we calibrate for the velocity which results
in the minimum localization error in a set of experiments with no obstruction [22].

10
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(a) CMU Porter Hall: Concrete
Slab on Grade

Fig. 8. Experimental locations.

5.2. Overall footstep localization evaluation

To evaluate the performance of our obstruction-invariant occupant localization approach, we compare our localization
errors with a baseline approach. The baseline approach (1) averages the estimations across all the scale components (“AlIS-
cale” approach), (2) does not account for the effect of the obstruction (“NoVelCorrect” approach), (3) utilizes a Nonlinear
Least Square (NLS) ToA-based multilateration (“ToAMult” approach). Further, we compare our approach with the unob-
structed case (i.e., there is no obstruction). The localization error metric is the Euclidean distance between the actual and
estimated locations. As shown in Fig. 9, our approach results in 0.63 meters average error which is equivalent to 1.7X
improvement over the baseline approach which has 1.07 meters error. Further, the unobstructed approach has 0.63 meters
average error which is similar to our approach. These results show that our obstruction-invariant localization approach (1)
successfully negates the effect of the obstruction and results in similar performance to the unobstructed approach and (2)
outperforms the baseline approach. There are various ways to improve the localization accuracy. Some examples include
adaptive scale component selection [19] and location tracking algorithms (e.g., Kalman filters [55]). However, such a task
is out of the scope of this paper as the main contribution of this paper is to show the potential of addressing the effect
and challenges caused by the obstructions. This will enable using sensors which do not have an unobstructed path between
them (e.g., sensors in different rooms) and improve the sensing sparsity.

—_
(6]
-
L

o
o

Localization Error (m)

s

Our App. Unobst.  Baseline

Fig. 9. The overall performance of our obstruction-invariant occupant localization approach. Our approach results in 0.63 meters average error which is (1)
similar to the unobstructed case and (2) 1.7X improvement over the baseline approach which results in 1.97 meters error.
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5.3. Mass estimation evaluation

In this section, we evaluate the performance of our mass estimation module. To this end, we first discuss the mass esti-
mation performance and then study its sensitivity to the number of chosen features.

5.3.1. Mass estimation performance

As we discussed in Section 4.2.1, our approach predicts the mass through the ratios between the amplitude of the differ-
ent frequency components of the vibration signals. To evaluate this approach, we compare the its results with a baseline
approach which trains a linear regression model using all the components of the frequency representation of the vibration
signals (instead of the ratios). As shown in Fig. 10a, in the first structure, our approach results in average mass estimation
error of 12.7 kg, whereas the baseline approach results in average error of 29.4 kg. This is equivalent to 2.3X improvement
in the performance. Moreover, our approach results in estimation standard deviation of 8 kg compared to 23 kg using the
baseline approach (i.e., 2.9X improvement). In the second structure, as shown in Fig. 10b, our approach results in average
mass estimation error of 3.6 kg which is 4X improvement over the baseline approach which result in 14.8 kg error. With
regards to the standard deviation, our approach result in 3.9 kg compared to 14.6 kg using the baseline approach (i.e.,
3.7X improvement in robustness). These results show that our mass estimation is both more accurate and robust compared
to the baseline approach. In general, the results are better in the second structure. This is because the second structure is a
wooden floor and has lower mass. Therefore, the effect of the additional mass is more significant and easier to quantify.

5.3.2. Mass estimation sensitivity to the number of chosen scales

An important factor for mass estimation performance is the number of chosen ratio features. As discussed in Section 4.2.1,
we choose a subset of the ratio features for mass estimation to reduce (1) the chance of over-fitting and (2) the computa-
tional cost of the model training. To evaluate the sensitivity of our mass estimation approach to this factor, we have esti-
mated the test error for the ratio feature subsets of various size, as shown in Fig. 11. Based on this figure, the mass
estimation performance is robust and consistent when the size of the ratio feature subsets is less than 25. In this paper,
we have chosen subset size of 4 for mass estimation to minimize the mass estimation error while reducing the computa-
tional cost.

5.4. Scale component selection evaluation

As discussed in Section 4.2.3, the existence of obstruction results in additional attenuation which reduces the Signal-to-
Noise (SNR) ratio and hence the localization performance. To overcome this effect, our scale selection approach chooses a
subset of scale components with high energies. We first evaluate how the scale selection affects the performance of our
obstruction-invariant occupant localization approach (in Section 5.4.1). Then, we discuss the sensitivity of our approach
to the number of chosen scale components in Section 5.4.2.

