Downloaded from ascelibrary.org by Stanford University on 06/21/21. Copyright ASCE. For personal use only; all rights reserved.

2 ASCE
Structure- and Sampling-Adaptive Gait Balance Symmetry

Estimation Using Footstep-Induced Structural
Floor Vibrations

Jonathon Fagert, P.E., S.M.ASCE'; Mostafa Mirshekari, A.M.ASCE?; Shijia Pan®; Linda Lowes*;
Megan lammarino®; Pei Zhang®; and Hae Young Noh, A.M.ASCE’

Abstract: This paper presents a structure- and sampling-adaptive approach for analyzing human footstep-induced structural floor vibrations
to estimate footstep ground reaction forces (GRFs) and gait balance symmetry. Balance symmetry and footstep GRFs are critical indicators of
overall gait health and elderly fall risks. Prior works, including direct observation by trained medical personnel, computer vision-, pressure
sensor-, and wearable-based sensing, are limited due to operational restrictions. We introduce a nonintrusive balance symmetry monitoring
approach, which utilizes sparse structural vibration sensing. The intuition is that footstep-induced floor vibration responses are proportional
to footstep GRFs, and balance symmetry can be defined using consecutive GRF pairs. However, GRF-vibration relationships are also in-
fluenced by spatially-varying structural properties and gait sampling bias, introducing errors to real-world estimations. We address these
challenges first by extracting structural regions to overcome spatially-varying vibration behavior and then by developing a kernel-based
robust regression model to overcome biased training data and enable robust GRF and balance symmetry modeling. We evaluate our approach
through real-world experiments, achieving a balance symmetry index estimation accuracy as high as 96.5%. DOI: 10.1061/(ASCE)
EM.1943-7889.0001889. © 2020 American Society of Civil Engineers.

Introduction

Gait balance symmetry assessment and footstep ground reaction
force estimation are important for understanding occupants’ overall
gait health. In the context of gait health, balance symmetry refers to
a person’s ability to maintain their center of mass between their left-
and right-feet. Specifically, in this work, balance is considered to be
the difference between consecutive left- and right-foot walking
ground reaction forces (GRFs). Balance symmetry information
has been shown to be a critical aspect of fall prediction in elderly
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populations (Rubenstein 2006; Lord et al. 2003; Nevitt et al. 1989;
Shupert and Horak 2016; Vaught 2001; Perell et al. 2001), as well as
diagnosing gait disorders (Horak 1997) and various neurological/
musculoskeletal conditions (Aruin and Kanekar 2013). As a result,
frequent measurements of balance symmetry (i.e., in home-settings
and assisted-living settings) can help individuals understand their
overall health and safety risks and lead to improvements in the
quality of life.

Prior methods for assessing gait balance symmetry include di-
rect observation by medical staff (Pardasaney et al. 2012; Mancini
and Horak 2010; Karuka et al. 2011), pressure/force-based sensing,
vision-based sensing, and wearable-based sensing (Mancini and
Horak 2010; Karuka et al. 2011; Kamen et al. 1998; Browne
and O’Hare 2001). These existing approaches are widely accepted
by medical professionals and can achieve high accuracy for estimat-
ing balance symmetry but have operational limitations [e.g., dense
sensor deployment (pressure/force sensors), line of sight (vision),
and requiring users to carry a device (wearables)] that prevent
them from widespread use in nonclinical settings. The “Related
Work” section explores these existing approaches in more detail.

A recent approach to measuring gait health is to use structural
floor vibrations (Lam et al. 2016; Fagert et al. 2017a, 2019a, b,
2020; Kessler et al. 2019). These approaches rely on the physical
interaction between footsteps and the underlying building structure
to estimate spatiotemporal gait characteristics and other human in-
formation (e.g., step frequency, stride length, step time, and person
identification). The benefits of using structural floor vibrations are
that gait information can be collected passively, with sparse sensing
[up to a 20-m sensing range (Pan et al. 2017b)] and without requir-
ing the persons walking to wear or carry a device. However, these
prior works focus on high-level gait information (e.g., step fre-
quency, stride length, and so forth) and do not account for human
walking behaviors or spatially-varying structural behavior. As
such, they cannot accurately extract fine-grained gait information,
such as ground reaction forces and balance symmetry.
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To extract footstep ground reaction force and balance symmetry
information, this work uses the insight that the amplitudes of the
structural floor vibrations are directly influenced by and propor-
tional to the magnitudes of the footstep ground reaction forces.
However, in real-world applications, the relationship between
measured floor vibration signals and footstep GRFs is affected
by spatial variations in the structural characteristics (e.g., damping,
stiffness, and mass) of the underlying structure (a.k.a., the struc-
tural variation effect) (Pai et al. 2019; Drira et al. 2019). Further,
healthy humans tend to walk similarly across different steps (Pan
et al. 2017c), resulting in a narrow range of GRFs for training and
failure to capture behavior in the extreme regions (i.e., unbalanced
gait). Collecting training data from these extreme regions is diffi-
cult because most data sources are persons with gait abnormalities,
injuries, and/or elderly persons—it is not reasonable to ask one’s
grandparent to walk a hundred times down a hallway. As a result,
this gait sampling bias results in a model bias toward the middle
range of GRFs and an erroneous estimation of the extreme GRFs.
The combination of these two effects makes it challenging to es-
timate footstep GRFs and balance symmetry from the raw vibration
signal alone and introduce significant modeling errors.

This paper presents a structure- and sampling-adaptive approach
for estimating footstep GRFs and gait balance symmetry. To the
best of our knowledge, this is the first work to leverage footstep-
induced structural vibrations for individualized GRF and balance
estimation. Specifically, we measure the amplitude of footstep-
induced structural vibrations and model the relationship between
this amplitude and footstep GRFs. The structural variation effect
on the vibration signal is addressed by isolating the structural com-
ponents of the footstep responses and clustering them into spatial
structural regions throughout the sensing area through a principal
component projection of their frequency responses. By isolating the
effects of the structural regions and their respective attenuation
rates, our method is able to directly observe the changes in vibration
responses due to variations in footstep GRFs. Then, to overcome
model bias due to limitations in data distribution across the full
footstep GRF range (the gait sampling bias), we train our GRF-
amplitude models using a kernel-based robust regression. The
weights for the regression model are designed using an inverse
probability density function of the training data, which allows us
to place more weight on the extreme GRFs and reduce the model
bias. This approach enables accurate GRF and balance symmetry
estimation with less training data and reduces the influence of a
narrow GRF range on the GRF-vibration amplitude model. We val-
idate our approach through real-world deployments in three types
of structures (wood-framed, steel-framed, and concrete slab-on-
grade) and with six different persons walking.

The remaining sections of the paper are organized in the follow-
ing way. The “Related Work” section discusses related work on cur-
rent approaches for GRF, balance estimation, and load identification,
as well as their limitations. Next, we present the physical insight that
enables our force and balance estimation approach. Then, we pro-
vide a detailed description of our approach. Next, the results of our
experimental validation are presented with different structures and
several walking participants. Finally, we discuss directions for future
work and summarize our work and its potential for enabling gait
analysis and smart healthcare in nonclinical settings.

Related Work

In this work, we utilize footstep-induced floor vibrations to obtain
estimates of footstep ground reaction forces and use those to
estimate gait balance symmetry. As previously discussed in the
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section “Introduction,” much of the prior work in this field can be
placed in two categories: (1) direct observation-based approaches
and (2) sensing-based approaches. In the next section, we discuss
each of these categories in more detail and address how our work
fills the research gap that exists with prior approaches. In addition,
our treatment of structural floor vibrations to obtain force estima-
tions can be viewed as a load identification problem in structural
dynamics. We discuss prior works in this domain in the “Vibration
Load Identification” section.

Gait Balance Symmetry and Ground Reaction Force
Sensing Approaches

Gait balance symmetry is a common component of clinical gait
assessment. Because of its ubiquity, the study of gait balance sym-
metry is a broad field in biomechanics. Studies in this area typically
focus on extracting dynamic gait balance parameters, such as sym-
metry index (SI), the center of pressure (CoP), the center of mass
(CoM), and extrapolated center of mass (XCoM) (Herzog et al.
1989; Lugade et al. 2011; Lugade and Kaufman 2014; Hof et al.
2005; Gutierrez-Farewik et al. 2006; van Meulen et al. 2016a). For
each of these metrics, the primary objective is to quantify how the
body moves from one side to the other while walking. By studying
this effect, it is possible to understand walking instabilities, which
can be associated with underlying conditions/disorders (e.g., stroke,
knee/hip problems, and so forth), or with fall risks in elderly pop-
ulations (Rubenstein 2006; Lord et al. 2003; Nevitt et al. 1989;
Shupert and Horak 2016; Vaught 2001; Perell et al. 2001; Horak
1997; Aruin and Kanekar 2013). In this work, we focus on quan-
tifying gait balance by estimating vertical footstep ground reaction
forces (GRFs) and using consecutive pairs of GRFs to calculate gait
balance using the symmetry index metric. Further details regarding
how this metric is obtained are discussed in the “Clustered Kernel-
Based Learning” section.

Traditionally, the most common technique used for gait balance
symmetry assessment is a direct observation by trained medical
personnel. However, this approach is typically limited to qualitative
measurements using tests such as the Timed Up and Go test,
the Dynamic Gait Index, and the Tinetti Balance and Gait test
(Pardasaney et al. 2012; Mancini and Horak 2010; Karuka et al.
2011; van Meulen et al. 2016b; Berg et al. 1989; Mathias et al.
1986; Shumway-Cook and Woollacott 1995; Jonsdottir and
Cattaneo 2007). In addition, this approach requires gait assessment
to be performed in clinical settings; as a result, changes in gait and
balance may not be captured with sufficient temporal resolution to
monitor fall risks for elderly populations, changes in gait associated
with neurodegenerative conditions (e.g., cerebral palsy), or gait
impairments, such as hip or knee joint failure.

To address the limitations of the direct observation approach,
numerous sensing-based approaches have emerged. One approach,
which uses vision-based sensing combined with computer vision
algorithms, tracks the movement of the body while walking
(Muro-de-la Herran et al. 2014; Benedetti et al. 1999; Xue et al.
2010; Gabel et al. 2012). However, this approach is limited to sce-
narios in which a direct line-of-sight is possible, so gait balance
assessment cannot be conducted if walls, furniture, and other
persons occlude the view of the sensing system. Additionally,
vision-based sensing in certain environments (e.g., bathrooms and
bedrooms) raises concerns of perceived privacy, therefore limiting
its deployment in nonclinical settings.