5.4.1. Scale component selection performance

To validate the effect of our scale selection approach, we compare our results with the AllScale approach which averages
the location estimation across all the scales. In comparison, our approach averages the location estimation over two of the
scale components with the highest energy. The rest of the localization procedure is similar for both of the considered
approaches. As shown in Fig. 12, our scale selection approach results in 0.61 meters average localization error which is
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w ° w 1ot 1
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Our App. Baseline Our App. Baseline
(a) Stl: Concrete Slab Floor (b) St2: Wooden Floor

Fig. 10. The mass estimation evaluation. These figures show that our approach results in 12.7 and 3.6 kg error in mass estimation in the two structures.
These are equivalent to 2.9X and 3.7X improvement over the baseline, respectively.
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Fig. 11. Sensitivity of the mass estimation approach to the number of chosen ratio features. This figure shows that the mass estimation performance is
robust and consistent when the size of the ratio feature subsets is less than 25.
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Fig. 12. Scale selection evaluation. Our scale selection approach results in 0.61 meters average localization error which is 1.3X improvement over the
AllScale approach which results in 0.8 meters error.

1.3X improvement over the AllScale approach which results in 0.8 meters error. These results show that our scale selection
approach chooses a suitable subset of scale components for occupant localization.

5.4.2. Localization performance sensitivity to the number of chosen scales

One of the factors that affects the performance of our obstruction-invariant localization approach is the number of the
scale components. The trade-off is that: (1) choosing multiple scale components reduces the effect of erroneous and noisy
location estimations (by averaging several estimations); however, (2) considering estimations from very low energy signals
which mostly contain noise results in lower localization performance. To evaluate this factor, we have evaluated the local-
ization performance across different number of scales. Fig. 13 shows this evaluation and the trade-off regarding the number
of scale components. It can be seen that the localization performance is similar for cases with 2-20 scales. Therefore, in this
paper, we empirically average over the location estimations of 2 scale components for footstep localization to ensure accu-
rate localization while reducing the computational cost of the localization.

5.5. Obstructed wave propagation velocity estimation evaluation

In this section, we study the effect of the Obstructed Wave Propagation Velocity Estimation module. To this end, we com-
pare our localization results with the NoVelCorrect approach which does not consider the effect of the obstruction on the
wave propagation velocity. Similar to the previous sections, the rest of the localization procedure is similar between our
approach and the NoVelCorrect approach. As shown in Fig. 14, our approach results in 0.61 meters average error which is
equivalent to 1.2X improvement over the NoVelCorrect approach which results in 0.72 meters error. This improvement in
performance shows that our wave propagation velocity estimation approach is effective in reducing the obstruction-
induced propagation velocity changes.
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Fig. 13. The sensitivity of the approach to the number of chosen scales. Based on this figure, the localization performance is similar for cases with 2-20
scales.
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Fig. 14. Obstructed wave propagation velocity estimation evaluation. Our approach results in 0.61 meters average error which is equivalent to 1.2X
improvement over the NoVelCorrect approach which results in 0.72 meters error.

5.6. Non-isotropic multilateration evaluation

Our non-isotropic multilateration approach enables occupant localization when there is different wave propagation
velocities between the footstep and various sensors. To evaluate this approach, we compare our results with ToAMult which
is a Nonlinear Least Square (NLS) based approach based on the Time of Arrival (ToA) of the vibration signal in the sensors. For

the i sensor, ToOAMult defines the following cost function:
Gi =[x =pill, — vilti — ty) (5)

where x is the location of the footstep, p; is the location of the sensor, v; is the propagation velocities between the footstep
and the sensors, t; is the vibration wave ToAs for the sensors, and finally ¢ is the time that the footstep happens. There will be
four equations for four sensors and the overall objective function is,

. 2
min, /ZG (6)

Knowing the wave propagation velocities, Eq. (6) can be solved for 3 unknowns: the 2-d footstep location (x) and the footstep
occurrence time (t;). Further, this formulations is a bounded nonlinear least-squares problem which can be solved using a
trust region reflective algorithm [56].