Another sensing-based approach uses pressure/force sensing.
For these systems, the sensors directly measure the footstep ground
reaction forces and use these measurements to assess gait balance
symmetry (Wafai et al. 2015; Wearing et al. 2001; Lord et al. 1986;
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McDonough et al. 2001). In order to achieve high fidelity in GRF
estimation and gait balance assessment, these approaches require a
sensor in every location that a footstep may occur. For nonclinical
settings, this dense sensor deployment requirement quickly be-
comes impractical as sensing mats would be required to be placed
in every habitable area of a building, which is both expensive and
difficult to deploy/maintain.

Wearable-based sensing is another indirect approach for esti-
mating gait balance symmetry. With this approach, pedestrians are
required to wear or carry a device, such as an accelerometer or other
inertial-based sensor, and gait balance symmetry is inferred through
the recorded motion of the sensor (Kamen et al. 1998; Tien et al.
2010; Spain et al. 2012). These approaches overcome the limita-
tions of other methods in that they enable continuous monitoring
of gait balance symmetry outside of clinical settings but are limited
by the need for the user always to wear or carry a device. In scenarios
such as elder care, this requirement may limit their use and appeal.
Further, some recent studies have shown that more than half of indi-
viduals who own a wearable device stop using it, and many of them
do so within 6 months of ownership (Patel et al. 2015).

By utilizing footstep-induced structural floor vibrations, our
method overcomes the limitations of these existing sensing ap-
proaches. Through leveraging vibration wave propagation, our
method enables sparse sensor deployment [we have observed a
sensing range of up to 20 m (Pan et al. 2017b)], which can be retro-
fitted into any structure without any disruption to normal operations
and daily activities. Their one-time installation can be done by plac-
ing the sensors directly on the existing floor of the building in the
areas where monitoring is desired, and each low-cost sensor can
monitor footsteps and human gait over a large area (as opposed
to one sensor being required at each step location for pressure/force
sensors). Further, this approach is not sensitive to visual obtrusion,
has fewer perceived privacy concerns, and passively collects foot-
step and gait balance symmetry information without the need for
users to carry a device. By removing the need for the user to interact
with the sensing devices, our system enables more reliable around-
the-clock monitoring of gait in nonclinical environments.

Prior works utilizing vibration sensing have achieved success in
identifying (Pan et al. 2015, 2017c), tracking/detecting (Pan et al.
2016; Poston et al. 2017a; Pai et al. 2019; Drira et al. 2019;
Madarshahian et al. 2016), localizing (Mirshekari et al. 2016,
2018b; Poston et al. 2017b; Alajlouni et al. 2018), and monitoring
the activity of indoor occupants (Fagert et al. 2017b; Pan et al.
2017a, 2018, 2019; Bonde et al. 2020) and have also successfully
estimated spatiotemporal gait parameters (Lam et al. 2016; Fagert
et al. 2017a, 2019a, b, 2020; Kessler et al. 2019). However, these
existing approaches do not account for the step-level variations in
human walking resulting from the footstep ground reaction forces
and underlying structural properties. By accounting for these char-
acteristics, our method accurately estimates footstep ground reac-
tion forces and gait balance symmetry.

Vibration Load Identification

Load identification in structural dynamics addresses the inverse
problem in which a structural vibration response is known, but the
input excitation/force is not known. Much of the prior work in this
domain is focused on pedestrian load identification with respect to
the impact on structural behavior. In this way, these works focus on
modeling pedestrian footstep-induced loads as periodic excitations
to the structure to understand structural responses to impulsive
loads. These works primarily involve four areas: (1) leveraging
a finite-element model or modal information to solve the inverse
load identification problem (Law 2002; Willford et al. 2006; Racic
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et al. 2009); (2) utilizing artificial neural networks (ANN5) or other
deep-learning approaches to establish force transfer functions (Cao
et al. 1998); (3) output-only methods that estimate modal param-
eters of the structure to estimate the frequency response function
and forcing functions through inverse modeling and developing
simplified structure models (Shahabpoor et al. 2016; Pimentel
et al. 2001); and (4) statistical-based load models that assume har-
monic loading based on weight-based footstep force models (Racic
and Brownjohn 2011; Zivanovic et al. 2007). For real-world build-
ings, prior information about the structural dynamic properties is
either not known or not easy to obtain. As a result, the inverse mod-
eling approach of these existing works may not be able to estimate
footstep force-induced vibrations and, subsequently, gait balance
symmetry. In addition, other load identification problems are fo-
cused on obtaining a generic footstep forcing function in order
to obtain information regarding structural performance. Therefore,
these models typically assume a weight-normalized constant foot-
step forcing function, which does not take into account step-level
variations in the footstep ground reaction forces due to changes in
walking behavior or gait balance symmetry. On the other hand, our
approach does not make any assumptions about the underlying
structure’s dynamic properties and can accurately estimate indi-
vidualized footstep GRFs and gait balance symmetry without any
prior information about the structure.

Physical Insight: Footstep-Induced Floor
Vibrations

To enable the footstep ground reaction force and balance symmetry
estimation approach in this work, we utilize footstep-induced vibra-
tion wave propagation in floor structures. In this section, we pro-
vide an overview of the underlying physics that influence floor
vibrations and discuss how we leverage physical insights regarding
human gait and structural dynamics to overcome the challenges as-
sociated with our approach.

Human Gait Cycle and Ground Reaction Forces

Footstep-induced floor vibrations are fundamentally related to the
physical interaction between footsteps, the floor, and the human
gait cycle. In a typical gait, a pedestrian goes through several gait
phases between each footstep. This work focuses on the three pri-
mary aspects of the stance phase: (1) the heelstrike transient (initial
contact phase), (2) weight acceptance (loading response phase),
and (3) toe push-off (Uustal and Baerga 2004). These phases re-
present when the foot strikes the floor, when the full body weight
is supported by one foot, and when one foot transitions from the
heel to the toe to facilitate forward motion and transition to the
opposite foot.

We determine the temporal relationship between footstep GRFs
and vibration responses by comparing the temporal characteristics
of simultaneously collected GRF and vibration data. Fig. 1(a)
shows an example of the footstep ground reaction forces collected
from one of our experimental participants with shoe-mounted
pressure sensors, which resembles the typical footstep GRF repre-
sentation in the medical domain. The first peak represents the heel-
strike transient, the second peak represents the weight acceptance,
and the third peak represents the toe push-off. Note that the percent
body weight (% BW) values shown (around 90% BW) are slightly
less than typical values at the peak locations (>100% BW in most
cases for the loading response peak), and the toe push-off peak is
typically closer in magnitude to the loading response peak. This
deviation in the figure shown is due to the practical limitations
of the pressure sensors used. Due to the size of the sensors, we
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Fig. 1. (a) Example of footstep ground reaction forces collected using shoe-mounted pressure sensors. The first peak represents the heelstrike
transient, while the second and third peaks represent weight acceptance and toe push-off, respectively; and (b) correlation between the heelstrike
transient and the corresponding vibration signal. The majority of the vibration signal results from the application of the heelstrike transient force.

were not able to completely cover the sole of the shoe. As a result,
the full magnitude of the GRFs was not captured, and in some in-
stances, the data collected with our ground truth system did not
achieve the typical peak GRF of 100% BW. However, for this
study, we are focused on obtaining a measure of gait balance sym-
metry using a metric known as the symmetry index (SI) obtained
using the peak heelstrike transient values (Herzog et al. 1989), so
measuring the full 100% BW loading response peak is not neces-
sary. We are choosing to use the peak heelstrike transient-values-
based studies that have attributed the heelstrike transient to healthy
walking and have identified it as the most demanding task in the
gait cycle (Racic et al. 2009; Verdini et al. 2006). In this way, we
concentrate pressure sensors on the heel of the shoe to ensure ac-
curate measurement of the heelstrike transient ground reaction
forces.

Using the GRF information from Fig. 1(a), we can determine
which phases of the gait most strongly correlate with vibration re-
sponses. Fig. 1(b) shows an example of the collected GRF data
and corresponding floor vibration signal. In this figure, we can
make a few key observations: (1) as expected, the onset of the
vibration signal occurs concurrently with the onset of the overall
footstep GRF at 0.05 s; (2) the duration of the vibration response
(from 0.05 to 0.15 s) is similar to the duration of the initial
contact/heelstrike transient phase of the GRF (0.05 to 0.12 s),
which is consistent with typical values in the medical literature
(Whittle 1999); and (3) the vibration response has reduced/
dampened to near ambient levels at the time of later gait phases
(i.e., the weight acceptance phase at around 0.2 s). As such, there
is an indication that the vibration response and the initial contact/
heelstrike transient phase of the GRF are the most directly related,
and consequently, the peak vibration response is primarily gener-
ated from the peak heelstrike transient. While this example shows
just one instance of the timing of the heelstrike transient/initial con-
tact gait phase and the vibration response, our observation is that
this represents the general relationship, and the vibration response
rarely exceeds the duration shown. Additionally, even in cases of
structures with low damping/stiffness (in which the vibration signal
tends to have a longer duration), the primary reason for the longer
signal is that the free vibration is longer (i.e., the vibration response
after the application of the force has terminated). Based on these
observations, the system in this work defines the output GRF as the

© ASCE

04020151-4

peak amplitude of the heelstrike transient phase of the footstep
ground reaction force.

Footstep-Induced Structural Vibration Dynamics

In our approach, we model the vibration response as the output of a
linear time-invariant system subjected to a time-dependent forcing
function (the footstep GRF). We monitor the vertical component of
footstep-induced floor vibrations only because the majority of the
footstep impact is in the vertical direction, which means more in-
formation about the GRF will be contained in the vertical vibration
response. Next, we model the time history of the dynamic response
of the floor structure as a single-degree-of-freedom system (SDOF)
in which we assume a homogeneous structure (i.e., fixed mass,
stiffness, and damping) and that the footstep excitations result from
a constant gait (i.e., no irregular footsteps). We make this simpli-
fication to an SDOF system based on two primary assumptions.
(1) For many residential buildings, individual floor bays typically
consist of simply supported beams and continuous floor slabs. As a
result, for gravity excitations (i.e., footsteps), the behavior of a sim-
plified SDOF system closely resembles that of a multidegree-
of-freedom system. (2) In this work, the relationship between
vibration responses and footstep GRFs is modeled using physics-
guided, data-driven approaches with little-to-no information avail-
able regarding the underlying structural properties, and any
variations due to boundary conditions are absorbed into the
model coefficients during model training. Based on this SDOF
assumption, the formulation for the response is given by the fol-
lowing expression:

mi(t) + () + kx(r) = F(t) (1)

where x(7) = displacement (deflection of the structure at time );
m = modal mass of the structure; ¢ = structure damping; k = stiff-
ness of the structure; and F(¢) = applied dynamic force (i.e., the
footstep GRF).

For a linear, time-invariant system, the solution to Eq. (1) can be
modeled using the well-known convolution integral formulation, as
follows (Kelly 2012):

x(t) = /0 "Wt — 7)F(r)dr 2)
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where %(t) = impulse response function for the structure; and 7 =
time shift for the convolution integral.

As shown in Fig. 1(b) and discussed previously, we observe that
the vibration signal is most correlated to the heelstrike transient
from the footstep GRF. As a result, we model the footstep forcing
function F() as only the heelstrike transient portion of the overall
GREF. The entire forcing function, F(z), can then be represented as a
normalized time-varying force multiplied by the peak amplitude of
the heelstrike transient in the following way:

F(r) =

where F, = peak amplitude of the heelstrike transient portion of the

FoF(1) (3)

footstep GRF; F(r) = normalized time-varying footstep ground re-
action force; and ¢ = time.

By substituting F(z) from Eq. (3) into Eq. (2), we can see that
the vibration response is proportional to Fy. In this work, we
measure the velocity of the floor vibration (k()) using geophone
sensors (I/O Sensor Nederland bv 2006), which are low-cost
mechanical vibration sensors. As such, we model the overall re-
sponse based on the vertical velocity of the floor vibration
(although a similar formulation could be done with acceleration
if accelerometers were used in lieu of geophones). Geophone sen-
sors are chosen over other vibration sensors (e.g., accelerometers)
because they are low-cost and sensitive in the frequency bands
typically excited by footstep-induced vibrations (Pan et al. 2017a).
In this way, the overall footstep-induced vibration response is given
by the following expression:

(1) = FyS(1) (4)

where S(t) = force-amplitude mapping function that depends on the
dynamic properties of the structure (i.e., mass, stiffness, and damp-
ing) and the time-varying footstep GRF. From this expression, it
follows that the peak value of the recorded vibration signal (in a
given footstep-induced signal window) is proportional to the peak
amplitude of the heelstrike transient. In this work, we utilize this
relationship to develop a model for the mapping function between
recorded vibration signal amplitudes and peak heelstrike transient
response magnitudes (i.e., footstep forces). With this function, we
estimate footstep GRFs and compare consecutive left-right pairs to
determine gait balance symmetry.

However, the challenge with this approach is that the measured
vibration amplitude is influenced not only by the magnitude of the
footstep GRFs but also by the underlying structural behavior and
sampling bias due to human walking tendencies. As previously dis-
cussed, the vibration signal is affected by spatial variations in the
dynamic properties of the underlying structure (i.e., damping co-
efficient, stiffness, and mass), which we refer to as the structural
variation effect. These changes affect S(¢) from Eq. (4) and result in
a different relationship between the vibration signal amplitude and
the footstep GRFs. As a result, a model trained in one region may
not result in accurate force and balance estimations in an adjacent
region if it has different dynamic properties. To overcome these
varying properties, we note that variations in the dynamic proper-
ties of the structure result in changes to the frequency response
spectrum of the structure (the frequency response function). In
the “Structural Variation Effect Adaptation” section, we discuss
how we leverage this insight to passively cluster footstep responses
by structural region and develop mapping functions for each region
independently.

In addition to the structural variation effect described previously,
the vibration signal is influenced by vibration wave attenuation (Pan
et al. 2014; Alajlouni et al. 2018). Attenuation is a well-known phe-
nomenon with wave propagation through a given medium and re-
sults in the loss of vibration amplitude [x(#) from Eq. (4)] with
increasing distance between the source (e.g., the footstep location)
and the sensor (Stein and Wysession 2009). In structural vibrations,
attenuation is best characterized by considering the dual-effects of
structural damping (a.k.a., intrinsic attenuation) and geometric wave
spreading (Stein and Wysession 2009). Fig. 2 shows an example of
this attenuation effect (Fagert et al. 2017a). In this figure, the first
footstep occurs close to the vibration sensor, and each subsequent
footstep moves further from the sensor (increasing footstep-sensor
distance). Note the decrease in the signal amplitude with increasing
distance from the sensor location. As a result, it is not possible to
directly compare measured vibration signal amplitudes and footstep
GRFs at different locations. This requires a model that accounts
for the footstep-sensor distance and the resulting attenuation of the
vibration signal at this distance. The “Amplitude-Distance Attenu-
ation” section explores this relationship in greater detail.

As discussed previously, the gait sampling bias on the GRF-
vibration amplitude relationship describes the model bias resulting
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Fig. 2. Footstep-induced vibration responses for a series of consecutive footsteps. Note the decreasing vibration signal amplitude with increasing

distance from the sensor.
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from a narrow range of GRFs for a typical walker. Because of this,
there is a concentration of training data near the mean of the GRF
range, and extreme GRFs are not accurately estimated. In addition
to this sampling bias, foot dominance causes variations in the
footstep-floor relationship for each foot, causing errors in GRF es-
timation. This is caused by variations in walking between a per-
son’s dominant and nondominant foot. In a typical person’s gait,
the dominant foot is responsible for the propelling motion, while
the nondominant foot tends to be primarily used for support (Peters
1988). As a result, the mapping function for the GRFs of the dom-
inant foot is different from that of nondominant foot because the
nature of the interaction with each foot and the floor structure
varies. In the “Clustered Kernel-Based Learning” section, we show
how our approach addresses both the gait sampling bias and the
effect of foot dominance for robust footstep GRF and balance sym-
metry estimation.

Structure- and Gait Sampling-Adaptive Balance
Symmetry Estimation

In our approach, we leverage the physical insights discussed in the
“Physical Insight” section to estimate footstep GRFs and gait bal-
ance symmetry. Our gait balance symmetry estimation approach
consists of three main modules: (1) a footstep detection and locali-
zation module, (2) a structure effect adaptation module, and (3) a
clustered kernel-based learning module. Fig. 3 provides an over-
view of these modules.

The first module collects the raw vibration data from each sen-
sor in the sensing area, extracts the portion of the signal that is in-
duced by the footstep force, and finally determines the footstep
location and corresponding footstep-sensor distance (for use in
the next module). Next, we remove the distance-based attenuation
influence on the signal by modeling distance-based amplitude
attenuation and normalizing the vibration signal amplitude. To ad-
dress the structural variation effect, we then use an unsupervised
PCA-based clustering approach to characterize structural regions
and independently model the footstep GRF-vibration signal ampli-
tude relationship for each region. Then, in the clustered kernel-
based learning module, we develop a new learning approach that
first clusters consecutive steps as dominant and nondominant and

L)

Floor Vibration Sensing

Footstep Event
Extraction

Footstep Localization

Signal Amplitude
Distance Normalization

Structural Region
Characterization
Gait-Informed Foot

Dominance Classification

Footstep Detection and
Localization Module

Amplitude-Distance
Attenuation

Structural Variation
Effect Adaptation
Module

Clustered Kernel-Based

Learning Module
Kernel-Based Robust

Regression

Gait Balance
Symmetry

Fig. 3. Structure- and sampling-adaptive balance symmetry estimation
approach.
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then models the distribution of training data to develop a kernel-
based robust regression and overcome the gait sampling bias.
Through this learning approach, our method enables the estimation
of footstep GRFs from footstep-induced vibration signal ampli-
tudes. Finally, with the estimated footstep GRF, our system outputs
the gait balance symmetry state using a metric known as the SI,
which provides a percent ratio of left- and right-foot GRFs (Herzog
et al. 1989; Sadeghi et al. 2000).

Footstep Detection and Localization

In this section, the sensing system and approach for isolating
footstep events from the raw vibration signal and estimating their
location are presented. These detected, isolated, and localized foot-
steps are then used for the remaining modules of our approach.

Floor Vibration Sensing

Our balance symmetry estimation system collects footstep-induced
structural vibration signals using floor-mounted geophone vibration
sensors. Geophone sensors are mechanical vibration sensors that
convert the velocity of the floor vibrations into an analog voltage
signal. Because of the relatively small magnitude of footstep-induced
vibrations and to increase signal resolution, we incorporate an opera-
tional amplifier (op-amp) into the sensing system. We select the gain
of the amplifiers empirically by taking a series of footsteps near each
sensor and selecting the gain which maximizes the amplitude of the
footstep response while avoiding clipping of the signal. After am-
plification, our sensing system has an effective sensing range of
up to 20 m (Mirshekari et al. 2018b; Pan et al. 2017b), which enables
sparse sensor deployment and increases the gait balance monitoring
range. For the collection of footstep-induced signals, a sampling
frequency of 25.6 kHz is selected. We select this sampling frequency
to (1) achieve sufficient time resolution for TDoA estimations
(i.e., localization) and (2) ensure the fidelity of the frequency
response for our structural region characterization (the typical
footstep-induced response bandwidth is on the order of 0-250 Hz).
An example of the sensing system used is shown in Fig. 6.

Footstep Event Extraction

To isolate footstep events from the overall vibration signal, our
method framework consists of an anomaly detection algorithm that
determines when the vibration signal exceeds an ambient noise
level. Additionally, floor vibration signals often contain a mixture
of impulsive events, such as objects falling and doors closing, as
well as the footsteps of interest for this work. As a result, our event
detection algorithm takes a two-stage approach in which we (1) de-
tect impulsive events using a chi-squared hypothesis test and then
(2) classify detected impulses as footsteps or nonfootsteps using
a support vector machine (SVM) classifier (Lam et al. 2016;
Mirshekari et al. 2018a, 2020).