Fig. 15 shows the results of this evaluation. Based on this figure, our approach results in average localization error of 0.61
meters error which is 2X improvement compared to the ToA-based approach (with average error of 1.23 meters meters). The
reason behind this improvement is that adding the t; as an unknown increases the dimension of the problem which in turn
increases the likelihood of the NLS approach getting stuck in a local optimum. In comparison, our approach performs a grid
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Fig. 15. Localization performance of the non-isotropic multilateration. This figure shows that our approach results in average localization error of 0.61
meters error which is 2X improvement compared to the ToA-based approach (with average error of 1.23 m).

search to find the globally optimum solution while keeping the online computational cost low by separating the offline sim-
ulation and online filtering step. The performance improvement shows that our non-isotropic multilateration approach is
suitable for the real-life obstructed floors.

5.7. Localization performance sensitivity to changes in the footstep-sensor distances

Sensor-footstep distance is an important factor in the localization performance. To evaluate this factor, we find the local-
ization errors for footsteps across different locations. Generally, the furthest sensor has the most effect on the localization
error because (1) higher travelling distance between the sensor and the footstep means higher signal distortions and (2)
the furthest signals generally have lower SNR which in turn results in lower localization performance. Therefore, to evaluate
the effect of distance, the footstep-sensor distance for each footstep is found as the maximum of the Euclidean distances
between the footstep and various sensors. Fig. 16 shows the results of this evaluation for our approach. As expected, the cor-
relation coefficient of 0.71 shows that larger distances result in higher localization error. Specifically, our approach results in
errors of 0.31-0.94 meters for the 2.4-3.4 maximum norm distance range.

5.8. Localization performance sensitivity to changes in the obstruction mass

Changing the obstruction mass results in changes in the wave propagation velocity which in turn, affects the localization
performance. To evaluate this effect, we have conducted experiments with 12 levels of obstruction mass (each 5 kg between
0 and 60 kg). The localization results for these different added mass levels are presented in Fig. 17. Based on this figure, our
approach outperforms the baseline approach for all the mass levels. Further, the improvements are generally more signifi-
cant for cases with higher added mass. For example, when there is 5 kg of added mass, our approach outperforms the base-
line by 0.25 meters. However, this number is increased to 0.38 meters when there is 60 kg of added mass. The reason is that
the higher added mass cause more significant changes in the wave propagation velocity which, in turn, reduce the localiza-
tion accuracy of the baseline approach. However, our approach considers this obstruction-induced velocity changes and
therefore is less affected by the additional mass. This consistent improvement across all the mass levels shows that our
approach efficiently negates the effect of the obstructions.
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Fig. 16. Localization performance sensitivity to the footstep-sensor distance. As expected, larger distances result in higher localization error.
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Fig. 17. The sensitivity of our obstruction-invariant occupant localization approach to the obstruction mass. Based on this figure, our approach outperforms
the baseline approach for all the mass levels and therefore efficiently negates the effect of the obstructions.

5.9. Localization performance sensitivity to the scale components

In this section, we evaluate the improvement resulted from our obstruction-invariant occupant localization approach
across various scales. The baseline approach (1) does not account for the obstruction masses and (2) utilizes the ToAMult
approach discussed in Section 5.6. For this analysis, we have focused on the scale range of 25 to 300 which corresponds
to 20-250 Hz for the Mexican hat wavelet. This range is decided by sensing specifications of the Geophone sensor, as dis-
cussed in Section 4.2.2. As shown in Fig. 18, our approach outperforms the baseline approach across all the scales. This shows
that our obstruction-invariant occupant localization approach is more robust across all the scale components.
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Fig. 18. Localization performance across various scales. This figure shows that our approach outperforms the baseline approach in all the scales.
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Fig. 19. Localization performance in different structures. In the first structure, our approach results in 0.61 m average localization error which is equivalent
to 1.6X improvement over the baseline approach. In the second structure, our approach results in 0.65 meters which is equivalent to 1.8X improvements
compared to the baseline approach. In both structures, our results are similar to the unobstructed cases.
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5.10. Obstruction-invariant occupant localization evaluation across structures