The chi-square hypothesis is a common technique for anomaly
detection and is based on comparing the variance in a given vibra-
tion signal window (e.g., 0.1 s) with that of the ambient noise con-
ditions (i.e., when no impulses have occurred). Specifically, we
compare the null hypothesis, H(:02, < o2, to the alternative hypoth-
esis, H,:02 > o, where o2, represents the sample variance of the
current vibration signal window, and o2 represents the sample
variance of the ambient noise conditions (Mirshekari et al. 2018b,
2020; Gingrich 1992; Baron 2013). We utilize this approach based
on the observation that the ambient noise variance exhibits a chi-
squared distribution, while impulsive excitations have a different
distribution, which may be a different chi-squared distribution or
another distribution altogether (e.g., Gaussian). As a result, impul-
sive excitations will result in a rejection of the null hypothesis (H).
We empirically select the threshold for the hypothesis test based on
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an initial calibration for the sensing area. When rejection of the null
hypothesis occurs, our method marks the location of the anomaly in
the time domain and sends this detected impulsive event for clas-
sification as a footstep or nonfootstep (Lam et al. 2016; Mirshekari
et al. 2018a). Anomalies that are classified as footstep events are
then extracted from the raw vibration signal and utilized in the re-
maining modules of our approach.

Footstep Localization

To localize the footstep event, we employ a TDoA-based multilat-
eration algorithm based on our previous work that considers the
propagation of the footstep-induced vibration wave through the
floor structure medium. This algorithm contains two primary steps:
(1) dispersion-invariant TDoA estimation (Mirshekari et al. 2016)
and (2) footstep localization through locally adaptive multilatera-
tion (Mirshekari et al. 2018b). In the dispersion-invariant TDoA
step, we overcome the tendency for the vibration waves of different
frequencies to travel at different velocities through the structure
(Lee and Oh 2016; Worden 2001) (known as dispersion) by decom-
posing the vibration signal in the time-frequency domain using a
wavelet decomposition (Mirshekari et al. 2018b). This decompo-
sition enables computation of TDoAs between each pair of sensors
and for each frequency independently, thus mitigating the effects of
dispersion. In the locally adaptive multilateration step, we use these
TDoAs to estimate the footstep location without the need for cal-
ibration to find the wave propagation velocity. The detailed process
for this multilateration approach is outlined in our previous work
(Mirshekari et al. 2018b).

Once the footstep location has been determined, we next com-
pute the footstep-sensor distance for each sensor in the sensing
area. The footstep-sensor distance is defined as the Euclidean dis-
tance between the footstep location and each sensor location. For
this computation, we assume that each sensor location is known
and constant. We utilize these footstep-sensor distances in the next
module of our algorithm to determine the expected vibration signal
attenuation at each distance.

Structural Variation Effect Adaptation

Once a footstep event has been detected and isolated from the raw
vibration signal, and its footstep-sensor distances are estimated, it is
passed to the structural variation effect adaptation module of our
method. In this module, we remove the effect of the distance-based
attenuation on the vibration signal amplitude and address the
structural variation effect challenge to our system. Our approach
is developed using a two-stage framework in which we (1) develop

a regression model to learn distance-based vibration signal attenu-

ation and then (2) model structural regions with an unsupervised

clustering algorithm.
The approach for each stage consists of the following steps.

e Stage 1. (1) We first extract the maximum vibration signal am-
plitude (absolute value) of the footstep vibration signal as a fea-
ture for footstep GRF estimation. (2) Next, the signal amplitude
is normalized by a trained amplitude-distance attenuation curve
to negate the distance-based signal attenuation.

* Stage 2. We model the frequency response of the footsteps and
cluster them into structural regions based on a principal compo-
nent projection and k-means clustering technique.

Amplitude-Distance Attenuation

To determine the attenuation rate for each sensor and the underly-
ing structure, we develop an amplitude-distance function. By char-
acterizing the attenuation rate for the instrumented structure, we use
footstep-sensor distance information to normalize signals based on
their anticipated attenuation. As previously discussed, the observed
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vibration signal amplitude is a function of the footstep ground
reaction force and the signal attenuation. The signal attenuation
is primarily influenced by two factors: (1) the intrinsic attenuation
due to energy loss in the structural medium (i.e., damping) and
(2) geometric wave spreading (Stein and Wysession 2009).

Intrinsic attenuation refers to the loss of vibration signal energy
with increasing time (distance) traveled through a medium (i.e., the
floor structure) (Stein and Wysession 2009). The rate of energy/
amplitude loss for intrinsic attenuation is determined by the
material properties of the floor structure. In the case of distance
attenuation for footstep-induced floor vibrations, the effect of in-
trinsic attenuation is observed as a decrease in the vibration signal
amplitude with an increasing distance between the footstep location
and the sensor location (footstep-sensor distance) and can be esti-
mated through the following expression:

A(d) = Age™ (5)

where A(d) = vibration signal amplitude at a footstep-sensor dis-
tance d; Ay = vibration signal amplitude at the impact location
(where the footstep occurred); and o = material-dependent attenu-
ation coefficient.

Geometric wave spreading describes the phenomena of a re-
duced vibration signal amplitude and energy as vibration waves
expand outward from the location of the vibration-inducing im-
pulse. This phenomenon is fundamentally caused by the conserva-
tion of energy; as the vibration wave covers additional surface area
and volume (from spreading along the floor plane and throughout
the floor depth), its total energy (and amplitude) remains constant
but is distributed over the larger area/volume (Stein and Wysession
2009). With the vibration wave spreading at a constant rate, the
amplitude attenuation due to spherical geometric wave spreading
(for body waves) increases proportionally to the distance traveled
(i.e., A(d) = (Ag/d)), while the circular/surface geometric wave
spreading (for surface waves) increases proportionally to the square
root of the distance traveled (i.e., A(d) = (Ay/v/d)) (Stein and
Wysession 2009).

Total wave attenuation considers the combined effects of the
intrinsic attenuation and geometric wave spreading as a concurrent
reduction in amplitude with increasing footstep-sensor distance.
From our prior work, we infer that the majority of the vibration
response is a body/lamb wave (Mirshekari et al. 2018b; Pan et al.
2017a). However, for this work, we acknowledge that these body/
lamb waves do not always represent the entire vibration response.
Other aspects of the footstep-floor interaction (e.g., friction, hori-
zontal components of the GRF, and so forth) may generate other
waveforms, including surface waves. As such, in our treatment of
the total wave attenuation, we include both of these potential wave-
forms by incorporating attenuation elements due to both surface
and body wave geometric spreading. By including both terms, we
are able to have more robustness to the in-place conditions as well
as varying walking styles. Further, with this broad treatment of geo-
metric wave spreading, we remove/reduce the need for prior infor-
mation about the structure itself (which could be used for building a
finite-element model for an analytical derivation of the total wave
attenuation). Therefore, the total wave attenuation is estimated ac-
cording to the following expression:

— AO ad
A(d) d\/ﬁe +A, (6)
where A, = vibration signal amplitude due to ambient vibration
conditions; and unknown coefficients « and A, are as defined
in Eq. (5).
To determine these coefficients, we model the distance-based
attenuation using robust regression. Robust regression reduces the
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Fig. 4. Example of an amplitude-distance attenuation function. Using
this function, our method normalizes vibrations signals to remove the
effect of signal attenuation. Note that this function is trained indepen-
dently for each sensor and building/structure, and the equation shown
represents one example.

effects of outliers at small footstep-sensor distances by minimizing
the L1 norm of the residuals (instead of the traditional L2 norm for
the least-squares regression). Because of the high slope of the at-
tenuation function in these small footstep-sensor distances, slight
variations in the actual footstep location from the recorded ground
truth location can result in large changes in amplitude (i.e., causes
outliers). When training the amplitude-distance regression model,
our system requires that footstep GRFs are consistent to avoid bias
from overly large or small GRFs. To control this, training data is
collected at a constant step frequency and with only one person.
Fig. 4 shows an example of our amplitude-distance model, along
with the coefficients from training for that particular sensor/
structure combination. This process is repeated independently for
each sensor in the sensing system, and the trained models are
used for normalizing vibration signal amplitudes in the following
sections.

Signal Amplitude-Distance Normalization

With each footstep that occurs in the sensing area, we evaluate the
amplitude-distance function at its estimated footstep-sensor dis-
tance to obtain a normalization factor for that distance. Then, to
obtain the normalized vibration signal amplitude, we divide the re-
corded vibration signal amplitude by the computed normalization
factor. In this way, we are able to directly compare normalized am-
plitudes across a variety of footstep-senor distances, thereby ena-
bling observation of changes in amplitude due to different footstep
GRFs. We then utilize the normalized amplitude for estimating
footstep GRFs.

Structural Region Characterization

To address the structural variation effect challenge, our system
models spatial variations in the structure’s frequency responses us-
ing an unsupervised clustering approach. This approach is based on
the insight that the changes to the dynamic properties of the struc-
ture will result in varying the frequency content of the vibration
response. In order to remove any bias due to the attenuation effect
for footsteps in different locations, we normalize each coefficient of
the frequency response by the peak amplitude of the collected
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signal. However, we note that the frequency responses alone may
not accurately represent spatial variations in the structural behavior
because (1) the signal is influenced by ambient noise, and (2) the
vibration’s response is dominated by the frequency components
associated with the footstep excitation. Therefore, we project the
frequency responses to a principal component space where we
can decompose the signal into a representative basis that maximizes
the data variance and reduces the influence of the system noise.
Finally, we assign the decomposed response to a structural region-
based cluster using k-means clustering.

In the principal component projection decomposition step of
our structural region characterization, we transform the response
to a set of principal components that maximize the variance of
the feature distribution (Jolliffe 2002). In this portion of our ap-
proach, we define the feature space as the coefficients from the nor-
malized frequency response of the footstep-induced vibration
signals and create a matrix of footstep-induced responses. The
principal component analysis (PCA) is an unsupervised linear
transformation that is well-suited to linear, time-invariant systems
(e.g., footstep induced floor vibrations). For our approach, PCA
applied to footstep-induced vibration signals enables us to mitigate
the influences of noise and dominance of the footstep-induced
components of the frequency response by projecting the responses
to a new set of bases where the variance is maximized.

We decompose the overall response by empirically selecting the
first principal component and projecting the frequency response
onto that principal component. We choose the first principal com-
ponent based on the observation that this component has the largest
coefficient values and therefore best represents the shared structural
components of the footstep responses while also maximizing the
data variance (enabling characterization of changes in these struc-
tural components).

Finally, with structural region clustering, we assign the pro-
jected frequency response feature vectors to a structural region
cluster through unsupervised k-means clustering. K-means cluster-
ing is an unsupervised classification algorithm that develops clus-
ters of data such that the Euclidean distance between individual
points and the centroid of the cluster is minimized (MacQueen
1967). In this work, we take the number of clusters to represent the
number of structural regions in the sensing area (which can be de-
termined empirically by observing spatial changes in footstep-
induced responses). For each footstep collected in the sensing area,
we assign it to a cluster and utilize these clusters in our footstep
force estimation step.

Clustered Kernel-Based Learning

In this module, we address the gait sampling bias challenge due
to a narrow GRF range by creating a new learning approach, which
combines gait-informed signal clustering (to separate dominant
and nondominant footsteps) with a kernel-based robust regression
analysis. Using the resulting regression model, our system esti-
mates the footstep ground reaction forces and determines gait bal-
ance symmetry using the GRFs from consecutive footsteps.

Gait-Informed Foot Dominance Categorization

Once each footstep has been assigned to a structural region, we
utilize human gait tendencies to separate each step into one of
two distinct foot-based clusters. Our approach clusters each step
based on the assumption that the person walking in the sensing area
alternates between each foot for consecutive steps and that each
walking trace is initiated with the same foot. Therefore, we place
the first recorded step into one cluster and alternate assignments for
each consecutive step.
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Kernel-Based Robust Regression

With the structure-based clusters and alternating foot clusters,
our method next models the footstep GRF-vibration amplitude
mapping function using linear regression. For this regression, we
independently model each cluster of structural regions and separate
feet. Additionally, we note that the force-amplitude relationship
discussed in the “Physical Insight” section will be influenced by
the noise present in the system. For structural vibration sensing,
this noise comes from two primary sources: ambient structural vi-
brations (e.g., machinery, HVAC systems, and so forth) and sensing
system noise (e.g., sensor noise and circuit noise). Therefore, we
formulate the GRF-vibration amplitude mapping function using the
following expression:

Fom = w + Ny (7)
where F,, = peak heelstrike GRF as estimated by sensor m; &, =
normalized vibration signal as measured by sensor m; S = mapping
function factor at the time of maximum vibration signal amplitude;
N 4 = ambient vibration noise; and N g = system noise. Note that due
to the amplification of the geophone signals and normalization of
vibration amplitudes for attenuation, a physical interpretation of the
system and ambient noise is limited, but nonetheless, the coeffi-
cients N, and N help to understand the relative effects of these
types of noises for each structural region, foot, and sensing node
(because each is trained independently).

We learn the mapping function using a robust regression-based
approach. We utilize robust regression to reduce model bias to
outliers that may occur from erroneous localization, vibration am-
plitude normalization, or ground truth footstep force measurements
(Rousseeuw and Leroy 2005).

As discussed in the “Physical Insight” section, a narrow data
range in footstep GRFs (i.e., most of GRFs are near the mean value)
introduces a bias in these regression models. To overcome this
gait sampling bias challenge, we introduce a weighting function
to the robust regression that places higher weights on the extreme
(high and low) GRFs and lower weight on the middle values (of
which there are more instances). We adapt a weighted robust re-
gression approach due to the insight that weighted regression is
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well suited for removing model sampling bias (i.e., the concentra-
tion of GRFs in our problem) (Little and Rubin 2019). We accom-
plish this robust weighted regression through an inverse kernel
density-based weighting algorithm. The intuition behind this tech-
nique is that the probability density function (PDF) of the data has
the highest value for the abundant central values of the GRF dis-
tribution and the lowest value for the extremes. Therefore, the in-
verse of the PDF will reflect the desired weighting values and
reduce the bias due to the GRF distribution. In the case of footstep
GRF data, the actual shape of the data distribution is unknown; as a
result, we model the PDF using a kernel density estimator. We
choose a kernel density estimator based on its flexibility with non-
parametric distributions and the ability to estimate distributions with
sparse data (Noh et al. 2012, 2015, ; Calfa et al. 2015; Racine 2008).
In this way, we learn the PDF of the GRF data with the following
expression (Noh et al. 2015):

10 =5 k(55 ®)

where f(x) = PDF of the training ground truth footstep GRF data;
n = number of training samples; K = kernel; x; = training sample
values; and 7 = smoothing parameter, which is optimized for the
standard deviation and number of data points according to the
process outlined by Bowman and Azzalini (1997). For our datasets,
we assume that the variations in footstep forces are approximately
Gaussian and select a Gaussian-based Kernel [given by K(x) =
(1/+/2m)e "], which enables a smooth approximation of the data
distribution (Racine 2008). Fig. 5(b) shows an example of the esti-
mated PDF for the footstep GRF data. Note the concentration near
the center of the data distribution.

Using the weights obtained from the inverse PDF modeling de-
scribed previously, our approach learns the regression coefficients (V 4,
S, Ng) by minimizing the weighted L1 norm residual (WR; ) across
the entire training dataset according to the following cost function:

X, +N
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Fig. 5. (a) Example of the normalized amplitude-footstep GRF function using our weighted robust regression approach compared to the fit with an
ordinary least squares regression (without kernel); and (b) associated GRF PDF obtained using a kernel density estimator. The inverse of this PDF is

used to determine the regression weights.
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where F,,; = ground truth peak heelstrike GRF for step i; X, ; =
normalized vibration signal amplitude for step i as measured by sensor
m; w; = kernel density weights for each step; and S,N4, Ny =
coefficients to be learned through the robust regression. In our ap-
proach, we learn these coefficients independently for each sensor,
structural region cluster, and foot cluster. Fig. 5(a) shows an example
of the trained mapping function for one of the structure/foot clusters in
which the orange line represents the trained mapping function values
across the full vibration signal amplitude range.

Footstep GRF Estimation. Using the force mapping function,
our method next estimates the footstep GRF and uses consecutive
forces to estimate gait balance symmetry. To accomplish this,
we combine the independent estimates from each sensor in the
sensing area to obtain one overall force estimate. Our process for
combining all of the sensor information is to take the average foot-
step GRF estimation across all sensors. However, we note that there
are occasionally estimates from one or more sensors that are incon-
sistent with the rest. This may occur when the footstep location is
too close to the sensor (where the amplitude normalization function
has a very high slope). As a result, very small errors in the footstep
location can result in very large changes to the normalization factor
(and introduce high errors in the footstep GRF estimation). There-
fore, to obtain our final footstep GRF estimation, we perform an
outlier removal on the set of sensor estimates by removing those
that are at least three scaled median absolute deviations from
the median force estimate. This process allows us to remove the
estimates from sensors in the sensing area that are much different
from the rest and obtain an average force estimation that is not
skewed by large errors. Once the outliers have been removed,
our system outputs the footstep GRF as the average force estimate
from the remaining sensors and uses this footstep force for balance
estimation.

Gait Balance Symmetry Estimation. Once the footstep force has
been estimated, our algorithm considers consecutive pairs of left-
and right-foot footsteps to calculate gait balance. The SI is a
common metric for assessing gait balance that compares the
difference of two footstep forces to their average, with output
as a percent balance symmetry using the following expression
(Herzog et al. 1989):

Fp — Fg

Sl.=—F—"—
0.5(F, + Fp)

x 100% (10)

where F; and F = left- and right-foot footstep force estimates,
respectively. Using the calculated SI, our system outputs a balance
state as either leaning left (when SI > 10%), leaning right (when
SI < —10%), or balanced (when |SI| < 10%). We choose the
threshold of 10% based on studies in the medical domain, which
establishes this value as the threshold for the symmetric versus
asymmetric gait (Hodt-Billington et al. 2012). Additionally, we
note that the gait symmetry scenarios of most interest are those
that are consistent across several footsteps (which removes false
positives due to abrupt changes to footstep GRFs). As a result, we
consider the average SI across the trace of footsteps (five consecu-
tive left-right pairs of footsteps in this work) as the estimated SI of
our system.

Gait Balance Symmetry Evaluation

To evaluate the performance of our system, we conducted real-
world experiments with human walkers across different structures
and with six experimental participants. In the following section, we
first present our floor vibration sensing system and experimental
setup. Next, we discuss the overall performance of our approach.
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Fig. 6. Vibration sensing system.

Then, we explore the performance of our approach with respect to
our research contributions. Finally, we evaluate the robustness of
our approach by exploring its performance across different balance
states, in different structures, and with different walking partici-
pants, respectively.

Experimental Setup

To evaluate the accuracy of our approach, we utilize a sensing sys-
tem that consists of six geophone sensors. For this work, we select
SM-24 geophones for our sensing system based on their low cost
and small size for ease of retrofit in any structure (I/O Sensor
Nederland bv 2006). The sensors are installed by adhering them
directly to the floor surface using wax (which ensures coupling
with the floor structure). As previously described, the amplification
gain is set between 200 and 2,000X (depending on the structure) by
selecting the gain that maximizes the footstep response amplitude
while avoiding signal clipping. The sensing system used for this
work is shown in Fig. 6.

The experimental evaluation was performed across three differ-
ent structures, with six total participants and varying walking
speeds and balance conditions. We chose the three locations as
representative of common structural types: (1) the Baptist Homes
Society, which is a wood-framed structure with a wood subfloor
and carpet topping; (2) Porter Hall at Carnegie Mellon University,
which is a noncarpeted concrete slab-on-grade structure; and (3) the
Vincentian Home, a steel-framed structure with a carpeted concrete
slab on the metal deck floor structure. Fig. 7 shows an example of
the experiments conducted in each of the three structures. For each
location, the number of structural regions was empirically specified
as two based on the size of the experimental area, some prior
knowledge of the underlying structure (e.g., locations of supports),
and the preliminary experiments to observe footstep-induced
signals in different areas.

Participants were asked to walk in a straight line at a speed con-
trolled by a metronome for 12 consecutive steps and also at varying
step frequencies and balance conditions. We define the 12 consecu-
tive steps as a trace of footsteps, and each participant walked for a
minimum of 5 traces. For our dataset, we remove the first and last
steps of the trace to remove inconsistencies in walking when ini-
tiating and terminating movement. We selected step frequencies
(speeds) of 1.25, 1.58, and 1.92 Hz based on normal human walk-
ing tendencies, which represent slow walking, medium/normal
walking, and brisk/fast walking, in order to best represent the
majority of walking tendencies in the general population (Tudor-
Locke et al. 2011). To evaluate a full range of gait balance scenar-
ios, three balance conditions were considered: balanced, leaning
left, and leaning right. Fig. 8 shows the typical sensor layout
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Fig. 7. Real-world experimental evaluation locations: (a) Baptist Homes (wood floor); (b) Carnegie Mellon University’s Porter Hall (concrete
slab-on-grade); and (c) Vincentian Homes (concrete slab on metal deck/steel framing).
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Fig. 8. Experimental setup. Typical sensor layout and footstep locations for walking experiments in the three structures.

and the ten remaining footstep locations used in the three experi-
mental locations.