By leveraging the lamb wave propagation characteristics, our obstruction-invariant occupant localization is robust across
various structures. To evaluate this robustness, we have performed experiments in two different structures. For each struc-
ture, we have compared the performance of our approach with the baseline and the unobstructed approach. Fig. 19a shows
the results for the first structure which is a non-carpeted concrete slab on the ground level of a campus building in Carnegie
Mellon University in Pittsburgh, PA. This figure shows that our approach results in 0.61 meters average localization error
which is equivalent to 1.6X improvement over the baseline approach which results in 0.97 meters average error. Further,
in this structure, our approach has comparable results with the unobstructed approach which results in 0.62 meters average
error. Fig. 19b show the results for the second structure which is a non-carpeted elevated mock wooden floor. In this struc-
ture, our approach results in 0.65 meters which is equivalent to 1.8X improvements compared to the baseline approach aver-
age localization error which is 1.17 meters. Despite the slightly higher localization errors (which is possibly caused by noisy
nature of wooden floor vibrations [19]), our approach results in comparable localization performance to the unobstructed
approach with 0.65 meters average error. These results shows that our obstruction-invariant occupant localization approach
is robust to the changes in the structure which in turn, shows that it is practical in real-life applications.

6. Future work and discussion

As discussed in Section 1, the main objective of this paper is to introduce a non-intrusive sensing system for occupant
localization in obstructive indoor settings. With respect to the run-time of our approach, in MATLAB 2019a, localizing one
footstep using two scale components and 3 inches resolution takes approximately 0.16 s using a Surface book 2 with
8 Gb Ram and 2.7 GHz Intel Core i7-8650U @1.9 GHz. Considering that the time between footsteps is generally higher than
0.5 s, this localization time is sufficient for our applications. In a real-world scenario, we expect the data to be sent to a cloud
server. Using a cloud server would significantly decrease the processing time and guarantee real-time operation.

For our future work, we aim to study the following factors.

e As discussed before, the assumption of infinite thin plate is a reasonable approximation for localization purposes when
the first arrival is the most important part of the vibration wave signal. However, in other applications (e.g., occupant
detection and identification), the effect of reflection might be more important. Therefore, we plan to relax the assumption
of infinite plate and explore the effect of the boundary conditions in our future work.

o In this paper, we have focused on characterizing the effect of mass because we have observed that it is one of the most
important factors affecting the wave propagation velocity in our preliminary experiments. We plan to characterize other
factors such as footstep-sensor distance and the obstruction area and shape in future work.

e In this work, we have assumed that there is only one obstruction in the path of the wave. However, in real-life applica-
tions, there might be multiple sources of obstruction on the path of the vibration wave. As part of the future work, we
plan to study the effect of multiple obstructions on the path of the wave with different sensor-obstruction and
footstep-obstruction distances.

e As mentioned in Section 4.3.1, we have used an energy-based approach with 15% threshold for estimating the TDoAs.
However, this threshold might be structure-dependent. Therefore, as part of our future work, we plan to study its rela-
tionship to the threshold which results in the best localization performance with the structural characteristics.

7. Conclusion

In this paper, we presented an obstruction-invariant occupant localization approach using footstep-induced floor vibra-
tions. Conventional vibration-based occupant localization approaches map the Time Differences of Arrivals (TDoA) between
multiple sensors pairs to the footstep location by assuming similar wave propagation velocities between the footstep and the
sensors. This assumption, although true in open spaces, does not always hold in real-life situations with various types of
obstruction (walls, furniture, etc.). These obstructions add to the mass of the floor on the path of the vibration waves which
in turn affect the wave propagation velocity and reduces the occupant localization performance. To overcome the obstruc-
tion effect, we characterize (1) the frequency-dependent attenuation rate of the footstep-induced vibrations to find the exis-
tence and mass of the obstruction and (2) the mass-velocity relationship based on the lamb wave properties to estimate the
wave propagation velocities between the footstep and various sensors knowing the obstruction mass. Finally, we introduce a
non-isotropic multilateration approach to leverage these propagation velocities and the TDoA values across the signals for
step-level occupant localization. Our approach resulted in a 0.61 meters average location estimation error, which corre-
sponds to a 1.6X improvement compared to the baseline that does not account for obstructions. Further, our approach results
in the same localization performance compared to the case with no obstruction which shows that it effectively negates the
effect of the obstruction. By providing a sparse and non-intrusive occupant localization approach which works well in
obstructed indoor areas, our system can significantly reduce cost for occupant sensing in future smart building applications.
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