Ground truth footstep ground reaction forces were collected us-
ing pressure sensors mounted to the underside of the participant’s
shoe with a sampling rate of 1,000 Hz. This sample rate was se-
lected to ensure that the initial heelstrike transient portion of the
footstep GRF is able to be captured (as shown in Fig. 1). The syn-
chronization with the geophone floor vibration sensors was done
manually by asking participants to stomp three times with their heel
prior to walking. The resulting impulses were then aligned in the
time domain signals for the pressure sensors and geophone sensors.
For this work, we utilized FlexiForce A401 pressure sensors (Bos-
ton), which are lightweight, flexible force sensors that can be
placed on the bottom of the shoe without interfering with the ability
to walk (Tekscan 2010). Pressure sensor data was collected sepa-
rately for each foot using an Arduino Due and stored locally on a
secure digital (SD) card to avoid the need for wireless communi-
cation and/or additional wires (which disrupt natural walking).
Based on the discussion in the “Physical Insight” section, we
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concentrated the sensors on the heel of the shoe to ensure accurate
measurement of the heelstrike transient. Across the experimental
participants, walking speeds, and balance scenarios, we observed
a peak heelstrike transient footstep ground reaction force range of
approximately 130450 N (30-100 Ib).

Balance Symmetry Estimation Evaluation

In this section, we evaluate the overall accuracy of our approach for
footstep ground reaction force (GRF) estimation and gait balance
symmetry index estimation. To understand this overall perfor-
mance, we consider the average accuracy of our system across
all three experimental locations. We define this accuracy for each
metric as follows:

|Foi — Foyl

l n
GRF Accuracy = — Z 100 — (
L 0i

x 100) (11)
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where F; = actual peak heelstrike transient ground reaction force
for step i; F 0; = estimated peak heelstrike transient GRF from our
system; n = number of steps in the evaluation dataset; and k =
number of consecutive pairs of left/right steps for the balance SI
estimation. Note that SI is typically reported as a percent error,
but we are reporting it as an accuracy for ease of interpretation.
For each evaluation metric, we compare our approach with a
baseline approach. The baseline approach used for comparison
is a naive approach, which learns a vibration amplitude—footstep
GRF mapping function through an ordinary least squares regres-
sion without addressing the structural variation effect and gait
sampling bias challenges of the system (i.e., no distance attenuation
characterization, no structural region modeling, no foot bias
removal, and no weighting to account for the small GRF range).
Our evaluation dataset consisted of a series of walking footsteps
at varying speeds and balance scenarios across three different struc-
tures: the Vincentian Homes, Baptist Homes, and Porter Hall. For
this overall performance evaluation, we analyzed 310 footsteps
from the Vincentian Homes, 460 from the Baptist Homes, and
70 footsteps from Porter Hall. Each dataset was balanced with
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Fig. 9. Average performance of our approach for footstep ground
reaction force and balance symmetry estimation across all three
structures.
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left- and right-foot footsteps. To analyze the overall performance,
we independently trained and evaluated the three locations for GRF
and SI estimation accuracy with a five-fold cross-validation. For
this five-fold cross-validation, we randomly partitioned the datasets
into five partitions and alternated training with four of the partitions
and testing with the remaining partition. This process was repeated
until all partitions had been tested.

For the overall evaluation dataset, we computed the average ac-
curacy across each of the three structures by taking a weighted aver-
age of the performance in each structure (in which the weights are
the number of steps in each structure). The resulting GRF and SI
estimation accuracy is shown in Fig. 9. Our approach resulted in an
average footstep GRF accuracy of 90.2% and an average balance SI
estimation accuracy of 89.9%, which represents error reductions of
1.3X (86.9%) and 1.5X (84.7%), respectively, over the baseline
approach.

From the overall results, we can observe that our approach is
able to improve the baseline approach and achieve a high level
of accuracy for force estimation. This increased performance of
our system over the naive baseline approach is likely due to the
fact that our approach is able to overcome the structural variation
effect and gait sampling bias challenges described in the “Physical
Insights” section. Because it does not address these effects, the
baseline approach is not able to accurately model the relationship
between footstep ground reaction forces and vibration signal am-
plitudes. This is further apparent in Fig. 10, where we observe that
our approach accurately models the anticipated relationship (for
every 1 N increase in the actual GRF, the estimated GRF increases
by 1), while the baseline approach predicts approximately the same
GRF regardless of the actual GRF. As a result, our approach
achieves a higher accuracy for both the GRF estimation as well
as balance SI estimation.

System Component Evaluation

In this section, we explore the performance of our approach with
respect to each system component. First, we analyze the accuracy
of our approach if each step of our method was removed (while
keeping the others present). This enables us to observe the effect
of each step of our method on the overall accuracy of our approach
and determine the efficacy of our approach in addressing the pri-
mary research challenges of the structural variation effect and
gait sampling bias on the GRF-vibration amplitude relationship.
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Fig. 10. Scatterplot of estimated forces versus actual forces for (a) our approach; and for the (b) baseline approach. Note that our approach follows
the ideal 1:1 relationship between estimated and actual GRFs, while the baseline tends to predict a small range of GRFs despite an increasing or

decreasing actual force. The line represents the ideal 1:1 relationship.
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Fig. 11. Performance of our approach with respect to each step of the
method.

Following this, we examine the sensitivity of our approach to
localization errors.

Impact of Each Approach Component

We evaluate the improvement in footstep GRF and balance SI es-
timation for each step of our approach by comparing our overall
approach with a series of alternative versions of our approach. Each
alternative approach is a variation of our system in which one of the
components from each module has been removed: one in which
the effect of footstep-sensor distance attenuation is not considered,
one in which variations in structural regions are not considered, one
in which the effects of foot dominance are not considered, and one
in which the kernel-based weighting is not performed on the regres-
sion fit. Finally, we present the naive baseline approach as a lower-
bound comparison for each approach. For this evaluation, we
consider the data from one participant in our Vincentian Homes
experimental location. This enables a more detailed analysis of the
impact of each component of our system.

The results of this comparison are shown in Fig. 11. As can be
seen in the figure, our approach outperforms each of the alternative
approaches for both footstep GRF estimation and trace-level bal-
ance SI estimation, which indicates that each step in our approach
is necessary to capture the most accurate floor vibration-footstep
GRF mapping function. Specifically, our method achieves an aver-
age GRF estimation accuracy of 91.9% compared to the alternative
approaches, which show accuracies of 90.8% (no distance attenu-
ation), 91.3% (no structural region clustering), 89.0% (no foot
dominance), 91.8% (no kernel-based robust regression), and 88.2%
(naive approach). For a balance SI, our approach results in an aver-
age accuracy of 92.3% compared to 90.0% (no distance attenua-
tion), 92.0% (no structural region clustering), 84.1% (no foot
dominance), 91.1% (no kernel-based robust regression), and 82.4%
(naive approach). Further, we note that the foot dominance appears
to have the most significant effect on the accuracy of our approach
with respect to the naive baseline. This observation not only indi-
cates that isolating this effect allows us to better capture gait bal-
ance information but also supports findings in the medical domain
regarding the variation in footstep-floor interactions between dom-
inant and nondominant feet.

To fully compare the performance of the overall approach with
the no kernel approach, it is also necessary to consider how each
performed with regard to varying balance conditions. The primary
benefit of the kernel weighting is that it improves the balance sym-
metry estimation in unbalanced conditions (which are most critical
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Fig. 12. Comparison of the performance between the overall ap-
proach and the no kernel-based robust regression for varying balance
conditions.

with respect to assessing overall gait health). To evaluate this, we
considered the performance of our overall approach compared to
one that does not include the kernel-based robust regression in
the varying balance conditions. Fig. 12 shows these results. From
these figures, we can observe that the overall approach outperforms
the no kernel approach for balance SI estimation in each case in
which an imbalance is present (90.5% versus 87.9% for lean right
and 87.3% versus 85.7% for lean left), while performing worse in
the normal case (94.4% versus 95.3%). This better performance for
no kernel in the normal scenarios is to be expected because there is
more training data for normal scenarios.

To further evaluate the performance of the structural region clus-
tering approach presented in this work, we conducted an additional
evaluation across varying degrees of difference in structural behav-
ior. In the comparison shown in Fig. 11, we considered the differ-
ence between our approach and an alternative no structural region
approach. However, at the scale of the experiments conducted (ap-
proximately 2 x 8 m), the change in the underlying structure was
rather minor. This is likely due to the fact that adjacent areas of a
floor typically have similar underlying support conditions. As such,
significant changes in the GRF-vibration amplitude relationship
likely occur over larger areas than the ones tested (which were con-
strained due to space limitations in the experimental locations). Our
prior work conducted in the hallway and adjacent rooms of a town-
house showed that different regions in the structure could generate
vibration responses with a difference in peak amplitude of as large
as 2X greater (Pan et al. 2014).

To illustrate how our PCA-based structural region clustering
performs when there are more significant changes in the structural
behavior, we simulated changes to the vibration signal amplitude at
various magnitudes. Based on our observation that the vibration
amplitude can vary as much as 2X, we modified the vibration am-
plitude for Region 2 in the Vincentian location (the same as used in
the preceding comparison) to simulate how our approach and the
alternative approach would perform when the degree of structural
difference is 1.3X, 1.6X, and 2.0X. We chose to modify the Region
2 amplitude based on the fact that fewer footstep locations were
clustered into this region (meaning less available training data
for our approach and more difficulty in accurately estimating steps
in this region). In this case, if the variations in the GRF-vibration
amplitude relationship are not accounted for, those footstep GRFs
will not be accurately estimated.
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The results of this comparison are given in Fig. 13. From this
figure, we can observe that our approach has a constant accuracy
for both Region 1 steps (approximately 92.2%) and Region 2 steps
(approximately 90.2%). In contrast, the alternative approach, which
does not account for structural regions, has decreasing accuracy in
Region 2 with increases in the degree of structural difference
(90.0% to 85.3%) but an approximately constant performance for
Region 1 (approximately 91.6%). The constant performance for
Region 1 in the alternative approach is likely due to the imbalance
in training data for that region (approximately 80:20 split between
Region 1 and Region 2), so the alternative approach accurately
characterizes the GRF-vibration amplitude relationship for Region
1 but does not do so for Region 2.

Sensitivity to Localization Error

To understand the sensitivity of our approach to localization error,
we consider the accuracy of our method at varying levels of error in
estimating the footstep location and corresponding footstep-sensor
distance. To simulate the localization error, we train our model
using known footstep locations; then, for the test footsteps, we in-
troduce localization error into the amplitude normalization module.
We introduce this error as an increase or decrease in the footstep-
sensor distance and vary the amount between —2.5 and +2.5 m at
0.5-m increments. For this evaluation, we again consider the
Vincentian Homes experimental data for one participant and com-
pute the average GRF estimation accuracy across a five-fold cross-
validation.

The resulting footstep force estimation accuracy is shown in
Fig. 14. In this figure, the average accuracy across all five folds
for the test footsteps at each distance error increment is shown with
markers, with one standard deviation of accuracy given by the ver-
tical lines. In this case, the standard deviation given is computed
across the entire test dataset for that level of distance error. Based
on our prior work, our localization approach achieves an average
error of 0.34 m (Mirshekari et al. 2018b). With this level of distance
error, the resulting GRF accuracy is approximately 91.1%, which
would result in less than a 2% additional GRF estimation error from
the ideal case (0 m error). Further, with as much as a 0.5-m distance
error, our approach has an average accuracy of 90.0%, which is still
an improvement over the naive baseline approach, with no effect
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Fig. 14. Force estimation accuracy with varying footstep-distance
error. The average error is given by the markers at each distance error
increment, with one standard deviation of accuracy provided by the
vertical lines.

from localization (11.8% error). Lastly, we note that the force es-
timation accuracy is lower when the distance error is negative (as
compared to a similar positive error). This likely is a result of the
slope of the amplitude-distance function described in the “Ampli-
tude-Distance Attenuation” section. As the footstep-sensor distance
is increasingly smaller, the slope of the amplitude-distance normali-
zation curve is increasingly steep, so introducing additional error
in this distance range will result in large changes to the normali-
zation factor and, consequently, introduce additional GRF estima-
tion errors.

Balance State Robustness Evaluation

To evaluate the robustness of our approach to different balance
states and different step frequencies (walking speeds), we take a
detailed look at our Vincentian Homes location for one person’s
data. We focus on a singular walker and one location for this evalu-
ation in order to best isolate the influence of varying balance states
and step frequencies. We asked our experimental participant to
walk at the same three different step frequencies as before: 1.25,
1.58, and 1.92 Hz. During the experiments, the walking speed
was controlled by a metronome, and the participant was asked
to take 1 step at each tone of the metronome. For the three balance
scenarios, we considered balanced in which the participant was
asked to walk normally, leaning right in which the participant was
asked to place more weight on the right side of their body while
walking and leaning left in which the participant was asked to place
more weight on the left side of their body while walking. For the
varying balance scenarios, the shoe-mounted pressure sensors were
used for ground truth in determining if there was an imbalance to-
ward one side or another. Due to the variability in the participants
mimicking an imbalance condition, there was a range of SIs from
these experiments that varied from slightly imbalanced to signifi-
cantly imbalanced. From the ground truth information, this balance
SIrange was as follows: —1% to 50% for lean left and —22% to 7%
for lean right. Because this also represents potential real-world bal-
ance conditions, we did not modify the datasets in any way. Further,
because we consider trace-level balance SI for our final prediction
(average across 5 pairs of steps as described in the previous “Gait
Balance Symmetry Estimation” section), in each trace, the average
SI correctly corresponds to the command given (lean right or lean
left). For this robustness evaluation, we take a detailed look at the
results from our Vincentian Homes location, and our evaluation
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Fig. 15. Force GRF estimation and balance symmetry index estimation accuracy for Vincentian Homes across different walking speeds and balance
conditions. Note the improvement over the baseline approaches for the lean right and lean left conditions, which are particularly useful for condition

diagnosis.

assumes that the training data consists of a mixture of data from
each speed and balance scenario, while the test data is independ-
ently evaluated for each scenario. Similar to previous evaluations,
we performed a 5-fold cross-validation on the dataset to ensure that
each sample had been both used for training as well as testing.
In our balance state robustness evaluation, our method realized
an average force estimation accuracy of 91.9%, 93.0%, 93.5%,
91.8%, and 89.1% for the slow, normal, fast, leaning right, and
leaning left conditions, respectively. These represent an average er-
ror improvement of 1.3X from the baseline approach. For balance
SI estimation, our method results in the average SI estimation ac-
curacy of 94.9%, 94.4%, 98.5%, 90.5%, and 87.3%, for the slow,
normal, fast, leaning right, and leaning left conditions, respectively,
which corresponds to an average error reduction of 3.7X from the
baseline approach. A summary of the results from the varying bal-
ance state and step frequency conditions is shown in Fig. 15.
From these results, we can clearly observe that our method
consistently outperforms the naive baseline approach for both the
balance SI and for footstep GRF estimation across each of the sce-
narios considered. Further, we note that our approach has a similar
performance across each of the speed and balance scenarios with
the exception of leaning left. In the leaning left scenario, both our
approach and the baseline approach have lower accuracy for the
balance SI and GRF estimation, but our method is still able to
achieve as much as a 2.8X error improvement from the baseline
approach. The lower accuracy for this scenario is likely a result
of the participant artificially simulating an unbalanced scenario
while walking. The participant considered for this evaluation indi-
cated that their dominant foot is their right foot, which means that
placing additional weight and favoring the left side while walking
likely resulted in a change in the walking style of the participant.
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Additionally, because this new walking style is not natural to the
participant, we observed a larger range of ground truth footstep
GRFs in this scenario. In contrast, for real-world applications of
our system, persons with gait asymmetries will likely have gradual
changes in their balance state and/or be consistently favoring one
side or the other while walking. In these scenarios, there will likely
be much less variance in footstep GRFs from one step to the next,
and we expect that our approach will better capture the gait balance
and footstep GRFs. Through our collaboration with Vincentian
Homes and Baptist Homes, our future work will aim to include
walking data from senior residents with known gait asymmetries
so that we can improve the robustness of our method to these
conditions.

Robustness to Different Structures

To evaluate the robustness of our approach to varying structural
conditions, we make a detailed comparison of its performance
across our three experimental locations in this section. As discussed
previously, these structures represent a variety of structural supports
(Vincentian—steel, Baptist—wood, and Porter—concrete); by
evaluating across each of these structure types, we ensure our ap-
proach is robust to varying structural conditions. In each structure,
we compare the results of our approach with those of the naive
baseline approach discussed in the “Gait Balance Symmetry Esti-
mation Evaluation” section for the same structure.

For our Vincentian Homes location, our approach achieves an
average footstep GRF accuracy of 91.9%, which represents a 1.5X
improvement over the baseline approach accuracy (88.2%). When
considering trace-level balance SI estimation, our method results in
an SI average accuracy of 92.3%, while the baseline approach has
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Fig. 16. Balance SI and footstep GRF estimation accuracy for our approach compared to the naive baseline approach in different structures.

an average accuracy of 82.4%, representing a 2.3X reduction in
error from the baseline approach. In Baptist Homes, our approach
achieved an average footstep GRF accuracy of 88.7%, which rep-
resents a 1.3X error improvement over the baseline approach
(85.2%). For balance SI estimation, our approach achieves an ac-
curacy of 87.2% (1.2X baseline improvement). Lastly, in Porter
Hall, our approach achieved an average footstep GRF accuracy
of 92.4%, which represents a 1.1X error improvement over the
baseline approach (92.08%). Then, for balance SI estimation accu-
racy, our approach achieves an average accuracy of 96.5% (2.2X
baseline improvement). Figs. 16(a and b) show the performance of
our approach versus the naive baseline approach for the three ex-
perimental structures.

When considering the results from each of the experimental lo-
cations, we note that the force estimation accuracy is similar for
each location and that each location achieves a level of SI estimation
accuracy that indicates its effectiveness for gait balance assessment.
However, we do note that the force estimation and balance SI ac-
curacy are both slightly higher for Porter Hall as compared to the
other two locations. The reason for this likely has to do with the
nature of the underlying structures at each location. At Porter Hall,
the underlying structure is a concrete slab-on-grade, while at Baptist
Homes, the floor is constructed of wood framing, and Vincentian
Homes is constructed of steel framing and concrete floor slabs. With
a concrete slab-on-grade, the underlying structure is more homo-
geneous and less spatially-varying (as compared to steel and wood).
As a result, the structural behavior is more uniform, which results in
more consistency for the footstep GRF-vibration signal amplitude
relationship and, consequently, higher estimation accuracy.

Robustness to Different Walkers

To evaluate the robustness to different people, an additional set of
experiments was conducted at the Porter Hall experimental loca-
tion. At this location, five participants of different ages, genders,
and heights/weights were asked to walk in the sensing area for
10 steps in succession. Due to the corruption of the ground truth
data, the sixth experimental participant was excluded from this
evaluation. Participant ages ranged from 20 to 60, heights ranged
from 165 to 185 cm, and weights ranged from 52 to 116 kg. Across
the 5 participants, a total of 350 footsteps were recorded. Ground
truth forces were again collected using a shoe-mounted pressure
sensor, and the same shoe was worn by each participant (to remove
possible bias from footwear), which was a leather boot with a
hard leather sole. We conducted this experimental evaluation in
conjunction with our approved IRB (Noh et al., “Structures as sen-
sors: Elder activity level monitoring through structural vibrations,”
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STUDY2015-00000125, unpublished report, submitted to Carnegie
Mellon Univ., 2015).

From our preliminary experiments, we observed that the foot-
step ground reaction forces are influenced by the subject’s weight.
Gait parameters, such as speed and stride length, have been shown
to be influenced by body weight (Samson et al. 2001); when these
and other gait parameters change, it affects the interaction of the
foot and the floor structure, which, in turn, influences the footstep
ground reaction force-vibration amplitude relationship. To accom-
modate this weight effect, we assigned the participants into two
distinct weight groups: 52-70 kg and 86-116 kg. For each group,
we pooled the participants’ footstep data into one dataset and evalu-
ated that group’s accuracy with a five-fold cross-validation (as de-
scribed previously). Therefore, the two evaluation scenarios that
were investigated with this experimental data are (1) a combination
of Persons 1, 4, and 5 (the lower weight group) and (2) a combi-
nation of Persons 2 and 3 (the higher weight group).

For Scenario 1, our method achieves an average footstep GRF
estimation accuracy of 91.3%, 70.0%, and 87.1% for Persons
1, 4, and 5, respectively. For Scenario 2, our method achieves a
93.0% and 71.5% accuracy for Persons 2 and 3, respectively.
Fig. 17 shows the accuracy for estimating each participant’s foot-
step forces, with each bar representing the average accuracy for
each foot of the participant. For the balance SI estimation, our ap-
proach achieves a high accuracy for Persons 1, 2, 4, and 5 (93.8%,
93.7%, 88.9%, and 93.6%) and an accuracy of 69.6% for Person 3.
Fig. 18 shows an overview of our system’s balance SI estimation
accuracy for different people. These results indicate that our
method is appropriate for assessing gait balance and can do so with
high accuracy across different persons.

In the robustness to different persons evaluation, we can make
several significant observations about variations in walking style as
well as health status. The first observation is with respect to Person
3. As noted previously, our method resulted in large estimation er-
rors for right foot forces (and subsequently balance SI) for this par-
ticular participant. After exploring these results, we learned that this
particular participant recently underwent knee replacement surgery
for their right knee and indicated that this knee was still healing. As
a result, the manner of walking from one step to the next is highly
variable as the participant is adjusting to their new walking style. In
our experimental results, we observe this phenomenon; while the
majority of estimations are accurate (less than 10% estimation er-
ror), there are several where the ground truth force is very low (less
than 1/3 of the normal range), but our estimation is high (above
typical estimated values). This observation is likely the direct result
of a change in the foot contact angle or contact location (heel versus
midfoot versus toe) as the participant is coping with a healing knee.
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Fig. 18. Balance SI estimation accuracy for each experimental parti-
cipant. Our system achieves high accuracy for Persons 1, 2, 4, and 5,
indicating that it is robust to different walkers. Person 3 recently under-
went knee surgery, which could influence walking variability.

Because our approach is still able to capture footstep force infor-
mation in these scenarios, it shows promise for the ability to diag-
nose changes due to injury or surgery, but further work is necessary
for understanding variation due to the footstep initial contact loca-
tion. In our future work, we plan to characterize these initial impact
locations (i.e., back heel, mid heel, and toe) and identify when these
impact locations vary, which will provide additional gait health and
balance symmetry information.

For the force estimation of Person 4, we note that our approach
consistently overestimates the ground truth forces. Additionally, we
note that the majority of the ground truth forces are lower than those
of Persons 1 and 5 from the same group. Fig. 19 shows this ob-
servation using a boxplot of the measured heelstrike GRFs. In this
figure, the box represents the interquartile range (from the 25th to
75th percentile of the data distribution), the whiskers represent the
approximate data distribution limits (1.5x the interquartile range),
and the crosses represent statistical outliers. From this figure, we
observe that the heel impact GRFs for Persons 1 and 5 are higher on
average than those for Person 4. This implies that Person 4 may be
walking differently than the others by impacting further toward the
front of their foot. As a result, the ground truth force collected by
the back-most sensors will be low, while the vibration signal mea-
sured by our sensors will remain higher. We plan to explore these
interfoot pressure distribution changes in our future work so that
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Fig. 19. Comparison of footstep GRFs for Participant group 1. Note
the lower distribution of GRFs for Person 4, which indicates that this
person does not place as much force on their heel during the initial
contact as Persons 1 and 5.

our system can better address individual variations in interfoot con-
tact location.

Discussion and Future Work

In this paper, an approach for estimating footstep ground reaction
forces and gait balance symmetry using footstep-induced vibration
sensing is presented. The results of a real-world experimental
evaluation with six total walking participants and three experimen-
tal locations indicate that this approach is promising for nonclinical
assessment of occupant gait health parameters. In this section,
we explore the relevant assumptions and limitations of this work
and discuss future research directions that aim to address those
limitations.

Multiple Walkers

In this work, footstep ground reaction forces and balance symmetry
were evaluated through a series of controlled experiments with
one walker in the sensing area at a time. However, in real-world
scenarios, it is likely that multiple persons are walking concurrently
in any given area (either together or passing by one another). As
such, vibration responses from footsteps are often overlapping and
mixed, making it difficult to uniquely estimate the GRFs and
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balance symmetry for each person independently. To address this
limitation, we have prior work that shows that we can uniquely
identify individuals with up to 96% accuracy (Pan et al. 2015,
2017c¢), as well as preliminary work with multiple walker scenarios
(Fagert et al. 2019c; Shi et al. 2019). In our future work, we plan to
combine these works on identification and the GRF/balance esti-
mation approach described in this paper to enable gait health as-
sessment in a variety of indoor scenarios.

System Deployment and Scalability

An important discussion for any sensing system involves its
deployment/maintenance costs and scalability in real-world scenar-
ios. As discussed in the “Related Work” section, the system used
in this work has the benefits of being passive and sparse while
also reducing concerns related to privacy. For building-scale de-
ployments, these benefits are especially prominent. Regarding
deployment/maintenance costs, we estimate that at a large scale,
the sensing nodes can be purchased at a relatively low cost (Pan
et al. 2017a). Further, they are easily installed on the floor structure
(they only require coupling with the floor through a bonding agent
such as wax) both in new construction and retrofit scenarios. In
consideration of scalability, we have also developed a wireless
version of the sensing system to reduce installation and mainte-
nance costs (i.e., cable maintenance). The wireless system com-
municates over WiFi for the purpose of data transmission and
synchronization.

To enable the GRF/balance symmetry estimation described in
this work, as few as three sensors are needed in the walking area
[primarily for localization purposes (Mirshekari et al. 2018b)], and
we have observed a sensing range of up to 20 m by optimizing the
variable gain of the amplifiers (Pan et al. 2014, 2017b).

In addition to the preceding discussion, the topic of scalability
within a building is an important consideration. In this work, one of
the primary contributions is the ability to adapt to spatially-varying
structural properties through a PCA-based clustering approach. At
the scale of the experiments conducted for this work, the number of
structure regions was empirically chosen to be two. For our future
work, we intend to explore how this concept can be expanded to
automatically characterize the number of structural regions based
on changes in vibration signals and/or expanded by using prior
information about the underlying structure (e.g., locations of
columns, primary beams/girders, and so forth).

Additional Gait Factors

One of the primary assumptions for the GRF/balance symmetry
approach outlined in this work is that the current system assumes
that initial contact is made with the heel (i.e., the heelstrike transient
relationship). However, as discussed in the “Robustness to Differ-
ent Walkers” section of the experimental evaluation, one limitation
of this assumption is when persons have abnormal gaits and make
initial contact with a different part of their foot (e.g., midfoot or
toe). In these scenarios, the system would predict a larger GRF
for the heelstrike transient when, in fact, it was quite low and/or
nonexistent. As such, in our future work, we plan to investigate
in-foot pressure distribution through decomposing the vibration re-
sponse and mapping the components of the response to individual
portions of the footstep pressure distribution. Some of our prelimi-
nary work in this area shows promise for distinguishing between
initial contact with the heel and with the toe (Dong et al. 2020).
This will enable us to expand our system into a comprehensive
gait analysis platform where additional parameters, such as in-foot
pressure distribution, the center of pressure, and movement of the
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extrapolated center of mass, can be evaluated in real-time and in a
variety of indoor, nonclinical environments.

Beyond variations in walking style, in-foot pressure distribution
and the GRF-vibration amplitude relationship may be affected by
the shoe type. In this work, the effect of different shoes was con-
trolled by having each participant wear the same shoe (a hard-soled
boot). However, in real-world scenarios, people may wear soft-
soled shoes, be barefoot, and/or wear shoes with heels. In these
situations, both the nature of the foot impact is affected, as well as
the contact location on the foot (especially in the case of high-
heeled shoes). In our future work, we will explore the effects of
shoe shape and sole hardness on the footstep GRFs, the mapping
function between them, and the measured floor vibration signals.

Lastly, in this work, we leverage the physical insight that dom-
inant and nondominant feet serve different functions during gait
and develop independent GRF-vibration amplitude models for each
foot. The process for developing these independent models in this
work assumes that each step is with alternating feet, and experi-
ments were controlled to instruct each walker to start with the same
foot for each walking trace. As such, this work does not attempt to
characterize which foot is dominant and which is not. However,
based on the findings (in which foot dominance plays a significant
role in the accuracy of the overall approach), there is reason to be-
lieve that the sensing system used in this work could also be used to
characterize which foot is the dominant foot for each walker. Fur-
ther, our prior work on occupant tracking could be leveraged to
remove the assumptions of alternating feet by determining the
walking direction and relative location of each step (Pan et al.
2014). In this way, the system could determine which foot each
step belongs to and automatically cluster it into the appropriate
cluster for the right or left foot.

Conclusions

To the best of our knowledge, this paper represents the first work
that utilizes footstep-induced vibration sensing to estimate walking
gait balance symmetry and footstep ground reaction forces. We
utilize floor vibrations due to their ability to sense footsteps in a
passive manner and with sparse deployment. We overcome system
challenges of the structural variation effect and gait sampling bias
on the footstep GRF-vibration signal amplitude relationship by
modeling variations in the underlying structure through an unsuper-
vised PCA-based clustering approach and through a kernel-based
robust regression. Then, using consecutive pairs of footstep ground
reaction force estimations, we estimate gait balance symmetry us-
ing a common metric known as the symmetry index. Our experi-
mental evaluation explored the robustness of our method with
respect to varying structural conditions, walking speed/balance
conditions, and different individuals (i.e., walking styles). Through
this evaluation, our approach realizes an overall force estimation
accuracy of up to 92% (1.5X improvement over the baseline ap-
proach) and a trace-level balance SI estimation accuracy as high
as 96.5% (2.2X baseline improvement). The results from our work
are promising and show that this technique has the potential for gait
monitoring in a variety of indoor and home-health care settings.

Data Availability Statement

Some or all data, models, or code generated or used during the
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